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Abstract

Epilepsy is a clinical neurological disorder characterized by recurrent and spontaneous seizures consisting of
abnormal high-frequency electrical activity in the brain. In this condition, the transmembrane potential dynamics
are characterized by rapid and sharp wavefronts traveling along the heterogeneous and anisotropic conduction
pathways of the brain. This work employs the monodomain model, coupled with specific neuronal ionic models
characterizing ion concentration dynamics, to mathematically describe brain tissue electrophysiology in grey and
white matter at the organ scale. This multiscale model is discretized in space with the high-order discontinuous
Galerkin method on polygonal and polyhedral grids (PolyDG) and advanced in time with a Crank-Nicolson
scheme. This ensures, on the one hand, efficient and accurate simulations of the high-frequency electrical activity
that is responsible for epileptic seizure and, on the other hand, keeps reasonably low the computational costs
by a suitable combination of high-order approximations and agglomerated polytopal meshes. We numerically
investigate synthetic test cases on a two-dimensional heterogeneous squared domain discretized with a polygonal
grid, and on a two-dimensional brainstem in a sagittal plane with an agglomerated polygonal grid that takes full
advantage of the flexibility of the PolyDG approximation of the semidiscrete formulation. Finally, we provide a
theoretical analysis of stability and an a-priori convergence analysis for a simplified mathematical problem.

1 Introduction

Epilepsy is a neurological disorder characterized by seizures, an abnormal high-frequency electrical activity in the
brain. This pathology can significantly reduce the quality of life to the point of life-threatening [1]. Clinical
investigations into the causes, mechanisms, and treatments of epilepsy have increased in recent years [2, 3, 4], and
have taken advantage of recent developments in the mathematical modeling of epileptic activity both at neuronal
[5, 6, 7, 8] and at organ level [9, 10, 11]. Recent results [9, 10] have shown that the bidomain model, typically
employed in cardiac electrophysiology [12], can be used to simulate electrical activity in the brain, provided that
it is supplemented with suitable ionic models that describe the variations in neuron ion concentrations across the
membrane [6, 13, 14, 15]. More specifically, ion models are exploited for neuronal modeling to describe the different
ion concentrations’ dynamics that influence the cellular action potential [16, 17]. Although modeling the cardiac
and neuronal contexts can be done by exploiting the same organ-level equations, there is a substantial difference
between the two: neural conduction velocity is approximately 20-60 times faster than the cardiac one. This makes
numerical simulation of the underlying physical process evermore challenging [10, 18].

In modeling electrical activity within the human brain, suitable specific peculiarities of brain structure have to
be accounted for [19]: different conductivity tensors must be incorporated in the mathematical model to correctly
describe different brain tissues, such as grey and white matter. Both tissues are vital components of the brain and
spinal cord, although there are substantial differences at both the structural and functional levels [11, 20]. Since
white matter is composed of axonal fibers covered by myelin and not directly by neuronal bodies like grey matter,
it is highly anisotropic, with conductivity tensors following specific preferential directions depending on the local
direction of the axonal connections [19]. This paper considers the Barreto-Cressman ionic model [6] coupled with
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the monodomain model to describe electric organ-level activity [21]. The Barreto-Cressman model is a conductance-
based model describing the evolution of the neuron’s transmembrane potential and the dynamics of different ion
concentrations (Calcium, Potassium, and Sodium) that, through the opening and closing of ion channels govern
the action potential mechanism [22, 23]. The coupling with the monodomain equation upscales the transmembrane
potential in three dimensions, generating spatial propagation patterns. In this way, it is possible to study the
multiscale effects on the evolution of the transmembrane potential both from a microscopic (single neuron) [24] and
macroscopic perspective (brain tissue) [25].

Standard discretization techniques, such as the finite element method, involve high computational costs to sim-
ulate the discretized system on realistic brain geometries. Indeed, modeling wave propagation with the brain tissue
is characterized by very complicated geometrical details, steep wavefronts, and high heterogeneity of the materi-
als, requiring extremely fine spatio-temporal discretizations to ensure sufficient accuracy and a correct description
of the wavefront. To overcome the inherent geometrical and functional complexities, we propose, for the space
discretization of the model, a high-order discontinuous Galerkin method [26] on polygonal and polyhedral grids
(PolyDG) [27, 28, 29]. This choice is motivated by the following: (i) high-order approximations have demonstrated
remarkable performance in accurately approximating wavefront propagation phenomena, see, e.g., [30]; (ii) in the
simulation of brain physiology and pathology, the geometric flexibility of PolyDG can be successfully exploited to
tame computational complexity, reduce the computational cost, control dispersion and dissipation in the solution
[31, 32]; (iii) the construction of the meshes in this context is facilitated by agglomeration strategies that allow
flexibility and the preservation of high quality in the description of complex boundaries [33].
The aim of this work is to introduce, theoretically analyze, and test in practice a PolyDG method for the numer-
ical approximation of brain electrophysiology, especially in pathological scenarios characterized by high-frequency
impulses that generate rapid wavefronts traveling along the white and gray matter. Numerical test cases are con-
ducted using a specific parametrization of the Barreto-Cressman ionic model to simulate epileptic seizures both on
simplified geometries and in brain sections reconstructed from medical images. In both cases, we encode the dis-
tinction between white and grey matter into the conductivity tensor. In these scenarios, we present a quantitative
analysis of wavefront conduction velocities on varying mesh refinement and polynomial degree. Finally, a simplified
ionic model is exploited to carry out a theoretical stability analysis and to prove a-priori convergence error estimate.

The paper is organized as follows. In Section 2, we introduce the mathematical model of the monodomain
equation coupled with the Barreto-Cressman ionic model and its weak formulation. Section 3 presents the semi-
discrete formulation for the coupled problem. In Section 4, we introduce the time-discretization exploiting a
second-order semi-implicit method. In Section 5, we present two-dimensional simulations, including white and grey
matters and unstable initial conditions. We also numerically analyze the evolution of the transmembrane potential
in a realistic setting given by the brainstem section reconstructed from medical images from [34]. Section 6 provides a
theoretical analysis for a simplified monodomain problem presenting stability results of the semi-discretized problem
and an a priori error estimate proof. Finally, in Section 7, we present the results of the convergence tests with an
analytical solution.

2 The mathematical model

In this section, we present the mathematical formulation of the monodomain model coupled with a general ionic
model posed in abstract form. This model describes the evolution of the transmembrane potential within brain
tissue under pathophysiological conditions [9]. Given an open, bounded, polygonal domain Ω ∈ Rd, (d = 2, 3) and
a final time T > 0, we introduce the transmembrane potential u = u(x, t) with u : Ω× [0, T ] → R, and the vector
y = y(x, t) with y : Ω × [0, T ] → Rn, n ≥ 1, containing the ion concentrations and gating variables of the ionic
model. The coupled problems reads as follows: For any time t ∈ (0, T ], find u = u(x, t) and y = y(x, t) such that:

χmCm
∂u

∂t
−∇ · (Σ∇u) + f(u,y) = Iext in Ω× (0, T ],

∂y

∂t
+m(u,y) = 0 in Ω× (0, T ],

Σ∇u · n = 0 on ∂Ω× (0, T ],

u(0) = u0, y(0) = y0 in Ω.

