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GAUSS-NEWTON ORIENTED GREEDY ALGORITHMS FOR THE
RECONSTRUCTION OF OPERATORS IN NONLINEAR DYNAMICS

S. BUCHWALD*, G. CIARAMELLAT, AND J. SALOMON#

Abstract. This paper is devoted to the development and convergence analysis of greedy recon-
struction algorithms based on the strategy presented in [Y. Maday and J. Salomon, Joint Proceedings
of the 48th IEEE Conference on Decision and Control and the 28th Chinese Control Conference, 2009,
pp. 375-379]. These procedures allow the design of a sequence of control functions that ease the
identification of unknown operators in nonlinear dynamical systems. The original strategy of greedy
reconstruction algorithms is based on an offline/online decomposition of the reconstruction process
and on an ansatz for the unknown operator obtained by an a priori chosen set of linearly indepen-
dent matrices. In the previous work [S. Buchwald, G. Ciaramella and J. Salomon, SIAM J. Control
Optim., 59(6), pp. 4511-4537], convergence results were obtained in the case of linear identification
problems. We tackle here the more general case of nonlinear systems. More precisely, we show that
the controls obtained with the greedy algorithm on the corresponding linearized system lead to the
local convergence of the classical Gauss-Newton method applied to the online nonlinear identification
problem. We then extend this result to the controls obtained on nonlinear systems where a local
convergence result is also obtained. The main convergence results are obtained for the reconstruction
of drift operators in linear and bilinear dynamical systems.

Key words. Gauss-Newton method, operator reconstruction, Hamiltonian identification, quan-
tum control problems, inverse problems, greedy reconstruction algorithm, control theory
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1. Introduction. This paper is concerned with the development and the anal-
ysis of a new class of numerical methods for the reconstruction of nonlinear operators
in controlled differential systems. The identification of unknown operators and pa-
rameters characterizing dynamical systems is a typical problem in several fields of
applied science. In general, this is understood as an inverse problem, where the goal
is to best fit simulated and experimental data. However, when a system is affected by
input forces that can be controlled by an external user, the data used in the fitting
process can be manipulated. If the input forces are not properly chosen, the fitting
process can result in a very poor quality of the reconstructed parameters or operators.
Thus, it is natural to look for a set of such input forces that allows one to generate
good data allowing the best possible reconstruction. This is a typical case in the field
Hamiltonian identification in quantum mechanics [5,9,17-21, 29, 33,34, 36-39], or in
engineering in the context of state space realization [16,22,25,32] and optimal design
of experiments [1,4,7].

In this paper, we focus on the analysis and development of a class of greedy-
type reconstruction algorithms (GR) that were introduced in [30] for Hamiltonian
identification problems, further developed and analyzed in [11], and later adapted to
the identification of probability distributions for parameters in the context of quantum
systems in [13]. This approach decomposes the identification process into offline phase,
where the control functions are computed by a GR algorithm, and online phase, where
the controls are used to generate experimental data to be used in an inverse problem
for the final reconstruct of the unknown operator. In [11], a first detailed convergence
analysis of this strategy was provided for the identification of the control matrix in
a linear input/output system. Based on this analysis, the authors developed a new
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2 BUCHWALD, CIARAMELLA, SALOMON

more efficient and robust numerical variant of the standard greedy reconstruction
algorithm. It was then shown in [13] that this strategy is also able to reconstruct
the probability distribution of control inhomogeneities for a spin ensemble in Nuclear
Magnetic Resonance; see, e.g., [10,23,28].

The goal of this paper is to further develop the work [11] by considering nonlin-
ear systems, and to relate the greedy-reconstruction procedure to the Gauss-Newton
method (GN), which is one of the most famous methods for solving inverse prob-
lems [26]. In particular, we assume that the inverse problem in the online phase is
solved by GN, and study the effect of the control functions generated by GR algo-
rithms on the convergence of GN. This is achieved in two steps, which represent the
main novelties of this manuscript.

First, we introduce a new greedy-type reconstruction approach. In particular,
rather than applying GR directly to the nonlinear identification problem, we use it on
its linearization. This corresponds to using GR for designing control functions that
make the GN matrix, namely the Jacobian of the nonlinear residual, full rank in a
neighborhood of the solution, which is a sufficient condition for local convergence of
GN. We refer to this strategy as linearized greedy reconstruction algorithm (LGR),
and provide a corresponding detailed analysis for two classes of problems: the recon-
struction of the drift matrix in linear input/output systems and the reconstruction
of an Hamiltonian matrix in skew-symmetric bilinear systems. Both cases represent
nonlinear problems, since the unknown operators act on the states of the systems.
Notice that the analysis that we are going to presented for the drift matrix is also
valid in the case of the reconstruction of the control matrix in a linear input/output
systems, as considered in [11, Section 5]. Thus, this part of the present work is a
substantial extension of the results of [11].

The second novelty of this work is to provide a first analysis of the original GR
algorithm applied to nonlinear systems. This is achieved by relating the behavior of
GR (applied to the original nonlinear problem) and LGR: under appropriate control-
lability and observability assumptions, we show that the controls generated by GR
are suitable also for LGR and thus make the GN Jacobian matrix full rank.

The two GR and LGR approaches are compared by direct numerical experiments.
These show that GR and LGR are comparable when working locally near the solution.
However, the GR applied directly to the original nonlinear system is superior when
only poor information about the solution is available.

The paper is organized as follows. In Section 2, the notation used throughout
this work is fixed. Section 3 describes how GN can be used to solve general recon-
struction problems. In order to guarantee convergence of GN, the LGR algorithm
is introduced in Section 4. In sections 5 and 6, we present analyses of LGR for the
reconstruction of linear drift matrices in linear systems and an Hamiltonian matrix in
bilinear systems, respectively. Section 7 focuses on GR for nonlinear problems, and
a corresponding analysis is provided in section 7.1. Within section 7.2, we recall and
extend an optimized greedy reconstruction (OGR) algorithm introduced in [11]. The
LGR, GR and OGR algorithms are then tested numerically in section 8. Finally, our
conclusions are drawn in Section 9.

2. Notation. Consider a positive natural number N. We denote by (v, w) :=
v'w, for any v,w € R¥, the usual real scalar product on RY, and by |- ||, the
corresponding norm. For any A € RV*N [A]; . is the j,k (with j,k < N) entry of
A, and the notation Aj;.; 1.5 indicates the upper left submatrix of A of size k x j,

namely, [Ap.g1:)e,m = [Alem for £ =1,...,k and m = 1,...,j. Similarly, Ajy. j
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OPERATOR RECONSTRUCTION IN NONLINEAR DYNAMICS 3

denotes the column vector in R* corresponding to the first & elements of the column
j of A. Additionally, im(A) is the image of A, and ker(A) its kernel. We indicate
by so(N) the space of skew-symmetric matrices in RV>*¥. Moreover, when talking
about symmetric matrices, PD and PSD stand for positive definite and semidefinite,
respectively. By (A, B,C) we denote the input/output dynamical system

(2.1) z(t) = Cy(t), 9(t) = Ay(t) + Be(t), y(0) =y".

For an interval X C R, the notation ¢ : X = RY indicates that ¢ is a set-valued
correspondence, i.e. ¢(x) C RY is a set for z € X. Finally, we denote by BY (z) c RV
the N-dimensional ball with radius r > 0 and center z € RY.

3. Gauss-Newton method (GN) for reconstruction problems. Consider
astatey(t) € RV, N € N, whose time evolution is governed by the system of ordinary
differential equations (ODE)

(3.1) y(t) = f(A.y(t),e(t), t € (0,T], y(0) =y",

where y° € R¥ is the initial state and € € E,q denotes a control function belonging
to E.q, a non-empty and weakly compact subset of some Hilbert space of control
functions from [0, 7] to RM, M € N (e.g., E,q C L%(0,T;RM)). The operator A, is
unknown and assumed to lie in the space spanned by a finite-dimensional set A =
{A41,..., Ak}, K € N, and we write A, = Zle o, ;A; = Ala,). We assume that
f:span(A) x RY x RM 5 RN (A, y,€) — f(A,y,e€) is differentiable in A and y.

To identify the unknown operator A, one uses a set of control functions (e™)%_,
E,q to perform K laboratory experiments and obtain the experimental data

(3.2) Phota€™) = Cy(A,,e™;T), form=1,... K.

Here, y(A4,€;T) denotes the solution to (3.1) at time 7" > 0, corresponding to the
operator A, and a control function €. The matrix C € RP*N (P < N) is a given
observer matrix. The measurements are assumed not to be affected by noise.

Using the set (¢™)E_, and the data (¢%,,,(€™)E_, c RF, the unknown vector
a is obtained by solving the least-squares problem

K
1 m m 2
(3.3) a%%%§2|‘¢2ata(6 ) — Cy(A(a),e™; T)|f3 -

GN is a typical iterative strategy to solve (3.3), and its process is initialized by a
vector which we will call @, € RX. We denote by a. € R¥ the GN iterate, and define
2
f(@) == 3 32, [(Rm(@)ill; = 5Rm(@) " Rin(a), where

(34) R (e) := Cy(A(),€™;T) = para(€™),

for m € {1,..., K}. Thus, the identification problem (3.3) is equivalent to

K
3.5 i m(a).
(3.5) min z fm(@)
Given an iterate a., GN computes the new iterate by solving a problem of the form
K
(3'6) min Z HRfm(ac)(a - ac) - Rm(ac)”;

This manuscript is for review purposes only.
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4 BUCHWALD, CIARAMELLA, SALOMON

where R/ (a.) € RP*E denotes the Jacobian of R,, at o, € RX. The first-order
optimality condition of (3.6) is

K
(3.7) 3 (R’ a) R (a.) )a - Z R’ (ae)T Ron(ao),

m=1

where S°X_ R/ () TR, (@) = W € REXK s symmetric PSD. Now, we recall
the following convergence result from [27, Theorem 2.4.1] (for a proof see also the
supplementary material [12]).

