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Abstract

We study the applicability of a model order reduction technique to
the cost-effective solution of transport of passive scalars in porous media.
Transport dynamics is modeled through the advection-dispersion equation
(ADE) and we employ Proper Orthogonal Decomposition (POD) as a strat-
egy to reduce the computational burden associated with the numerical so-
lution of the ADE. Our application of POD relies on solving the governing
ADE for selected time intervals, termed snapshots. The latter are then
employed to achieve the desired model order reduction. The problem dy-
namics require alternating, over diverse time scales, between the solution
of the full numerical transport model, as expressed by the ADE, and its
reduced counterpart, constructed through the selected snapshots. We ex-
plore the way the selection of these time scales is linked to the Péclet
number (Pe) characterizing transport under steady-state flow conditions
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Development FRACRISK - Grant Agreement No. 640979) and from MIUR (Italian Ministry
of Education, Universities and Research - PRIN2010-11; project Innovative methods for water
resources under hydro-climatic uncertainty scenarios) is acknowledged.
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taking place in two-dimensional homogeneous and heterogeneous porous
media. We find that the length of the time scale within which the POD-
based reduced model solution provides accurate results tends to increase
with decreasing Pe. This suggests that the effects of local scale dispersive
processes facilitate the POD method to capture the salient features of the
system dynamics embedded in the selected snapshots. Since the dimension
of the reduced model is much lower than that of the full numerical model,
the methodology we propose enables one to accurately simulate transport
at a markedly reduced computational cost.

1 Introduction

Improving our ability to provide reliable and computationally efficient approaches
to quantify transport process in porous media is of major importance to a wide
range of applications. Most notably, these include the characterization of the
feedback between anthropogenic activities and the subsurface environment, with
direct implications on the assessment of water quality which is key to physically
based development of modern strategies addressing the water-energy-food nexus.

Analysis of flow and transport phenomena in porous media often involves
investigations within domains of large extent [26, 27]. Practical difficulties as-
sociated with the way one can rigorously include pore-scale modeling in the
analysis of typical laboratory and field-scale settings lead to depicting of solute
transport in such media through effective models [23, 29, 24, 7, 14]. Several alter-
native modeling options are available in this context, a common choice being a
continuum-based representation grounded on the standard advection-dispersion
equation (ADE) on which we focus here. Evolution of transport scenarios of
practical interest to industrial and environmental applications typically occurs
over temporal scales associated with the duration of several days, months and
sometimes years. High quality numerical approximations are required to capture
extreme values of chemical concentrations, i.e., peak values and low concentra-
tions, constituting key environmental performance metrics with severe implica-
tions on human health through the proper quantification of the exceedance of
toxicity thresholds at sensitive locations in the system [5]. Accurate numerical
solution of the ADE typically requires considerable computational time and the
use of appropriate discretization techniques [9]. Computational time require-
ments become a major challenge when several transport scenarios needs to be
evaluated, as is typical in modern probabilistic risk assessment approaches [20].
It then becomes relevant to develop methods to decrease the complexity of the
discrete model associated with the governing process equations [31, 30], while
preserving accuracy of the solution.

Here, we focus on the analysis of the Proper Orthogonal Decomposition
(POD) technique [17] and explore its ability to reduce the computational bur-
den associated with the solution of the ADE under a variety of transport con-
ditions characterized by diverse relative strengths of advective and dispersive
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processes. POD is one of the most widely used model order reduction tech-
niques and has been applied to a wide range of problems in the fields of data
analysis, statistics and/or dynamic systems [4, 10, 19, 11]. The approach has
been recently employed for the solution of fully saturated flow and transport in
subsurface reservoirs [15, 18, 13, 12] and it has been shown to have the potential
to considerably decrease the discrete problem size while maintaining a relatively
high accuracy with respect to the solution of the original governing equation.
It has also been employed in the context of preliminary studies addressing un-
certainty quantification of flow in groundwater systems to speed up numerical
Monte Carlo simulations of flow in the presence of random forcing and system
parameters [21, 22].