(1)

In Equation (1), f(u,y) and m(u,y) represent the ionic forces and the evolution of the n different ion concentra-
tions appearing in the ionic model, respectively. These functions may be characterized by one or more variables
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representing the concentration of certain ions, such as calcium and potassium, or gating variables relating to the
opening and closing of ion channels in the cell membrane [16, 6]. We assume homogeneous Neumann boundary
conditions and n = n(x) is the outward normal vector to ∂Ω. Finally, we introduce the initial conditions where u0

and y0. In Equation (1) Σ represents the conductivity tensor, we assume to be constant in time and piecewise in
space, characterized by its tangential component (σt) and its normal component (σn):

Σ =

[
σt 0
0 σn

]
. (2)

Specifically, we employ a fully isotropic conductivity in grey matter and an anisotropic conductivity in white
matter [9]. Where Iion is the forcing ionic current, χm is the membrane surface area per unit volume, and Cm is the
membrane capacitance. For the weak formulation of the problem, we consider the Sobolev space V = H1(Ω), and
we employ a standard definition of the scalar product in L2(Ω), denoted by (·, ·)Ω. The induced norm is denoted
by ∥ · ∥. We remind that for vector-valued and tensor-valued functions, the definition extends componentwise [35].
Starting from Equation (1), we introduce the ionic component and the dynamics component of the ionic model as:

a(u, v) = (Σ∇u,∇v)Ω, rion(u,y, v) = (f(u,y), v)Ω ∀ v ∈ V, rm(u,y,w) = (m(u,y),w)Ω ∀w ∈ V n. (3)

We assume that the forcing terms, physical parameters, and initial conditions in Equation (1) are sufficiently regu-
lar, i.e.: f(u,y) ∈ L2(0, T ;L2(Ω)), Iext(u,y) ∈ L2(0, T ;L2(Ω)), m(u,y) ∈ [L2(0, T ;L2(Ω))]n, χm and Cm ∈ L∞

+ (Ω)
where L∞

+ (Ω) := {v ∈ L∞(Ω) : v ≥ 0 a.e. in Ω}, u0 ∈ L2(Ω) and y0 ∈ [L2(Ω)]n.

The weak formulation of the problem (1) reads: ∀ t ∈ (0, T ] find u(t) ∈ V,y(t) ∈ V n such that:
χmCm

(
∂u(t)

∂t
, v

)
Ω

+ a(u(t), v) + χmrion(u(t), v) = (Iext, v)Ω ∀ v ∈ V,(
∂y(t)

∂t
,w

)
Ω

+ rm(u(t),y(t),w) = 0 ∀w ∈ V n,

u(0) = u0, y(0) = y0 in Ω.

(4)

2.1 Barreto-Cressman ionic model

The Barreto-Cressman ionic model [6] can be defined as a conductance-based model that represents the mem-
brane potential of a neuron and the dynamic interactions of intra- and extra-cellular ion concentrations [36]. It
can accurately display neuronal burstings, which is the epilepsy phase characterized by the fast-spiking behav-
ior of the transmembrane potential [22, 36], as well as neuronal quiescence, which is instead distinguishable by
a slower oscillatory behavior of the quantities of interest. The complete model derivation can be found in [6].
This ionic conductance-based model is characterized by three different ionic concentrations: intracellular sodium
s(t) = [Na]i(t), extracellular potassium k(t) = [K]o(t), and intracellular calcium c(t) = [Ca]i(t).

The Barreto-Cressman model consists of three different ionic variables that characterize the model and the three
gating variables gs, gk, gc that control the opening and closing of the corresponding ion channels, i.e.

y(x, t) =
[
c(x, t), k(x, t), s(x, t), gs(x, t), gk(x, t), gc(x, t)

]⊤
, with y(x, t) : Ω× [0, T ] → R6. (5)

The ionic current characterizing the dynamics of the transmembrane potential is characterized by different
contributions arising from the sodium, potassium, and chlorine current, defined and analyzed more specifically
below. Under specific parametrizations and initial conditions, the Barreto-Cressman ionic model shows that a
single cell subject to intra and extracellular ion concentration dynamics can exhibit recurrent seizure-like events.
At the tissue level, the coupling of the monodomain model with the conductance-based ion model is exploited to
differentiate individual epileptic seizures from a condition of abnormal brain activity. We then introduce the ionic
forcing term of the model in Equation (1) as follows.

f(u,y) = Iion(u,y) = INa(u,y) + IK(u,y) + ICl(u,y). (6)

The ionic current Iion depends directly on the three ionic variables s,c, k, and the three gating variables. χm is
the membrane capacitance per unit area, and Iion is the transmembrane ionic current per unit area. In addition,
four other types of currents are introduced: the current related to the ability of cells to remove excess potassium
from the extracellular space IGlia, the current representing potassium diffusion Idiff , the current that denotes the
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sodium–potassium pump Ipump, and the external forcing term Iext. The general expressions for the gating variables
vary depending on the specific variable being considered. We set

τj(u) =
1

aj(u) + bj(u)
, gj∞(u) =

aj(u)

aj(u) + bj(u)
, where j = s, k, c.

Table 1 reports to the expressions of aj(·) and bj(·), which enters the definition of τj and gj∞ for the three different
gating variables. The ionic currents related to sodium-potassium channels (Ipump, IGlia, Idiff) are defined as follows:

Ipump(k, s) =
ρ

1 + exp(5.5− k(t))
· 1

1 + exp
(

25−s(t)
3

) , IGlia(k) =
Gglia

1 + exp
(

18−k(t)
2.5

) , Idiff(k) = ϵ(k(t)−Kbath).

Table 1: Functions for the Barreto-Cressman ionic model [36, 6]

aj = aj(t) bj = bj(t)

as(t) =
0.1(u(t) + 30)

1− exp(−0.1(u(t) + 30))
bs = 4 exp

(
−u(t) + 55

18

)
ak(t) = 0.07 exp (−0.2(u(t) + 44)) bk =

1

1 + exp(−0.1(u(t) + 14))

ac(t) =
0.01(u(t) + 34)

1− exp(−0.1(u(t) + 34))
bc =

1

8
exp

(
−u(t) + 44

80

)

Note that the different ionic currents depend non-linearly on the gating variables:

INa(g
s, gk, u) =

(
GNaL +GNa(g

s(t))3gk(t)
)
(u(t)− ENa),

IK(g
c, c, u) =

(
GK(g

c(t))4 +GAHP
c(t)

1 + c(t)
+ GKL

)
(u(t)− EK),

ICl(u) = GCIL(u(t)− ECl).

(7)

Here, INa, IK, ICl refer to the currents of sodium, potassium, and chloride ions, respectively. Sodium channels
cause the nerve cell membrane to depolarize and facilitate the conduction of action potentials across the neuronal
cell surface while calcium channels contribute to the overall electrical excitability of neurons and play a key role
in regulating the release of neurotransmitters to pre-synaptic nerve terminals. Finally, potassium channels are
primarily responsible for restoring the cell membrane’s resting potential after triggering an action potential and
regulating the balance between input and output in individual neurons. The Nerst potentials can be rewritten as:

ECa = 120 mV, ENa = 26.64 log

(
270− n

n

)
, EK = 26.64 log

(
k

(158− n)

)
, ECl = 26.64 log

(
[Cl]i
[Cl]o

)
.

Finally, the dynamics of the ionic model is given by:

m(u,y) =



c(t)

80
+ GCa

0.002(u(t)− ECa)

1 + exp
(
− 25+u(t)

2.5

)
1

τ
(Idiff − 14Ipump − Iglia + 7γIK)

1

τ
(γINa − 3Ipump)

3
gs(t)− gs∞

τc

3
gk(t)− gk∞

τk

3
gc(t)− gc∞

τs



. (8)
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Table 2: Parameters for Barreto-Cressman ionic model. Values taken from [36].