LEMMA 3.1 (local convergence of GN). Consider a problem of the form (3.5).
Let ay be a minimizer of (3.5) such that for allm € {1,..., K} the function R,, is
Lipschitz continuously differentiable near o, and R,,(ay) = 0. If the initialization

vector a, € RE is sufficiently close to o, and W, is PD for all iterates o, € RX,
then GN converges quadratically to a.

Lemma 3.1 implies that, given an initialization vector a, sufficiently close to_the
solution @, the functions (€™)X _, should be chosen such that the GN matrix W, =
S RLn(a.)TRL.(a.) is PD for all @, € R¥ in a neighborhood of a,. Notice that
W, being PD is equivalent to (3.6)-(3.7) being uniquely solvable. Using (3.4), we can
write (3.6) more explicitly. For a direction da € RE, we have

(3.8) R (a.)(6a) = Coy.(A(écx),e™;T),

where 0y.(A(de), €™; T) denotes the solution at time T to the linearized state equation

39) {ayc = 0, F(A(@e), Yo, 3y + I, 60 (04 (Alac) yer€)(4))) 6y (0) = 0,

:i/c = f(A(ac),yc,e), yC(O) = yO.

Hence, problem (3.6) can be written as

K
3.10 i Coy.(Ala — ac),€™;T) — Ry (ac) 3.
(3.10) ar?ﬁ{kn;” Ye(Ala —ac),€™;T) — Ru(a.)

Notice that the vectors R,,(a.) € RF are independent of a and can therefore be
considered as fixed data when solving (3.10). Now, we recall that the GR algorithm,
introduced in [30] and further analyzed in [11], was designed specifically to generate
control functions (€)X _, that make problems of the form (3.10) uniquely solvable.

4. A linearized GR algorithm (LGR). Let us assume to be provided with an
initialization vector a, for GN that is sufficiently close to a,. Further, let dy,(A(a —
a,),€™;T) denote solution at time T to

(1) {6%—8 b (Al o o + 31 o — ) (9af(Al@e).pe.€)(4))). 0yo(0) =0,
Yo = f(Aleo),yo.€), y5(0) =9°

The goal is to generate control functions (€™)X _, such that (3.10) in ., that is

K

(4.2) min 1C0yo (Al — @), €™ T) — Ryn(co)][3,
ac Km:1

This manuscript is for review purposes only.



OPERATOR RECONSTRUCTION IN NONLINEAR DYNAMICS 5

Algorithm 4.1 Linearized Greedy Reconstruction Algorithm (LGR)

Require: A set of linearly independent operators A = {Ai,...,Ax}. Recall that
0Yo(A,€T) solves (4.1).
1: Compute the control €* by solving

(4.3) max [[Coyo (A1, T)];.
€cE,q

2: for k=1,...,K—-1 do
3:  Fitting step: Let A®(B) := Zle BiA;, find B* = (B});=1,...k that solves

eey

k
(4.4) min > ||Coyo(A©)(8),€75T) — Coye(Anin,e™ T)Hz .

k
BERK “—

k+1

4: Splitting step: Find € that solves

(4.5) max

ecEyq

(k) / gk 2
Coyo(AM (B),&:T) — Coyo(Arar,es )|

5: end for

163 is uniquely solvable. Then, in Section 5.2, we show that if (4.2) is uniquely solvable,
164 the same holds for (3.10) at all iterates e of GN.

165 The set (€™)X_, is computed by the LGR Algorithm 4.1, which is the original
166 GR algorithm from [30] applied to (4.2). Our goal is to prove that the set (€™)&_,
167 makes W, := Zﬁzl R! (ao) "R (ao) PD, and thus (4.2) uniquely solvable. From
168 (4.1), we have that 0y, is linear in @. Thus, R, (a.)(da) = 0y.(A(da),e™;T) =
169 Z;il da;Coy.(A;,€™;T). Hence, R] (a,) is a matrix with columns R),(a,); =
170 Coyo(A;,e™;T) for j=1,..., K, and hence

K
171 (4.6) Wolij = D (Clyo(As, €™ T), Cyo(A;, €™ T)), i,j€{l,...,K}.

m=1

172 Using (4.6), we can rewrite (4.3), (4.4) and (4.5) in a matrix form.

173 LEMMA 4.1 (Algorithm 4.1 in matrix form). Consider Algorithm 4.1. Then:
174 e The initialization problem (4.3) is equivalent to
175 (4.7 max (Wo(€)]1,1,
176 where [Wo(€)];,; == (Coyo(Ai,€;T), Coyo(Aj,e;T)) fori,je{l,...,K}.
177 o Let WM = 22:1 W, (e™), the fitting-step problem (4.4) is equivalent to
178 4.8 in (8, (W1 1B — 209, B

8 (4.8) /Snel]er’lC (B, [Ws ][1.1371.1@] ) ((Ws ][1.k7k+1]7 )-

179 o Letv:=[(BF)T, —1]T, the splitting-step problem (4.5) is equivalent to
180 (49) max <’U, [WO(C)][l:k+171:k+1]v>.

ecEq.q

181 Moreover, problems (4.3)-(4.7), (4.4)-(4.8), and (4.5)-(4.9) are well posed.
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6 BUCHWALD, CIARAMELLA, SALOMON

Proof. The proof is similar to the ones of [11, Lemma 5.12]. For an arbitrary k €
{0,...,K — 1} let v € R+ and A(v) = 3277 v;A;. We have [|Coyo(A(v), e T)||3 =
(v, Wo(€)]1:k+1,1:6+1)0). Recalling that dy.(A(v),6T) = Z?;l v;0Yo(4;,6T), we
obtain the equivalence between (4.7), (4.9), and (4.3), (4.5) for suitable k and wv.
For the equivalence between (4.8) and (4.4), notice that for v = [T, —1]T € RF+!
and any W c R(k+1)x(k+l) we have <’U7 W’U> = <ﬂ, [W][lzk,lzk]ﬂ> — 2<[W][1:k,k+1]7.3> +
[Wlk+1,k+1- The well-posedness of the three problems follows by standard arguments;
see, e.g., [11, Lemma 5.2]. d

The matrix representation given in Lemma 4.1 allows us to nicely describe the math-
ematical mechanism behind Algorithm 4.1 (see also [11, section 5.1]). Assume that at
the k-th iteration the set (€,,)* _, has been computed, the submatrix [chk)][l:k,l:k} is
PD and [/W§k)}[1:k+171:k+1] has a nontrivial (one-dimensional) kernel. Then the fitting

step of Algorithm 4.1 identifies this nontrivial kernel. This can be proved by the
following technical lemma (for a proof see [11, Lemma 5.3]).

LEMMA 4.2 (kernel of some symmetric PSD matrices). Consider a symmetric

PSD matriz G = [bc-’; ﬂ € R™" where G € R"=Dx(=1) js symmetric PD, and b €

R"! and ¢ € R are such that ker(G) is nontrivial. Then ker(G) = span{ {G_llb] }
In our case, we have G = [Wo(k)][1:k+1,1:k+l]a G= [/W(gk)][hk,m] and b = [/chk)][lzk,kJrl]-
In this notation, the solution to (4.8) is given by 8% = G~'b. Thus, Lemma 4.2 implies
that the kernel of [W(Sk))][lzk;+1’1;k+1] is spanned by v := [(8%)T, —1]T. Now, the
splitting step attempts to compute a new control €1 such that [WO (€8 1] [1:h41,1:k41]
is PD on the span of v. If this is successful, then [/VV(J(HI)}[LHLL,CH] is PD. The
equivalence of (4.5) and (4.9) implies that [WO (€M) (1:k+1,1:6+1) is PD on the span of v
if and only if €*+1 satisfies || Cdyo (A (BF), €1 T)—Coyo(Agr1,€ T T)||2 > 0. The
existence of such a control depends on the controllability and observability properties
of system (3.9), as shown in sections 5 and 6. We conclude this section with a remark
that is useful hereafter.

Remark 4.3. The GN matrix W, = 25:1 Rl () "Rl (a)) € REXK can be

written as [W*]” = Eizl(C(Sy*(Ai,em;T),Céy*(Aj,em;T» for i,5 € {1,...,K},
where 0y, (4;,€;T) denotes the solution at time T of

{6'@;* = Oy f(Ale). g, )0y, + (0af(Ale)yu€)(A)), 09.(0) =0,
Y, = f(A(a*)ay*ae)v y<0) - yO'

5. Reconstruction of drift matrix in linear systems. Consider (3.1) with
f(A,y,€) :== Ay + Be, where A and B are real matrices:

(5.1) y(t) = Ay(t) + Be(t), t € (0,T], y(0) =0.

This is a linear system, where B € RV*M is a given matrix for N,M € NT, and
€ € E,4 denotes a control function belonging to F,4, a nonempty and weakly compact
subset of L2(0,T; RM) that contains € = 0 as an interior point.

IThis hypothesis is used in our analysis and is a reasonable assumption, since it is, for example,
satisfied for standard box constraints, which are quite often used in the applications.

This manuscript is for review purposes only.
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OPERATOR RECONSTRUCTION IN NONLINEAR DYNAMICS 7

The drift matrix A, € R¥*¥ is unknown and assumed to lie in the space spanned
by a set of linearly independent matrices A = {A;,..., Ax} C RV*N 1 < K < N2,
We write A, = Zf(:l o, ;A; = A(oy). As stated in section 3, we want to identify
the unknown drift matrix A, by using a set of control functions (€™)X_; C E.q
in order to perform K laboratory experiments and obtain the experimental data
(@lata€™NE_| C RP, as defined in (3.2).

Remark 5.1. The hypothesis y(0) = 0 in (5.1) can be made without loss of gen-
erality. Indeed, if y(0) = y° # 0, one can use € = 0 (case of uncontrolled system),
generate the data ¢%,,,(0), and then subtract this from all other data (3, (€™))E_,
to get back (by linearity) to the case of system (5.1) with y(0) = 0.

