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GAUSS-NEWTON ORIENTED GREEDY ALGORITHMS FOR THE1

RECONSTRUCTION OF OPERATORS IN NONLINEAR DYNAMICS2

S. BUCHWALD∗, G. CIARAMELLA† , AND J. SALOMON‡3

Abstract. This paper is devoted to the development and convergence analysis of greedy recon-4
struction algorithms based on the strategy presented in [Y. Maday and J. Salomon, Joint Proceedings5
of the 48th IEEE Conference on Decision and Control and the 28th Chinese Control Conference, 2009,6
pp. 375–379]. These procedures allow the design of a sequence of control functions that ease the7
identification of unknown operators in nonlinear dynamical systems. The original strategy of greedy8
reconstruction algorithms is based on an offline/online decomposition of the reconstruction process9
and on an ansatz for the unknown operator obtained by an a priori chosen set of linearly indepen-10
dent matrices. In the previous work [S. Buchwald, G. Ciaramella and J. Salomon, SIAM J. Control11
Optim., 59(6), pp. 4511-4537], convergence results were obtained in the case of linear identification12
problems. We tackle here the more general case of nonlinear systems. More precisely, we show that13
the controls obtained with the greedy algorithm on the corresponding linearized system lead to the14
local convergence of the classical Gauss-Newton method applied to the online nonlinear identification15
problem. We then extend this result to the controls obtained on nonlinear systems where a local16
convergence result is also obtained. The main convergence results are obtained for the reconstruction17
of drift operators in linear and bilinear dynamical systems.18
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1. Introduction. This paper is concerned with the development and the anal-22

ysis of a new class of numerical methods for the reconstruction of nonlinear operators23

in controlled differential systems. The identification of unknown operators and pa-24

rameters characterizing dynamical systems is a typical problem in several fields of25

applied science. In general, this is understood as an inverse problem, where the goal26

is to best fit simulated and experimental data. However, when a system is affected by27

input forces that can be controlled by an external user, the data used in the fitting28

process can be manipulated. If the input forces are not properly chosen, the fitting29

process can result in a very poor quality of the reconstructed parameters or operators.30

Thus, it is natural to look for a set of such input forces that allows one to generate31

good data allowing the best possible reconstruction. This is a typical case in the field32

Hamiltonian identification in quantum mechanics [5, 9, 17–21, 29, 33, 34, 36–39], or in33

engineering in the context of state space realization [16,22,25,32] and optimal design34

of experiments [1, 4, 7].35

In this paper, we focus on the analysis and development of a class of greedy-36

type reconstruction algorithms (GR) that were introduced in [30] for Hamiltonian37

identification problems, further developed and analyzed in [11], and later adapted to38

the identification of probability distributions for parameters in the context of quantum39

systems in [13]. This approach decomposes the identification process into offline phase,40

where the control functions are computed by a GR algorithm, and online phase, where41

the controls are used to generate experimental data to be used in an inverse problem42

for the final reconstruct of the unknown operator. In [11], a first detailed convergence43

analysis of this strategy was provided for the identification of the control matrix in44

a linear input/output system. Based on this analysis, the authors developed a new45
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2 BUCHWALD, CIARAMELLA, SALOMON

more efficient and robust numerical variant of the standard greedy reconstruction46

algorithm. It was then shown in [13] that this strategy is also able to reconstruct47

the probability distribution of control inhomogeneities for a spin ensemble in Nuclear48

Magnetic Resonance; see, e.g., [10, 23,28].49

The goal of this paper is to further develop the work [11] by considering nonlin-50

ear systems, and to relate the greedy-reconstruction procedure to the Gauss-Newton51

method (GN), which is one of the most famous methods for solving inverse prob-52

lems [26]. In particular, we assume that the inverse problem in the online phase is53

solved by GN, and study the effect of the control functions generated by GR algo-54

rithms on the convergence of GN. This is achieved in two steps, which represent the55

main novelties of this manuscript.56

First, we introduce a new greedy-type reconstruction approach. In particular,57

rather than applying GR directly to the nonlinear identification problem, we use it on58

its linearization. This corresponds to using GR for designing control functions that59

make the GN matrix, namely the Jacobian of the nonlinear residual, full rank in a60

neighborhood of the solution, which is a sufficient condition for local convergence of61

GN. We refer to this strategy as linearized greedy reconstruction algorithm (LGR),62

and provide a corresponding detailed analysis for two classes of problems: the recon-63

struction of the drift matrix in linear input/output systems and the reconstruction64

of an Hamiltonian matrix in skew-symmetric bilinear systems. Both cases represent65

nonlinear problems, since the unknown operators act on the states of the systems.66

Notice that the analysis that we are going to presented for the drift matrix is also67

valid in the case of the reconstruction of the control matrix in a linear input/output68

systems, as considered in [11, Section 5]. Thus, this part of the present work is a69

substantial extension of the results of [11].70

The second novelty of this work is to provide a first analysis of the original GR71

algorithm applied to nonlinear systems. This is achieved by relating the behavior of72

GR (applied to the original nonlinear problem) and LGR: under appropriate control-73

lability and observability assumptions, we show that the controls generated by GR74

are suitable also for LGR and thus make the GN Jacobian matrix full rank.75

The two GR and LGR approaches are compared by direct numerical experiments.76

These show that GR and LGR are comparable when working locally near the solution.77

However, the GR applied directly to the original nonlinear system is superior when78

only poor information about the solution is available.79

The paper is organized as follows. In Section 2, the notation used throughout80

this work is fixed. Section 3 describes how GN can be used to solve general recon-81

struction problems. In order to guarantee convergence of GN, the LGR algorithm82

is introduced in Section 4. In sections 5 and 6, we present analyses of LGR for the83

reconstruction of linear drift matrices in linear systems and an Hamiltonian matrix in84

bilinear systems, respectively. Section 7 focuses on GR for nonlinear problems, and85

a corresponding analysis is provided in section 7.1. Within section 7.2, we recall and86

extend an optimized greedy reconstruction (OGR) algorithm introduced in [11]. The87

LGR, GR and OGR algorithms are then tested numerically in section 8. Finally, our88

conclusions are drawn in Section 9.89

2. Notation. Consider a positive natural number N . We denote by 〈v,w〉 :=90

v>w, for any v,w ∈ RN , the usual real scalar product on RN , and by ‖ · ‖2 the91

corresponding norm. For any A ∈ RN×N , [A]j,k is the j, k (with j, k ≤ N) entry of92

A, and the notation A[1:k,1:j] indicates the upper left submatrix of A of size k × j,93

namely, [A[1:k,1:j]]`,m := [A]`,m for ` = 1, . . . , k and m = 1, . . . , j. Similarly, A[1:k,j]94
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OPERATOR RECONSTRUCTION IN NONLINEAR DYNAMICS 3

denotes the column vector in Rk corresponding to the first k elements of the column95

j of A. Additionally, im(A) is the image of A, and ker(A) its kernel. We indicate96

by so(N) the space of skew-symmetric matrices in RN×N . Moreover, when talking97

about symmetric matrices, PD and PSD stand for positive definite and semidefinite,98

respectively. By (A,B,C) we denote the input/output dynamical system99

(2.1) xxx(t) = Cyyy(t), ẏyy(t) = Ayyy(t) +Bεεε(t), yyy(0) = yyy0.100

For an interval X ⊂ R, the notation φ : X ⇒ RN indicates that φ is a set-valued101

correspondence, i.e. φ(x) ⊂ RN is a set for x ∈ X. Finally, we denote by BNr (x) ⊂ RN102

the N -dimensional ball with radius r > 0 and center x ∈ RN .103

3. Gauss-Newton method (GN) for reconstruction problems. Consider104

a state yyy(t) ∈ RN , N ∈ N, whose time evolution is governed by the system of ordinary105

differential equations (ODE)106

(3.1) ẏyy(t) = f(A?, yyy(t), εεε(t)), t ∈ (0, T ], yyy(0) = yyy0,107

where yyy0 ∈ RN is the initial state and εεε ∈ Ead denotes a control function belonging108

to Ead, a non-empty and weakly compact subset of some Hilbert space of control109

functions from [0, T ] to RM , M ∈ N (e.g., Ead ⊂ L2(0, T ;RM )). The operator A? is110

unknown and assumed to lie in the space spanned by a finite-dimensional set A =111

{A1, . . . , AK}, K ∈ N, and we write A? =
∑K
j=1ααα?,jAj =: A(ααα?). We assume that112

f : span(A)× RN × RM → RN , (A,yyy, εεε) 7→ f(A,yyy, εεε) is differentiable in A and yyy.113

To identify the unknown operator A? one uses a set of control functions (εεεm)Km=1 ⊂114

Ead to perform K laboratory experiments and obtain the experimental data115

(3.2) ϕϕϕ?data(εεεm) := Cyyy(A?, εεε
m;T ), for m = 1, . . . ,K.116

Here, yyy(A?, εεε;T ) denotes the solution to (3.1) at time T > 0, corresponding to the117

operator A? and a control function εεε. The matrix C ∈ RP×N (P ≤ N) is a given118

observer matrix. The measurements are assumed not to be affected by noise.119

Using the set (εεεm)Km=1 and the data (ϕϕϕ?data(εεεm))Km=1 ⊂ RP , the unknown vector120

ααα is obtained by solving the least-squares problem121

(3.3) min
ααα∈RK

1

2

K∑
m=1

‖ϕϕϕ?data(εεεm)− Cyyy(A(ααα), εεεm;T )‖22 .122

GN is a typical iterative strategy to solve (3.3), and its process is initialized by a123

vector which we will call ααα◦ ∈ RK . We denote by αααc ∈ RK the GN iterate, and define124

fm(ααα) := 1
2

∑P
i=1 ‖(Rm(ααα))i‖22 = 1

2Rm(ααα)>Rm(ααα), where125

Rm(ααα) := Cyyy(A(ααα), εεεm;T )−ϕϕϕ?data(εεεm),(3.4)126127

for m ∈ {1, . . . ,K}. Thus, the identification problem (3.3) is equivalent to128

(3.5) min
ααα∈RK

K∑
m=1

fm(ααα).129

Given an iterate αααc, GN computes the new iterate by solving a problem of the form130

(3.6) min
ααα∈RK

K∑
m=1

‖R′m(αααc)(ααα−αααc)−Rm(αααc)‖22,131
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4 BUCHWALD, CIARAMELLA, SALOMON

where R′m(αααc) ∈ RP×K denotes the Jacobian of Rm at αααc ∈ RK . The first-order132

optimality condition of (3.6) is133

(3.7)

K∑
m=1

(
R′m(αααc)

>R′m(αααc)
)
ααα =

K∑
m=1

R′m(αααc)
>Rm(αααc),134

where
∑K
m=1R

′
m(αααc)

>R′m(αααc) =: Ŵc ∈ RK×K is symmetric PSD. Now, we recall135

the following convergence result from [27, Theorem 2.4.1] (for a proof see also the136

supplementary material [12]).137

Lemma 3.1 (local convergence of GN). Consider a problem of the form (3.5).138

Let ααα? be a minimizer of (3.5) such that for all m ∈ {1, . . . ,K} the function Rm is139

Lipschitz continuously differentiable near ααα? and Rm(ααα?) = 0. If the initialization140

vector ααα◦ ∈ RK is sufficiently close to ααα?, and Ŵc is PD for all iterates αααc ∈ RK ,141

then GN converges quadratically to ααα?.142

Lemma 3.1 implies that, given an initialization vector ααα◦ sufficiently close to the143

solution ααα?, the functions (εεεm)Km=1 should be chosen such that the GN matrix Ŵc =144 ∑K
m=1R

′
εεεm(αααc)

>R′εεεm(αααc) is PD for all αααc ∈ RK in a neighborhood of ααα?. Notice that145

Ŵc being PD is equivalent to (3.6)-(3.7) being uniquely solvable. Using (3.4), we can146

write (3.6) more explicitly. For a direction δααα ∈ RK , we have147

(3.8) R′m(αααc)(δααα) = Cδyyyc(A(δααα), εεεm;T ),148

where δyyyc(A(δααα), εεεm;T ) denotes the solution at time T to the linearized state equation149

(3.9)