Parameter Description Values

Cm Membrane capacitance 10−2 mF/cm2

GAHP Conductance of after hyperpolarization current 0.01 mS/cm2

GKL Conductance of potassium leak current 0.05 mS/cm2

GNa Conductance of persistent sodium current 100 mS/cm2

GCIL Conductance of chloride leak current 0.05 mS/cm2

GNaL Conductance of sodium leak current 0.0175 mS/cm2

GCa Calcium conductance 0.1 mS/cm2

GK Conductance of potassium current 40.0 mS/cm2

Gglia Strength of glial uptake 66.66 mM/s
Kbath Conductance of potassium 8.0 mM

Table 3: Variables of the Barreto-Cressman ionic model.

Variable Description Units

n Intra/extra-cellular sodium concentration mM
k Intra/extra-cellular potassium concentration mM
c Intra/extra-cellular calcium concentration mM
gs Activating sodium gate
gk Activating potassium gate
gc Inactivating sodium gate
IK Potassium current µA/cm2

INa Sodium current µA/cm2

ICl Chloride current µA/cm2

Idiff Potassium diffusion to the nearby reservoir mM/s
Ipump Pump current mM/s
Iglia Glial uptake mM/s
ECa Nerst potential of calcium mV
EK Nerst potential of potassium mV
ENa Nerst potential of sodium mV
ECl Nerst potential of chloride mV
τg Forward rate constant for transition between open/closed gate mM/s
g∞ Backward rate constant for transition between open/closed gate mM/s

Taking advantage of the abstract semi-discrete formulation of Section 3, it is possible to analyze the semi-discrete
formulation of the Barreto-Cressman model coupled with the monodomain model. We can construct the weak
formulation of the coupled multiscale model as follows.

For any t ∈ (0, T ], find (u(t),y(t)) ∈ V × V n:
χmCm

(
∂u(t)

∂t
, v

)
Ω

+ a(u(t), v) + χmrion(u(t),y(t), v) = (Iext, v)Ω ∀ v ∈ V,(
dy(t)

dt
,w

)
= −rm(u,y,w) ∀w ∈ V n,

u(0) = u0, y(0) = y0 in Ω.

(9)

where rion, rm, and a are defined as in (3). In Table 2 and in Table 3, we show all the parameters and variables in
the model, respectively.

3 PolyDG semi-discrete formulation

We next introduce the PolyDG semi-discrete formulation of the problem in Equation (4). Let Th be a polytopic
mesh partition of the domain Ω made of disjoint elements K, where for each element, we define hK as its diameter,
setting h = maxK∈Fh

hK < 1. We define the interfaces as the intersection of the (d-1)-dimensional facets of
neighbouring elements. In the case when d = 2, we note that the interfaces of a given element K will always consist
of segments. For d = 3, we assume that each interface of an element K may be subdivided by a set of planar
triangles defined as Fh. We denote by F I

h the union of all interior faces that are contained in Ω and FN
h the ones

lying on ∂Ω.
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Assumption 1. (Mesh Regularity [37]) The mesh {Th}h satisfies the following properties:

• Shape Regularity: ∀K ∈ Th it holds : c1h
d
K ≲ |K| ≲ c2h

d
K

• Contact Regularity: ∀F in Fh with F ⊆ K for some K ∈ Th, it holds h
d−1
K ≲ |F |, where |F | is the Hausdorff

measure of the space F.

• Submesh Condition: There exists a shape-regular, conforming, matching simplicial submesh T̂h such that :

– ∀ K̂ ∈ T̂h∃K ∈ Th : K̂ ⊆ K.

– The family {T̂h} is shape and contact regular.

– ∀ K̂ ∈ T̂h,K ∈ Th with K̂ ⊆ K, it holds hK ≤ hK̂ .

Let us define Pp(K) the space of polynomial of total degree p ≥ 1 over the element K. We can introduce the
discontinuous finite element space: V DG

h = {vh ∈ L2(Ω) : vh|K ∈ Pp(K) ∀K ∈ Th}. Given F ∈ F I
h be the face

shared by the elements K±, let n± be the normal vector on face F . Given a regular scalar-valued function v and
vector-valued function q we define the trace operators [26]:

{{v}} =
1

2
(v+ + v−), [[v]] = v+n+ + v−n−, on F ∈ F I

h ,

{{q}} =
1

2
(q+ + q−), [[q]] = q+ · n+ + q− · n−, on F ∈ F I

h .

We remind that we use the superscripts ± on the functions to denote the traces of the functions on F taken
within the interior to K±, respectively. In order to introduce the discretization we define the following penalization
function η : Fh → R+:

η = η0{ΣK}A
p2

{h}H
on F ∈ F I

h , (10)

where {·}A is the arithmetic average operator and {·}H is the armonic average operator i.e. {h}H = 2h+h−
h++h−

and

η0 > 0 is a parameter to be chosen. Moreover, we define ΣK = ∥
√
Σ|K∥22. Implicit in this assumption is that the

discontinuities of K are aligned with τn. We introduce the bilinear form A (·, ·) : V DG
h × V DG

h → R as:

A (u, v) =

∫
Ω

Σ∇hu · ∇hv dx+
∑

F∈FI
h

∫
F

(η[[u]] · [[v]]− {{Σ∇u}} · [[v]]− [[u]] · {{Σ∇v}})dσ ∀ u, v ∈ V DG
h ,

where ∇h is the elementwise gradient. The semi-discrete formulation of problem (1) reads:

For any t ∈ (0, T ], find (uh(t),yh(t)) ∈ V DG
h ×

[
V DG
h

]n
such that:

χmCm

(
∂uh(t)

∂t
, vh

)
Ω

+ A (uh(t), vh) + χm (f(uh(t),yh(t)), vh)Ω = (Iexth , vh)Ω ∀ vh ∈ V DG
h ,(

dyh(t)

dt
,wh

)
Ω

+ (m(uh(t),yh(t)),wh)Ω = 0 ∀wh ∈ [V DG
h ]n,

uh(0) = u0
h, yh(0) = y0

h in Ω.

(11)

Under the same assumptions in Section 2, it is possible to introduce the PolyDG semi-discrete formulation also for
the coupled monodomain problem with the Barreto-Cressman ionic model, which reads as follows:

For any t ∈ (0, T ] find (uh(t),y(t)) ∈ V DG
h × [V DG

h ]n such that:
χmCm

(
∂uh(t)

∂t
, vh

)
Ω

+ A (uh(t), vh) + χmrion(uh(t),yh(t), vh) = (Iexth , vh)Ω ∀ vh ∈ V DG
h ,(

dyh(t)

dt
,wh

)
Ω

= −ry(uh(t),yh(t),wh) ∀wh ∈ [V DG
h ]n,

uh(0) = u0
h, yh(0) = y0

h in Ω.

(12)
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4 Fully-discrete formulation

Let Nh be the dimension of V DG
h and let (φj)

Nh
j=0 be a suitable basis for V DG

h , then uh(t) =
∑Nh

j=0 Uj(t)φj and

yl(t) =
∑Nh

j=0 Y
l
j (t)φj for all l = 1, ..., n. We denote U ∈ RNh , Yl ∈ RNh for all l = 1, ..., n and Y = [Y1, ...,Yn]

⊤.
We define the matrices:

[M]ij = (φi, φj)Ω, (Mass matrix), i, j = 1, ..., Nh

[F]j = (Iext, φj)Ω, (Forcing term), j = 1, ..., Nh

[I(u,y)]j = (f(u,y), φj)Ω, (Non-linear ionic forcing term), j = 1, ..., Nh

[Gl(u,y)]j = (ml(u,y),φj)Ω, (Dynamics of the ionic model), j = 1, ..., Nh, l = 1, ..., n

[A]ij = A (φi, φj) (Stiffness matrix), i, j = 1, ..., Nh.