Using (e™)E_, and (¢?%,,,(€™))X_;, the unknown vector a, is obtained by solving
(3.3), in which y(A(e),€™;T) now solves (5.1), with A, replaced by A(a). Thus,
we use the LGR Algorithm 4.1 to generate (€™)K_, with the goal of making (4.2)

uniquely solvable, that means making PD the GN matrix W, defined in (4.6). In
(4.2), dyo(A(de),€;t) is now the solution to

) o) = Al@)e(t) + I oy Ae(t), 1€ (O0.T), dye(0) =0
Yo(t) = Aao)yo(t) + Be(t), te(0,T], y.(0)=0.

In what follows, we show that the LGR Algorithm 4.1 does produce (e™)&_,
that make ﬁ/\o PD under appropriate assumptions on observability and controllability
of the considered linear system. Let us recall these properties for an input/output
system (4, B,C) of the form (2.1) with A € RN*XN B € RVN*M ' ¢ RPXN; gee,
e.g., [32, Theorem 3, Theorem 23].

DEFINITION & LEMMA 5.2 (observable input-output linear systems). The linear
system (2.1) is said to be observable if the initial state y(0) = y° can be uniquely
determined from input/output measurements. Equivalently, (2.1) is observable if and

only if the observability matric Oy (C,A) :=[C CA .- CANfl}T has full rank.

DEFINITION & LEMMA 5.3 (controllable input-output linear systems). The lin-
ear system (2.1) is said to be controllable if for any final state y' there exists an input
sequence that transfers y° to y/. Equivalently, (2.1) is controllable if and only if the
controllability matriz Cn (A, B) := [B AB .- AN_lB] has full rank.

In Section 5.1, we analyze Algorithm 4.1 in the case of fully observable and controllable
systems (namely, rank(On (C, A(a,))) = rank(Cy(A(es), B)) = N). However, similar
to [11, Section 5.3], one can also formulate the following results for non-fully observable
and controllable systems, if appropriate matrices A1, ..., Ax are chosen. For further
details, we refer the reader to the supplementary material [12].

Notice that the analysis that we are going to presented is also valid in the case
of the reconstruction of a linear control matrix considered in [11, Section 5], i.e.
f(A,y,e) = My + Ae, and is therefore an extension of the results obtained in [11].

5.1. Analysis for linear systems. We define O3 := On(C, A(a,)) and C3; :=
Cn(A(as), B) and assume that the system (A(a,), B,C) is observable and control-
lable, namely R := rank(O%,) - rank(C%) = N2. In what follows, we show that this is
a sufficient condition for W, to be PD with the controls generated by Algorithm 4.1.
First, we need the following result [3, Ch. 3, Theorem 2.11].

LEMMA 5.4 (controllability of time-invariant systems). Consider the system & =
Az + Be with (0) = 0 and its solution x(e,t) := fot elt=9)A(@) Be(s)ds. For any

This manuscript is for review purposes only.



263
264
265
266

267
268
269

286

287
288

289

290

291

292
293

8 BUCHWALD, CIARAMELLA, SALOMON

finite time tg > 0, there exists a control € that transfers the state to w in time to, i.e.
z(e,tg) = w, if and only if w € im(CN(A,B)>. Furthermore, an appropriate € that

will accomplish this transfer in time tq is given by €t ) BTelto—)4Ty, fort €0, to]
and v such that W,(0,to)v = w, where W,.(0,T) f e ABBTe™ dr.

Now, we prove the following lemma regarding the initialization problem (4.3) and the
splitting step problem (4.5). Notice that the proof of this result is inspired by classical
Kalman controllability theory; see, e.g., [15].

LeMMA 5.5 (LGR initialization and splitting steps (linear systems)). Assume
that the matrices Ala,) € RN*N B € RNXM gnd ¢ € RP*N are such that
rank(O0%) = rank(C%) = N, and let A € RN*N\ {0} be arbitrary. Then any so-
lution € of the problem maxecr, , |Coys(A,e;T)||3 satisfies

||C§y0(12[7,€; T)Hg > 07

where 8y, = A(a)8yo + Ay®, with 6y.(0) = 0, and g, = A(as)yo + Be with y,(0) =0

Proof. To prove the result, it is sufficient to construct an € € Eqq such that
Cyo(A, & T) # 0. Since A # 0, there exists w € RN \ {0} such that Aw # 0. Since
(A(as), B, C) is observable, there exists £ > 0 such that Cet4(®°) Aw # 0. The map f :
R — RP. ¢ — CetA@) Aw is analytic with derivatives f@)(t) = CA(a ) etA(@) Aw.
Since O%; has full rank and etAlao) Ay # 0, there exists ¢ € {0,..., N} such that
FO() = CA(a) '@ Aw + 0. Hence, f is nonconstant, and there exists to € (0,7)
with CetoA(@e) Aw £ 0.

Now, we use that yo(€, s) := [ e (s=m)Al@e) Be(7)dr is the solution at time s of
¥, = Alao)yo + Be, with y,(0) = 0. Since C3; has full rank, we have w € im(Cg,).
Thus, Lemma 5.4 guarantees that €(t) = BTe(tU*t)A(“O)TV, for ¢t € [0,%p] and some
v € RY satisfies y,(€,t9) = w. Clearly, € is analytic in [0,%] and thereby the same
holds for y, (€, s). Note that, since € = 0 is an interior point of F,g, there exists A > 0
such that Xé € E,q with CefoA@e) Ay (Xe, to) = ACefoA@e) Ay (€ ty) # 0. Hence, we
can assume without loss of generality that € € E,q.

In conclusion, we obtain that the map

g:R R s ce<T*S>A<ao>Z/ els=MAle) pe(r)dr
0

is analytic in (0,%9) with g(t9) # 0. Thus, g is nonzero in an open subinterval of
(0,%0). Hence, there exists t; € (0,%9) such that fo s)ds # 0. By choosing

€(s) :==

0, 0<s<T—1t,
€(s—t1), T—1t1 <s<T,

and using that Cdy.(A,&T) = fOT Ce(T=9)Alee) A [¥ o(s=m)Alee) Be(7)drds, we obtain

T s
Coyo(A,eT) = C’e(Tfs)A(a")A/ e BE(7 — t)drds
T—t1 T—ty

tl e S tl
:/ C’e(tlfs)A(a")A/ es=mA) Be(r)drds :/ g(s)ds #0. O
0 0 0

This manuscript is for review purposes only.
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Lemma 5.5 can be applied to both (4.3) and (4.5), choosing A = A; and A =
(A(k) (B*) — Ak+1), respectively. Now, we can prove our first main convergence result.

THEOREM 5.6 (positive definiteness of the GN matrix W, (linear systems)).
Assume that A(a,) € RNN B € RVM gnd C € RP*N are such that rank(O%) =
rank(CY) = N. For K < N%, let A= {A1,...,Ax} C RN be a set of linearly
independent matrices such that A(a,) € span(A), and let {€',..., €5} C E,q be
generated by Algorithm J.1. Then the GN matriz W, defined in (4.6), is PD.

Proof. We proceed by induction. Lemma 5.5 guarantees that there exists an €
such that [Wo(e')]11 = [|Cyo (A1, €; T)||§ > 0. Now, we assume that [ng)][1:k,1;k] =
S Wo(€™)k1 is PD. By construction, [WS ™)1y 11 1:411) is PSD. Thus, if

[/W§k)][1:k+1,1:k+1] is PD, then

[W§k+1)}[1:k+1,1;k+1l = [/chk)][1:k+l,1:k+l] + [Wo(5k+1)][1:k+1712k+1]

is PD as well, since [Wo(ek)][lzkﬂ,l:kﬂ] is PSD. Assume now that the submatrix
[Wék)][1:k+171:k+1] has a nontrivial kernel. Since [Wo(k)][l:k,l:k] is PD (induction hy-
pothesis), problem (4.4) is uniquely solvable with solution 8. Then, by Lemma
4.2 the (one-dimensional) kernel of [/Wo(k)][lzk+171:k+1] is the span of the vector v =
[(B¥)T, —1]T. Using Lemma 5.5 we obtain that the solution €**! to the splitting step
problem satisfies

2
(v, [WO(GkJrl)][1:k+1,1:k+1]'v> = HC’&IIO(A(k) (B*) - AkHvE?T)HQ > 0.

Thus, [W(ek+1)}[1:k+171:k+1] is PD on the span of v, and [ngﬂ)][l:kﬂ,l:kﬂ] is PD.O

Notice that Theorem 5.6 does not require any assumption on the matrices Ay, ..., Ax.
These can be arbitrarily chosen with the only constraint to be linearly independent.
Also the ordering of these matrices does not affect the result of Theorem 5.6. This is,
however, different for non-fully observable and controllable systems, i.e. for R < N2
(see the supplementary material [12]).

Now that we proved that Algorithm 4.1 makes W, PD, the obvious question is
whether this is sufficient for the convergence of GN, as described in Lemma 3.1. We
answer this question in Section 5.2.

5.2. Positive definiteness of the GN matrix. To guarantee convergence of
GN, we need to show that W(a) := 25:1 R (a)T R, (a) (defined in section 3)
remains PD in a neighborhood of a,. Indeed, in Section 5.1, we proved that the
control functions generated by Algorithm 4.1 make the GN matrix W, = W(a,)
PD. Thus, it is sufficient to prove that W(a) remains PD in a neighborhood of a,
containing a,. To do so, let us rewrite W(a) as

K
(53) [/W\(a)]l,_] = Z<7i(aa6m)a’yj(a7em)>7 Za] S {1a"'7K}7
m=1
(5.4) vi(a,e™) = /T Ce T4 A y(Aa),e™; s)ds, je{l,..., K},
0

and recall the next lemma, which follows from the Bauer-Fike theorem [6].

This manuscript is for review purposes only.
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LEMMA 5.7 (rank stability). Consider two natural numbers Np and Mp with
Np > Mp, and an arbitrary matric D € RNo>XMp with rank Rp and (positive)
singular values o1, ...,0r, n descending order. Then it holds that

min  {||D||2 | rank(D + D) < Rp} = or,.