{
δ̇yyyc = ∂yyyf(A(αααc), yyyc, εεε)δyyyc +

∑K
j=1 δαααj

(
∂Af(A(αααc), yyyc, εεε)(Aj)

)
, δyyyc(0) = 0,

ẏyyc = f(A(αααc), yyyc, εεε), yyyc(0) = yyy0.
150

Hence, problem (3.6) can be written as151

(3.10) min
ααα∈RK

K∑
m=1

‖Cδyyyc(A(ααα−αααc), εεεm;T )−Rm(αααc)‖22.152

Notice that the vectors Rm(αααc) ∈ RP are independent of ααα and can therefore be153

considered as fixed data when solving (3.10). Now, we recall that the GR algorithm,154

introduced in [30] and further analyzed in [11], was designed specifically to generate155

control functions (εεεm)Km=1 that make problems of the form (3.10) uniquely solvable.156

4. A linearized GR algorithm (LGR). Let us assume to be provided with an157

initialization vector ααα◦ for GN that is sufficiently close to ααα?. Further, let δyyy◦(A(ααα−158

ααα◦), εεε
m;T ) denote solution at time T to159

(4.1)

{
δ̇yyy◦ = ∂yyyf(A(ααα◦), yyy◦, εεε)δyyy◦ +

∑K
j=1(αααj −ααα◦,j)

(
∂Af(A(ααα◦), yyy◦, εεε)(Aj)

)
, δyyy◦(0) = 0,

ẏyy◦ = f(A(ααα◦), yyy◦, εεε), yyy◦(0) = yyy0.
160

The goal is to generate control functions (εεεm)Km=1 such that (3.10) in ααα◦, that is161

(4.2) min
ααα∈RK

K∑
m=1

‖Cδyyy◦(A(ααα−ααα◦), εεεm;T )−Rm(ααα◦)‖22,162
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Algorithm 4.1 Linearized Greedy Reconstruction Algorithm (LGR)

Require: A set of linearly independent operators A = {A1, . . . , AK}. Recall that
δyyy◦(A,εεε;T ) solves (4.1).

1: Compute the control εεε1 by solving

(4.3) max
εεε∈Ead

‖Cδyyy◦(A1, εεε;T )‖22 .

2: for k = 1, . . . ,K − 1 do
3: Fitting step: Let A(k)(βββ) :=

∑k
j=1 βββjAj , find βββk = (βββkj )j=1,...,k that solves

(4.4) min
βββ∈Rk

k∑
m=1

∥∥∥Cδyyy◦(A(k)(βββ), εεεm;T )− Cδyyy◦(Ak+1, εεε
m;T )

∥∥∥2
2
.

4: Splitting step: Find εεεk+1 that solves

(4.5) max
εεε∈Ead

∥∥∥Cδyyy◦(A(k)(βββk), εεε;T )− Cδyyy◦(Ak+1, εεε;T )
∥∥∥2
2
.

5: end for

is uniquely solvable. Then, in Section 5.2, we show that if (4.2) is uniquely solvable,163

the same holds for (3.10) at all iterates αααc of GN.164

The set (εεεm)Km=1 is computed by the LGR Algorithm 4.1, which is the original165

GR algorithm from [30] applied to (4.2). Our goal is to prove that the set (εεεm)Km=1166

makes Ŵ◦ :=
∑K
m=1R

′
m(ααα◦)

>R′m(ααα◦) PD, and thus (4.2) uniquely solvable. From167

(4.1), we have that δyyy◦ is linear in ααα. Thus, R′m(ααα◦)(δααα) = δyyy◦(A(δααα), εεεm;T ) =168 ∑K
j=1 δαααjCδyyy◦(Aj , εεε

m;T ). Hence, R′m(ααα◦) is a matrix with columns R′m(ααα◦)j =169

Cδyyy◦(Aj , εεε
m;T ) for j = 1, . . . ,K, and hence170

(4.6) [Ŵ◦]i,j =

K∑
m=1

〈Cδyyy◦(Ai, εεεm;T ), Cδyyy◦(Aj , εεε
m;T )〉, i, j ∈ {1, . . . ,K}.171

Using (4.6), we can rewrite (4.3), (4.4) and (4.5) in a matrix form.172

Lemma 4.1 (Algorithm 4.1 in matrix form). Consider Algorithm 4.1. Then:173

• The initialization problem (4.3) is equivalent to174

(4.7) max
εεε∈Ead

[W◦(εεε)]1,1,175

where [W◦(εεε)]i,j := 〈Cδyyy◦(Ai, εεε;T ), Cδyyy◦(Aj , εεε;T )〉 for i, j ∈ {1, . . . ,K}.176

• Let Ŵ
(k)
◦ :=

∑k
m=1W◦(εεε

m), the fitting-step problem (4.4) is equivalent to177

(4.8) min
βββ∈Rk

〈βββ, [Ŵ (k)
◦ ][1:k,1:k]βββ〉 − 2〈[Ŵ (k)

◦ ][1:k,k+1],βββ〉.178

• Let vvv := [(βββk)>, −1]>, the splitting-step problem (4.5) is equivalent to179

(4.9) max
εεε∈Ead

〈vvv, [W◦(εεε)][1:k+1,1:k+1]vvv〉.180

Moreover, problems (4.3)-(4.7), (4.4)-(4.8), and (4.5)-(4.9) are well posed.181
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Proof. The proof is similar to the ones of [11, Lemma 5.12]. For an arbitrary k ∈182

{0, . . . ,K − 1} let vvv ∈ Rk+1 and A(vvv) =
∑k+1
j=1 vvvjAj . We have ‖Cδyyy◦(A(vvv), εεε;T )‖22 =183

〈vvv, [W◦(εεε)][1:k+1,1:k+1]vvv〉. Recalling that δyyy◦(A(vvv), εεε;T ) =
∑k+1
j=1 vvvjδyyy◦(Aj , εεε;T ), we184

obtain the equivalence between (4.7), (4.9), and (4.3), (4.5) for suitable k and vvv.185

For the equivalence between (4.8) and (4.4), notice that for vvv = [βββ>,−1]> ∈ Rk+1186

and any W ∈ R(k+1)×(k+1) we have 〈vvv,Wvvv〉 = 〈βββ, [W ][1:k,1:k]βββ〉 − 2〈[W ][1:k,k+1],βββ〉+187

[W ]k+1,k+1. The well-posedness of the three problems follows by standard arguments;188

see, e.g., [11, Lemma 5.2].189

The matrix representation given in Lemma 4.1 allows us to nicely describe the math-190

ematical mechanism behind Algorithm 4.1 (see also [11, section 5.1]). Assume that at191

the k-th iteration the set (εεεm)km=1 has been computed, the submatrix [Ŵ
(k)
◦ ][1:k,1:k] is192

PD and [Ŵ
(k)
◦ ][1:k+1,1:k+1] has a nontrivial (one-dimensional) kernel. Then the fitting193

step of Algorithm 4.1 identifies this nontrivial kernel. This can be proved by the194

following technical lemma (for a proof see [11, Lemma 5.3]).195

Lemma 4.2 (kernel of some symmetric PSD matrices). Consider a symmetric196

PSD matrix G̃ =

[
G bbb

bbb> c

]
∈ Rn×n, where G ∈ R(n−1)×(n−1) is symmetric PD, and bbb ∈197

Rn−1 and c ∈ R are such that ker(G̃) is nontrivial. Then ker(G̃) = span

{[
G−1bbb
−1

]}
.198

In our case, we have G̃ = [Ŵ
(k)
◦ ][1:k+1,1:k+1], G = [Ŵ

(k)
◦ ][1:k,1:k] and bbb = [Ŵ

(k)
◦ ][1:k,k+1].199

In this notation, the solution to (4.8) is given by βββk = G−1bbb. Thus, Lemma 4.2 implies200

that the kernel of [Ŵ
(k)
◦ ][1:k+1,1:k+1] is spanned by vvv := [(βββk)>, −1]>. Now, the201

splitting step attempts to compute a new control εεεk+1 such that [Ŵ◦(εεε
k+1)][1:k+1,1:k+1]202

is PD on the span of vvv. If this is successful, then [Ŵ
(k+1)
◦ ][1:k+1,1:k+1] is PD. The203

equivalence of (4.5) and (4.9) implies that [Ŵ◦(εεε
k+1)][1:k+1,1:k+1] is PD on the span of vvv204

if and only if εεεk+1 satisfies ‖Cδyyy◦(A(k)(βββk), εεεk+1;T )−Cδyyy◦(Ak+1, εεε
k+1;T )‖22 > 0. The205

existence of such a control depends on the controllability and observability properties206

of system (3.9), as shown in sections 5 and 6. We conclude this section with a remark207

that is useful hereafter.208

Remark 4.3. The GN matrix Ŵ? :=
∑K
m=1R

′
m(ααα?)

>R′m(ααα?) ∈ RK×K can be209

written as [Ŵ?]i,j =
∑K
m=1〈Cδyyy?(Ai, εεεm;T ), Cδyyy?(Aj , εεε

m;T )〉 for i, j ∈ {1, . . . ,K},210

where δyyy?(Ai, εεε;T ) denotes the solution at time T of211 {
δ̇yyy? = ∂yyyf(A(ααα?), yyy?, εεε)δyyy? +

(
∂Af(A(ααα?), yyy?, εεε)(Ai)

)
, δyyy?(0) = 0,

ẏyy? = f(A(ααα?), yyy?, εεε), yyy(0) = yyy0.
212

5. Reconstruction of drift matrix in linear systems. Consider (3.1) with213

f(A,yyy, εεε) := Ayyy +Bεεε, where A and B are real matrices:214

(5.1) ẏyy(t) = A?yyy(t) +Bεεε(t), t ∈ (0, T ], yyy(0) = 0.215

This is a linear system, where B ∈ RN×M is a given matrix for N,M ∈ N+, and216

εεε ∈ Ead denotes a control function belonging to Ead, a nonempty and weakly compact217

subset of L2(0, T ;RM ) that contains εεε ≡ 0 as an interior point.1218

1This hypothesis is used in our analysis and is a reasonable assumption, since it is, for example,
satisfied for standard box constraints, which are quite often used in the applications.
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The drift matrix A? ∈ RN×N is unknown and assumed to lie in the space spanned219

by a set of linearly independent matrices A = {A1, . . . , AK} ⊂ RN×N , 1 ≤ K ≤ N2.220

We write A? =
∑K
j=1ααα?,jAj =: A(ααα?). As stated in section 3, we want to identify221

the unknown drift matrix A? by using a set of control functions (εεεm)Km=1 ⊂ Ead222

in order to perform K laboratory experiments and obtain the experimental data223

(ϕϕϕ?data(εεεm))Km=1 ⊂ RP , as defined in (3.2).224

Remark 5.1. The hypothesis yyy(0) = 0 in (5.1) can be made without loss of gen-225

erality. Indeed, if yyy(0) = yyy0 6= 0, one can use εεε = 0 (case of uncontrolled system),226

generate the data ϕϕϕ?data(0), and then subtract this from all other data (ϕϕϕ?data(εεεm))Km=1227

to get back (by linearity) to the case of system (5.1) with yyy(0) = 0.228

Using (εεεm)Km=1 and (ϕϕϕ?data(εεεm))Km=1, the unknown vector ααα? is obtained by solving229

(3.3), in which yyy(A(ααα), εεεm;T ) now solves (5.1), with A? replaced by A(ααα). Thus,230

we use the LGR Algorithm 4.1 to generate (εεεm)Km=1 with the goal of making (4.2)231

uniquely solvable, that means making PD the GN matrix Ŵ◦, defined in (4.6). In232

(4.2), δyyy◦(A(δααα), εεε; t) is now the solution to233

(5.2)

