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Abstract

We revisit the classical idea of computing the solution of a large symmetric positive
definite linear system as the steady state of an artificial transient dynamics. Starting
from a second-order model with “mass” and “damping” operators, we show that the ex-
plicit Newmark scheme (β = 0) induces a family of stationary iterations for Au = b,
with a natural residual form and a transparent role for the pair (M,C). This view-
point unifies, within a single algebraic framework, time-marching solvers, preconditioned
fixed-point iterations, and momentum-like recurrences. In particular, by choosing M as
a preconditioner and using Rayleigh damping C = a0M + a1A, the induced iteration
can be implemented efficiently via inexact inner solves and behaves as a robust precondi-
tioned method in challenging diffusion problems. Numerical experiments on model elliptic
operators illustrate the influence of (M,C) and provide practical parameter guidelines.

Keywords: Newmark method; stationary iterations; preconditioning; Rayleigh damping; con-
jugate gradients; inexact solves.
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1 Introduction

We consider the linear system
Au = b, (1)

where A ∈ Rn×n is symmetric positive definite, u ∈ Rn is the unknown solution vector, and
b ∈ Rn is the given right-hand side. System (1) admits a unique solution.

Throughout these notes we assume that n is very large, so that using a direct solver for
(1) is prohibitively expensive. We therefore focus on iterative methods (see, e.g., [20] for
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historical context). Our derivation will be somewhat unconventional: we will obtain iterations
by discretizing the second-order initial value problem

M ü+ C u̇+ Au = b, t > 0

u(0) = u(0)

u̇(0) = v(0).

(2)

System (2) can be interpreted as the dynamics of a virtual mechanical (or structural) mass–
spring–damper system associated with (1): M ∈ Rn×n and C ∈ Rn×n are symmetric positive
definite mass and damping matrices, while A plays the role of the stiffness matrix. The state
u = u(t) represents the “displacement” of the virtual system, and u(0), v(0) are the initial
displacement and velocity. In particular, u(0) plays the role of the initial guess in a standard
iterative method for (1).

After introducing the continuous-in-time system (2), we turn to its time discretization. The
main message of these notes is the following: discretizing (2) can be viewed as an iterative
process for solving (1), as we show in Section 2.
Using transient dynamics to compute (or precondition) a static equilibrium problem is not a new
idea: it is reminiscent of dynamic relaxation methods in structural mechanics [15, 16, 17]. In
the nonlinear setting, closely related time-marching strategies appear under the name pseudo-
transient continuation [18, 19].

1.1 Positioning and contributions

Using a transient dynamics to recover a static equilibrium is classical in structural mechanics:
dynamic relaxation amounts to integrating an artificially damped vibration until a steady state
is reached (see, e.g., Day’s early note [15] and the subsequent developments by Otter–Cassell–
Hobbs [16] and Underwood [17]). From the viewpoint of nonlinear solvers, pseudo-transient
continuation plays an analogous role: a transient term is used as a globalization mechanism for
Newton-like iterations, with the time step acting as a continuation parameter [18, 19]. In the
linear SPD setting, it is also well known that second-order recurrences can be interpreted as
polynomial accelerations of Richardson-type iterations (e.g. Chebyshev semi-iteration, second-
order Richardson), and they are closely related to the “heavy-ball” (or momentum) method
introduced by Polyak [4].

The goal of this note is not to compete with Krylov methods such as (P)CG as general-
purpose black-box solvers for (1). Rather, we aim at a transparent bridge between a standard
structural time integrator (Newmark) and a family of preconditioned stationary iterations whose
building blocks are “mass” and “damping” operators. This viewpoint can be useful when (i)
one wants iterations with a clear physical interpretation and tunable dissipation, (ii) one has
efficient solvers for matrices built fromM and C (e.g. sparse factorizations, multigrid smoothers,
domain-decomposition blocks), or (iii) one wishes to embed the linear solve in a broader time-
marching or nonlinear framework.
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Concretely, the paper makes the following points.

� We show that the explicit Newmark scheme (β = 0) applied to (2) yields an itera-
tive process for (1) in residual form, requiring only (a) one application of M−1, (b) one
multiplication by A per step to update the residual, and (c) one solve with M + γτkC
(Section 3).

� We identify a “clean” case in which proportional damping C = ηM reduces the Newmark-
induced iteration to a preconditioned heavy-ball method, making the role of the param-
eters (τk, η) explicit (Section 3.4).