DeRND*xMp

Using this lemma, we can prove the following approximation result.

LEMMA 5.8 (positive definiteness of W(a) (linear systems)). Let W, defined
in (4.6) be PD and let o5, > 0 be its smallest singular value. Then, there exists
§ = 38(0%) > 0 such that W(a) (in (5.3)) is PD for any a € RE with |la — a.||2 < 4.

Proof. Our first goal is to show that W (a) is continuous in a. From (5.3) and (5.4)
we know that W(a) is the sum over products of fOT CelT=9)A4@) A y(A(a),e™; 5)ds,
where y(A(a),€™;s) =[] e(s=)A@) Be™ (1)dr. Now, recall that A(a) = Zszl oA,
meaning that A(a) is continuous in @. Since the exponential map RY — RN o
e54@) and the integral map RV*N — RN X s fos X Be(7)dr are continuous, we
obtain that y(A(a),€™;s) is continuous in a. Since products of continuous functions
are continuous, we obtain that W(a) is continuous in a.

By assumption, /Wo is PD, and therefore o§ > 0. Since /W(a) is continuous in ¢,
we obtain that there exists a ¢ := §(o%) > 0 such that for any a with |a —a.||, <

o~

5(0%) it holds that HW(a) ~ W(aw)

‘ < 0. Now, let & be such that |la@ — a.||, <
2

d(0%) and hence HW(&) - W(ozo)H2 < 0%. Setting D = W(ao) and D = /VV(&) -

W (), Lemma 5.7 implies that K = rank(W (a,)) < rank(W (@)). Because of (5.3),
W (a) € REXK meaning that rank(W (a)) = K. Since W (a) is PSD by construction,
rank(W(a)) = K implies that W(a) is PD. O

Lemma 5.8 implies that the positive definiteness of W(a) is locally preserved near
a,. Now, we can prove our main convergence result.

THEOREM 5.9 (convergence of GN (linear systems)). Let a, € RE be such
that the matrices A(a,) € RN*N B € RVN*M gnd C € RP*N satisfy rank(OY,) -
rank(C%,) = N2. Let (€™)E_, C E,q be a set of controls generated by Algorithm J.1.
Finally, let G be the K-th (smallest) singular value of W, defined in (4.6). Then
there exists 6 = §(cx) > 0 such that if o, € RE satisfies ||a, — ao|| < §, then GN
method for the problem

K
1 m. m., 2
(55) min 5 3 [Culia).€4T) ~ Cyla(a) ¢ DIE,
initialized with o, converges to a; =y, 7 =1,..., K.

Proof. Theorem 5.6 guarantees that WG is PD and hence ox > 0. Thus, by
Lemma 5.8 there exists § = §(Gx) > 0 such that, for @ € R with ||a — a2 < 6,
the matrix W(a) is also PD. Moreover, we know from section 3 that W(ac) is the
GN matrix for the iterate a. € RX of GN for (3.3). Analogously to the proof of
Lemma 5.8, one can also show that the functions R,, (), defined in (3.4), are Lipschitz
continuously differentiable in @ for all m € {1,..., K}. Hence, if |ja, — as| < 0, then
the result follows by Lemma 3.1. O

This manuscript is for review purposes only.
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5.3. Local uniqueness of solutions. Theorem 5.9 says that GN converges
to a, if an appropriate initialization vector e, is used. However, in the linear case
corresponding to (5.1) we can specify the local properties of problem (3.3) around the
solution a,. To this end, we start by rewriting the cost function in a matrix form.

LEMMA 5.10 (online identification problem in matrix form (linear systems)).
Problem (3.3) is equivalent to

(5.6) i 2 o — (e, @)@ — ),

where W(a*,a) € REXK s defined as’

K
(5.7) W)=Y Wi, aem),

m=1
with W (e, a, €™) € REXK given by
(56.8)  [W(ax, a,€™))ij = (vilas, a,e),v;(a,a,e™), i,5€{l,...,K},

T
(5.9) vj(o, o, €™) ::/ Ce(T_S)A(“‘*)Ajy(A(a),em;s)ds, je{l,...,K}.
0

Proof. Let J(@) := L8 _ ||Cy(A,,e™;T) — Cy(A(a),e™; T)|3. For t € [0,T]

and m € {1,..., K} define Ay,,(t) = y(A.,€";t) —y(A(a),€™;t). Then we have

Ky, (1) = Al )y(Ar, ;1) + Be™ (1) — Al)y(A(a), €":t) — Be™ (1)
= Ao ) Ay, (t) + Ao, — a)y(A(a),e™;t),

whose solution at time T is given by

Ay, (T) = /0 " T {A(a* —a)y(Ala),e™: s)} ds.

Thus, recalling A(a) = Zszl a;A;, the function J(a) can be written as

1o || /7 K i
Ty =5 32| [ 0o (3 e - o)A ylAle). €7 )
m=1 i

Jj=1 9

K K K
Z(a*,i - ai)(a*,j - aj)<’yi(a*’ «a, em)a’Yj (a*’ «a, 6m)>

K
1 —
§<a* —a, Z W(a,, a,e™)(a, —a)) = §<a* —a,W(a,,a)(a, —a)). O
Now, the set of global solutions to problem (5.6) is given by Sgiopar := {a € RX .

(o —a) € ker W(a*,a)}. Since W (a,, @) is symmetric PSD, (5.6) is locally uniquely

solvable if and only if W(a*, a) is PD for a close to a,. Now, assume that the system

2Notice that the notations (5.3) and (5.7) are related in the sense that W (e, a) = W(a)

This manuscript is for review purposes only.
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12 BUCHWALD, CIARAMELLA, SALOMON

is fully observable and controllable, meaning that R = N 2. Theorem 5.9 guarantees
that Algorithm 4.1 computes (em)ﬁ\’ni1 such that W(a,) = W(a,,a,) is PD, if a, is
close enough to the estimate a,. Similar to the proof of Lemma 5.8, one can prove
that W(ay,a) is continuous in a. Hence, we obtain that if the matrix W (a,, a,) is
PD, then the same is true for W(a*,a), when « is close to a,, which implies that
(5.6) is locally uniquely solvable with & = a.

6. Bilinear reconstruction problem. In this section, we extend the results of
section 5 to the case of skew-symmetric bilinear systems. We consider (3.1) with a
right-hand side f(A,y,€) = (A + eB)y, that is

(6.1) Y(t) = (Ax +e(t)B)y(t), t € (0, 7], y(0) =y°,

where B € s50(N) is a given skew-symmetric matrix for N € NT the initial state is
y° € RN and € € E,4 C L?(0,T;R) denotes a control function belonging to E,4, a
nonempty, closed, convex and bounded subset of L?(0,T;R) that contains ¢ = 0 as
an interior point. The matrix A, € so(N) is unknown and assumed to lie in the space
spanned by a set of linearly independent matrices A = {A;,...,Ag} C RV*N 1 <
K < N2, and we write 4, = Z]K:1 o, ;A; =t A(a,). Notice that, since the matrices
A, and B are skew-symmetric, system (6.1) is norm preserving, i.e. |[y(t)|l2 = [|%°]|2
for all t € [0,7].

To identify the true matrix A,, one can consider a set of control functions
(e™E_| C E,q and use it experimentally to obtain the data (¢%,,,(e™)E_, C R,
as defined in (3.2). The unknown vector a, is then obtained by solving the problem

aEcRK 2

K
. 1 * m m
(6.2) min = > [ @hara(€™) — Cy(Ala), ™ T)f5 .
m=1

We assume to be provided with a known estimate a, of a,. For this estimate, we can
derive the linearized state equation

(6.3 {000 = (Ao OB (D) + 1% oy Agelt), 1€ (O0.T] dyo(0) =0,
V90 = (Ae+ c®Ba(), te (0.7), ya(0) =y,

where A, := A(a,). Denoting by dy.(A(da),€;t) the solution of (6.3) at time ¢t €
[0, 7], the GN matrix W, is defined as in (4.6), and LGR is detailed in Algorithm 4.1.
Let us recall the following definition and result from [10, Corollary 4.11].

DEFINITION & LEMMA 6.1 (Controllability of skew-symmetric bilinear systems).
Consider a system of the form

(6.4) Y(t) = (Ao +e(t)By(t), y(0) =y’

where Ao, B € s0(N). System (6.4) is said to be controllable if for any final state
y’ that lies on the sphere of radius ||y°||o there exists a control e(t) that transfers y°

to y!. Furthermore, if the Lie algebra L = Lie{A., B} C so(N), generated by the

matrices Ao and B, has dimension N(]\Qlfl), then there exists a constant t > 0 such

that for any T >t controllability of (6.4) holds.

3To see this, we observe that %%Hy(t)Hg = (y(¢),y(t)) = (W(t), (Ax + €(t)B)y(t)) = 0.

This manuscript is for review purposes only.
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As in section 5, we also need to make some assumptions on the observability of
the linearized equation in (6.3). However, recalling the proof of Lemma 5.5, these
assumptions are only required to prove the existence of a control function that guar-
antees a positive cost function value in the splitting step. If we assume this function
to be constant, at least on a subinterval of [0, T], then we get a system of the form

(6.5) 0y, (t) = (Ao + cB)dyo (t) + Alda)ys (1),

for a scalar ¢ € R. In this case, system (6.5) is again a linear system, for which observ-
ability is defined in Definition 5.2. Hence, the observability matrix is O (C, Ao+ ¢B).
Let us state our assumptions on controllability and observability of (6.4) and (6.5).

ASSUMPTION 6.2. Let the matrices Ao, B and C be such that the following con-
ditions are satisfied.
1. The Lie algebra L = Lie{Ao, B} C s0(N), generated by the matrices A, and
B, has dimension N(]gfl).
2. The final time T > 0 is sufficiently large, such that the controllability result
from Lemma 6.1 holds.
3. There exists ¢ € R such that system (6.5) is observable, i.e. the observability
matriz On(C, Ao + ¢B) has full rank.
In addition, let the set of admissible controls E,q C L*(0,T;R) be chosen such that
the controllability result from Lemma 6.1 holds, and such that € = ¢ is an interior
point of E.q for the constant ¢ € R mentioned above.