{
δ̇yyy◦(t) = A(ααα◦)δyyy◦(t) +

∑K
j=1 δαααjAjyyy◦(t), t ∈ (0, T ], δyyy◦(0) = 0,

ẏyy◦(t) = A(ααα◦)yyy◦(t) +Bεεε(t), t ∈ (0, T ], yyy◦(0) = 0.
234

In what follows, we show that the LGR Algorithm 4.1 does produce (εεεm)Km=1235

that make Ŵ◦ PD under appropriate assumptions on observability and controllability236

of the considered linear system. Let us recall these properties for an input/output237

system (A,B,C) of the form (2.1) with A ∈ RN×N , B ∈ RN×M , C ∈ RP×N ; see,238

e.g., [32, Theorem 3, Theorem 23].239

Definition & Lemma 5.2 (observable input-output linear systems). The linear240

system (2.1) is said to be observable if the initial state yyy(0) = yyy0 can be uniquely241

determined from input/output measurements. Equivalently, (2.1) is observable if and242

only if the observability matrix ON (C,A) :=
[
C CA · · · CAN−1

]>
has full rank.243

Definition & Lemma 5.3 (controllable input-output linear systems). The lin-244

ear system (2.1) is said to be controllable if for any final state yyyf there exists an input245

sequence that transfers yyy0 to yyyf . Equivalently, (2.1) is controllable if and only if the246

controllability matrix CN (A,B) :=
[
B AB · · · AN−1B

]
has full rank.247

In Section 5.1, we analyze Algorithm 4.1 in the case of fully observable and controllable248

systems (namely, rank(ON (C,A(ααα◦))) = rank(CN (A(ααα◦), B)) = N). However, similar249

to [11, Section 5.3], one can also formulate the following results for non-fully observable250

and controllable systems, if appropriate matrices A1, . . . , AK are chosen. For further251

details, we refer the reader to the supplementary material [12].252

Notice that the analysis that we are going to presented is also valid in the case253

of the reconstruction of a linear control matrix considered in [11, Section 5], i.e.254

f(A,yyy, εεε) = Myyy +Aεεε, and is therefore an extension of the results obtained in [11].255

5.1. Analysis for linear systems. We define O◦N := ON (C,A(ααα◦)) and C◦N :=256

CN (A(ααα◦), B) and assume that the system (A(ααα◦), B,C) is observable and control-257

lable, namely R := rank(O◦N ) · rank(C◦N ) = N2. In what follows, we show that this is258

a sufficient condition for Ŵ◦ to be PD with the controls generated by Algorithm 4.1.259

First, we need the following result [3, Ch. 3, Theorem 2.11].260

Lemma 5.4 (controllability of time-invariant systems). Consider the system ẋxx =261

Axxx + Bεεε with xxx(0) = 0 and its solution xxx(εεε, t) :=
∫ t
0
e(t−s)A(ααα◦)Bεεε(s)ds. For any262
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8 BUCHWALD, CIARAMELLA, SALOMON

finite time t0 > 0, there exists a control εεε that transfers the state to www in time t0, i.e.263

xxx(εεε, t0) = www, if and only if www ∈ im
(
CN (A,B)

)
. Furthermore, an appropriate εεε that264

will accomplish this transfer in time t0 is given by εεε(t) = B>e(t0−t)A
>
ννν, for t ∈ [0, t0]265

and ννν such that Wc(0, t0)ννν = www, where Wc(0, T ) :=
∫ T
0
eτABB>eτA

>
dτ .266

Now, we prove the following lemma regarding the initialization problem (4.3) and the267

splitting step problem (4.5). Notice that the proof of this result is inspired by classical268

Kalman controllability theory; see, e.g., [15].269

Lemma 5.5 (LGR initialization and splitting steps (linear systems)). Assume
that the matrices A(ααα◦) ∈ RN×N , B ∈ RN×M and C ∈ RP×N are such that

rank(O◦N ) = rank(C◦N ) = N , and let Ã ∈ RN×N \ {0} be arbitrary. Then any so-

lution ε̃εε of the problem maxεεε∈Ead ‖Cδyyy◦(Ã, εεε;T )‖22 satisfies

‖Cδyyy◦(Ã, ε̃εε;T )‖22 > 0,

where δ̇yyy◦ = A(ααα◦)δyyy◦+ Ãyyy◦, with δyyy◦(0) = 0, and ẏyy◦ = A(ααα◦)yyy◦+Bεεε with yyy◦(0) = 0270

Proof. To prove the result, it is sufficient to construct an ε̃εε ∈ Ead such that271

Cδyyy◦(Ã, ε̃εε;T ) 6= 0. Since Ã 6= 0, there exists www ∈ RN \ {0} such that Ãwww 6= 0. Since272

(A(ααα◦), B, C) is observable, there exists t̃ > 0 such that Cet̃A(ααα◦)Ãwww 6= 0. The map f :273

R → RP , t 7→ CetA(ααα◦)Ãwww is analytic with derivatives f (i)(t) = CA(ααα◦)
ietA(ααα◦)Ãwww.274

Since O◦N has full rank and et̃A(ααα◦)Ãwww 6= 0, there exists i ∈ {0, . . . , N} such that275

f (i)(t̃) = CA(ααα◦)
iet̃A(ααα◦)Ãwww 6= 0. Hence, f is nonconstant, and there exists t0 ∈ (0, T )276

with Cet0A(ααα◦)Ãwww 6= 0.277

Now, we use that yyy◦(εεε, s) :=
∫ s
0
e(s−τ)A(ααα◦)Bεεε(τ)dτ is the solution at time s of278

ẏyy◦ = A(ααα◦)yyy◦ + Bεεε, with yyy◦(0) = 0. Since C◦N has full rank, we have www ∈ im
(
C◦N
)
.279

Thus, Lemma 5.4 guarantees that ε̂εε(t) = B>e(t0−t)A(ααα◦)
>
ννν, for t ∈ [0, t0] and some280

ννν ∈ RN , satisfies yyy◦(̂εεε, t0) = www. Clearly, ε̂εε is analytic in [0, t0] and thereby the same281

holds for yyy◦(̂εεε, s). Note that, since εεε ≡ 0 is an interior point of Ead, there exists λ > 0282

such that λε̂εε ∈ Ead with Cet0A(ααα◦)Ãyyy◦(λε̂εε, t0) = λCet0A(ααα◦)Ãyyy◦(̂εεε, t0) 6= 0. Hence, we283

can assume without loss of generality that ε̂εε ∈ Ead.284

In conclusion, we obtain that the map285

ggg : R→ Rp, s 7→ Ce(T−s)A(ααα◦)Ã

∫ s

0

e(s−τ)A(ααα◦)Bε̂εε(τ)dτ286

is analytic in (0, t0) with ggg(t0) 6= 0. Thus, ggg is nonzero in an open subinterval of287

(0, t0). Hence, there exists t1 ∈ (0, t0) such that
∫ t1
0
ggg(s)ds 6= 0. By choosing288

ε̃εε(s) :=

{
0, 0 ≤ s < T − t1,
ε̂εε(s− t1), T − t1 ≤ s ≤ T,

289

and using that Cδyyy◦(Ã, ε̃εε;T ) =
∫ T
0
Ce(T−s)A(ααα◦)Ã

∫ s
0
e(s−τ)A(ααα◦)Bε̃εε(τ)dτds, we obtain290

Cδyyy◦(Ã, ε̃εε;T ) =

∫ T

T−t1
Ce(T−s)A(ααα◦)Ã

∫ s

T−t1
e(s−τ)A(ααα◦)Bε̃εε(τ − t1)dτds291

=

∫ t1

0

Ce(t1−s)A(ααα◦)Ã

∫ s

0

e(s−τ)A(ααα◦)Bε̂εε(τ)dτds =

∫ t1

0

ggg(s)ds 6= 0.292
293
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Lemma 5.5 can be applied to both (4.3) and (4.5), choosing Ã = A1 and Ã =294 (
A(k)(βββk)−Ak+1

)
, respectively. Now, we can prove our first main convergence result.295

Theorem 5.6 (positive definiteness of the GN matrix Ŵ◦ (linear systems)).296

Assume that A(ααα◦) ∈ RN×N , B ∈ RN×M and C ∈ RP×N are such that rank(O◦N ) =297

rank(C◦N ) = N . For K ≤ N2, let A = {A1, . . . , AK} ⊂ RN×N be a set of linearly298

independent matrices such that A(ααα◦) ∈ span(A), and let {εεε1, . . . , εεεK} ⊂ Ead be299

generated by Algorithm 4.1. Then the GN matrix Ŵ◦, defined in (4.6), is PD.300

Proof. We proceed by induction. Lemma 5.5 guarantees that there exists an εεε1301

such that [W◦(εεε
1)]1,1 = ‖Cδyyy◦(A1, εεε;T )‖22 > 0. Now, we assume that [Ŵ

(k)
◦ ][1:k,1:k] =302 ∑k

m=1[W◦(εεε
m)][1:k,1:k] is PD. By construction, [Ŵ

(k+1)
◦ ][1:k+1,1:k+1] is PSD. Thus, if303

[Ŵ
(k)
◦ ][1:k+1,1:k+1] is PD, then304

[Ŵ
(k+1)
◦ ][1:k+1,1:k+1] = [Ŵ

(k)
◦ ][1:k+1,1:k+1] + [W◦(εεε

k+1)][1:k+1,1:k+1]305

is PD as well, since [W◦(εεε
k)][1:k+1,1:k+1] is PSD. Assume now that the submatrix306

[Ŵ
(k)
◦ ][1:k+1,1:k+1] has a nontrivial kernel. Since [Ŵ

(k)
◦ ][1:k,1:k] is PD (induction hy-307

pothesis), problem (4.4) is uniquely solvable with solution βββk. Then, by Lemma308

4.2 the (one-dimensional) kernel of [Ŵ
(k)
◦ ][1:k+1,1:k+1] is the span of the vector vvv =309

[(βββk)>, −1]>. Using Lemma 5.5 we obtain that the solution εεεk+1 to the splitting step310

problem satisfies311

〈vvv, [W◦(εεεk+1)][1:k+1,1:k+1]vvv〉 =
∥∥∥Cδyyy◦(A(k)(βββk)−Ak+1, εεε;T )

∥∥∥2
2
> 0.312

Thus, [W (εεεk+1)][1:k+1,1:k+1] is PD on the span of vvv, and [Ŵ
(k+1)
◦ ][1:k+1,1:k+1] is PD.313

Notice that Theorem 5.6 does not require any assumption on the matrices A1, . . . , AK .314

These can be arbitrarily chosen with the only constraint to be linearly independent.315

Also the ordering of these matrices does not affect the result of Theorem 5.6. This is,316

however, different for non-fully observable and controllable systems, i.e. for R < N2317

(see the supplementary material [12]).318

Now that we proved that Algorithm 4.1 makes Ŵ◦ PD, the obvious question is319

whether this is sufficient for the convergence of GN, as described in Lemma 3.1. We320

answer this question in Section 5.2.321

5.2. Positive definiteness of the GN matrix. To guarantee convergence of322

GN, we need to show that Ŵ (ααα) :=
∑K
m=1R

′
m(ααα)>R′m(ααα) (defined in section 3)323

remains PD in a neighborhood of ααα?. Indeed, in Section 5.1, we proved that the324

control functions generated by Algorithm 4.1 make the GN matrix Ŵ◦ = Ŵ (ααα◦)325

PD. Thus, it is sufficient to prove that Ŵ (ααα) remains PD in a neighborhood of ααα◦326

containing ααα?. To do so, let us rewrite Ŵ (ααα) as327

[Ŵ (ααα)]i,j :=

K∑
m=1

〈γγγi(ααα,εεεm), γγγj(ααα,εεε
m)〉, i, j ∈ {1, . . . ,K},(5.3)328

γγγj(ααα,εεε
m) :=

∫ T

0

Ce(T−s)A(ααα)Ajyyy(A(ααα), εεεm; s)ds, j ∈ {1, . . . ,K},(5.4)329
330

and recall the next lemma, which follows from the Bauer-Fike theorem [6].331
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10 BUCHWALD, CIARAMELLA, SALOMON

Lemma 5.7 (rank stability). Consider two natural numbers ND and MD with332

ND ≥ MD, and an arbitrary matrix D ∈ RND×MD with rank RD and (positive)333

singular values σ1, . . . , σRD in descending order. Then it holds that334

min
D̂∈RND×MD

{‖D̂‖2 | rank(D + D̂) < RD} = σRD .335

Using this lemma, we can prove the following approximation result.336

Lemma 5.8 (positive definiteness of Ŵ (ααα) (linear systems)). Let Ŵ◦ defined337

in (4.6) be PD and let σ◦K > 0 be its smallest singular value. Then, there exists338

δ := δ(σ◦K) > 0 such that Ŵ (ααα) (in (5.3)) is PD for any ααα ∈ RK with ‖ααα−ααα◦‖2 < δ.339