(13)

The terms related to the ionic forcing and the ionic coupling dynamics are identified by I(t),G(t), respectively. The
algebraic form of problem (11) reads 

χmCmMU̇(t) +AU(t) + I(t) = F(t),

Ẏ(t) +G(t) = 0,

U(0) = U0, Y(0) = Y0.

(14)

We divide the interval [0, T ] into N subintervals (tn, tn+1] of length ∆t so that tn = n∆t, for n = 0, ..., N − 1. Here,
we employ a semi-implicit treatment of the diffusion term while the ion term is treated explicitly. Furthermore,
for the temporal discretization, we consider a Crank-Nicholson second-order scheme [38]. Given U0 and Y0, the
following discrete scheme reads:
Find Un+1 ≃ U(tn+1) and Yn+1 ≃ Y(tn+1) for n = 0, ..., N − 1, such that:

(
χmCmM +

∆t

2
A

)
Un+1 =

(
χmCmM − ∆t

2
A

)
Un +∆tFn+1 − χm∆tIn+1

stim,

Yn+1 = Yn −∆tGn,

U0 = U0, Y
0 = Y0,

(15)

where the ionic current at step n + 1 is computed by second-order interpolation exploiting the values of the ionic
terms In and In+1 evaluations at the previous steps, as follows:

In+1
stim =

3

2
In − 1

2
In−1. (16)

A computational advantage of such a semi-implicit scheme is that the stiffness and mass matrices can be assembled
only at the beginning of the computation [39].

By exploiting the definitions introduced in Section 4 and the interpolation of the ionic current (ICI) framework
[40], the ionic vector is defined as follows:

[I]nj = (Inion, φj)Ω = (InNa + InK + InCa, φj)Ω, j = 1, ..., Nh.

The time discretization of the problem considering the Barreto-Cressman ionic model is done by treating in an
implicit way the diffusive component and in an explicit way the ionic forcing component. For this coupled problem,
we also exploit a semi-implicit second-order method as described above. The fully discrete formulation reads as in
Equation (15).

5 Numerical results

In this section, we present a set of numerical tests aimed at assessing the numerical performance of the method in
approximating pathophysiological scenarios of brain electrophysiology. The initial data for the potential are defined
such that the unstable region of grey matter has an initial potential u0 = −50mV while the remaining part of the
domain has u0 = −67mV, as done in [36]. All the other variables of the ionic model are initialized as in Table 4,
while the parameters are set as in Table 2. In Table 5, we report the conductivity values taken exploiting the bulk
conductivity tensor [41] for intracellular end extracellular conductivities taken from [9].
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Table 4: Initial conditions for the coupled mon-
odomain Barreto-Cressman ionic model. Values taken
from [36].

Variable Inital Value Units

u0
n −50 mV

u0
s −67 mV

n0 15.5 mM
c0 0 mM
k0 7.8 mM
gn,0 0.0936 -
gc,0 0.08553 -
gk,0 0.96859 -

Table 5: Values for the parameters of the Bulk conductiv-
ity tensor from [9].

Tissue type σn [Sm−1] σt [Sm
−1]

Grey matter 0.0735 0.0735
White matter 0.0557 0.0139

5.1 Test case 1: Simplified computational domain, physiological/pathological coeffi-
cients

The behavior of white and grey matter in response to internal or external stimuli, such as an ion imbalance or
external brain stimulation, differs because of the preponderance of cell bodies in grey matter and axons in white
matter. This makes white matter strongly anisotropic, with conductivity tensors following specific preferential
directions depending on the part of the tissue analyzed [42]. By defining Ω0 as the subsection of unstable grey
matter, ΩWMV as the subsection of white matter with vertical anisotropy, and ΩWMH as the subsection of white
matter with horizontal anisotropy; defined as in Table 1a. To investigate the effect of heterogeneity on the numerical

Variable Subregion

Ω (0,1)x(0,1)
Ω0 (0,1)x(0.4,0.6)
ΩWMV (0,0.5)x(0,0.4)
ΩWMH (0.5,1)x(0,0.4)

(a) Distinction of different tissues. (b) Polytopal grid (c) Initial condition for u

Figure 1: Test case 1: (1b) computational domain and corresponding grid, grey matter region (blue), horizon-
tal anisotropic white matter region (lime), vertical anisotropic white matter (red), (7c) initial condition of the
transmembrane potential.

approximation, we consider a domain of size (0, 1) × (0, 1) cm that is subdivided into subregions characterized by
different values of the conductivity tensors. Specifically, the conductivities values reported in Table 5 encode the
difference between the white and grey matters. Moreover, within the white matter, we add a further differentiation
in vertical and horizontal anisotropy, with a conductivity tensor that has symmetrically opposite directions.

The domain is thus divided into three regions plus an unstable area, introduced into the grey matter, where a
potential imbalance is assumed as an initial condition. Then, the change in the potential generated by the unstable
area evolves freely within the two different tissue types. The simulation is performed considering a mesh with 800
elements and with ∆t = 10−3 and T = 20ms. Figure 1 shows the computational domain and grid used for the
simulation. Subdomain distinction of unstable grey matter (Ω0), stable grey matter, white matter with vertical
anisotropy (ΩWMV) and white matter with horizontal anisotropy (ΩWMH) is reported in Figure 1b. The evolution of
the transmembrane potential over the domain is shown in Figure 2. The potential evolves isotropically in the white
matter and anisotropically in the grey matter, actively propagating the wavefront originated from the unstable
grey matter throughout the tissue. In Figure 3, we present the transmembrane potential profile along the domain’s
diagonal. The speed of the transmembrane potential in the white matter is observed to be lower and generates, as
expected, small oscillations due to the low conductivity values.
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(a) t = 3 ms (b) t = 4.5 ms (c) t = 6 ms

Figure 2: Test case 1: Snapshots of the transmembrane potential in gray-white matter tissue at three different time
instants.
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Figure 3: Test case 1: Profile of the transmembrane potential along the domain’s diagonal.

Approximation of the conduction speed

For a numerical verification, we study the evolution of the conduction velocities of the monodomain problem coupled
with the Barreto-Cressman ion model as a function of the spatial discretization and the polynomial degree used.
Conduction velocity values are calculated by measuring the length of the space traveled by the wavefront in a fixed
amount of time along one of the two diagonals. Since there is no exact solution of the coupled model, we construct a
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Figure 4: Test case 1: Approximation of the velocity of numerical solution with refinement in p for different tissues:
White matter with vertical anisotropy (left) grey matter (center) and white matter with horizontal anisotropy
(right).
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reference simulation on a fine grid composed by 800 elements and exploit a high polynomial degree (p = 6) to obtain
a high-resolution approximation of the solution. Here the penalty parameter is chosen equal to η0 = 10. Figure 4
shows the evolution of the wavefront conduction velocity as a function of the polynomial degree p for four different
spatial discretizations (characterized by computational meshes formed by 100, 300, 500, 800 elements, corresponding
to a mesh size of 0.18, 0.106, 0.083, 0.0581 cm, respectively) in the three different tissue types described above.
Figure 5 shows the evolution of the conduction velocity as a function of the degrees of freedom of the monodomain
discretization. As expected, both increasing the polynomial degree and reducing the mesh size significantly improves
the approximation of the conduction velocity.