Remark 6.3. The analysis presented in the following sections can be applied to the
case where the matrix A = A, is assumed to be known and B = B(e) := 25{:1 o;B;
is unknown and to be identified. The main differences in the case of the identification
of B is that the state equation is linearized around an initial guess B,, leading to

0yo(t) = (A+ e(t) Ba)dyo(t) + 301, daje(t) Biyo (1), t € (0,T], dys(0) =0,
Uo(t) = (A+e(t)Boyo(t), t€(0,T], wo(0)=y".

Assumption 6.2 would be the same, only with A instead of A, and B, instead of B.
Notice that, in this case, we also cover Schrodinger-type systems of the form

() = (H + (O ip(t), t € (0,T], $(0) =¢°,

as considered in [30], for Hermitian matrices H,pu, € CV*N. This can be seen by
writing ¢ = ¢p + ipr, Y° =% + @y, H = Hp +iHy and p, = fia R + ife 1, to get

(6:6) i) = ( | ety |ttt )y<t>,

for y(t) :== [Yr(t) zp[(t)]T and skew-symmetric matrices 4, B, € RV*N (compare
also [10, Section 2.12.2]).

6.1. Analysis for skew-symmetric bilinear systems. We show in this sec-
tion that Assumption 6.2 is a sufficient condition for the GN matrix W, defined as in
(4.6), to be PD if the controls generated by Algorithm 4.1 are used. The idea of the
analysis is similar to the one considered in section 5, meaning that we first have to
show the existence of a control that makes the cost function of (4.5) strictly positive.

This manuscript is for review purposes only.
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14 BUCHWALD, CIARAMELLA, SALOMON

LEMMA 6.4 (GR initialization and splitting steps (bilinear systems)). Let the

matrices Ao, B and C satisfy Assumption 6.2. Let A € span(A) be an arbitrary
matriz. If T > 0 is sufficiently large, then any solution € to the problem

max
€e€EFE.q

st 0y, (t) = (Ao + €(t) B)dyo (t) + Ayo(t), yo(0) =0,
Yo(t) = (Ao + €(t) B)yo(t), .(0) =9°,

~ 2
Cdyo (A, e; T)H2 ,

satisfies HCéyo(ﬁ, € T)Hz > 0.

Prgof, It is sufficient to show that there exists a control €, € E,q such that
Coyo(A,€.;T) # 0 for T sufficiently large. Let us define €. as

e(s) €(s), forogsgf,
€(8) := ~
¢ c, fort <s<T,

where ¢ € R, €€ E,q, T >0 and t € (0,T) are to be chosen. Since A # 0, there exists
v e RV |jv]|s = ||ly°]|2 such that Av # 0. By the first and second part of Assumption
6.2, we know that (6.4) is controllable on the sphere of radius ||y°||2, meaning that
there exist ¢ > 0 and € € E,q such that yo(;l,ai\) = . Defining A, := A, + ¢B, we
notice that fy(t) := AetAey is analytic in ¢, and since f,,(0) = Av 2 0, it is not equal to
zero everywhere and therefore has only isolated roots, see, e.g., [31, Theorem 10.18].
Recalling that exponential matrices are always invertible (see, e.g., [24, Theorem
2.6.38]), we obtain that there exists t; > 0 such that e~f1(4c) Ae(ti=DAey £ 0. By
defining w := 0yo(A,€7) and g(t) := [} e=5(4e) Aels=DAcyds + e~ Hew, we observe
that % = e~t1(A) fe(ti—DAcy £ 0. Since d%—(tt) is analytic in ¢, the same holds for
g(t),* and since % # 0 we obtain that g(¢) has only isolated roots. Notice that

¢
e tMeGy(A, e t) = e tAe /A e(t=9)(Ae) fo(s=DAey g 4 o(t=—DAcyy g(t),

t

for t > t. Thus, it remains to show that there exists 7' > ¢ such that CeT4<g(T) # 0.
Assumption 6.2 guarantees that there exists ¢ € R such that the observability matrix
On(C, Ao + ¢B) has full rank. Hence, for any u € RN \ {0} there exists a t,, > t such
that Cet»4eu # 0. Since t — Ceteu is analytic in t, Cet»4eu # 0 implies that it has
only isolated roots. Thus, for t > t, t — Ce'“g(t) is the composition of two analytic
functions which both have only isolated roots, and is therefore also analytic with
isolated roots. Hence, there exists T > ¢ such that Cdy(A,e,; T) = CeT4g(T) # 0.0

Now, we can prove our main result, whose proof is the same as the one of Theorem
5.6, in which Lemma 6.4 has to be used instead of Lemma 5.5.

THEOREM 6.5 (positive definiteness of the GN matrix W, (bilinear systems)).
Let a, € RE be such that the matrices A(a,), B € s0(N) and C € RFP*N satisfy
Assumption 6.2. For K < N2, let A= {A1,...,Ax} C so(N) be a set of linearly
independent matrices such that A, € span A, and let {¢',..., X} C E,q be controls
generated by Algorithm J.1. Then the GN matriz W, defined in (4.6), is PD.

4This follows directly from the fundamental theorem of calculus.
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6.2. Positive definiteness of the GN matrix. As in section 5.2, we show
that if the GN matrix in a, is PD, then the same is true locally, for all iterates a. of
GN. We start by writing the matrix W(a) as a function of a:

K
6.7) ()i = Y (Coyla, Ay, €™ T),Coy(ar, A, ™ T)), 4,5 €{1,..., K},

where Jdy(a, ﬁ, €;T) denotes the solution at time T of
oy(t) = (Al@) +(t)B)dy(t) + Ay(t), y(0) =0,
y(t) = (Al@) +et)By(t), y(0)=y°

Now, we want to prove the same positive definiteness result of in Lemma 5.8.

(6.8)

LEMMA 6.6 (positive definiteness of W, (bilinear systems)). Let W,, defined in
(4.6), be PD and denote by o9 > 0 the smallest singular value of W,. Then, there
ezists § := 6(0%) > 0 such that for any a@ € RE with ||a — as||s < §, the matriz
W(a), defined as in (6.7), is also PD.

Proof. Recalling the proof of Lemma 5.8, it is sufficient to show that the solution
Sy(a, A, e; T) of (6.8) is continuous in . By [10, Proposition 3.26],”> we obtain continu-
ity of the map a — y(A(a), ¢; T') and analogously the continuity of & — dy(e, A, €;T).0
Using the result from Lemma 6.6, we can directly prove our main result.

THEOREM 6.7 (convergence of GN (bilinear systems)). Let a, € RE be such
that the matrices A(a,), B and C satisfy Assumption 6.2, and let (€™)X_| C Euq
be generated by Algorithm 4.1. Denote by ok the smallest singular value of W,
defined in (4.6). Then there exists 6 = §(Gx) > 0 such that, if o, € RE satisfies
les — o] < &, then GN for the solution (6.2), initialized with e, converges to au.

Proof. Theorem 6.5 guarantees that Wo is PD, meaning that ox > 0. Anal-
ogously to the proof of Lemma 6.6, one can also show that the functions R,,(a),
defined in (3.4), are Lipschitz continuously differentiable in @ for all m € {1,..., K}.
Thus, the result follows by Lemma 6.6. ]

6.3. Local uniqueness of solutions. Let us study the local properties of prob-
lem (6.2) around a,. We use the same approach as in the linear case, and start by
rewriting problem (6.2) in a matrix-vector form.

LEMMA 6.8 (online identification problem in matrix form (bilinear systems)).
Problem (3.3) is equivalent to

1 =5
anellg}f §<a* —Q, W(a*aa)(a* - 01)>,

where W (ev,, @) € REXE s defined as W (e, @) = 5 _ W(as, a,e™) with
[W(a*aa7 Em)]i,j = <Céym(a*a o, AJ’ T)a Caym(a*aa7 A]7 T)>,

fori,je{l,...,K} and where Céym,(ay,a, A;T) is the solution at time T of

Sy(t) = (Ala) +em™(1)B)dy(t) + Ay(t), oy(0) =0,
¥(t) = (Al@)+em()By(t), y(0) =y".

5This result is a special case of the implicit function theorem; see, e.g., [10, Theorem 3.4].
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Algorithm 7.1 Nonlinear Greedy Reconstruction Algorithm

Require: A set of linearly independent operators A = {A1,..., Ak}, an (initial) operator
A(ao) € span A and a family of compact sets £; CR?, j=1,...,K — 1.
1: Compute the control €' by solving
(7.1) Jnax [|Cy(Alae),&;T) — Oy(Aes) + A1, T)|f3.
ad
(I unified the notation here regarding the OGR Algorithm 7.2 and Assumption 7.6.
Before, the Aj-state was split against the uncontrolled state)
:for k=1,...,K—1 do
Fitting step: A®(B) := Z?zl BjA;j, find B = (BY);=1,...r that solves

W N

- (k) ?
. k m, _ m,
(7.2) Join mE:1 HCy(A(ao) + A (B),e™;T) — Cy(Alao) + Aky1,€ 7T)H2 )

4: Splitting step: Find €**! that solves

(7.3) max

€ecFE,q

Cy(Afac) + AP (B),6:T) — Cy(Afac) + Arr 7).

5: end for

The proof of Lemma 6.8 is analogous to the one of Lemma 5.10 (for details see the
supplementary material [12]). Notice that the notations in (6.7) and Lemma 6.8 are

related in the sense that W(a) = W(a,a). Now, proceeding as in Section 5.3 and
defining the set of all global solutions Sgjopar = {a € RX : (a, —a) € ker W(a*, a)}7
we obtain the same local uniqueness of the solution e, to (6.2), meaning that if
W (a,) = W(ay,,ay) is PD, the same holds for W (a,,a) when a is close to a,.