The key feature of model reduction techniques is that the solution of a given
partial differential equation (PDE) can be well approximated by a linear combi-
nation of a limited number of basis functions which can be conveniently selected.
The coefficients of this linear combination can then be computed through the so-
lution of the reduced system obtained via a Galerkin projection of the governing
PDE. In the POD framework, the basis functions identifying the finite subspace
where the model is projected are the eigenfunctions of an integral operator whose
kernel is given by the spatial correlation function of the state variable of inter-
est. A critical feature of the application of the POD technique to dynamically
evolving scalar fields of the kind described by an ADE is related to the way this
finite subspace is built. This is typically accomplished through (a) solving the
governing PDE at a set of predefined time steps termed snapshots, (b) apply-
ing Principal Component Analysis (PCA) to the snapshots, and (c) employing
the resulting principal components as basis functions to characterize the above
mentioned finite subspace [3]. The proper selection of the snapshots is a critical
point in the workflow, because it controls the errors associated with the model
reduction. Examples of studies providing guidelines for snapshot selection can
be found in [16, 2, 28] where POD is applied to subsurface flow or in [1] for
simulations related to oceanic flows. The problem is particularly challenging
in the presence of diverse competing physical processes driving the evolution of
the system, such as in the case of the ADE where the space-time distribution of
dissolved chemical concentration is governed by the relative importance of advec-
tive and dispersive/diffusive processes. We investigate the manner in which the
interplay between these processes impacts the effectiveness of POD-based model
reduction techniques for the computationally efficient and accurate numerical so-
lution of the ADE in a porous medium under typical subsurface environmental
conditions. We introduce a new approach, termed Snapshot Splitting Technique
(SST), for the selection of the snapshots. This strategy leads to a marked im-
provement of the quality of the reduced problem solution, resulting in the ability
of the reduced model to provide accurate solutions for a sustained period of time
while maintaining the same number of snapshots.

The structure of this work is as follows. Section 2 includes a brief presenta-
tion of the ADE model, the POD method and the mixed Finite Element-based
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POD method (FE-POD) we employ. In section 3 we illustrate the use of the
mixed FE-POD method to the solution of solute transport in homogeneous and
heterogeneous media. Section 4 is devoted to the presentation and discussion
of our model reduction strategy and algorithm in the presence of advective and
diffusive/dispersive processes of competing strength. Section 5 includes our con-
clusions and outlines of future developments.

2 Reduction of the ADE through Proper Orthogonal
Decomposition

We introduce here the advection-dispersion equation (ADE), which we employ
to describe solute transport in a porous medium at the continuum scale, and
illustrate the theoretical basis and workflow for the application of the POD for
the model reduction. We perform our analysis by relying on a dimensionless
formulation which enables us to discriminate through the Péclet number (Pe)
the relative importance of advection and diffusion/dispersion processes on the
effectiveness of the POD approach to model reduction.

2.1 Dimensionless problem formulation

The general format of the ADE employed to depict the evolution of chemical
concentration following a continuous point injection within a Darcy-scale velocity
field u is:

∂c∗

∂t∗
−∇ · (D∇c∗) + u · ∇c∗ = c∗inδ (0, t∗) , (1)

where c∗ : Rn → R is the solute concentration, D is a tensor embedding the
effects of diffusive and local-scale dispersive processes, c∗in is the solute concen-
tration injected per unit time, δ is the Dirac delta function and t∗ is the time.
We consider a steady-state velocity field u given by Darcy’s law:

u = −K
φ
∇h. (2)

Here, φ and K are the porosity and the hydraulic conductivity tensor of the
porous medium, respectively. The steady-state spatial distribution of hydraulic
head h is governed by:

∇ · [K∇h] = 0 (3)

equipped with proper boundary conditions.
In a two-dimensional system (i.e., n = 2) with x and y denoting principal

directions, we have:

D =
[
Dx 0
0 Dy

]
, u =

[
ux

uy

]
, (4)
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where Dx and Dy are constant. Here, we consider the average flow direction to
be aligned along the x-axis and define the Péclet number as:

Pe =
〈ux〉L
Dx

, (5)

where 〈ux〉 is the average value of ux, the component of u along x, and L is
a characteristic length scale of the system. Next, we introduce the following
dimensionless quantities:

x =
x∗

L
, y =

y∗

L
, c =

c∗ux

c∗inL
,

t =
t∗ux

L
, D =

Dy

Dx
, v =

u
〈ux〉.