� We analyze commuting damping choices (in particular Rayleigh damping C = a0M+a1A)
through a mode-wise three-term recurrence, derive contraction factors in terms of the
generalized spectrum of (A,M), and propose a simple parameter-tuning strategy based
on spectral bounds (Section 3.3–3.3.1 and Section 3.6).

� We illustrate, on model SPD problems (including a high-contrast diffusion benchmark),
how the choice of M and C can turn the same Newmark time marching scheme from
a “smoother-like” process into a robust solver, and we quantify the cost of the inexact
Rayleigh variant via the total number of inner PCG steps (Section 6).

The paper is organized as follows. Section 2 recalls the Newmark discretization and moti-
vates the explicit choice β = 0. Section 3 derives the induced iteration and its residual form.
Sections 3.3–3.6 discuss the influence of M and C and provide design guidelines. Section 6
reports numerical experiments. Section 7 summarizes the main findings and outlines possible
extensions, and the appendices collect stability proofs for the underlying continuous-time dy-
namics. Before delving into the main discussion, we anticipate a theoretical point that makes
the correspondence meaningful. First, (2)1 can be obtained from the following state equations:

r = b− Au definition of residual (external minus elastic force)
u̇ = v definition of velocity
ṙ = −Av consequence of (3)1 and (3)2
M v̇ = r− C v Newton’s 2nd law with damping
u(0) = u(0) initial condition for u
v(0) = v(0) initial condition for v.

(3)

The second-order equation (2)1 follows by combining the relations in (3), i.e., by rewriting (3)4
using (3)1–(3)2. Note that u(t) ≡ u is always an equilibrium (stationary) solution of (2)1.
Conversely, in order for (2) to be consistent with (1), we require the asymptotic constraint

lim
t→+∞

u(t) = u ∀u(0),v(0) ∈ Rn. (4)

In the language of classical iterative methods for (1), this requirement plays the role of con-
vergence, although it is stated at the continuous-time level. We will prove (4) in two different
ways in Appendices A and B.
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To this end, introduce the new variable w = u− u, which transforms (2) into the homoge-
neous system 

M ẅ + C ẇ + Aw = 0, t > 0

w(0) = w(0)

ẇ(0) = w
(0)
1 ,

(5)

where w(0) = u(0) − u and w
(0)
1 = v(0) are still arbitrary initial data. From the viewpoint of

dynamical systems, (5) has an equilibrium point at the origin. Accordingly, instead of (4) we
shall refer to

lim
t→+∞

w(t) = 0 ∀w(0),w
(0)
1 ∈ Rn. (6)

Property (6) is equivalent to global asymptotic stability (in the sense of Lyapunov) of (5).
The first proof, based on a modal analysis, requires additional assumptions on the damping
matrix; the second proof is more general and does not introduce any extra constraint. In the
remainder of the paper we assume that (6) (and hence (4)) holds.

2 Numerical discretization

We now discretize (2) in time using the well-known Newmark method [1, 2]. This is a one-
step marching scheme for the displacement–velocity pair (u(k),v(k)), where u(k) ≃ u(tk) and
v(k) ≃ u̇(tk), on a (possibly non-uniform) time grid {tk}k≥0 with tk+1 = tk + τk. For k ≥ 0,
Newmark’s method reads as follows: find (u(k+1),v(k+1)) such that

M u(k+1) = M u(k) + τk M v(k)

+ τ 2k
(
β (b− Au(k+1) − C v(k+1)) + (1

2
− β)(b− Au(k) − C v(k))

)
M v(k+1) = M v(k) + τk

(
γ(b− Au(k+1) − C v(k+1)) + (1− γ)(b− Au(k) − C v(k))

)
,

(7)
where β, γ are nonnegative parameters. In block form, (7) can be rewritten as(

M + β τ 2k A β τ 2k C

γ τk A M + γ τk C

)(
u(k+1)

v(k+1)

)

=

(
M − (1

2
− β) τ 2k A τk M − (1

2
− β) τ 2k C

−(1− γ) τk A M − (1− γ) τk C

)(
u(k)

v(k)

)
+

(
1
2
τ 2k b

τk b

)
.