7. Towards general nonlinear GR algorithms. The LGR algorithm intro-
duced in the previous sections only considers the linearized system. Thus it does not
have access to the full (nonlinear) dynamics and can only capture the local character-
istics of the considered system. Moreover, as we will show in section 8, the standard
GR algorithm can outperform LGR when a, is far from the solution. However, the
analysis of LGR allows us to better understand the local behavior of GR and prove
that locally it is capable to construct control functions that guarantee convergence
of GN. This analysis is carried out in section 7.1. This is the first analysis of GR
algorithms for nonlinear problems. While section 7.1 focuses on GR, we also briefly
discuss its optimized version called optimized GR (OGR), introduced in [11], and
propose a slight improvement of the original version.

7.1. A local analysis for nonlinear GR algorithms. This section is con-
cerned with general nonlinear systems of the form y(t) = f(A(a®)+ A(da.),y(t),€(t))
with the goal of reconstructing A(day) = A, — A(a®). Here, the shift of A, is con-
sidered to perform a local analysis near A(a”). The goal is to prove convergence of
GN for the controls generated by the GR Algorithm 7.1 using a local analogy to Al-
gorithm 4.1. Notice that there are a few differences between Algorithms 7.1 and 4.1.
To derive a local analogy between them, all operators from the set A are shifted by
A(a,). Additionally, the fitting step problem (7.2) only minimizes over a compact set
K1 C R*. However, this is not restrictive since the set Kj can be chosen arbitrarily
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OPERATOR RECONSTRUCTION IN NONLINEAR DYNAMICS 17

large. Finally, the initialization problem (7.1) is different from the initialization (4.3).
This is due to results obtained in [11] which suggest that one should not simply max-
imize the state corresponding to the first element A; in the set, but rather maximize
the difference to the state that is observed when no elements from A are considered.

We recall that, in order to obtain our main results for Algorithm 4.1, it is sufficient
to prove two points. First, that the fitting step identifies the kernel of the submatrix
[Wék)][1:k+171:k+1]. Second, that for the initialization and each splitting step there
exists at least one control for which the corresponding cost function is strictly positive
(making the submatrix [ﬁ/\gﬁl)][l;k“’l:kﬂ] PD).

To prove the fitting step result, we need some continuity properties of the argmin
operator. For this purpose, we introduce the following definition of hemi-continuous
set-valued correspondences (see, e.g., [8, Chapter VI,§1]).

DEFINITION 7.1 (hemi-continuity). Let X C R be an open interval. A set-valued
correspondence ¢ : X = R¥ is called upper hemi-continuous (u.h.c.) if for each o € X
and each open set G C R* with c(zo) C G there exists a neighborhood U(zg) such that
x € U(xzg) = c(x) C G, and called lower hemi-continuous (I.h.c.) if for each xg € X
and each open set G C R¥ meeting c(xq) there exists a neighborhood U(zo) such that
x € U(xg) = c(x) NG # 0. Furthermore, ¢ : X = R* is called hemi-continuous if it
is u.h.c. and Lh.c.

Using Definition 7.1, we can recall the Berge maximum theorem [2, Theorem 17.31].

LEMMA 7.2 (Berge maximum theorem). Let X C R be an open interval. Let
J :RF x X = R be a continuous function and ¢ : X = RF be a hemi-continuous,
set-valued correspondence such that ¢(x) is nonempty and compact for any v € X.
Then the correspondence ¢ : X = R¥ defined by c(x) := argmin J(z;z) is u.h.c.
z€¢(z)
We will also need the following technical lemma.
LEMMA 7.3 (limit of set-valued correspondance). Let X C R be an open interval

with 0 € X, and ¢ : X = R be a u.h.c. correspondence. If c(0) = {0}, then
limy, oo c(zx) = {0} for any sequence {x}72; such that limy_,oo x5 = 0.

Proof. Consider an arbitrary sequence {xk}zozl with limg_,. 2z = 0, and let
¢(0) = {0}. It is sufficient to show that for any e > 0 there exists n. € N such that for
all k > n, we have c(zy) C B¥(0). Let € > 0 and define G, := B¥(0). Since ¢(0) = {0}
and ¢ is u.h.c., there exists a neighborhood U,(0) C R such that ¢(z) C G, for any
x € U(0). Since Uc(0) is an open neighborhood of 0, there exists £ > 0 such that
(=&.,&) C U(0). Since limy_,o xr = 0, there exists n. such that for all £ > n, we
have 7 € (=&, &) and hence c(zy) C BE(0). O

To use Lemmas 7.2 and 7.3, we make the following assumptions.
ASSUMPTION 7.4. Let k € {1,...,K — 1} and define,

Je(B; Ayr) : ch.y ao) + AD(B), €™ T) — Cy(Alawo) + Apsr, €™ T) 3

o If || Apy1]l is small enough, then there exists a B¥ = B¥(Ary1) that solves
(7.2) with Ji(BF; Agy1) = 0.
e There erists v > 0 such that BE(0) C Ky and arg ming gy Jx(B;0) = {0}.

The first point in Assumption 7.4 guarantees that locally near A(a), for ||Ag+1]]
small enough, one can solve (7.2) making the cost function zero, meaning that one
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18 BUCHWALD, CIARAMELLA, SALOMON

can find a linear combination of the first k£ elements for which the final state cannot
be distinguished from the k + 1-th element by any of the & computed controls. On
the other hand, if the minimum function value is strictly positive, then there already
exists a control in the set (€,,)* _; that discriminates (splits) these two states.

The second point in Assumption 7.4 ensures that {0} = arg minﬂe% Jr(B,0).
If this was not true, it would mean that, for any radius v > 0, the ball B%(0) would
contain infinitely many B € R¥ \ {0} satisfying J;(B,0) = 0. Hence, for an infinite
number of linear combinations in the set {Ay, ..., Ax}, the corresponding states could
not be distinguished by any of the previously selected controls. However, this implies
that at least one of the previous splitting steps was not successful, which contradicts
what we assume to reach iteration k.

Now, we can show that the local nonlinear fitting step problem (7.2) is able to
identify the kernel of the submatrix [/thr(k)][lszrl,l:kJrl]a if it exists.

THEOREM 7.5 (nonlinear GR fitting step problems). Let k € {1,..., K} and let
B% be a solution to (7.2). If ||Axi1| is sufficiently small and Assumption 7./ holds,
then B* also solves (4.4) with

Z |Coyo (AR (BF), €™ T) — Coyo(Api1,€™ T)||3 = 0.

Proof. Define jk(ﬂ 0r) = Jk(B, §kAk+1) for 0 > 0. The first point of As-
sumptlon 7.4 implies that there exists a 5k > 0 such that for all |§x| < 5k we have
Jk (B,0x) = 0. Thus, Lemma 7.2 guarantees that the correspondence ¢ : (— §k, 5k)
R¥, ¢ (6) = argminggy, Ji(B: 8 is wh.c.f

According to the second point of Assumption 7.4, ¢;(0) = 0 is an isolated solution
of (7.2). Hence, the upper hemi-continuity of ¢ guarantees that for § — 0 we have
B* — 0 for any corresponding solution ¥ = B%(6;) of (7.2).

Now, let m € {1,...,k}. If J,,(8%:0x) = 0, then

(74)  Cy(Alas) + A (B5),e™ T) - Cy(A(aw) + o Arsr, €5 T) = 0.

We define g(a) := Cy(A(a),e™;T). Since f(A,y,¢€) in (3.1) is assumed to be differen-
tiable with respect to A and y, we obtain that the map A — y(A,€;T) is differentiable
with respect to A by the implicit function theorem (see, e.g., [14, Theorem 17.13-1]).
Hence, Cy(A(a),€;T) is also differentiable with respect to a. By Taylor’s theorem,

we get g(aO +v) =glas)+g (ao)( )+ O(H'v|| ) for v € R¥. Defining ,B’c and 8, as
,3 = [B¥, ,0]T € R* and 5y = [0,---,0,0,] T € R*, we can rewrite (7.4) as

0 = gla +/§?> — g(ao +8k11) = ¢'(@0) (BF) — g/ (@) @k11) + O(IBFIIZ) + O(16x ).

Since g/ (o) (BF) = Coys(A® (B¥), €™ T) and g'(0e) k1) = Coyo (0 Ax 11, €™ T),

we obtain
(7.5) 0= Coyo(A® (B, €™:T) — Coyo (dcux Apr1, €™ T) + O(|BF12) + O(16]).

Since B¥ = B%(4;,) — 0 for 6 — 0, we know that all four terms vanish for §; — 0.
However, O(|6x|?) converges faster than Cdyo(drAxt1,€™;T) and O(||B*||3) faster

SNote that, in this setting, the correspondence ¢ : (7:5\;9,;5\;@) = R* mentioned in Lemma 7.2 is
defined as ¢(z) = Ky for any z € (—dg, §;) with K compact, and is therefore hemi-continuous.

This manuscript is for review purposes only.



660
661
662
663
664
665
666
667
668
669
670

678
679
680
681
682
683
684
685
686
687
688
689
690

OPERATOR RECONSTRUCTION IN NONLINEAR DYNAMICS 19

than Coy,(A*) (B*),e™;T). Hence, (7.5) can only be true for &, — 0 if
Coyo (AR (B*),€™: T) — Coyo (6 Apy1,€™;T) = 0 for &, small enough, which is equiv-
alent to Coy. (AR (B*),€™; T)—Cdyo(Apy1,€™;T) = 0 for || Ay 1| sufficiently small.0

Regarding the initialization and splitting step result, we make now the assumption

that there always exists a control that makes the corresponding cost function value
strictly positive, and discuss specific cases where this assumption holds.

ASSUMPTION 7.6. Let k € {1,...,K — 1} and B* € R* be the solution of (7.2).
Then there exists a solution €¥+! € E,q to (7.3) that simultaneously satisfies

(7.6) [Cy(A(ao) + AR (BF), "1 T) — Cy(Alas) + Apgr, €773 > 0,
and
(7.7) Coyo (AR (BF), ¥+, T) — Coyo(Aps1, €1 T2 > 0.