Proof. Our first goal is to show that Ŵ (ααα) is continuous inααα. From (5.3) and (5.4)340

we know that Ŵ (ααα) is the sum over products of
∫ T
0
Ce(T−s)A(ααα)Ajyyy(A(ααα), εεεm; s)ds,341

where yyy(A(ααα), εεεm; s) =
∫ s
0
e(s−τ)A(ααα)Bεεεm(τ)dτ . Now, recall that A(ααα) =

∑K
j=1αααjAj ,342

meaning that A(ααα) is continuous in ααα. Since the exponential map RN → RN×N ,ααα 7→343

esA(ααα) and the integral map RN×N → RN , X 7→
∫ s
0
XBεεε(τ)dτ are continuous, we344

obtain that yyy(A(ααα), εεεm; s) is continuous in ααα. Since products of continuous functions345

are continuous, we obtain that Ŵ (ααα) is continuous in ααα.346

By assumption, Ŵ◦ is PD, and therefore σ◦K > 0. Since Ŵ (ααα) is continuous in ααα,347

we obtain that there exists a δ := δ(σ◦K) > 0 such that for any ααα with ‖ααα−ααα◦‖2 <348

δ(σ◦K) it holds that
∥∥∥Ŵ (ααα)− Ŵ (ααα◦)

∥∥∥
2
< σ◦K . Now, let α̂αα be such that ‖α̂αα−ααα◦‖2 <349

δ(σ◦K) and hence
∥∥∥Ŵ (α̂αα)− Ŵ (ααα◦)

∥∥∥
2
< σ◦K . Setting D = Ŵ (ααα◦) and D̂ = Ŵ (α̂αα) −350

Ŵ (ααα◦), Lemma 5.7 implies that K = rank(Ŵ (ααα◦)) ≤ rank(Ŵ (α̂αα)). Because of (5.3),351

Ŵ (α̂αα) ∈ RK×K meaning that rank(Ŵ (α̂αα)) = K. Since Ŵ (ααα) is PSD by construction,352

rank(Ŵ (α̂αα)) = K implies that Ŵ (α̂αα) is PD.353

Lemma 5.8 implies that the positive definiteness of Ŵ (ααα) is locally preserved near354

ααα◦. Now, we can prove our main convergence result.355

Theorem 5.9 (convergence of GN (linear systems)). Let ααα◦ ∈ RK be such356

that the matrices A(ααα◦) ∈ RN×N , B ∈ RN×M and C ∈ RP×N satisfy rank(O◦N ) ·357

rank(C◦N ) = N2. Let (εεεm)Km=1 ⊂ Ead be a set of controls generated by Algorithm 4.1.358

Finally, let σ̂K be the K-th (smallest) singular value of Ŵ◦ defined in (4.6). Then359

there exists δ = δ(σ̂K) > 0 such that if ααα? ∈ RK satisfies ‖ααα? − ααα◦‖ < δ, then GN360

method for the problem361

(5.5) min
ααα∈RK

1

2

K∑
m=1

‖Cyyy(A(ααα?), εεε
m;T )− Cyyy(A(ααα), εεεm;T )‖22 ,362

initialized with ααα◦, converges to αααj = ααα?,j, j = 1, . . . ,K.363

Proof. Theorem 5.6 guarantees that Ŵ◦ is PD and hence σ̂K > 0. Thus, by364

Lemma 5.8 there exists δ = δ(σ̂K) > 0 such that, for ααα ∈ RK with ‖ααα − ααα◦‖2 < δ,365

the matrix Ŵ (ααα) is also PD. Moreover, we know from section 3 that Ŵ (αααc) is the366

GN matrix for the iterate αααc ∈ RK of GN for (3.3). Analogously to the proof of367

Lemma 5.8, one can also show that the functions Rm(ααα), defined in (3.4), are Lipschitz368

continuously differentiable in ααα for all m ∈ {1, . . . ,K}. Hence, if ‖ααα?−ααα◦‖ < δ, then369

the result follows by Lemma 3.1.370
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5.3. Local uniqueness of solutions. Theorem 5.9 says that GN converges371

to ααα? if an appropriate initialization vector ααα◦ is used. However, in the linear case372

corresponding to (5.1) we can specify the local properties of problem (3.3) around the373

solution ααα?. To this end, we start by rewriting the cost function in a matrix form.374

Lemma 5.10 (online identification problem in matrix form (linear systems)).375

Problem (3.3) is equivalent to376

(5.6) min
ααα∈RK

1

2
〈ααα? −ααα, W̃ (ααα?,ααα)(ααα? −ααα)〉,377

where W̃ (ααα?,ααα) ∈ RK×K is defined as2378

(5.7) W̃ (ααα?,ααα) :=

K∑
m=1

W (ααα?,ααα,εεε
m),379

with W (ααα?,ααα,εεε
m) ∈ RK×K given by380

[W (ααα?,ααα,εεε
m)]i,j := 〈γγγi(ααα?,ααα,εεεm), γγγj(ααα?,ααα,εεε

m)〉, i, j ∈ {1, . . . ,K},(5.8)381

γγγj(ααα?,ααα,εεε
m) :=

∫ T

0

Ce(T−s)A(ααα?)Ajyyy(A(ααα), εεεm; s)ds, j ∈ {1, . . . ,K}.(5.9)382
383

Proof. Let J(ααα) := 1
2

∑K
m=1 ‖Cyyy(A?, εεε

m;T )− Cyyy(A(ααα), εεεm;T )‖22. For t ∈ [0, T ]384

and m ∈ {1, . . . ,K} define ∆yyym(t) := yyy(A?, εεε
m; t)− yyy(A(ααα), εεεm; t). Then we have385

∆̇yyym(t) = A(ααα?)yyy(A?, εεε
m; t) +Bεεεm(t)−A(ααα)yyy(A(ααα), εεεm; t)−Bεεεm(t)386

= A(ααα?)∆yyym(t) +A(ααα? −ααα)yyy(A(ααα), εεεm; t),387388

whose solution at time T is given by389

∆yyym(T ) =

∫ T

0

e(T−s)A(ααα?)
[
A(ααα? −ααα)yyy(A(ααα), εεεm; s)

]
ds.390

Thus, recalling A(ααα) =
∑K
j=1αααjAj , the function J(ααα) can be written as391

J(ααα) =
1

2

K∑
m=1

∥∥∥∥∥∥
∫ T

0

Ce(T−s)A(ααα?)
( K∑
j=1

(ααα?,j −αααj)Ak
)
yyy(A(ααα), εεεm; s)ds

∥∥∥∥∥∥
2

2

392

(5.9)
=

1

2

K∑
m=1

K∑
i=1

K∑
j=1

(ααα?,i −αααi)(ααα?,j −αααj)〈γγγi(ααα?,ααα,εεεm), γγγj(ααα?,ααα,εεε
m)〉393

(5.8)
=

1

2
〈ααα? −ααα,

K∑
m=1

W (ααα?,ααα,εεε
m)(ααα? −ααα)〉 =

1

2
〈ααα? −ααα, W̃ (ααα?,ααα)(ααα? −ααα)〉.394

395

Now, the set of global solutions to problem (5.6) is given by Sglobal :=
{
ααα ∈ RK :396

(ααα?−ααα) ∈ ker W̃ (ααα?,ααα)
}

. Since W̃ (ααα?,ααα) is symmetric PSD, (5.6) is locally uniquely397

solvable if and only if W̃ (ααα?,ααα) is PD for ααα close to ααα?. Now, assume that the system398

2Notice that the notations (5.3) and (5.7) are related in the sense that W̃ (ααα,ααα) = Ŵ (ααα).
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is fully observable and controllable, meaning that R = N2. Theorem 5.9 guarantees399

that Algorithm 4.1 computes (εεεm)N
2

m=1 such that Ŵ (ααα?) = W̃ (ααα?,ααα?) is PD, if ααα? is400

close enough to the estimate ααα◦. Similar to the proof of Lemma 5.8, one can prove401

that W̃ (ααα?,ααα) is continuous in ααα. Hence, we obtain that if the matrix W̃ (ααα?,ααα?) is402

PD, then the same is true for W̃ (ααα?,ααα), when ααα is close to ααα?, which implies that403

(5.6) is locally uniquely solvable with ααα = ααα?.404

6. Bilinear reconstruction problem. In this section, we extend the results of405

section 5 to the case of skew-symmetric bilinear systems. We consider (3.1) with a406

right-hand side f(A,yyy, ε) = (A+ εB)yyy, that is407

(6.1) ẏyy(t) = (A? + ε(t)B)yyy(t), t ∈ (0, T ], yyy(0) = yyy0,408

where B ∈ so(N) is a given skew-symmetric matrix for N ∈ N+, the initial state is409

yyy0 ∈ RN , and ε ∈ Ead ⊂ L2(0, T ;R) denotes a control function belonging to Ead, a410

nonempty, closed, convex and bounded subset of L2(0, T ;R) that contains ε ≡ 0 as411

an interior point. The matrix A? ∈ so(N) is unknown and assumed to lie in the space412

spanned by a set of linearly independent matrices A = {A1, . . . , AK} ⊂ RN×N , 1 ≤413

K ≤ N2, and we write A? =
∑K
j=1ααα?,jAj =: A(ααα?). Notice that, since the matrices414

A? and B are skew-symmetric, system (6.1) is norm preserving, i.e. ‖yyy(t)‖2 = ‖yyy0‖2415

for all t ∈ [0, T ].3416

To identify the true matrix A?, one can consider a set of control functions417

(εm)Km=1 ⊂ Ead and use it experimentally to obtain the data (ϕϕϕ?data(εm))Km=1 ⊂ RP ,418

as defined in (3.2). The unknown vector ααα? is then obtained by solving the problem419

(6.2) min
ααα∈RK

1

2

K∑
m=1

‖ϕϕϕ?data(εm)− Cyyy(A(ααα), εm;T )‖22 .420

We assume to be provided with a known estimate ααα◦ of ααα?. For this estimate, we can421

derive the linearized state equation422

(6.3)

{
δ̇yyy◦(t) = (A◦ + ε(t)B)δyyy◦(t) +

∑K
j=1 δαααjAjyyy◦(t), t ∈ (0, T ], δyyy◦(0) = 0,

ẏyy◦(t) = (A◦ + ε(t)B)yyy◦(t), t ∈ (0, T ], yyy◦(0) = yyy0,
423

where A◦ := A(ααα◦). Denoting by δyyy◦(A(δααα), ε; t) the solution of (6.3) at time t ∈424

[0, T ], the GN matrix Ŵ◦ is defined as in (4.6), and LGR is detailed in Algorithm 4.1.425

Let us recall the following definition and result from [10, Corollary 4.11].426

Definition & Lemma 6.1 (Controllability of skew-symmetric bilinear systems).427

Consider a system of the form428

(6.4) ẏyy(t) = (A◦ + ε(t)B)yyy(t), yyy(0) = yyy0,429

where A◦, B ∈ so(N). System (6.4) is said to be controllable if for any final state430

yyyf that lies on the sphere of radius ‖yyy0‖2 there exists a control ε(t) that transfers yyy0431

to yyyf . Furthermore, if the Lie algebra L = Lie{A◦, B} ⊂ so(N), generated by the432

matrices A◦ and B, has dimension N(N−1)
2 , then there exists a constant t̃ ≥ 0 such433

that for any T ≥ t̃ controllability of (6.4) holds.434

3To see this, we observe that 1
2
d
dt
‖yyy(t)‖22 = 〈yyy(t), ẏyy(t)〉 = 〈yyy(t), (A? + ε(t)B)yyy(t)〉 = 0.
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As in section 5, we also need to make some assumptions on the observability of435

the linearized equation in (6.3). However, recalling the proof of Lemma 5.5, these436

assumptions are only required to prove the existence of a control function that guar-437

antees a positive cost function value in the splitting step. If we assume this function438

to be constant, at least on a subinterval of [0, T ], then we get a system of the form439

(6.5) δ̇yyy◦(t) = (A◦ + cB)δyyy◦(t) +A(δααα)yyy◦(t),440

for a scalar c ∈ R. In this case, system (6.5) is again a linear system, for which observ-441

ability is defined in Definition 5.2. Hence, the observability matrix is ON (C,A◦+cB).442