(6)

The above dimensionless quantities allow recasting (1) as:

∂c

∂t
− 1
Pe

(
∂2c

∂x2
+D ∂

2c

∂y2

)
+ vx

∂c

∂x
+ vy

∂c

∂y
= δ (0, t) . (7)

Finally, we present the algebraic formulation of problem (7) using a finite
element (FE) method and define the solution by cf (·) and the corresponding
vector by cf . We can formulate the full discrete problem as follows:
For each k ≥ k0 find ck

f ∈ Rnf such that(
M
∆t

+ A
)

ck+1
f = fk+1 +

M
∆t

ck
f , (8)

with ck
f the solution at time tk and ck0

f = ck0
f,0. The matrix M is the mass matrix,

the matrix A is the stiffness matrix which is linked to D, Pe and v, f is a known
vector and ∆t is the time step.

2.2 Proper Orthogonal Decomposition method

The basic idea of Proper Orthogonal Decomposition (POD) is to reduce the
original problem into a new simpler problem where the solution lies in a subspace
of reduced dimensionality, as compared to the space where the full model is
defined. The construction of such a subspace is a challenging issue in the model
development. A commonly adopted technique relies on solving the full model for
a given number of time intervals, usually termed snapshots and then relying on
the information embedded in them to build the desired subspace. In this context,
our strategy starts from the computation of the snapshots through the solution
of the full model (7) from the initial system state up to a given simulation time
t0. A key point in this approach is then to select the snapshots and t0 in a way
that the salient features of the early system dynamics are adequately captured.
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These are then employed to advance the solution of the ensuing reduced model
beyond t0, as the concentration further progresses in the domain. In this sense,
the construction of the solution subspace can be performed by establishing a
suitable relationship between a proper space Vnf

in which the solution of the
full model lies and where each element can be represented by a nf -dimension
vector, and a reduced subspace Vnp with dimension np � nf . Given a vector
x ∈ Rnf that represents an element of Vnf

, one can always find its counterpart
x̂ ∈ Rnp as:

x̂ = PT x, (9)

where the columns of the nf -by-np projection matrix P are an orthonormal basis
spanning the subspace Vnp .

From an operational standpoint, computation of P requires constructing the
np basis vectors that span the subspace Vnp . We do so by selecting np snapshots
(c1,c2,· · · ,cnp) where ci ∈ Rnf and defining a matrix:

X =
[
s1 s2 · · · snp

]
, (10)

where si is the i-th normalized snapshot ci. We define:

Cs = XT X, (11)

where Cs is an np-by-np symmetric matrix. Using the spectral theorem, we can
rewrite Cs as:

Cs = GΛGT , (12)

where G is the orthogonal matrix of the eigenvectors of Cs and Λ is a diagonal
matrix whose entries are the eigenvalues of Cs. Since the dimension of Cs is
usually small, the computation of matrices G and Λ requires a small amount of
time compared to the requirement for the solution of the full numerical model.

By exploiting the well-known relation between the spectral decomposition in
(12) and the singular value decomposition of X [13, 12] we obtain that:

P = XGΛ−1/2. (13)

so that PT P = I with I the identity matrix of order np.
The matrix P contains all information about the relationship between the

two spaces Vnf
and Vnp and the columns of the projection matrix p̃i are a set of

basis vectors of Vnp . Note that in general:

PPT 6= I, (14)

where the identity matrix I is here of order nf . Equation (14) is key to charac-
terize the POD dynamics. A vector v ∈ Vnf

can be split as v = ṽ + v0, where ṽ
and v0 belong to the subspace generated by P and to the associated orthogonal
subspace, respectively. Therefore v0 · φ = 0 for every φ linear combination of
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the POD basis vectors. Using the properties of the projection matrix P, we can
write:

ṽ = PPT v. (15)

The matrix PPT acts as a filter extracting the component of a function belonging
to the POD subspace. We note that both vectors ṽ and v have a dimension equal
to nf . In other words, increasing the process dynamics captured by the POD
subspace (e.g., through an appropriate selection of a given number of snapshots
or by increasing the number of snapshots) leads to a decreased error induced
by the model reduction. Given the dynamics of the system considered, it is
then relevant to derive a flexible formulation which enables us to increase the
dimension of the POD subspace by relying on a fixed number of snapshots, i.e.,
on a given computational effort. We do so in the following section and then
assess the benefit of such a formulation by a suite of computational examples.

In practice, the POD based reduced model is obtained by projecting equa-
tions (8) over the subspace induced by the matrix P, i.e., the subspace containing
all the possible linear combinations of the columns of P. We introduce the solu-
tion of the reduced problem cp(·) with its corresponding vector cp. The reduced
problem using the POD method reads:
For each k ≥ k0 find ck

p ∈ Rnp such that

PT

(
M
∆t

+ A
)

P ck+1
p = PT fk+1 + PT

(
M
∆t

)
P ck

p, (16)

with ck0
p = PT ck0

f,0 the projection of the initial value.

2.3 Snapshot Splitting Technique (SST) for increasing the POD
subspace dimension

Next, we describe a new approach to improve the classic POD method. Given
np snapshots (c1,c2,· · · ,cnp) where ci ∈ Rnf , for each snapshot we define nl new
snapshots kij such that:

kij = gj(ci), (17)

where gj(·) : Rnf → Rnf for i = 1, · · · , np and j = 1, · · · , nl. If the vectors
associated with each snapshot are independent, then nl basis vectors are obtained
for each snapshot, i.e., the POD subspace will have a dimension of np × nl. In
such a case, the columns of matrix (10) are the vectors kij ∈ Rnf subject to
appropriate normalization. The POD method can then be applied as illustrated
in 2.2.

The strategy for the selection of the functions gj(·) is not unique, as long
as the generated vectors are independent. The key concept we employ here for
the definition of gj(·) is that the domain can be partitioned into areas where
the solution dynamics are similar. We define the maximum coefficient of the
snapshots set as:

cmax = max
i

max
j
cij , (18)
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Figure 1: Distribution along a longitudinal profile (i.e., aligned in the x direction)
of the basis functions p̃i (i = 1, · · · , 7) obtained (a) without and (b) with the
Snapshot Splitting Technique (SST) for a purely diffusive setting. The solute
source is located at x = 1.5.
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where i = 1, · · · , np and cij is the j-th component of the vector ci. We partition
[0, cmax] into nl intervals introducing nl + 1 values ξi with i = 0, · · · , nl such
that:

0 = ξ0 < ξ1 < ξ2 < · · · < ξnl−1 < ξnl
= cmax. (19)

Finally, we define the functions gj(·) such that:

[gj(v)]m =
{
vm if vm < ξj ,
0 otherwise,

(20)

where j = 1, · · · , nl, m = 1, · · · , nf and vm is the m-th component of the
vector v ∈ Rnf . In our application, we select a logarithmic distribution for ξi,
other distribution being admissible. Since we are studying the case of continuous
injection, the value cmax occurs at the source location. A logarithmic distribution
of ξi takes into account that the fast solution dynamics are close to the source.
As a consequence, our technique allows enriching the POD subspace in these
critical zones of the evolving solute concentration.