Moreover, Figure 5 proves that increasing the polynomial degree is computationally more convenient than
refining the mesh, as evidenced by the trend of the discretization based on 300 elements (blue line) with respect to
ones based on 500 elements (orange line) and 800 elements (green line), provided that the mesh is not excessively
coarse (as in the case of the 100 elements mesh represented by the red line).
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Figure 5: Test case 1: Approximation of the velocity of numerical solution as a function of the total number of
degrees of freedom (ndof) for different tissues: White matter with vertical anisotropy (left) grey matter (center)
and white matter with horizontal anisotropy (right).

5.2 Test case 1.1: Influence of potassium dynamics on seizure evolution

An analysis is then performed on the evolution of transmembrane potential in relation to ionic imbalances generated
in the cell membrane, particularly potassium imbalances. The influence of extracellular potassium on neuronal
excitability is widely recognized, and dysregulation of this ion is implicated in several forms of epilepsy. The variable
Kbath is modified to simulate this behavior, thus constructing three differentiated test cases and analyzing the
evolution of the resulting potential values for Kbath = 4mM and Kbath = 8mM . We consider three configurations:
the first two are characterized by a region of gray matter tissue in which the value of the potassium stabilization
variable is constant over the entire domain, namely Kbath = 4mM and Kbath = 8mM , respectively. The third
one is constructed such that the unstable gray matter region (encoded into the initial condition) coincides with the
region of high potassium concentration, as shown in Figure 6a (a). By defining Ω0 as the subsection of unstable
grey matter, the domain is defined as in Table 6a.

Variable Subregion

Ω (0,1)x(0,1)
Ω0 (0,0.4)x(0.4,0.4)

(a) Distinction of different tissues. (b) Polytopal grid (c) Initial condition for u

Figure 6: Test case 1.1: (6b) computational domain and corresponding grid, grey matter region (blue), (6c) initial
condition of the transmembrane potential.

To appreciate the influence of potassium on a seizure episode, we show in Figure 8 the evolution of the trans-
membrane potential profile in (x̂, ŷ) = (0.7, 0.7). Simulations are performed considering a domain Ω = (0, 1)2
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(a) t = 3ms (b) t = 6ms (c) t = 9ms

Figure 7: Test case 1.1: Snapshots of the transmembrane potential in gray matter tissue at three different time
instants with Kbath = 4 mM.

while the polygonal mesh is characterized by 500 elements. For all test cases, fifth-degree polynomials (p = 5) are
exploited for discretization while ∆t = 2.5e−3. In Figure 8a, a simulation is presented in which Kbath = 4mM
is imposed throughout the domain. In this setting, a high-frequency drastic change in the potential is observed
during the first milliseconds, followed by a regularization process leading to a steady state. The potential finally
reaches an asymptotic value, indicating the end of the self-induced episode. In Figure 8b, instead, we present a
simulation where the value of Kbath has been increased up to 8mM throughout the whole domain. In this setting,
we observe a different behavior of the transmembrane potential evolution from the previous test case, with a larger
number of self-induced activations characterized by an increasing frequency. Finally, in Figure 8c, we present a
simulation where the value of Kbath is defined as a function of the unstable region Ω0. Numerical results show
that the unstable region with Kbath = 8mM is dominant for the characterization of the potential dynamics also in
regions not characterized by this condition (Ω \ Ω0 with Kbath = 4mM). Specifically, this simulation shows that
the behavior of the transmembrane potential is close to the one of Figure 8b.
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(b) Kbath = 8 mM
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Figure 8: Test case 1.1: Evolution of the transmembrane potential for different values of Kbath in a specific point
of the domain (x̂, ŷ) = (0.7, 0.7).

5.3 Test case 2: brain section and pathological coefficients

For the second test case, we consider a mesh of the sagittal section of the brain constructed starting from structural
Magnetic Resonance Images (MRI) from the OASIS-3 database [34]. The method exploited to construct the mesh
[37] exploits the agglomeration of triangular meshes to construct polytopal meshes, which can optimally handle
complex geometries. Taking into account only the brainstem of the section, we simulate the evolution of the
transmembrane potential by imposing unstable initial conditions in a grey matter region. The exploited mesh
is reported in Figure 9 (left), where we show the subdivision of grey and white matter. In Figure 9, we also
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report the unstable grey matter portion of the section from which the seizure starts. As an initial condition for
the transmembrane potential, by defining Ω0 as the subsection of unstable grey matter, we adopt the following
analytical function:

u(0) = −67 + 17e−2(x−x0)
2−2(y−y0)

2

χΩ0
(x, y),

where χ is the indicator function. The considered brain section has a maximum longitudinal length of 7.5 cm and
a vertical length of 7 cm. The mesh is characterized by 8476 elements, of which 3927 identify white matter and the
remaining grey matter. Figure 10 shows the evolution of the transmembrane potential originated in the unstable
grey matter region. Due to the strong anisotropy of the white matter [43], there is a scattering of the anomalous
signal consistent with what was previously analyzed on the square mesh. The white matter regions within the
section slow down the signal, favoring the horizontal to vertical direction. Also, in this test case, fifth-degree
polynomials are exploited for the discretization, and ∆t = 2.5e−3 for the time discretization.

(a) Polytopal grid (b) Tissue differentiation (c) Initial condition for u

Figure 9: Test case 2: (9a) computational domain and corresponding grid, (9b) initial unstable grey matter region
(light blue), stable grey matter region (blue), vertical anisotropic white matter region (red), (9c) initial condition
of the transmembrane potential.

(a) t = 4 ms (b) t = 10 ms (c) t = 16 ms

(d) t = 24 ms (e) t = 34 ms (f) t = 70 ms

Figure 10: Test case 2: snapshots of the transmembrane potential evolution in the sagittal section of the brain.
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6 Theoretical analysis

In this section, we present the theoretical analysis of the stability and an a-priori convergence analysis for a
benchmark test case. Specifically, we consider the monodomain equation with homogeneous parameters, no forcing
currents, and a ionic term that depends on the transmembrane potential in the following non-linear way:

f(u) = a(u− Vrest)(u− Vthres)(u− Vdepol), (17)

where Vrest ≤ Vthres ≤ Vdepol and a > 0. Here, Vrest is the resting potential, Vthres represents the threshold potential,
and Vdepol represents the depolarization potential. Starting from [39], where the convergence for the one-dimensional
problem is analyzed, the solution is extended to the two-dimensional case by introducing uex as the exact solution
of the problem described in the Equation (18) with f defined as (17). The analytic solution is therefore defined as
follows.

uex(x, t) =
Vdep − Vrest

2

[
1− tanh

(
x− ct

ϵ

)]
+ Vrest, (18)

where ϵ characterizes the thickness of the wavefront, while c is the propagation speed of the wave.

Assumption 2. (Regularity of the coefficients): Concerning the physical parameters of the specific model, we
assume the following regularity requirements: Vrest, Vdepol, Vthres ∈ L∞(Ω), a ∈ L∞

+ (Ω).

By setting

rion(u(t), v) = (au(t)3, v)Ω − (a(Vthres + Vdepol + Vrest))u(t)
2, v)Ω + (aVthresVdepolVrest, v)Ω−

− (a(VthresVdepol + VdepolVrest + VrestVthres))u(t), v)Ω, ∀v ∈ V.
(19)

Using the definitions introduced in Section 3 and exploiting Assumption 1, it is possible to rewrite the semi-discrete
formulation for the problem (1) exploiting (17) as follows:

∀t ∈ (0, T ] find uh(t) ∈ V DG
h such that :χmCm

(
∂uh(t)

∂t
, vh

)
Ω

+ A (uh(t), vh) + χmrion(uh(t), vh) = 0 ∀vh ∈ V DG
h ,

uh(0) = u0, in Ω.