Let us state our assumptions on controllability and observability of (6.4) and (6.5).443

Assumption 6.2. Let the matrices A◦, B and C be such that the following con-444

ditions are satisfied.445

1. The Lie algebra L = Lie{A◦, B} ⊂ so(N), generated by the matrices A◦ and446

B, has dimension N(N−1)
2 .447

2. The final time T > 0 is sufficiently large, such that the controllability result448

from Lemma 6.1 holds.449

3. There exists c ∈ R such that system (6.5) is observable, i.e. the observability450

matrix ON (C,A◦ + cB) has full rank.451

In addition, let the set of admissible controls Ead ⊂ L2(0, T ;R) be chosen such that452

the controllability result from Lemma 6.1 holds, and such that ε ≡ c is an interior453

point of Ead for the constant c ∈ R mentioned above.454

Remark 6.3. The analysis presented in the following sections can be applied to the455

case where the matrix A = A? is assumed to be known and B = B(ααα) :=
∑K
j=1αααjBj456

is unknown and to be identified. The main differences in the case of the identification457

of B is that the state equation is linearized around an initial guess B◦, leading to458 {
δ̇yyy◦(t) = (A+ ε(t)B◦)δyyy◦(t) +

∑K
j=1 δαααjε(t)Bjyyy◦(t), t ∈ (0, T ], δyyy◦(0) = 0,

ẏyy◦(t) = (A+ ε(t)B◦)yyy◦(t), t ∈ (0, T ], yyy◦(0) = yyy0.
459

Assumption 6.2 would be the same, only with A instead of A◦ and B◦ instead of B.460

Notice that, in this case, we also cover Schrödinger-type systems of the form461

iψ̇ψψ(t) = (H + ε(t)µ?)ψψψ(t), t ∈ (0, T ], ψψψ(0) = ψψψ0,462

as considered in [30], for Hermitian matrices H,µ? ∈ CN×N . This can be seen by463

writing ψψψ = ψψψR + iψψψI , ψψψ
0 = ψψψ0

R + iψψψ0
I , H = HR + iHI and µ? = µ?,R + iµ?,I , to get464

(6.6) ẏyy(t) =

([
HI HR

−HR HI

]
︸ ︷︷ ︸

=:A

+ε(t)

[
µ?,I µ?,R
−µ?,R µ?,I

]
︸ ︷︷ ︸

:=B?

)
yyy(t),465

for yyy(t) :=
[
ψψψR(t) ψψψI(t)

]>
and skew-symmetric matrices A,B? ∈ RN×N (compare466

also [10, Section 2.12.2]).467

6.1. Analysis for skew-symmetric bilinear systems. We show in this sec-468

tion that Assumption 6.2 is a sufficient condition for the GN matrix Ŵ◦, defined as in469

(4.6), to be PD if the controls generated by Algorithm 4.1 are used. The idea of the470

analysis is similar to the one considered in section 5, meaning that we first have to471

show the existence of a control that makes the cost function of (4.5) strictly positive.472
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14 BUCHWALD, CIARAMELLA, SALOMON

Lemma 6.4 (GR initialization and splitting steps (bilinear systems)). Let the473

matrices A◦, B and C satisfy Assumption 6.2. Let Ã ∈ span(A) be an arbitrary474

matrix. If T > 0 is sufficiently large, then any solution ε̃ to the problem475

max
ε∈Ead

∥∥∥Cδyyy◦(Ã, ε;T )
∥∥∥2
2
,476

s.t. δ̇yyy◦(t) = (A◦ + ε(t)B)δyyy◦(t) + Ãyyy◦(t), δyyy◦(0) = 0,477

ẏyy◦(t) = (A◦ + ε(t)B)yyy◦(t), yyy◦(0) = yyy0,478479

satisfies
∥∥∥Cδyyy◦(Ã, ε̃;T )

∥∥∥2
2
> 0.480

Proof. It is sufficient to show that there exists a control ε̂c ∈ Ead such that481

Cδyyy◦(Ã, ε̂c;T ) 6= 0 for T sufficiently large. Let us define ε̂c as482

ε̂c(s) :=

{
ε̂(s), for 0 ≤ s ≤ t̂,
c, for t̂ < s ≤ T,

483

where c ∈ R, ε̂ ∈ Ead, T > 0 and t̂ ∈ (0, T ) are to be chosen. Since Ã 6= 0, there exists484

vvv ∈ RN , ‖vvv‖2 = ‖yyy0‖2 such that Ãvvv 6= 0. By the first and second part of Assumption485

6.2, we know that (6.4) is controllable on the sphere of radius ‖yyy0‖2, meaning that486

there exist t̂ > 0 and ε̂ ∈ Ead such that yyy◦(Ã, ε̂; t̂) = vvv. Defining Ac := A◦ + cB, we487

notice that fvvv(t) := ÃetAcvvv is analytic in t, and since fvvv(0) = Ãvvv 6= 0, it is not equal to488

zero everywhere and therefore has only isolated roots, see, e.g., [31, Theorem 10.18].489

Recalling that exponential matrices are always invertible (see, e.g., [24, Theorem490

2.6.38]), we obtain that there exists t1 > 0 such that e−t1(Ac)Ãe(t1−t̂)Acvvv 6= 0. By491

defining www := δyyy◦(Ã, ε̂; t̂) and ggg(t) :=
∫ t
t̂
e−s(Ac)Ãe(s−t̂)Acvvvds + e−t̂Acwww, we observe492

that dggg(t1)
dt = e−t1(Ac)Ãe(t1−t̂)Acvvv 6= 0. Since dggg(t)

dt is analytic in t, the same holds for493

ggg(t),4 and since dggg(t1)
dt 6= 0 we obtain that ggg(t) has only isolated roots. Notice that494

e−tAcδyyy(Ã, ε̂c; t) = e−tAc
∫ t

t̂

e(t−s)(Ac)Ãe(s−t̂)Acvvvds+ e(t−t̂)Acwww = ggg(t),495

for t > t̂. Thus, it remains to show that there exists T > t̂ such that CeTAcggg(T ) 6= 0.496

Assumption 6.2 guarantees that there exists c ∈ R such that the observability matrix497

ON (C,A◦+ cB) has full rank. Hence, for any uuu ∈ RN \ {0} there exists a tuuu > t̂ such498

that CetuuuAcuuu 6= 0. Since t 7→ CetAcuuu is analytic in t, CetuuuAcuuu 6= 0 implies that it has499

only isolated roots. Thus, for t > t̂, t 7→ CetAcggg(t) is the composition of two analytic500

functions which both have only isolated roots, and is therefore also analytic with501

isolated roots. Hence, there exists T > t̂ such that Cδyyy(Ã, ε̂c;T ) = CeTAcggg(T ) 6= 0.502

Now, we can prove our main result, whose proof is the same as the one of Theorem503

5.6, in which Lemma 6.4 has to be used instead of Lemma 5.5.504

Theorem 6.5 (positive definiteness of the GN matrix Ŵ◦ (bilinear systems)).505

Let ααα◦ ∈ RK be such that the matrices A(ααα◦), B ∈ so(N) and C ∈ RP×N satisfy506

Assumption 6.2. For K ≤ N2, let A = {A1, . . . , AK} ⊂ so(N) be a set of linearly507

independent matrices such that A? ∈ span A, and let {ε1, . . . , εK} ⊂ Ead be controls508

generated by Algorithm 4.1. Then the GN matrix Ŵ◦, defined in (4.6), is PD.509

4This follows directly from the fundamental theorem of calculus.
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6.2. Positive definiteness of the GN matrix. As in section 5.2, we show510

that if the GN matrix in ααα◦ is PD, then the same is true locally, for all iterates αααc of511

GN. We start by writing the matrix Ŵ (ααα) as a function of ααα:512

(6.7) [Ŵ (ααα)]i,j :=

K∑
m=1

〈Cδyyy(ααα,Ai, ε
m;T ), Cδyyy(ααα,Aj , ε

m;T )〉, i, j ∈ {1, . . . ,K},513

where δyyy(ααα, Â, ε;T ) denotes the solution at time T of514

(6.8)

{
δ̇yyy(t) = (A(ααα) + ε(t)B)δyyy(t) + Âyyy(t), δyyy(0) = 0,

ẏyy(t) = (A(ααα) + ε(t)B)yyy(t), yyy(0) = yyy0.
515

Now, we want to prove the same positive definiteness result of in Lemma 5.8.516

Lemma 6.6 (positive definiteness of Ŵ◦ (bilinear systems)). Let Ŵ◦, defined in517

(4.6), be PD and denote by σ◦K > 0 the smallest singular value of Ŵ◦. Then, there518

exists δ := δ(σ◦K) > 0 such that for any ααα ∈ RK with ‖ααα − ααα◦‖2 < δ, the matrix519

Ŵ (ααα), defined as in (6.7), is also PD.520

Proof. Recalling the proof of Lemma 5.8, it is sufficient to show that the solution521

δyyy(ααα, Â, ε;T ) of (6.8) is continuous inααα. By [10, Proposition 3.26],5 we obtain continu-522

ity of the mapααα 7→ yyy(A(ααα), ε;T ) and analogously the continuity ofααα 7→ δyyy(ααα, Â, ε;T ).523

Using the result from Lemma 6.6, we can directly prove our main result.524

Theorem 6.7 (convergence of GN (bilinear systems)). Let ααα◦ ∈ RK be such525

that the matrices A(ααα◦), B and C satisfy Assumption 6.2, and let (εm)Km=1 ⊂ Ead526

be generated by Algorithm 4.1. Denote by σ̂K the smallest singular value of Ŵ◦,527

defined in (4.6). Then there exists δ = δ(σ̂K) > 0 such that, if ααα? ∈ RK satisfies528

‖ααα? −ααα◦‖ ≤ δ, then GN for the solution (6.2), initialized with ααα◦, converges to ααα?.529

Proof. Theorem 6.5 guarantees that Ŵ◦ is PD, meaning that σ̂K > 0. Anal-530

ogously to the proof of Lemma 6.6, one can also show that the functions Rm(ααα),531

defined in (3.4), are Lipschitz continuously differentiable in ααα for all m ∈ {1, . . . ,K}.532

Thus, the result follows by Lemma 6.6.533

6.3. Local uniqueness of solutions. Let us study the local properties of prob-534

lem (6.2) around ααα?. We use the same approach as in the linear case, and start by535

rewriting problem (6.2) in a matrix-vector form.536

Lemma 6.8 (online identification problem in matrix form (bilinear systems)).537

Problem (3.3) is equivalent to538

min
ααα∈RK

1

2
〈ααα? −ααα, W̃ (ααα?,ααα)(ααα? −ααα)〉,539

where W̃ (ααα?,ααα) ∈ RK×K is defined as W̃ (ααα?,ααα) =
∑K
m=1W (ααα?,ααα, ε

m) with540

[W (ααα?,ααα, ε
m)]i,j := 〈Cδyyym(ααα?,ααα,Aj ;T ), Cδyyym(ααα?,ααα,Aj ;T )〉,541

for i, j ∈ {1, . . . ,K} and where Cδyyym(ααα?,ααα,A;T ) is the solution at time T of542 {
δ̇yyy(t) = (A(ααα?) + εm(t)B)δyyy(t) +Ayyy(t), δyyy(0) = 0,

ẏyy(t) = (A(ααα) + εm(t)B)yyy(t), yyy(0) = yyy0.
543

5This result is a special case of the implicit function theorem; see, e.g., [10, Theorem 3.4].
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Algorithm 7.1 Nonlinear Greedy Reconstruction Algorithm

Require: A set of linearly independent operators A = {A1, . . . , AK}, an (initial) operator
A(ααα◦) ∈ span A and a family of compact sets Kj ⊂ Rj , j = 1, . . . ,K − 1.

1: Compute the control εεε1 by solving

(7.1) max
εεε∈Ead

‖Cyyy(A(ααα◦), εεε;T )− Cyyy(A(ααα◦) +A1, εεε;T )‖22 .