To highlight the differences between the way the POD subspace is con-
structed by employing the typical approach illustrated in Section 2.2 and our
proposed technique to correct such construction by relying on snapshots defined
in (17), we term our approach as Snapshot Splitting Technique (SST) and exem-
plify its beneficial effect by considering a purely diffusive problem (i.e., u = 0
in (1)) with a continuous point injection located at x = y = 1.5 in a 3× 3 rect-
angular domain representing a homogeneous porous medium (see also Section 3
for details about the numerical solution of the full model). Figure 1 depicts the
distribution along a longitudinal profile (i.e., aligned in the x direction) of the
basis functions obtained without (Figure 1a) and with (Figure 1b) the applica-
tion of the SST. In this illustrative example we select the snapshots ci from the
first 10 time steps within which the full model is solved. Using the approach
illustrated in Section 2.2, the results clearly show that all basis functions are
significantly different from zero solely at locations very close to the source. This
implies that (a) employing the POD subspace generated via these basis functions
does not lead to an accurate representation of the system dynamics at locations
far away from the source, so that (b) the ensuing reduced model can propagate
in time only the information associated with system states close to the source.
Otherwise, application of the SST to increase the dimension of the POD sub-
space (while relying on a fixed number of snapshots) allows constructing a set
of basis functions which carry significant information at a variety of locations in
the domain.

3 Application of POD to Advective-Dispersive Trans-
port driven by Continuous Solute Injection

In this section we apply the methods discussed in Section 2 to reduce the dimen-
sionality of a transport problem described by equation (7). We start by consid-
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ering a homogeneous porous medium where a uniform velocity field (vx = 1 and
vy = 0) takes place. We employ a Finite Element (FE) approach (P1 elements)
for spatial discretization and the Backward Euler scheme for time discretiza-
tion with discretization step ∆t = 0.05. We recall that while we ground our
examples on FE, POD reduction can also be applied in the presence of diverse
numerical methods, e.g., Finite Volumes. The computational domain is a 5× 3
rectangle with a structured triangular mesh. Each length unit is divided into 35
segments, the computational grid being then composed by 36750 triangles. The
number of degrees of freedom of the P1 space with open boundary conditions
coincides with the number of nodes of the numerical grid, i.e., 18656. A contin-
uous point injection source is placed at x = y = 1.5 in all settings we examine
here. When the SST illustrated in Section 2.3 is employed for the construction
of the POD subspace, we choose nl = 10 with a logarithmic distribution for the
ξj as explained in 2.3.

Without loss of generality, we set D = 1 so that the only unfixed parameter
is the Péclet number (Pe). To explore the effect of Pe on the behavior of the
reduced model, as compared against the full numerical solution ck

f of the model
(8), we use the following steps for the computation of ck

p at time step k:

(S1) For the first Nt time steps (k ≤ Nt), ck
p is computed by solving the full

numerical model (8), so ck
p = ck

f .

(S2) We compute the projection matrix (13) via the POD method upon relying
on the solution computed at step S1. The snapshots are taken as ck

f at
time step k ≤ Nt.

(S3) Using the projection matrix and the discrete problem defined in (16), we
compute ck

p for additional Na time steps.

In all our computational examples we consider Nt = 10 and Na = 90. Note
that the choice of these values is not influential for the demonstration of our
model reduction strategy. A key requirement to verify the efficiency of the
method is that the final number of reduced model steps is larger than the final
number of the full model steps, while keeping a satisfactory computational ac-
curacy. The influence of Nt and Na on the optimization of the procedure is case
dependent and we leave this analysis to future studies.

We perform our computations with the reduced model in the absence or in
the presence of the SST introduced in Section 2.3. When the SST is employed
during step S2, the solution will be denoted as ckp+SST or ck

p+SST .
The quality of the ensuing solutions obtained with the reduced model is

compared by computing the relative error Ek
s between the full numerical prob-

lem solution cf and the reduced problem solutions, i.e., cp or cp+SST , which is
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Figure 2: Effect of the Snapshot Splitting Technique (SST) on the evolution of
the relative error (21) with the number of time steps, k, after the reduced model
is employed (full model is run for k ≤ 10) for a homogeneous system with diverse
values of Pe.

computed for each time step k as:

Ek
s =

∥∥∥ckf − cks∥∥∥
L2(Ω)∥∥∥ckf∥∥∥

L2(Ω)

, (21)

where subscript s = p + SST or p depending on whether the SST is employed
or not in the construction of the reduced model.