Let (7.6)-(7.7) also hold for a solution €' € E,q to (7.1) with k =0 and B° = 0.

In Theorem 7.10, we will investigate Assumption 7.6 for the two settings considered
in sections 5 and 6. Now, we state the following theorem, relating the two Algorithms
4.1 and 7.1.

THEOREM 7.7. Consider the general setting of system (3.1) with a set of linearly
independent matrices {A1, ..., Ak} such that | Ag| be sufficiently small for all k €
{1,...,K}. Let (€™)E_, C E.q be generated by Algorithm 7.1 such that Assumption
7.4 holds for all k € {1,...,K — 1} and €™ satisfies Assumption 7.6 for all m €
{1,...,K}. Then the GN matriz WO, defined in (4.6), is PD.

The proof of Theorem 7.7 is exactly the one of Theorem 5.6.
It remains to show that Assumption 7.6 holds in the settings considered in sections
5 and 6. First, we require the following results (see, e.g., [35, p. 1079]).

LEMMA 7.8 (on analytic functions in Banach spaces). Let X,Y denote real Ba-
nach spaces and B.(x) C X the open ball with center x € X and radius r > 0. For an
open set D C X, let the functions f,g: D =Y be analytic. If there exist vy, x4 € D
such that f(x¢) # 0 and g(xg) # 0, then for any x € D and any r > 0 there exists a
Z € B.(z) C D such that f(z) # 0 and g(T) # 0.

We also require the following result about the analycity of control-to-state maps,
which follows directly from the implicit function theorem (see, e.g., [35, p. 1081]).

LEMMA 7.9 (analycity of control-to-state maps).  Consider system (3.1) and
define the map ¢ : U xY — Z as c(e,y) := [y — f(A,y,€),y(0) —y°], where U is the
Hilbert space of control functions, Y is the (Banach) space where solutions to (3.1)
lie and Z is a Banach space. If ¢ is analytic in € and y, (3.1) has a unique solution
y =y(e) €Y such that c(y(e),e) = 0 for each € € E,q C U and the linearized state
equation 8y = Sy f(A,y(e).€)(0y) — ¢ with dy(0) = ¢° is uniquely solvable for any
[0, "] € Z, then the control-to-state map L : E.q — Y, € v+ y(€) is analytic. If the
solution space Y is such that the evaluation map St : Y — RN y — y(T) is linear
and continuous, then also the map S : E,q — RN e — (y(€))(T) is analytic.

Proof. First, we prove that the control-to-state map L : E,q — Y, € — y(e) is
analytic. This follows directly from the implicit function theorem [35, p. 1081] if we
can show that the map Dyc(e,y) is an isomorphism of Y on Z for any pair (€,y) C U x
Y such that y is the unique solution to (3.1) for €, i.e. ¢(€,y) = 0. Since the equation
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for the derivative Dyc(€,)(dy) = @, which is equivalent to oy = d, f(A,¥,€)(dy) — ¢
with dy(0) = ¢°, admits a unique solution dy € Y for any [p, ¢°] € Z, Dyc(€,y) is
bijective and therefore an isomorphism of Y on Z.

It remains to show that also the map S : E,q — R™ e + (y(€))(T) is analytic.
Consider an arbitrary €y € E,q. Since the control-to-state map L is analytic, there
exist (by definition, see, e.g., [35, p. 1078]) {-linear, symmetric and continuous maps
ar : (Eaa)® = RN, (€1,...,€) = as(er,... €) such that y(e) = > ;2 ar(e — €)".
Now, define the maps by : (Eaq)® — RN as by(€)’ = (as(e))(T), meaning that
S ieobe(e — €0)* = (y(€))(T). Since the evaluation map Sp : Y — RNy — y(T) is
linear and continuous, the maps by are ¢-linear, symmetric and continuous. Thus, the
map S : E,q — RY e (y(e))(T) = 3,2, be(e — €)* is analytic by definition. 0

In our case, we consider U = L2(0,T;RM) in the linear and U = L%(0,T;R) in
the bilinear setting, ¥ = H(0,7;RY) and Z = L?(0,T;RY) x RY. Then, the
assumptions in Lemma 7.9 on the ODE system and its linearization are satisfied for
(5.1) and (5.2) in the linear setting, and for (6.1) and (6.3) in the bilinear setting.”
Notice that all solutions lie in H'(0,T;RY) € C(0,T;RY) (see, e.g., [14]), which
implies that the evolution map St : H'(0,T;RY) — RV y s y(T) is also linear and
continuous.
Now, we can prove our main result.

THEOREM 7.10. Consider the linear setting (5.1) or the bilinear setting (6.1).
For brevity, we assume that the systems are sufficiently observable and controllable,
i-e. fully observable and controllable in the linear case, and satisfying Assumption 6.2
in the bilinear case. If || Agy1|| is sufficiently small, then there exists a controle € Eqq
which satisfies (7.6)-(7.7) in Assumption 7.6.

Proof. For brevity, we denote Ag = A(ao) + AW (B*), Ay = Aao) + Agy1,
yp(e;t) :=y(Ap,6t) and y4 (e;1) := y(A4, 6 1).

We start with the linear setting (5.1) from section 5. First, we derive observability
and controllability properties for the systems (A4, B, C) and (Ag, B,C). Denote by
or > 0 the smallest singular value of On(C, A(a,)). Let k € {1,..., K} and ¥ € R*
be the solution of (7.2) for ||Ax41| > 0 sufficiently small such that [|On(C, A(a,)) —
ON(C,A})|l2 < 0. From the proof of Theorem 7.5, we obtain that also 8% can be
assumed to be sufficiently small such that ||On(C, A(a.)) —On(C, Ag)ll2 < 0. Now,
Lemma 5.7 guarantees that rank(On(C, A1)) = rank(On(C, Ag)) = N. Using the
same argument for the rank of the controllability matrices, we obtain that the systems
(A4, B,C) and (Ag, B, C) are fully observable and controllable.

Next, we consider the state of the difference 2z(t) = y(A4,€;t) — y(Ag,€;t) with
z=Aiz+ (Ay — Ap)y(Ap.€t). Since A, # Ap, there exists v € RY such that
(Ay — Ag)v # 0. Recalling that (Ag, B) is controllable, we can find €, for any
t1 € (0,7 such that yg(es, ;) = v and therefore (A} — Ag)yg(€s,;t1) # 0. We define

) €,(s), for 0<s<ty,
s) =
c, fort; <s<T,

"Existence and uniqueness of all solutions y,dy follow by Carathéodory’s existence theorem
(see, e.g., [32, Theorem 54] and related propositions). For € € L2(0,T;RM) in the linear and
€ € L?(0,T;R) in the bilinear setting, we obtain ¢, dy € L2(0, T;RY) and thus y,dy € H'(0, T;RY).
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where ¢ € RY is to be chosen later. For ¢t > t;, we have

t
(7.8) 2(t) = el z(t) + / VA (AL — Ag)yp(E s)ds.

t1

Multiplying (7.8) with e~(*=*)4+ from the left, we get

t
Z(t) == e~ A 5 (1) = 2(ty) —I—/ =A% (A, — Ag)yg(€; s)ds.

ty

Notice that for s > ¢1, the terms e(1=*)4+ and yg(€; s) = e(*~1)4sv4 [ (=748 Beds
are continuous in s. Since exponential matrices are invertible (see, e.g., [24, pag.
369, 5.6.P43]) and z(t1) is independent of ¢, there exists a ¢ > ¢; such that z(¢1) +

fttl et=s)4+ (A, — Ag)yp(€; s)ds # 0 and thus 2(¢) # 0. Using (7.8), we obtain

(7.9) Cz(t) = Celt =144 5(1) = i =ty

i CA%Z(t).

Jj=0

Now, the observability of (A4, C) guarantees the existence of some i € {0,..., N —1}

such that C A’ Z(t) # 0. We have (tfz%)t > 0 for ¢ > ¢; and all terms of the sum in
(7.9) converge to zero at different rates for different j. Hence, there exists ¢ > ¢; such
that Cz(t) # 0. Since t; € (0,7] was chosen arbitrarily, we obtain Cz(7T) # 0 and
thus Cyg(&;T) — Cy(6;T) # 0.

Regarding the linearized system (5.2), we have already shown in Lemma 5.5 that
there exists an € € F,q such that Cy, (A% (B*),e;T) — Coyo(Api1,€T) # 0.

Finally, the maps S,Ss : L*(0,T;RM) — RY, S(e) := Cys(e;T) — Cy4(;T),
Ss(€) := Coyo(A®)(B*),&;T) — Cdyo(Ay1,6T) are analytic by Lemma 7.9. Us-
ing Lemma 7.8, we obtain the existence of an € € E,q such that Cy(Ag,eT) —
Cy(Ay,&T) # 0 and Coy, (A (B%),6;T) — Coyo(Art1,€6T) # 0.

The proof for the bilinear setting (6.1) from Section 6 is analogous to the one
above. For a detailed proof, we refer to the supplementary material [12]. 0

Remark 7.11. Notice that we did not prove exactly Assumption 7.6 in Theorem
7.10, but only the existence of a general control € € Eqq that satisfies (7.6)-(7.7). How-
ever, this implies that any solution €¥*! to (7.3) always satisfies (7.6). Additionally,
we recall from the proof of Theorem 7.10 that the maps S, Ss : L2(0, T; RM) — RV,
defined by S(e) := y(A,e;T), Ss(e) := 0yo(A,€;T) are analytic and not the zero
functional. Thus, we obtain by Lemma 7.8 that any neighborhood of €**! contains
infinitely many € that do satisfy (7.7). This implies that it is rather unlucky to choose
an €**1 that does not satisfy (7.7). On the other hand, one can also add inequality
(7.7) as a constraint to (7.3) to ensure that both inequalities are met by €**1.

As a consequence of Theorems 7.7, 7.10 and Remark 7.11, the controls generated by
Algorithm 7.1 for the linear (5.1) and bilinear (6.1) setting make the GN matrix W,
defined in (4.6), PD under certain assumptions. Thus, the results from Sections 5.2
and 6.2 imply that GN for the reconstruction problems (5.5) and (6.2), initialized
with a,, converges to a.