(I unified the notation here regarding the OGR Algorithm 7.2 and Assumption 7.6.
Before, the A1-state was split against the uncontrolled state)

2: for k = 1, . . . ,K − 1 do
3: Fitting step: A(k)(βββ) :=

∑k
j=1 βββjAj , find βββ = (βββkj )j=1,...,k that solves

(7.2) min
βββ∈Kk

k∑
m=1

∥∥∥Cyyy(A(ααα◦) +A(k)(βββ), εεεm;T )− Cyyy(A(ααα◦) +Ak+1, εεε
m;T )

∥∥∥2
2
.

4: Splitting step: Find εεεk+1 that solves

(7.3) max
εεε∈Ead

∥∥∥Cyyy(A(ααα◦) +A(k)(βββk), εεε;T )− Cyyy(A(ααα◦) +Ak+1, εεε;T )
∥∥∥2
2
.

5: end for

The proof of Lemma 6.8 is analogous to the one of Lemma 5.10 (for details see the544

supplementary material [12]). Notice that the notations in (6.7) and Lemma 6.8 are545

related in the sense that Ŵ (ααα) = W̃ (ααα,ααα). Now, proceeding as in Section 5.3 and546

defining the set of all global solutions Sglobal :=
{
ααα ∈ RK : (ααα?−ααα) ∈ ker W̃ (ααα?,ααα)

}
,547

we obtain the same local uniqueness of the solution ααα? to (6.2), meaning that if548

Ŵ (ααα?) = W̃ (ααα?,ααα?) is PD, the same holds for W̃ (ααα?,ααα) when ααα is close to ααα?.549

7. Towards general nonlinear GR algorithms. The LGR algorithm intro-550

duced in the previous sections only considers the linearized system. Thus it does not551

have access to the full (nonlinear) dynamics and can only capture the local character-552

istics of the considered system. Moreover, as we will show in section 8, the standard553

GR algorithm can outperform LGR when ααα◦ is far from the solution. However, the554

analysis of LGR allows us to better understand the local behavior of GR and prove555

that locally it is capable to construct control functions that guarantee convergence556

of GN. This analysis is carried out in section 7.1. This is the first analysis of GR557

algorithms for nonlinear problems. While section 7.1 focuses on GR, we also briefly558

discuss its optimized version called optimized GR (OGR), introduced in [11], and559

propose a slight improvement of the original version.560

7.1. A local analysis for nonlinear GR algorithms. This section is con-561

cerned with general nonlinear systems of the form ẏyy(t) = f(A(ααα0)+A(δα?), yyy(t), εεε(t))562

with the goal of reconstructing A(δα?) = A? − A(ααα0). Here, the shift of A? is con-563

sidered to perform a local analysis near A(ααα0). The goal is to prove convergence of564

GN for the controls generated by the GR Algorithm 7.1 using a local analogy to Al-565

gorithm 4.1. Notice that there are a few differences between Algorithms 7.1 and 4.1.566

To derive a local analogy between them, all operators from the set A are shifted by567

A(ααα◦). Additionally, the fitting step problem (7.2) only minimizes over a compact set568

Kk ⊂ Rk. However, this is not restrictive since the set Kk can be chosen arbitrarily569
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large. Finally, the initialization problem (7.1) is different from the initialization (4.3).570

This is due to results obtained in [11] which suggest that one should not simply max-571

imize the state corresponding to the first element A1 in the set, but rather maximize572

the difference to the state that is observed when no elements from A are considered.573

We recall that, in order to obtain our main results for Algorithm 4.1, it is sufficient574

to prove two points. First, that the fitting step identifies the kernel of the submatrix575

[Ŵ
(k)
◦ ][1:k+1,1:k+1]. Second, that for the initialization and each splitting step there576

exists at least one control for which the corresponding cost function is strictly positive577

(making the submatrix [Ŵ
(k+1)
◦ ][1:k+1,1:k+1] PD).578

To prove the fitting step result, we need some continuity properties of the argmin579

operator. For this purpose, we introduce the following definition of hemi-continuous580

set-valued correspondences (see, e.g., [8, Chapter VI,§1]).581

Definition 7.1 (hemi-continuity). Let X ⊂ R be an open interval. A set-valued582

correspondence c : X ⇒ Rk is called upper hemi-continuous (u.h.c.) if for each x0 ∈ X583

and each open set G ⊂ Rk with c(x0) ⊂ G there exists a neighborhood U(x0) such that584

x ∈ U(x0)⇒ c(x) ⊂ G, and called lower hemi-continuous (l.h.c.) if for each x0 ∈ X585

and each open set G ⊂ Rk meeting c(x0) there exists a neighborhood U(x0) such that586

x ∈ U(x0) ⇒ c(x) ∩ G 6= ∅. Furthermore, c : X ⇒ Rk is called hemi-continuous if it587

is u.h.c. and l.h.c.588

Using Definition 7.1, we can recall the Berge maximum theorem [2, Theorem 17.31].589

Lemma 7.2 (Berge maximum theorem). Let X ⊂ R be an open interval. Let590

J : Rk × X → R be a continuous function and φ : X ⇒ Rk be a hemi-continuous,591

set-valued correspondence such that φ(x) is nonempty and compact for any x ∈ X.592

Then the correspondence c : X ⇒ Rk defined by c(x) := arg min
z∈φ(x)

J(z;x) is u.h.c.593

We will also need the following technical lemma.594

Lemma 7.3 (limit of set-valued correspondance). Let X ⊂ R be an open interval595

with 0 ∈ X, and c : X ⇒ Rk be a u.h.c. correspondence. If c(0) = {0}, then596

limk→∞ c(xk) = {0} for any sequence {xk}∞k=1 such that limk→∞ xk = 0.597

Proof. Consider an arbitrary sequence {xk}∞k=1 with limk→∞ xk = 0, and let598

c(0) = {0}. It is sufficient to show that for any ε > 0 there exists nε ∈ N such that for599

all k ≥ nε we have c(xk) ⊂ Bkε (0). Let ε > 0 and define Gε := Bkε (0). Since c(0) = {0}600

and c is u.h.c., there exists a neighborhood Uε(0) ⊂ R such that c(x) ⊂ Gε for any601

x ∈ Uε(0). Since Uε(0) is an open neighborhood of 0, there exists ξε > 0 such that602

(−ξε, ξε) ⊂ Uε(0). Since limk→∞ xk = 0, there exists nε such that for all k ≥ nε we603

have xk ∈ (−ξε, ξε) and hence c(xk) ⊂ Bkε (0).604

To use Lemmas 7.2 and 7.3, we make the following assumptions.605

Assumption 7.4. Let k ∈ {1, . . . ,K − 1} and define,606

Jk(βββ;Ak+1) :=

k∑
m=1

‖Cyyy(A(ααα◦) +A(k)(βββ), εεεm;T )− Cyyy(A(ααα◦) +Ak+1, εεε
m;T )‖22.607

• If ‖Ak+1‖ is small enough, then there exists a βββk = βββk(Ak+1) that solves608

(7.2) with Jk(βββk;Ak+1) = 0.609

• There exists ν > 0 such that Bkν (0) ⊂ Kk and arg min
βββ∈Bkν (0)

Jk(βββ; 0) = {0}.610

The first point in Assumption 7.4 guarantees that locally near A(ααα◦), for ‖Ak+1‖611

small enough, one can solve (7.2) making the cost function zero, meaning that one612
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can find a linear combination of the first k elements for which the final state cannot613

be distinguished from the k + 1-th element by any of the k computed controls. On614

the other hand, if the minimum function value is strictly positive, then there already615

exists a control in the set (εεεm)km=1 that discriminates (splits) these two states.616

The second point in Assumption 7.4 ensures that {0} = arg min
βββ∈Bkν (0)

Jk(βββ, 0).617

If this was not true, it would mean that, for any radius ν > 0, the ball Bkν (0) would618

contain infinitely many βββ ∈ Rk \ {0} satisfying Jk(βββ, 0) = 0. Hence, for an infinite619

number of linear combinations in the set {A1, . . . , Ak}, the corresponding states could620

not be distinguished by any of the previously selected controls. However, this implies621

that at least one of the previous splitting steps was not successful, which contradicts622

what we assume to reach iteration k.623

Now, we can show that the local nonlinear fitting step problem (7.2) is able to624

identify the kernel of the submatrix [Ŵ
(k)
◦ ][1:k+1,1:k+1], if it exists.625

Theorem 7.5 (nonlinear GR fitting step problems). Let k ∈ {1, . . . ,K} and let
βββk be a solution to (7.2). If ‖Ak+1‖ is sufficiently small and Assumption 7.4 holds,
then βββk also solves (4.4) with

k∑
m=1

‖Cδyyy◦(A(k)(βββk), εεεm;T )− Cδyyy◦(Ak+1, εεε
m;T )‖22 = 0.

Proof. Define Ĵk(βββ, δk) := Jk(βββ, δkAk+1) for δk > 0. The first point of As-626

sumption 7.4 implies that there exists a δ̂k > 0 such that for all |δk| < δ̂k we have627

Ĵk(βββ, δk) = 0. Thus, Lemma 7.2 guarantees that the correspondence ck : (−δ̂k, δ̂k)⇒628

Rk, ck(δk) = arg minβββ∈Kk Ĵk(βββ; δk) is u.h.c.6629

According to the second point of Assumption 7.4, ck(0) = 0 is an isolated solution630

of (7.2). Hence, the upper hemi-continuity of ck guarantees that for δk → 0 we have631

βββk → 0 for any corresponding solution βββk = βββk(δk) of (7.2).632

Now, let m ∈ {1, . . . , k}. If Ĵk(βββk; δk) = 0, then633

(7.4) Cyyy(A(ααα◦) +A(k)(βββk), εεεm;T )− Cyyy(A(ααα◦) + δkAk+1, εεε
m;T ) = 0.634

We define g(ααα) := Cyyy(A(ααα), εεεm;T ). Since f(A,yyy, εεε) in (3.1) is assumed to be differen-635

tiable with respect to A and yyy, we obtain that the map A 7→ yyy(A,εεε;T ) is differentiable636

with respect to A by the implicit function theorem (see, e.g., [14, Theorem 17.13-1]).637

Hence, Cyyy(A(ααα), εεε;T ) is also differentiable with respect to ααα. By Taylor’s theorem,638

we get g(ααα◦ + vvv) = g(ααα◦) + g′(ααα◦)(vvv) + O(‖vvv‖22) for vvv ∈ Rk. Defining β̂ββk and δ̂δδk as639

β̂ββk := [βββk, 0, · · · , 0]> ∈ Rk and δ̂δδk := [0, · · · , 0, δk]> ∈ Rk, we can rewrite (7.4) as640

0 = g(ααα◦ + β̂ββk)− g(ααα◦ + δ̂δδk+1) = g′(ααα◦)(β̂ββk)− g′(ααα◦)(δ̂δδk+1) +O(‖β̂ββk‖22) +O(|δk|2).641642

Since g′(ααα◦)(β̂ββk) = Cδyyy◦(A
(k)(βββk), εεεm;T ) and g′(ααα◦)(δ̂δδk+1) = Cδyyy◦(δkAk+1, εεε

m;T ),643

we obtain644

(7.5) 0 = Cδyyy◦(A
(k)(βββk), εεεm;T )− Cδyyy◦(δαkAk+1, εεε

m;T ) +O(‖β̂ββk‖22) +O(|δk|2).645

Since βββk = βββk(δk) → 0 for δk → 0, we know that all four terms vanish for δk → 0.646

However, O(|δk|2) converges faster than Cδyyy◦(δkAk+1, εεε
m;T ) and O(‖β̂ββk‖22) faster647

6Note that, in this setting, the correspondence φ : (−δ̂k, δ̂k) ⇒ Rk mentioned in Lemma 7.2 is

defined as φ(x) = Kk for any x ∈ (−δ̂k, δ̂k) with Kk compact, and is therefore hemi-continuous.
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than Cδyyy◦(A
(k)(βββk), εεεm;T ). Hence, (7.5) can only be true for δk → 0 if648

Cδyyy◦(A
(k)(βββk), εεεm;T )−Cδyyy◦(δkAk+1, εεε

m;T ) = 0 for δk small enough, which is equiv-649

alent to Cδyyy◦(A
(k)(βββk), εεεm;T )−Cδyyy◦(Ak+1, εεε

m;T ) = 0 for ‖Ak+1‖ sufficiently small.650

Regarding the initialization and splitting step result, we make now the assumption651

that there always exists a control that makes the corresponding cost function value652

strictly positive, and discuss specific cases where this assumption holds.653

Assumption 7.6. Let k ∈ {1, . . . ,K − 1} and βββk ∈ Rk be the solution of (7.2).654