(20)

where rion is defined as in (19). By exploiting all the definitions in Section 4, we can introduce the following
formulation for the ionic term in the fully discrete formulation, where [I]nj = (Iion

n, φj)Ω, j = 1, ..., Nh:

Inion = (a(u3)n, v)Ω − (a(Vthres + Vdepol + Vrest))(u
2)n, v)Ω + (aVthresVdepolVrest, v)Ω−

− (a(VthresVdepol + VdepolVrest + VrestVthres))u
n, v)Ω.

6.1 Stability analysis of the semi-discrete formulation

In this section, we present the stability analysis on the semi-discrete formulation of the problem introduced in
Equation (20). We set:

∥v∥2DG = ∥∇hv∥2 + ∥γ 1
2 [[v]]∥2F I

h
∀v ∈ H1(K), ∀K ∈ Th, (21)

The L2-norm on a set of faces Fh will be indicated as ∥ · ∥Fh
= (

∑
F∈Fh

∥ · ∥2L2(F ))
1/2. We also introduce the

following definition:
|||v|||DG = ∥v∥DG + ∥η− 1

2 {{Σ∇hv}}∥L2(FI
h)

∀v ∈ H2(Th), (22)

where η is defined in Equation (10) and Hs((Th) is the space of piecewise Hs functions, s ≥ 0. We remark that it
exists Ĉ > 0 such that Ĉ|||v|||2DG ≤ ∥v∥2DG for all v ∈ V DG

h .

Proposition 1. The bilinear form A (·, ·) is continuous and coercive:

∃M ≥ 0 : |A (vh, wh)| ≤ M |||vh|||DG∥wh∥DG ∀vh ∈ H2(Th), ∀wh ∈ WDG
h (23)

∃µ ≥ 0 : A (vh, vh) ≥ µ∥vh∥2DG ∀vh ∈ WDG
h (24)

where M and µ are independent of h. Coercivity holds provided that the penalty coefficient appearing in 10 is chosen
large enough.
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Finally, we introduce the definition of the energy norm operator ∥ · ∥ϵ : H1(Th) → R as follows:

∥v∥2ϵ = ∥v∥2 +
∫ t

0

2µ

Cmχm
∥v∥2DGds+

∫ t

0

a

Cm
∥v∥4L4ds ∀v ∈ H1(Th), (25)

where χm, Cm, a > 0.

Theorem 1. Let Assumption 1 and 2 be satisfied and let uh(t) be the solution of the Equation (20) for any t ∈ (0, T ].
Let the stability parameter η be large enough. Then the following stability estimate holds:

∥uh(t)∥2ϵ ≲ ∥uh(0)∥2 + a
∥ω∥2L∞(Ω) + ∥θ∥2L∞(Ω) + ∥ϕ∥2L∞(Ω)

Cm
|Ω|t, (26)

where ω, θ, ϕ are defined as ϕ = (Vthres + Vdepol + Vrest), θ = (VthresVdepol + VdepolVrest + VrestVthres), ω =
VthresVdepolVrest. Cm is the membrane capacitance defined as in Table 2 and a is the parameter introduced in (17).
The hidden constant depends on t, on Ω, on the coefficients, but it is independent of the discretization parameters.

Proof. Starting from Equation (20) and taking the test function vh = uh(t), we obtain:

χmCm(u̇h(t), uh(t))Ω + A (uh(t), uh(t)) + χmrion(uh(t), uh(t)) = F (uh(t)), (27)

where we exploit the notation u̇h = ∂uh

∂t . We remind that the nonlinear term is defined as in expression (19). To
simplify the notation, we introduce the following constants:

ϕ = (Vthres + Vdepol + Vrest),

θ = (VthresVdepol + VdepolVrest + VrestVthres),

ω = VthresVdepolVrest,

(28)

where Vdepol, Vrest, and Vthres are introduce in (17). The reaction term then reads as follows:

rion(uh(t), uh(t)) = a
(
(uh(t))

3 − ϕ(uh(t))
2 + θuh(t)− ω

)
.

Exploiting the coercivity estimate in Equation (24), integrating in time the Equation (27), Hölder inequality and
Assumption 2, we obtain:

Cm

2a
∥uh(t)∥2 +

∫ t

0

µ

χma
∥uh(s)∥2DGds+

∫ t

0

∥uh(s)∥4L4ds+ ≤ Cm

2a
∥uh(0)∥2

+

∫ t

0

∥ω∥L∞(Ω)|Ω|3/4∥uh(s)∥L4(Ω)ds︸ ︷︷ ︸
(I)

+

∫ t

0

∥θ∥L∞(Ω)∥uh(s)∥2ds︸ ︷︷ ︸
(II)

+

∫ t

0

∥ϕ∥L∞(Ω)∥uh(s)∥3L3(Ω)ds︸ ︷︷ ︸
(III)

We next bound each term separately:

(I) We exploit Young’s inequality with p = 4 and p∗ = 4/3:

|Ω|3/4∥uh(s)∥ ≤
(
k1
4
∥uh∥4L4 +

3

4k1
|Ω|

)
,

where k1 > 0 can be arbitrarily chosen.

(II) We exploit Hölder’s inequality with p = 2 and p∗ = 2 and Young’s inequality with p = 2 and p∗ = 2, to
obtain:

∥uh(t)∥2 ≤ ∥u∥2L4 |Ω|
1
2 ≤

(
k2
2
∥uh∥4L4 +

1

2k2
|Ω|

)
,

where k2 > 0 can be arbitrarily chosen.

(III) We exploit Hölder’s inequality with p = 4/3 and p∗ = 4 and Young’s inequality with p = 4/3 and p∗ = 4 in
order to control the cubic term, as:

∥uh(t)∥3L3 ≤ ∥uh∥3L4 |Ω|
1
4 ≤ 3k3

4
∥uh∥4L4 +

1

4k3
|Ω|,

where k3 > 0 can be arbitrarily chosen.
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Collecting the previous bounds we obtain:

Cm

2a
∥uh(t)∥2+

∫ t

0

µ

χma
∥uh(s)∥2DGds+

∫ t

0

∥uh(s)∥4L4ds+ ≤ Cm

2a
∥uh(0)∥2

+

∫ t

0

(∥ω∥L∞(Ω)k1 + 2∥θ∥L∞(Ω)k2 + 3∥ϕ∥L∞(Ω)k3

4

)
∥uh(s)∥4L4(Ω)ds

+

∫ t

0

(
3∥ω∥L∞(Ω)

4k1
+

∥θ∥L∞(Ω)

2k2
+

∥ϕ∥L∞(Ω)

4k3

)
|Ω|ds.

We choose:

k1 =
2

3∥ω∥L∞(Ω)
, k2 =

1

3∥θ∥L∞(Ω)
, k3 =

2

9∥ϕ∥L∞(Ω)
,

and obtain the following estimate:

Cm

a
∥uh(t)∥2 +

∫ t

0

2µ

χma
∥uh(s)∥2DGds+

∫ t

0

∥uh(s)∥4L4ds+ ≤ Cm

a
∥uh(0)∥2 +

9∥ω∥2L∞(Ω) + 12∥θ∥2L∞(Ω) + 9∥ϕ∥2L∞(Ω)

4
|Ω|t.

Taking the energy norm defined in (25) the thesis follows.