7.2. Optimized GR Algorithm. The analysis discussed in the previous sec-
tions are based on certain hypotheses of observability and controllability of the dynam-
ical system. However, as shown already in [11] and also discussed in the supplementary
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material [12], if these hypotheses are not satisfied, the choice of the elements in the
set A becomes very relevant and can strongly affect the online reconstruction process.
For this reason, a modified GR algorithm called Optimized GR (OGR) has been in-
troduced in [11] to identify important basis elements by solving in each iteration the
fitting and splitting step problems (in parallel) for all remaining basis elements, and
not just the next one. This also allows us to initialize the algorithm with a number of
elements (Aj)JK:1 with K > N2. Even though some of the matrices A; will inevitably
be linearly dependent if K > N2, the OGR algorithm manipulates them to construct
a new subset of linearly independent ones. In the spirit of the previous analysis, we
add a new feature to the original OGR algorithm. At iteration k, after all fitting
step problems have been solved, we check whether there exists ¢ € {k + 1,...,K}
for which the optimal cost function value is different from zero (i.e. larger than a
tolerance tols) If this is the case, then there exists a control €™, m € {1,...,k}, that
already satisfies HC’y(A(k)(ﬂe),em; T) — Cy(Ag, €™ T)H; > toly for at least one index
ly1 € {k+1,...,K} (see Step 8 in Algorithm 7.2). Hence, we can add the basis
element Ay, ., to the already selected ones without computing a new control. This
new improvement can also be motivated with the matrix formulation we used for our
analysis. If rank(wo(k)) =r > k, one can appropriately permute rows and columns of

W such that [ﬁv\cﬁk)][mlir] has rank r and is thus PD.

The rank of W) = an:l W, (e™) is bounded by kP, where P is the number of
rows of the observer matrix C'. This can be seen by writing W, (e™), as defined in
(4.6), as Wo(e™) = 0Y, CTC6Y,, where 6Y, := [0yo(A1,€™;T), -, 0yo(Ax,€™;T)].
Hence, rank(W,(e™)) < rank(C) < P, and therefore rank(/\ék)) < kP.

The full OGR algorithm is stated in Algorithm 7.2, where the new feature that
we described correspond to the steps 7-8. Algorithm 7.2 can be formulated for the
linearized setting considered the previous sections by simply replacing the state y with
its linearization y,. We call OLGR the OGR algorithm for the linearized system.

8. Numerical experiments. In this section, efficiency and robustness of the
GR and OGR algorithms are studied by direct numerical experiments. In particular,
first we consider the reconstruction of a drift matrix in Section 8.1. Second, we focus
on the reconstruction of a bilinear dipole momentum operator as Section 8.2. All
optimization problems inside of the GR algorithms are solved by a BFGS descent-
direction method, while the online identification problem is solved by GN.

8.1. Reconstruction of drift matrices. We consider system (5.1) with (full
rank) randomly generated matrices A,, B,C € R3*3. The final time is 7 = 1 and
the initial value is y° = [0,0,0]". First, we study the algorithms for system (5.2).
This is obtained by linearizing (5.1) around two different A,, which are randomly
chosen approximations to A4, one with 1% and the other with 10% relative error,
meaning that, e.g., w = 0.01 for the one with 1% error, where | - ||¢ is the
Frobenius norm. The LGR Algorithm 4.1 is run for two different choices for the basis
A: the canonical basis of R3*3 and a basis consisting of 9 randomly generated (linearly
independent) 3 x 3 matrices. LGR is also compared with the OLGR Algorithm 7.2,
which is run with a set of 18 matrices, namely, the 9 canonical basis elements and the 9
random matrices. The controls generated by the respective algorithms are then used to
reconstruct the matrix A, by solving the online least-squares problem (3.3) with GN.
To test the robustness of the control functions, we consider a nine-dimensional sphere
centered in the global minimum A, and with given relative radius r, and repeat the
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Algorithm 7.2 Optimized Greedy Reconstruction (OGR) Algorithm

Require: A set of K matrices A = {A1,..., Ax} and two tolerances tol; > 0 and toly > 0.
1: Set € = 0 and compute €' and the index £; by solving the initialization problem

:T) — Cy(Ae,eT)|2.
reipax,  max ||Cy(0,6T) - Cy(de, & T);
2: Swap A; and Ay, in A, and set k =1 and A (8%) = 0.
2
3: while k < K — 1 and Hcy(A<k—1>(ﬁfk),ek;T) — Cy(Ap,€*; T)H > tol; do
2
4. forl=k+1,...,K do

5: Orthogonalize all basis elements (Agt1, ..., Ax) with respect to (Ai,..., Ax), re-
move any that are linearly dependent and update K accordingly.
6: Fitting step: Find (ﬂﬁ)]:lk that solve the problem
k 2
min 3 |[Cy(a®)(B),€™57) - Cy(Ane™ )|
BeR¥ m=1

and set fo = Z’:ﬂzl
7:  end for

Cy(AW ()75 T) ~ Cy(Ar,e™ T

8: if maxy—g41,...,x fe > tola then
9: Set ly+1 = argmax,_, ;. .  fe.
10:  else
11: Extended splitting step: Find €' and ¢, that solve the problem
max  max ||Cy(A® (BY),&T) — Cy(As,€; T)HQ.
re{k+1,.... K} €EE g T o 2
12:  end if

13:  Swap Ag+1 and Ag, ., in A, and set k =k + 1.
14: end while

minimization for 1000 initialization vectors randomly chosen on this sphere. We then
count the percentage of times that GN converges to the global solution A, = A(a,)
up to a tolerance of Tol = 0.005 (half of the smallest considered radius), meaning
that w < Tol, where ocomp denotes the solution computed by GN.
Repeating this experiment for different radii of the sphere, we obtain the results
reported in the two panels on the left in Figure 8.1. All control sets make GN capable
of reliably reconstructing the global minimum A, up to a relative radius r = 2, which
corresponds to a relative error of 200%. This demonstrates that the choice of the
basis is not crucial for fully observable and controllable systems. However, OLGR
is able to reduce the number of controls down to 3 and still outperforms any set of
9 controls generated by LGR, while staying reliable up to a relative error of 250%.
Thus, OLGR is able to compute better basis, thereby optimizing the performance,
and to omit unnecessary controls.

Next, we repeat the same experiments for the GR Algorithm 7.1. However, we
replace the case for the approximation A, with a relative error of 1% by A, = 0. This
effectively removes the shift and makes the algorithm independent of the choice of A,,
which is the version of the algorithm that was also considered in [11,30] We obtain
the results shown in the two panels on the right in Figure 8.1. The performance of
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Fig. 8.1: Percentage of runs that converged (up to a tolerance) to the global minimum
A, starting from randomly chosen vectors on a nine-dimensional sphere with radius
r, for controls generated by LGR and OLGR for 1% (top left) and 10% (bottom left)
relative error between A, and A,, and GR and OGR in the version of Algorithm 7.1
(bottom right) and without the shift by A, (top right).

the control sets is similar to the ones for the linearized system, with an increase in
performance for the GR algorithm with the canonical basis, without the shift by A,
and a decrease in performance for the GR algorithm with the random basis and an A,
that has a 10% relative error with respect to A,. As in the linearized setting, OGR
is able to reduce the number of controls down to 3 and still outperforms any set of 9
controls generated by LGR.

8.2. Bilinear reconstruction problem. Similar to [30] and [11], we consider

a Schrodinger-type equation, written as a real system as in (6.6). We also use similar
matrices H and p* as in [11], namely

4 0 O —0.3243 —3.4790 + 0.73597  —0.5338 4 1.92541
H=Hr=1[0 8 0], M* = | —3.4790 — 0.7359¢ —3.8342 —1.1697 + 2.02561
0 0 16 —0.5338 — 1.9254¢ —1.1697 — 2.0256% 1.0551

The final time is 7' = 107 and the initial state is 9o = [1,0,0]". The observer matrix
is C' = [1h1,i1)1], which means that the final state is measured against the fixed state
P = %[17 1,1]T. Again, we consider two bases, each consisting of 9 elements: the

canonical and a random one for the space of Hermitian matrices in C3*3. We then
perform the same experiments as in Section 8.1. The results are reported in Figure 8.2.
We observe that the radii, up to which the control sets make GN capable of reliably
reconstructing the global minimum, are much smaller than for the linear setting in
Section 8.1. When the initial relative error between po, = u(as) and p, = poy) is
very small (1%) then LGR and OLGR have the most stable performance regarding the
choice of the basis, making GN capable of reliably reconstructing the global minimum
1% up to a relative error of 4 — 5%. However, when the initial relative error is larger
(10%) then only the LGR algorithm for the random basis can keep its performance,
while even OLGR fails at errors of over 1%. The results for OGR, on the other hand,
show the best performance, with and without a shift by u,. The controls generated
by the GR algorithms can not match OGR or LGR and OLGR for small initial errors,
but are still more stable with respect to larger initial errors.
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Fig. 8.2: Percentage of runs that converged (up to a tolerance) to the global minimum
1y starting from randomly chosen vectors on a nine-dimensional sphere with radius
r, for controls generated by LGR and OLGR for 1% (top left) and 10% (bottom left)
relative error between p, and o, and GR and OGR in the version of Algorithm 7.1
(bottom right) and without the shift by uo (top right).

9. Conclusion. In this paper, we developed and analyzed greedy reconstruction
algorithms based on the strategy presented in [30]. In particular, we tackled the case
of nonlinear problems consisting in the reconstruction of drift operators in linear and
bilinear dynamical systems. In these cases, we proved that the controls obtained
with the greedy algorithm on the corresponding linearized systems lead to the local
convergence of the classical Gauss-Newton method applied to the online nonlinear
identification problem. These results were extended to the controls obtained on the
fully nonlinear system (without linearization) where a local convergence result was
also obtained.
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