Then there exists a solution εεεk+1 ∈ Ead to (7.3) that simultaneously satisfies655

(7.6) ‖Cyyy(A(ααα◦) +A(k)(βββk), εεεk+1;T )− Cyyy(A(ααα◦) +Ak+1, εεε
k+1;T )‖22 > 0,656

and657

(7.7) ‖Cδyyy◦(A(k)(βββk), εεεk+1;T )− Cδyyy◦(Ak+1, εεε
k+1;T )‖22 > 0.658

Let (7.6)-(7.7) also hold for a solution εεε1 ∈ Ead to (7.1) with k = 0 and βββ0 = 0.659

In Theorem 7.10, we will investigate Assumption 7.6 for the two settings considered660

in sections 5 and 6. Now, we state the following theorem, relating the two Algorithms661

4.1 and 7.1.662

Theorem 7.7. Consider the general setting of system (3.1) with a set of linearly663

independent matrices {A1, . . . , AK} such that ‖Ak‖ be sufficiently small for all k ∈664

{1, . . . ,K}. Let (εεεm)Km=1 ⊂ Ead be generated by Algorithm 7.1 such that Assumption665

7.4 holds for all k ∈ {1, . . . ,K − 1} and εεεm satisfies Assumption 7.6 for all m ∈666

{1, . . . ,K}. Then the GN matrix Ŵ◦, defined in (4.6), is PD.667

The proof of Theorem 7.7 is exactly the one of Theorem 5.6.668

It remains to show that Assumption 7.6 holds in the settings considered in sections669

5 and 6. First, we require the following results (see, e.g., [35, p. 1079]).670

Lemma 7.8 (on analytic functions in Banach spaces). Let X,Y denote real Ba-671

nach spaces and Br(x) ⊂ X the open ball with center x ∈ X and radius r > 0. For an672

open set D ⊂ X, let the functions f, g : D → Y be analytic. If there exist xf , xg ∈ D673

such that f(xf ) 6= 0 and g(xg) 6= 0, then for any x ∈ D and any r > 0 there exists a674

x̃ ∈ Br(x) ⊂ D such that f(x̃) 6= 0 and g(x̃) 6= 0.675

We also require the following result about the analycity of control-to-state maps,676

which follows directly from the implicit function theorem (see, e.g., [35, p. 1081]).677

Lemma 7.9 (analycity of control-to-state maps). Consider system (3.1) and678

define the map c : U × Y → Z as c(εεε,yyy) := [ẏyy − f(A,yyy, εεε), yyy(0)− yyy0], where U is the679

Hilbert space of control functions, Y is the (Banach) space where solutions to (3.1)680

lie and Z is a Banach space. If c is analytic in εεε and yyy, (3.1) has a unique solution681

yyy = yyy(εεε) ∈ Y such that c(yyy(εεε), εεε) = 0 for each εεε ∈ Ead ⊂ U and the linearized state682

equation δ̇yyy = δyyyf(A,yyy(εεε), εεε)(δyyy) − ϕ with δyyy(0) = ϕ0 is uniquely solvable for any683

[ϕ,ϕ0] ∈ Z, then the control-to-state map L : Ead → Y,εεε 7→ yyy(εεε) is analytic. If the684

solution space Y is such that the evaluation map ST : Y → RN , yyy 7→ yyy(T ) is linear685

and continuous, then also the map S : Ead → RN , εεε 7→ (yyy(εεε))(T ) is analytic.686

Proof. First, we prove that the control-to-state map L : Ead → Y,εεε 7→ yyy(εεε) is687

analytic. This follows directly from the implicit function theorem [35, p. 1081] if we688

can show that the map Dyyyc(εεε,yyy) is an isomorphism of Y on Z for any pair (̃εεε, ỹyy) ⊂ U×689

Y such that ỹyy is the unique solution to (3.1) for ε̃εε, i.e. c(̃εεε, ỹyy) = 0. Since the equation690
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for the derivative Dyyyc(̃εεε, ỹyy)(δyyy) = ϕ, which is equivalent to δ̇yyy = δyyyf(A, ỹyy, ε̃εε)(δyyy)− ϕ691

with δyyy(0) = ϕ0, admits a unique solution δyyy ∈ Y for any [ϕ,ϕ0] ∈ Z, Dyyyc(̃εεε, ỹyy) is692

bijective and therefore an isomorphism of Y on Z.693

It remains to show that also the map S : Ead → RN , εεε 7→ (yyy(εεε))(T ) is analytic.694

Consider an arbitrary εεε0 ∈ Ead. Since the control-to-state map L is analytic, there695

exist (by definition, see, e.g., [35, p. 1078]) `-linear, symmetric and continuous maps696

a` : (Ead)
` → RN , (εεε1, . . . , εεε`) 7→ a`(εεε1, . . . , εεε`) such that yyy(εεε) =

∑∞
`=0 a`(εεε − εεε0)`.697

Now, define the maps b` : (Ead)
` → RN as b`(εεε)

` := (a`(εεε)
`)(T ), meaning that698 ∑∞

`=0 b`(εεε − εεε0)` = (yyy(εεε))(T ). Since the evaluation map ST : Y → RN , yyy 7→ yyy(T ) is699

linear and continuous, the maps b` are `-linear, symmetric and continuous. Thus, the700

map S : Ead → RN , εεε 7→ (yyy(εεε))(T ) =
∑∞
`=0 b`(εεε− εεε0)` is analytic by definition.701

In our case, we consider U = L2(0, T ;RM ) in the linear and U = L2(0, T ;R) in702

the bilinear setting, Y = H1(0, T ;RN ) and Z = L2(0, T ;RN ) × RN . Then, the703

assumptions in Lemma 7.9 on the ODE system and its linearization are satisfied for704

(5.1) and (5.2) in the linear setting, and for (6.1) and (6.3) in the bilinear setting.7705

Notice that all solutions lie in H1(0, T ;RN ) b C(0, T ;RN ) (see, e.g., [14]), which706

implies that the evolution map ST : H1(0, T ;RN )→ RN , yyy 7→ yyy(T ) is also linear and707

continuous.708

Now, we can prove our main result.709

Theorem 7.10. Consider the linear setting (5.1) or the bilinear setting (6.1).710

For brevity, we assume that the systems are sufficiently observable and controllable,711

i.e. fully observable and controllable in the linear case, and satisfying Assumption 6.2712

in the bilinear case. If ‖Ak+1‖ is sufficiently small, then there exists a control εεε ∈ Ead713

which satisfies (7.6)-(7.7) in Assumption 7.6.714

Proof. For brevity, we denote Aβββ := A(ααα◦) + A(k)(βββk), A+ := A(ααα◦) + Ak+1,715

yyyβββ(εεε; t) := yyy(Aβββ , εεε; t) and yyy+(εεε; t) := yyy(A+, εεε; t).716

We start with the linear setting (5.1) from section 5. First, we derive observability717

and controllability properties for the systems (A+, B,C) and (Aβββ , B, C). Denote by718

σk > 0 the smallest singular value of ON (C,A(ααα◦)). Let k ∈ {1, . . . ,K} and βββk ∈ Rk719

be the solution of (7.2) for ‖Ak+1‖ > 0 sufficiently small such that ‖ON (C,A(ααα◦))−720

ON (C,A+)‖2 < σk. From the proof of Theorem 7.5, we obtain that also βββk can be721

assumed to be sufficiently small such that ‖ON (C,A(ααα◦))−ON (C,Aβββ)‖2 < σk. Now,722

Lemma 5.7 guarantees that rank(ON (C,A+)) = rank(ON (C,Aβββ)) = N . Using the723

same argument for the rank of the controllability matrices, we obtain that the systems724

(A+, B, C) and (Aβββ , B,C) are fully observable and controllable.725

Next, we consider the state of the difference zzz(t) = yyy(A+, εεε; t) − yyy(Aβββ , εεε; t) with726

żzz = A+zzz + (A+ − Aβββ)yyy(Aβββ , εεε; t). Since A+ 6= Aβββ , there exists vvv ∈ RN such that727

(A+ − Aβββ)vvv 6= 0. Recalling that (Aβββ , B) is controllable, we can find εεεt1 for any728

t1 ∈ (0, T ] such that yyyβββ(εεεt1 ; ) = vvv and therefore (A+ −Aβββ)yyyβββ(εεεt1 ; t1) 6= 0. We define729

ε̃εε(s) :=

{
εεεt1(s), for 0 ≤ s < t1,

ccc, for t1 ≤ s ≤ T,
730

7Existence and uniqueness of all solutions yyy, δyyy follow by Carathéodory’s existence theorem
(see, e.g., [32, Theorem 54] and related propositions). For εεε ∈ L2(0, T ;RM ) in the linear and
ε ∈ L2(0, T ;R) in the bilinear setting, we obtain ẏyy, δ̇yyy ∈ L2(0, T ;RN ) and thus yyy, δyyy ∈ H1(0, T ;RN ).
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where ccc ∈ RN is to be chosen later. For t > t1, we have731

(7.8) zzz(t) = e(t−t1)A+zzz(t1) +

∫ t

t1

e(t−s)A+(A+ −Aβββ)yyyβββ (̃εεε; s)ds.732

Multiplying (7.8) with e−(t−t1)A+ from the left, we get733

z̃zz(t) := e−(t−t1)A+zzz(t) = zzz(t1) +

∫ t

t1

e(t1−s)A+(A+ −Aβββ)yyyβββ (̃εεε; s)ds.734

Notice that for s > t1, the terms e(t1−s)A+ and yyyβββ (̃εεε; s) = e(s−t1)Aβββvvv+
∫ s
0
e(s−τ)AβββBcccds735

are continuous in s. Since exponential matrices are invertible (see, e.g., [24, pag.736

369, 5.6.P43]) and zzz(t1) is independent of t, there exists a t > t1 such that zzz(t1) +737 ∫ t
t1
e(t1−s)A+(A+ −Aβββ)yyyβββ (̃εεε; s)ds 6= 0 and thus z̃zz(t) 6= 0. Using (7.8), we obtain738

(7.9) Czzz(t) = Ce(t−t1)A+z̃zz(t) =

∞∑
j=0

(t− t1)j

j!
CAj+z̃zz(t).739

Now, the observability of (A+, C) guarantees the existence of some i ∈ {0, . . . , N −1}740

such that CAi+z̃zz(t) 6= 0. We have (t−t1)i
i! > 0 for t > t1 and all terms of the sum in741

(7.9) converge to zero at different rates for different j. Hence, there exists t > t1 such742

that Czzz(t) 6= 0. Since t1 ∈ (0, T ] was chosen arbitrarily, we obtain Czzz(T ) 6= 0 and743

thus Cyyyβββ (̃εεε;T )− Cyyy+(̃εεε;T ) 6= 0.744

Regarding the linearized system (5.2), we have already shown in Lemma 5.5 that745

there exists an εεε ∈ Ead such that Cδyyy◦(A
(k)(βββk), εεε;T )− Cδyyy◦(Ak+1, εεε;T ) 6= 0.746

Finally, the maps S, Sδ : L2(0, T ;RM ) → RN , S(εεε) := Cyyyβββ(εεε;T ) − Cyyy+(εεε;T ),747

Sδ(εεε) := Cδyyy◦(A
(k)(βββk), εεε;T ) − Cδyyy◦(Ak+1, εεε;T ) are analytic by Lemma 7.9. Us-748

ing Lemma 7.8, we obtain the existence of an εεε ∈ Ead such that Cyyy(Aβββ , εεε;T ) −749

Cyyy(A+, εεε;T ) 6= 0 and Cδyyy◦(A
(k)(βββk), εεε;T )− Cδyyy◦(Ak+1, εεε;T ) 6= 0.750