∥uh(t)∥2ϵ ≲ ∥uh(0)∥2ϵ + a
∥ω∥2L∞(Ω) + ∥θ∥2L∞(Ω) + ∥ϕ∥2L∞(Ω)

Cm
|Ω|t.

6.2 Error analysis of the semi-discrete formulation

In this section, we derive a priori error estimate for the solution of the PolyDG semi-discrete problem in (20). In
order to prove convergence, we assume Iext = 0. Interpolating this type of solution, we can have a function uI ,
which is L∞ by construction, then [44]:

∃MI > 0 ∥uI(t)∥2L∞ ≤ MI ∀t ∈ (0, T ).

Proposition 2. Let Assumption 1 be fulfilled. If d ≥ 2, then the following estimates hold:

∀v ∈ Hn(Th) ∃uI ∈ V DG
h : |||v − vI |||2DG ≤

∑
K∈Th

h2min{p+1,n}−2∥v∥Hn(K) (29)

For detailed proof of the proposition, see [27].

Theorem 2. Let uh be the solution of (20) for any t ∈ (0, T ]. Let Assumption 2 be satisfied and let u be the
solution of Equation (1) where f(u,y) is defined as in (17) for any t ∈ (0, T ] and let assume it satisfies the
following additional regularity requirements: u ∈ C1((0, T ];Hn(Ω) ∩ L∞(Ω)), for n ≥ 2. Let uh(t) ∈ Vh be the
solution of 3 for a sufficiently large penalty parameter η. Then, the following estimate holds:

|||eh(t)|||2ϵ ≲
∑

K∈Th

h
2min{p+1,n}−2
K

∫ t

0

(
∥u̇(s)∥2Hn(K) + ∥u(s)∥2Hn(K)

)
ds

+
∑

K∈Th

h
4min{p+1,n}−4
K

∫ t

0

∥u(s)∥4Hn(K)ds

+
∑

K∈Th

(
h
2min{p+1,n}−2
K ∥u(t)∥2Hn(K) + h

4min{p+1,n}−4
K ∥u(t)∥4Hn(K)

)
t ∈ (0, T ],

(30)

under the following additional hypothesis of the constants: µ − aχm (MI CE2
+ CS CE4

)ϕ∞ − aχm CE2
θ∞ > 0,

where CEq
is the discrete Sobolev embedding constant for the Lq(Ω) space and CS is defined in (26).

Proof. First of all, we subtract the Equation (17) from Equation (20) to obtain:

χmCm(u̇− u̇h, vh)Ω + A (u− uh, vh) + χmrion(u, vh)− χmrion(uh, vh) = 0 ∀vh ∈ V DG
h .
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We define the errors eh = uI − uh and eI = u − uI , where uI is a suitable interpolant such that eh(0) = 0. By
testing against eh we have:

χmCm

2
∥ėh∥2 + A (eh, eh) + χmrion(u(t), eh)− χmrion(uh(t), eh) = χmCm(ėI , eh)Ω + A (eI , eh),

where rion(u(t), eh)− rion(uh(t), eh) is defined as:

rion(u, eh)− rion(uh, eh) = a(u3 − u3
h, eh)Ω − ϕ(u2 − u2

h, eh)Ω + θ(u− uh, eh)Ω.

Exploiting the coercivity of the bilinear form in (24), integrating between 0 and t. We remark that eh(0) = 0.
Then, for large values for the penalty coefficient η, we obtain:

Cm

2
∥eh(t)∥2 +

∫ t

0

µ

χm
∥eh(s)∥2DGds+

∫ t

0

a(u(s)3 − uh(s)
3, eh)Ω︸ ︷︷ ︸

(I)

ds ≤
∫ t

0

Cm∥ėI∥∥eh∥ds

+

∫ t

0

1

χm
|A (eI(s), eh(s))|ds+

∫ t

0

|aϕ(u(s)2 − uh(s)
2, eh)Ω|︸ ︷︷ ︸

(II)

ds+

∫ t

0

|aθ(u(s)− uh(s), eh)Ω|︸ ︷︷ ︸
(III)

ds.

We can treat the nonlinear term (I) by rewriting the difference as follows:

(I) We first write:
u3 − u3

h = u3 − u3
I + u3

I − u3
h

= (uI − uh)
3 + (u− (uI))

3 + 3uIuh(uI − uh) + 3uIu(u− uI)

= (eh)
3 + (eI)

3 + 3uIuh(eh) + 3uIu(eI).

This decomposition gives rise to the following term:

(u3 − u3
h, eh)Ω =

(
(eh)

3 + (eI)
3 + 3uIuh(eh) + 3uIu(eI), eh

)
Ω

=∥eh∥4L4(Ω) +
(
(eI)

3, eh
)
Ω︸ ︷︷ ︸

(a)

+3 (uI uh eh, eh)Ω︸ ︷︷ ︸
(b)

+3 (uI u eI , eh)Ω︸ ︷︷ ︸
(c)

.

We can now treat the terms separately as follows:

(a) can be bounded using Hölder’s inequality and Young’s inequality both with p = 4/3 and p∗ = 4:

|(e3I , eh)Ω| ≤ ∥eI∥3L4(Ω)∥eh∥L4(Ω) ≤
3

4k1
∥eI∥4L4(Ω) +

k1
4
∥eh∥4L4(Ω).

(b) can be bounded using L∞-bound of the interpolant, the stability estimate of the DG solution of Theorem
1, Hölder’s inequality, the discrete Sobolev-Poincaré-Wirtinger inequality [37]:

|(uI uh eh, eh)Ω| ≤ ∥uI∥L∞(Ω)∥uh∥∥eh∥2L4(Ω) ≤ M1CSCE4
∥eh∥2DG.

(c) can be bounded using L∞-bound of the interpolant and the continuous solution and the Cauchy-Schwarz
inequality:

|(uIueI , eh)Ω| ≤ ∥u∥L∞∥uI∥L∞∥eI∥∥eh∥ ≲ ∥eI∥∥eh∥.

(II) We write:
u2 − u2

h =u2 − u2
I + u2

I − u2
h

=u2 − u(uI) + u(uI)− u2
I + u2

I − uIuh + uIuh − u2
h

=u(u− uI) + uI(u− uI) + uI(uI − uh) + uh(uI − uh)

= ueI︸︷︷︸
(a)

+uIeI︸︷︷︸
(b)

+uIeh︸︷︷︸
(c)

+uheh︸ ︷︷ ︸
(d)

.

– (a) can be bounded using L∞-bound of the continuous solution, and Hölder’s inequality:

|(u eI , eh)Ω| = ∥u∥L∞(Ω)|(eI , eh)Ω| ≤ Mc∥eh∥∥eI∥
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– (b) can be bounded using L∞-bound of the interpolant, and Hölder’s inequality:

|(uIeI , eh)Ω| = ∥uI∥L∞(Ω)|(eI , eh)Ω| ≤ MI∥eh∥∥eI∥.

– (c) can be bounded using the L∞-bound of the interpolant, Hölder’s inequality, and the
Sobolev–Poincaré–Wirtinger discrete inequality [37]:

|(uI(uI − uh), eh)Ω| = ∥uI∥L∞(Ω)(eh, eh)Ω ≤ ∥uI∥L∞(Ω)∥eh∥2 ≤ MICE2
∥eh∥2DG.

– (d) can be bounded using Hölder’s inequality, and Equation (26).

|(uheh, eh)Ω| ≤ ∥uh∥∥eh∥2L4(Ω) ≤ CSCE4
∥eh∥2DG.

where CS is the constant defined in Equation (26).

(III) can be bounded by means of Hölder’s inequality after the error decomposition into eI + eh.