Figure 2 depicts the relative error (21) as a function of the number of time
steps k and for three selected Péclet numbers, i.e., Pe = 30, 60, 90, identifying
mildly to highly advective transport settings. The relative error increases in a
nonlinear fashion with Pe and with the time elapsed since the last snapshot is
computed from the full numerical model (k = 10 in the example). The plateau to
which the relative errors tends is due to the open boundary conditions that allow
solute mass to exit the domain at the downstream boundary. Figure 2 reveals
that employing the proposed SST enables us to increase the effectiveness of the
information content embedded in the snapshots extracted from the solution of
the full model, this leading to a remarkable reduction in the associated relative
error.

As a complement to Figure 2, Figure 3 depicts the spatial distributions of
solute concentration ckf , ckp and ckp+SST along the longitudinal cross-section at
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Figure 3: Spatial distributions of solute concentration computed by the full
model and the reduced model with and without activating the Snapshot Splitting
Technique (SST) at simulation time step k = 60. Results are depicted for the
homogeneous test setting along the longitudinal cross-section passing through
the injection point for Pe = 30.

y = 1.5 (i.e., passing through the injection point) for Pe = 30 and time step
k = 60, i.e., after 50 time steps from the time at which the latest snapshot from
the full model has been taken. Notably, the reduced solution associated with the
SST, ckp+SST , displays much less severe spatial fluctuations than its counterpart
ckp. This result confirms the beneficial effect of the proposed SST to the reduced
model even after a considerable time has elapsed since the observation time
associated with the last snapshot computed via the full model.

Figures 4a, 4b and 4c respectively depict the spatial distributions of solute
concentration obtained by the full model solution and the POD approximation
without and with the use of SST. Numerical results are illustrated for the obser-
vation time corresponding to k = 60 at which the relative error is high and the
approximation is not so reliable in both cases. Even as severe spatial fluctuations
can be observed, it is clear that employing the SST tends to drive the solution of
the reduced model towards the behavior displayed by the true system dynamics,
as represented more faithfully by the full model solution. It can also be noted
that application of the SST has a beneficial effect and renders an approximation
of improved quality in a larger area around the point source, when compared
against the traditional application of the POD method.

As an additional and challenging test case, we then consider the performance
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Figure 4: Spatial distributions of solute concentration obtained by (a) the full
model solution and the POD approximation (b) without and (c) with the use of
the Snapshot Splitting Technique (SST). Results correspond to the longitudinal
profiles depicted in Figure 3. Color images are in logarithmic scales.
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of the reduced model in a heterogeneous porous medium. Here we consider
heterogeneity to stem from the spatial variability of the hydraulic conductivity
field, which we model as a stationary random process of space. We generate
a random realization of an isotropic Y = log K field, where Y is the standard
normal distribution, with correlation scale λ = 2L and exponential isotropic
covariance model using the widely tested SGeMS software [25].

In practical cases, the Péclet number is computed using the K correlation
scale as characteristic length. Therefore, we introduce the effective Péclet num-
ber P̂ e. The relation between the effective Péclet number P̂ e and the Péclet
number defined in (5) is:

P̂ e =
〈u〉λ
D
' 2Pe, (22)

where 〈u〉 is the average velocity magnitude over the domain and D is the
diffusion coefficient of the system (in this case D = Dx = Dy).

The steady-state Darcy velocity field u is obtained by solving the governing
equations (2) and (3) upon setting permeameter-like boundary conditions to the
system, corresponding to a unit head drop across the domain.