The proof for the bilinear setting (6.1) from Section 6 is analogous to the one751

above. For a detailed proof, we refer to the supplementary material [12].752

Remark 7.11. Notice that we did not prove exactly Assumption 7.6 in Theorem753

7.10, but only the existence of a general control εεε ∈ Ead that satisfies (7.6)-(7.7). How-754

ever, this implies that any solution εεεk+1 to (7.3) always satisfies (7.6). Additionally,755

we recall from the proof of Theorem 7.10 that the maps S, Sδ : L2(0, T ;RM ) → RN ,756

defined by S(εεε) := yyy(A,εεε;T ), Sδ(εεε) := δyyy◦(A,εεε;T ) are analytic and not the zero757

functional. Thus, we obtain by Lemma 7.8 that any neighborhood of εεεk+1 contains758

infinitely many εεε that do satisfy (7.7). This implies that it is rather unlucky to choose759

an εεεk+1 that does not satisfy (7.7). On the other hand, one can also add inequality760

(7.7) as a constraint to (7.3) to ensure that both inequalities are met by εεεk+1.761

As a consequence of Theorems 7.7, 7.10 and Remark 7.11, the controls generated by762

Algorithm 7.1 for the linear (5.1) and bilinear (6.1) setting make the GN matrix Ŵ◦,763

defined in (4.6), PD under certain assumptions. Thus, the results from Sections 5.2764

and 6.2 imply that GN for the reconstruction problems (5.5) and (6.2), initialized765

with ααα◦, converges to ααα?.766

7.2. Optimized GR Algorithm. The analysis discussed in the previous sec-767

tions are based on certain hypotheses of observability and controllability of the dynam-768

ical system. However, as shown already in [11] and also discussed in the supplementary769
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material [12], if these hypotheses are not satisfied, the choice of the elements in the770

set A becomes very relevant and can strongly affect the online reconstruction process.771

For this reason, a modified GR algorithm called Optimized GR (OGR) has been in-772

troduced in [11] to identify important basis elements by solving in each iteration the773

fitting and splitting step problems (in parallel) for all remaining basis elements, and774

not just the next one. This also allows us to initialize the algorithm with a number of775

elements (Aj)
K
j=1 with K > N2. Even though some of the matrices Aj will inevitably776

be linearly dependent if K > N2, the OGR algorithm manipulates them to construct777

a new subset of linearly independent ones. In the spirit of the previous analysis, we778

add a new feature to the original OGR algorithm. At iteration k, after all fitting779

step problems have been solved, we check whether there exists ` ∈ {k + 1, . . . ,K}780

for which the optimal cost function value is different from zero (i.e. larger than a781

tolerance tol2) If this is the case, then there exists a control εεεm, m ∈ {1, . . . , k}, that782

already satisfies
∥∥Cyyy(A(k)(βββ`), εεεm;T )− Cyyy(A`, εεε

m;T )
∥∥2
2
> tol2 for at least one index783

`k+1 ∈ {k + 1, . . . ,K} (see Step 8 in Algorithm 7.2). Hence, we can add the basis784

element A`k+1
to the already selected ones without computing a new control. This785

new improvement can also be motivated with the matrix formulation we used for our786

analysis. If rank(Ŵ
(k)
◦ ) = r > k, one can appropriately permute rows and columns of787

Ŵ
(k)
◦ such that [Ŵ

(k)
◦ ][1:r,1:r] has rank r and is thus PD.788

The rank of Ŵ
(k)
◦ =

∑k
m=1W◦(εεε

m) is bounded by kP , where P is the number of789

rows of the observer matrix C. This can be seen by writing W◦(ε
m), as defined in790

(4.6), as W◦(ε
m) = δY >◦ C

>CδY◦, where δY◦ :=
[
δyyy◦(A1, εεε

m;T ), · · · , δyyy◦(AK , εεεm;T )
]
.791

Hence, rank(W◦(ε
m)) ≤ rank(C) ≤ P , and therefore rank(Ŵ

(k)
◦ ) ≤ kP .792

The full OGR algorithm is stated in Algorithm 7.2, where the new feature that793

we described correspond to the steps 7-8. Algorithm 7.2 can be formulated for the794

linearized setting considered the previous sections by simply replacing the state yyy with795

its linearization yyy◦. We call OLGR the OGR algorithm for the linearized system.796

8. Numerical experiments. In this section, efficiency and robustness of the797

GR and OGR algorithms are studied by direct numerical experiments. In particular,798

first we consider the reconstruction of a drift matrix in Section 8.1. Second, we focus799

on the reconstruction of a bilinear dipole momentum operator as Section 8.2. All800

optimization problems inside of the GR algorithms are solved by a BFGS descent-801

direction method, while the online identification problem is solved by GN.802

8.1. Reconstruction of drift matrices. We consider system (5.1) with (full803

rank) randomly generated matrices A?, B,C ∈ R3×3. The final time is T = 1 and804

the initial value is yyy0 = [0, 0, 0]>. First, we study the algorithms for system (5.2).805

This is obtained by linearizing (5.1) around two different A◦, which are randomly806

chosen approximations to A?, one with 1% and the other with 10% relative error,807

meaning that, e.g., ‖A?−A◦‖F‖A?‖F = 0.01 for the one with 1% error, where ‖ · ‖F is the808

Frobenius norm. The LGR Algorithm 4.1 is run for two different choices for the basis809

A: the canonical basis of R3×3 and a basis consisting of 9 randomly generated (linearly810

independent) 3 × 3 matrices. LGR is also compared with the OLGR Algorithm 7.2,811

which is run with a set of 18 matrices, namely, the 9 canonical basis elements and the 9812

random matrices. The controls generated by the respective algorithms are then used to813

reconstruct the matrix A? by solving the online least-squares problem (3.3) with GN.814

To test the robustness of the control functions, we consider a nine-dimensional sphere815

centered in the global minimum A? and with given relative radius r, and repeat the816
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Algorithm 7.2 Optimized Greedy Reconstruction (OGR) Algorithm

Require: A set of K matrices A = {A1, . . . , AK} and two tolerances tol1 > 0 and tol2 > 0.

1: Set εεε0 = 0 and compute εεε1 and the index `1 by solving the initialization problem

max
`∈{1,...,K}

max
εεε∈Ead

‖Cyyy(0, εεε;T )− Cyyy(A`, εεε;T )‖22 .

2: Swap A1 and A`1 in A, and set k = 1 and A(0)(βββ`1) = 0.

3: while k ≤ K − 1 and
∥∥∥Cyyy(A(k−1)(βββ`k ), εεεk;T )− Cyyy(Ak, εεε

k;T )
∥∥∥2
2
> tol1 do

4: for ` = k + 1, . . . ,K do
5: Orthogonalize all basis elements (Ak+1, . . . , AK) with respect to (A1, . . . , Ak), re-

move any that are linearly dependent and update K accordingly.
6: Fitting step: Find (βββ`j)j=1,...,k that solve the problem

min
βββ∈Rk

k∑
m=1

∥∥∥Cyyy(A(k)(βββ), εεεm;T )− Cyyy(A`, εεε
m;T )

∥∥∥2
2
,

and set f` =
∑k
m=1

∥∥∥Cyyy(A(k)(βββ`), εεεm;T )− Cyyy(A`, εεε
m;T )

∥∥∥2
2
.

7: end for
8: if max`=k+1,...,K f` > tol2 then
9: Set `k+1 = arg max`=k+1,...,K f`.

10: else
11: Extended splitting step: Find εεεk+1 and `k+1 that solve the problem

max
`∈{k+1,...,K}

max
εεε∈Ead

∥∥∥Cyyy(A(k)(βββ`), εεε;T )− Cyyy(A`, εεε;T )
∥∥∥2
2
.

12: end if
13: Swap Ak+1 and A`k+1 in A, and set k = k + 1.
14: end while

minimization for 1000 initialization vectors randomly chosen on this sphere. We then817

count the percentage of times that GN converges to the global solution A? = A(ααα?)818

up to a tolerance of Tol = 0.005 (half of the smallest considered radius), meaning819

that
‖A?−A(αααcomp)‖F

‖A?‖F ≤ Tol, where αααcomp denotes the solution computed by GN.820

Repeating this experiment for different radii of the sphere, we obtain the results821

reported in the two panels on the left in Figure 8.1. All control sets make GN capable822

of reliably reconstructing the global minimum A? up to a relative radius r = 2, which823

corresponds to a relative error of 200%. This demonstrates that the choice of the824

basis is not crucial for fully observable and controllable systems. However, OLGR825

is able to reduce the number of controls down to 3 and still outperforms any set of826

9 controls generated by LGR, while staying reliable up to a relative error of 250%.827

Thus, OLGR is able to compute better basis, thereby optimizing the performance,828

and to omit unnecessary controls.829

Next, we repeat the same experiments for the GR Algorithm 7.1. However, we830

replace the case for the approximation A◦ with a relative error of 1% by A◦ = 0. This831

effectively removes the shift and makes the algorithm independent of the choice of A◦,832

which is the version of the algorithm that was also considered in [11, 30] We obtain833

the results shown in the two panels on the right in Figure 8.1. The performance of834
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Fig. 8.1: Percentage of runs that converged (up to a tolerance) to the global minimum
A? starting from randomly chosen vectors on a nine-dimensional sphere with radius
r, for controls generated by LGR and OLGR for 1% (top left) and 10% (bottom left)
relative error between A? and A◦, and GR and OGR in the version of Algorithm 7.1
(bottom right) and without the shift by A◦ (top right).

the control sets is similar to the ones for the linearized system, with an increase in835

performance for the GR algorithm with the canonical basis, without the shift by A◦,836

and a decrease in performance for the GR algorithm with the random basis and an A◦837

that has a 10% relative error with respect to A?. As in the linearized setting, OGR838

is able to reduce the number of controls down to 3 and still outperforms any set of 9839

controls generated by LGR.840

8.2. Bilinear reconstruction problem. Similar to [30] and [11], we consider841

a Schrödinger-type equation, written as a real system as in (6.6). We also use similar842

matrices H and µ? as in [11], namely843

H = HR =

[
4 0 0
0 8 0
0 0 16

]
, µ? =

[
−0.3243 −3.4790 + 0.7359i −0.5338 + 1.9254i

−3.4790− 0.7359i −3.8342 −1.1697 + 2.0256i
−0.5338− 1.9254i −1.1697− 2.0256i 1.0551

]
.844

The final time is T = 10π and the initial state is ψψψ0 = [1, 0, 0]>. The observer matrix845

is C = [ψψψ1, iψψψ1], which means that the final state is measured against the fixed state846

ψψψ1 = 1√
3
[1, 1, 1]>. Again, we consider two bases, each consisting of 9 elements: the847

canonical and a random one for the space of Hermitian matrices in C3×3. We then848

perform the same experiments as in Section 8.1. The results are reported in Figure 8.2.849

We observe that the radii, up to which the control sets make GN capable of reliably850

reconstructing the global minimum, are much smaller than for the linear setting in851

Section 8.1. When the initial relative error between µ◦ = µ(ααα◦) and µ? = µ(ααα?) is852

very small (1%) then LGR and OLGR have the most stable performance regarding the853

choice of the basis, making GN capable of reliably reconstructing the global minimum854

µ? up to a relative error of 4− 5%. However, when the initial relative error is larger855

(10%) then only the LGR algorithm for the random basis can keep its performance,856

while even OLGR fails at errors of over 1%. The results for OGR, on the other hand,857

show the best performance, with and without a shift by µ◦. The controls generated858

by the GR algorithms can not match OGR or LGR and OLGR for small initial errors,859

but are still more stable with respect to larger initial errors.860
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Fig. 8.2: Percentage of runs that converged (up to a tolerance) to the global minimum
µ? starting from randomly chosen vectors on a nine-dimensional sphere with radius
r, for controls generated by LGR and OLGR for 1% (top left) and 10% (bottom left)
relative error between µ? and µ◦, and GR and OGR in the version of Algorithm 7.1
(bottom right) and without the shift by µ◦ (top right).

9. Conclusion. In this paper, we developed and analyzed greedy reconstruction861

algorithms based on the strategy presented in [30]. In particular, we tackled the case862

of nonlinear problems consisting in the reconstruction of drift operators in linear and863

bilinear dynamical systems. In these cases, we proved that the controls obtained864

with the greedy algorithm on the corresponding linearized systems lead to the local865

convergence of the classical Gauss-Newton method applied to the online nonlinear866

identification problem. These results were extended to the controls obtained on the867

fully nonlinear system (without linearization) where a local convergence result was868

also obtained.869
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