We fix the constant derived from the application of Young’s inequality as k1 = 2/a. Then, from the above bounds
and by also using the property of DG-norms, we can write:

Cm

2
∥eh(t)∥2+

∫ t

0

(
µ

χm
− a (MI CE2

+ CS CE4
)ϕ∞ − aCE2

θ∞

)
∥eh(s)∥2DGds+

∫ t

0

1

2
∥eh(s)∥4L4(Ω)ds ≤

+

∫ t

0

3a2

8
∥eI(s)∥4L4ds+

∫ t

0

aMI CS∥eh(s)∥∥eh(s)∥DGds+

∫ t

0

aM

χm
|||eI(s)|||DG∥eh(s)∥DGds

+

∫ t

0

a(ϕ∞Mc + ϕ∞MI + 3MI Mc + θ∞)∥eh(s)∥∥eI(s)∥ds+
∫ t

0

Cm∥ėI∥∥eh∥ds

By assumption, we need µ−aχm (MI CE2 +CS CE4)ϕ∞−aχm CE2θ∞ > 0 then exploiting the energy norm defined
in (25) we get the following estimate, where we can neglect the constants dependencies by means of ≲:

|||eh(t)|||2ϵ ≲
∫ t

0

(
∥ėI(s)∥2 + ∥eI(s)∥2 + |||eI(s)|||2DG + ∥eI(s)∥4L4

)
ds+

∫ t

0

∥eh(s)∥2ds.

By application of Hölder’s inequality and of Grönwall’s lemma, we obtain:

|||eh(t)|||2ϵ ≲
∫ t

0

(
∥ėI(s)∥2 + ∥eI(s)∥2 + |||eI(s)|||2DG + ∥eI(s)∥4L4

)
ds.

Using the interpolation bounds of Proposition 2, we find:

|||eh(t)|||2ϵ ≲
∑

K∈Th

(
h
2min{p+1,n}−2
K

∫ t

0

(
∥u̇(s)∥2Hn(K) + ∥u(s)∥2Hn(K)

)
ds+ h

4min{p+1,n}−4
K

∫ t

0

∥u(s)∥4Hn(K)ds

)
.

Finally, we use the triangular inequality to estimate the error |||u− uh|||ϵ ≤ |||eh|||ϵ + |||eI |||ϵ and the thesis follows.

7 Numerical results

In this section, we numerically verify the convergence of the monodomain model (1) with ionic current defined
by (17), exploiting the analytical solution described in Section 2. We consider a square domain Ω = (−3, 3)2,
discretized with a mesh constructed by PolyMesher [45] and we numerically approximate the energy norm defined
in (25). We analyze the configuration defined by the parameter values reported in Table 6, taken from [39].

In Figure 11 we report the computed relative errors in the energy norm at the final time T = 1e − 4 with
∆t = 1e − 6. The errors was calculated keeping fixed the polynomial order of the space approximation and using
different mesh refinements (Nel = 80, 300, 950, 2000, 12000).
We observe that the theoretical rates of convergence are achieved for all the polynomial degrees p; indeed, the rate
of convergence equals the degree of approximation, as proved in Theorem 2. We also perform a convergence analysis
concerning the polynomial order p with a mesh of 300 elements. The results are reported in Figure 11, where we
observe exponential convergence with the energy norm defined in (25).
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Figure 11: Computed errors and convergence rates as a function of h (left) and p (right).

Table 6: Values of the model parameters used in the convergence analysis

Parameters Values Unit

σn 0.17 mS ·mm−1

σt 0.62 mS ·mm−1

Vdepol 30 mV
Vrest −85 mV
Vthres −57.6 mV
a 1.4e− 5 mS ·mm−2 ·mV−2

χm 140 mm−1

Cm 0.01 µF ·mm−2

c 0.5 mm ·ms−1

ϵ 0.2 mm

Approximation of the conduction speed

Next, we investigate how modifying the element size and increasing the polynomial order impact conduction velocity
within the context of the PolyDG method impacts the quality of the approximate solutions. In Figure 12 (left), we
observe the influence of varying the element size while maintaining a constant polynomial order on the conduction
velocity. A clearer perspective on this relationship can be found in Figure 12 (center), where the element size is
constant while the polynomial order increases. When working with an equivalent number of degrees of freedom,
employing higher-order elements instead of smaller lower-order elements yields a conduction velocity approximation
that aligns more closely with the exact solution, as demonstrated in Figure 12 (right).
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Figure 12: Approximation of the velocity of numerical solution as a function of the mesh size h (left), the polynomial
degree p (center), and the total number of dofs (right).
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Dissipation analysis

Using the same parameter setting described in Table 6, we then perform an analysis concerning the undershoots
and overshoots of the numerical solution with respect to the expected thresholds of the potential, which are Vdepol =
30mV and Vthres = −85mV, respectively. Each plot shows the relative value of the undershoots and overshoots
of the solution at a specific time in the whole domain for different values of h and p. Specifically, in Figure 13,
we have the evolution of the numerical oscillations as the polynomial degree varies. Figure 14 highlights that the
oscillations in the solution are highly associated with a moderate/high values of h.

These numerical results illustrate how discretizations that increase the polynomial degree are less dissipative
than those that refine the discretization. In particular, we observe that numerical oscillations are significantly
reduced by refining in h but at a greater computational cost. On the other hand, increasing in p implies a smaller
increase in the degrees of freedom with a similar improvement in accuracy. As an example, if we consider the case
h = 1.19 and p = 2 (540 dofs), we have an overshoot of 7.99% and an undershoot of 4.32%, while h = 0.61 and
p = 1 (900 dofs), we have an overshoot of 10.27% and undershoot of 6.74%. Moreover, if we consider the case
h = 1.19 and p = 3 (900 dofs), we have an overshoot of 2.35% and an undershoot of 2%, while h = 0.61 and p = 2
(1800 dofs), we have an overshoot of 4.5% and undershoot of 2.8%.
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Figure 13: Overshoot and undershoot of the numerical solution as a function of the polynomial degree p for different
choices of h = 1.91, 1.19, 0.61, 0.35.
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Figure 14: Relative overshoot and undershoot of the numerical solution as a function of the mesh size h for different
polynomial degrees p = 1, ..., 6.
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8 Conclusion

In this work, we have presented a theoretical analysis and a numerical investigation of PolyDG discretizations of
brain electrophysiology models, namely the monodomain equation coupled with the Barreto-Cressman ionic model.
Numerical results demonstrate that the PolyDG method allows for flexibility in selecting the polynomial degree,
enabling high-order accurate approximation of the electric wavefront originating from an unstable region of gray
matter. Specifically, increasing the order of the approximation allows for more accurate reconstruction of conduction
velocities at a lower cost than spatial refinement. Furthermore, PolyDG is built upon polygonal agglomerated grids
that capture geometric details of complex geometries characterized by highly heterogeneous materials.

We have stability and convergence error estimates for the semi-discrete formulation on a simplified monodomain
problem where a non-linear dependence on the transmembrane potential characterizes the reaction term. This
numerical verification confirmed the theoretical results of our analysis on polygonal meshes with an explicit treat-
ment of the non-linear term. These additional numerical results further highlight how high-order methods enable
the approximate solution of electrophysiology problems while maintaining a good balance between computational
cost and accuracy. As future developments of this work, we plan the extension of p-PolyDG adaptive schemes to
track the wavefront with high accuracy and significantly reduce the computational costs of the simulations, and the
construction of space-time DG formulations [46, 47] to achieve higher-order approximations also in time.
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