Following the procedure used for the homogeneous case, the transport prob-
lem is solved by employing the FE method (P1 elements) for space discretization
and the Backward Euler scheme for time discretization with ∆t = 0.05. The spa-
tial distributions of ckf , ckp are then calculated for the same value of Pe considered

in the homogeneous setting, corresponding to P̂ e = 60, 120, 180. Figure 5 de-
picts the temporal evolution of the relative error (21), suggesting that, while the
overall quality of the reduced model solution deteriorates with time, it does so
to a lesser extent than the corresponding solution associated with the homoge-
neous set-up (see also Figure 2). This result might be related to the observation
that the solute plume tends to follow the high conductivity paths in the sys-
tem [8] and the effect of these paths close to the source tend to be influential
to the plume behavior over time [6]. As such, capturing these features by the
POD techniques enables the reduced solution to mimic the full model for longer
time than in the homogeneous setting, where no preferential conductivity path
is present. The beneficial effects of the SST for the enrichment of information
embedded in the POD subspace is clear also in the presence of heterogeneity
(Figure 5). This notwithstanding, it can be noted that one cannot propagate
the reduced model solution in time indefinitely, without incurring in significant
approximation errors. This is clearly observed in Figure 6, where the spatial
distribution of ckf , ckp and ckp+SST are depicted at time step k = 60 for Pe = 30.

4 Projection Subspace Update

The results of Section 3 clearly show that the error between the reduced and
full model solutions tends to increase with time after the last snapshot has been
observed and tends to increase until it becomes not negligible after a certain
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Figure 5: Effect of the Snapshot Splitting Technique (SST) on the evolution
of the relative error (21) with the number of time steps, k, after the reduced
model is employed (full model is run for k ≤ 10) for a heterogeneous system
with diverse values of Pe.

time has elapsed. This is due to the fact that the information content in the
generated POD subspace (even by relying on SST) is not large enough to capture
all of the key details of the dynamically evolving concentration field on the basis
of a limited number of snapshots. As such, the quality of the approximation
tends to deteriorate as time advances since the solution significantly changes
compared to the early time states. The strategy we follow here, in order to make
optimal use of the POD model reduction strategy in these types of dynamically
evolving systems, is based on alternating between the full model FE and POD-FE
solution of the transport problem. By doing so, the POD subspace is dynamically
updated over discrete temporal intervals where snapshots are extracted from the
FE full problem solution and processed to construct the reduced space basis.

For convenience, and given the results of Section 3, we illustrate our findings
by relying on the projection matrix (13) constructed through the SST introduced
in 2.3. Figure 7 depicts the temporal evolution of the error (21) obtained by
solving the full model in the heterogeneous setting previously described for a
fixed number Nt = 10 of time steps and alternating the use of the full model with
the reduced POD-FE solution for diverse numbers of iterations, i.e., nPOD =
10, 20, 30, and for Pe = 30, 60, 90. It can be noted that alternating between the
two solutions enables one to update the POD basis in time so that the updated
POD subspace can follow closely the system dynamics. The global error is seen to
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Figure 6: Spatial distributions of solute concentration obtained by (a) the full
model solution and the POD approximation (b) without and (c) with the use of
the Snapshot Splitting Technique (SST). Color images are in logarithmic scales.
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Figure 7: Temporal evolution of the relative error Ek (21) for diverse values of
Pe and employing a subspace update after a fixed interval nPOD.

consistently decrease after each full problem iteration cycle. This highlights the
need for an update in time of the POD basis to obtain a reduced model yielding
a good accuracy and suggests that there is a beneficial cumulative effect to the
quality of the reduced model solution of subsequent basis updates.

The results shown in Figure 7 suggest that setting the number of iterations
nPOD a priori does not allow a good adaptation of the POD algorithm to the
system dynamics. For example, it is seen that the concentration configuration
in the domain changes rapidly after a few time steps from the beginning of
solute injection so that the relative distance between the full model solution and
the POD subspace increases sharply within few time steps and a model update
is required. Otherwise, the variability of concentration in space tends to be
smooth out after a few time steps so that a reduced model based on this type of
information is prone to retain a relatively high global accuracy for a sustained
period of time. This behavior can be quantified and embedded in the dynamic
POD update procedure through the definition of the following residual for each
time step:

Rk =

∥∥( M
∆t + A)Pck

p − (fk + M
∆tPck−1

p )
∥∥

2

‖fk‖2
, (23)

where || · ||2 is the Euclidean norm. Note that (23) does not depend of the full
model solution but relies solely on the reduced problem. We then employ (23) to
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design the adaptive algorithm for the update of the POD subspace basis which
is described in the following:

(U1) A solution ck
p is computed by solving the full discrete model, i.e., ck

p = ck
f ,

for the first Nt time steps (Nt = 10 in our example, i.e., k ≤ 10).

(U2) The projection matrix is computed via the POD method relying on the
full model solution computed in U1, ck

p representing a snapshot.

(U3) The model is projected to the POD subspace yielding the reduced discrete
model which is solved until the residualRk in (23) attains a given threshold
value, ε.

(U4) Starting from the last solution obtained in U3, we switch to the solution
of the full discrete model; in our example, we solve the full model for
additional Nt time steps, a full analysis of the feedback between Nt and
the transport setting being outside the scope of this work.

(U5) The solution computed in U4 together with the old snapshots are em-
ployed to update the projection matrix used in the POD reduction method.
Transport simulation progresses from step U3 with the newly constructed
reduced model.

Figure 8 depicts the temporal evolution of the global relative error (21) as
a function of k and for different choices of Pe and of the selected threshold ε,
for the same problem setting associated with Figure 7. It can be noted that the
error is consistently low, due to the improved efficiency according to which the
subspace updating is performed. As expected, the largest global relative errors
are related to the selected threshold. Lowering the latter yields to a frequent
update, resulting in an increased computational time.

Finally, using the subspace update strategy presented in this section, we can
simulate a dispersion and advection problem for a given time interval using a
reduced amount of computational resources and being able to control the error
through the value of the threshold ε. With reference to this point, Figure 9
clearly shows that concentration values computed at k = 60 using the alternating
algorithm with Pe = 30 and ε = 10−1 is almost identical to the solution resulting
from the full numerical problem shown in Figure 6a. It is remarkable to note
that the results for 70 time steps out of 100 have been obtained by way of the
reduced model.

5 Summary and Conclusions

Our work leads to the following major conclusions:

1. We present a new efficient algorithm for improving the performance of
the numerical solution of transport problems associated with migration of
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Figure 9: Spatial distributions of solute concentration obtained by the alternat-
ing algorithm solution. Color images are in logarithmic scales.
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conservative dissolved chemicals in a porous medium under the action of
advective and diffusive/dispersive processes. The proposed algorithm is
based on a POD model reduction approach and employs a combination
of the full and reduced model, the solution of which is alternated in time.
The adaptive model reduction strategy we propose relies on (i) employ-
ing a Snapshot Splitting Technique (SST), which enables us to enrich the
information content associated with the basis employed to construct the
POD subspace on the basis of a given number of snapshots, and (ii) al-
ternating between the solution of the full and reduced model through the
definition of a threshold on the algebraic residual (23). We remark that the
optimization of the model alternation sequence as a function of the domain
heterogeneity and transport setting is outside the scope of the present con-
tribution, which is keyed to illustrate and demonstrate the viability of the
proposed strategy. As such, our work shows that using our subspace up-
dating strategy enables us to simulate an advection-dispersion problem for
a given time interval using a reduced amount of computational resources
and with the ability to control the computational error through a desired
threshold ε.

2. We explore the effect of the Péclet number on the quality of the reduced
model approximation. We find that the POD method is associated with
an improved performance for low Péclet numbers. This is related to the
observation that the snapshots employed to build the basis vectors are
taken from the full model solution and the concentration dynamics for low
Péclet numbers are strongly linked to the past system states.

3. The improvement associated with the proposed SST enables us to increase
the number of steps within which the reduced model can provide a viable
solution of the system behavior in the time-alternating algorithm, yielding
a numerical solution associated with increased computational efficiency.

The Snapshot Splitting Technique and the time alternating model reduction
algorithm has the potential to be extended to diverse types of problems governing
scalar transport in different types of flow fields and media. Cycling between the
solution of the full and reduced models can provide a marked decrease of the
complexity of a discrete problem characterized by a considerably high physical
dimension according to which an ad hoc fast solver can be built.
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