(8)

For β > 0 the scheme is implicit. When β = 0 it becomes explicit and can be solved by block
forward substitution, provided one can afford solving linear systems whose coefficient matrix is
a linear combination of M and C.
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Thus, if we want to avoid treating the stiffness matrix A implicitly (which would require
repeatedly solving (8) and could be even more expensive than solving (1) directly), we are
naturally led to explicit methods. Alternatively, one could replace A in the first block row on
the left-hand side of (8) by an approximation P (e.g., a preconditioner for A) and still obtain
an implicit method. For this approach to be useful, however, solving systems with the block
coefficient matrix (

M + β τ 2k P β τ 2k C

γ τk A M + γ τk C

)
must be substantially cheaper than applying a direct solver to (1).

Because this comparison is difficult to assess a priori, we start by studying explicit schemes
and therefore set β = 0 from now on. Even in this case we will see that, with a suitable choice
of the parameters τk and, in particular, of the matrices M and C, the resulting approach can
be interpreted as a preconditioned iterative method applied to (1). The implicit case β ̸= 0 is
left for future work. A further and potentially impactful direction is to exploit the fact that
Newmark’s method naturally allows a variable time step τk (see (7)), whereas all experiments in
this paper use a constant step size. Designing nonstationary choices {τk}—for instance driven
by online spectral estimates or by residual reduction—could turn the induced iteration into a
Chebyshev-like polynomial process (cf. Remark 3.8) and may substantially reduce the outer
iteration count on strongly ill-conditioned problems such as T2. We leave the systematic design,
analysis, and cost assessment of adaptive step-size strategies to future work.

3 From Newmark time marching to preconditioned it-

erations

In this section we make the link between the explicit Newmark discretization (β = 0) and
classical iterative solvers for (1) more explicit.

3.1 A residual form of the β = 0 scheme

Introduce the residual at step k,
r(k) = b− Au(k). (9)

Setting β = 0 in (7) gives the update for the displacement,

u(k+1) = u(k) + τk v
(k) +

τ 2k
2
M−1

(
r(k) − C v(k)

)
, (10)

followed by the update for the velocity,

(M + γ τk C)v(k+1) = (M − (1− γ) τk C)v(k) + τk
(
γ r(k+1) + (1− γ) r(k)

)
. (11)
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Thus, each time step requires only: (i) one application of M−1 (i.e., one solve with M) in (10),
(ii) one multiplication by A to form r(k+1) = b − Au(k+1), and (iii) one solve with M + γτkC.
In particular, A never appears in a linear solve, which is what makes the scheme attractive as
an “outer” iteration for (1).

Remark 3.1 (A dimensionally consistent CG-like update from a damped first-order dynamics).
To connect with the classical conjugate-gradient notation, consider variables (u, r,v) satisfying
r = b − Au and interpret v = u̇ as a velocity. In this mechanical viewpoint, r has the
units of a force, while v has the units of a velocity, so the common algebraic normalization
v(k+1) = r(k+1) + βCG

k+1v
(k) is not dimensionally meaningful. A consistent alternative is obtained

by introducing a scalar mass m > 0 and a damping coefficient δ ≥ 0 and considering the
first-order system

u̇ = v, ṙ = −Av, m v̇ = r− δ v,

where r = b−Au. With a step size αk = tk+1−tk, a forward Euler discretization of the first two
equations (with v frozen over the step) gives u(k+1) = u(k)+αkv

(k) and r(k+1) = r(k)−αkAv
(k).

Discretizing the damping law using the updated residual r(k+1) yields

v(k+1) = v(k) +
αk

m
(r(k+1) − δkv

(k)) = βCG
k+1v

(k) + ρk+1r
(k+1), ρk+1 =

αk

m
, βCG

k+1 = 1− αkδk
m

.

Using backward Euler for the damping law, m(v(k+1) − v(k))/αk = r(k+1) − δk v
(k+1), leads

to the same CG-like form v(k+1) = βCG
k+1v

(k) + ρk+1r
(k+1) with βCG

k+1 = m/(m + αkδk) and
ρk+1 = αk/(m+αkδk), which is unconditionally dissipative for δk ≥ 0. Here the coefficient βCG

k+1

is unrelated to the Newmark parameter β in (7): the superscript “CG” is meant to prevent
confusion. Thus v(k+1) ∈ span{r(k+1),v(k)} as in the usual CG recurrence, but the coefficient in
front of r(k+1) is naturally αk/m. Since m is constant, it can be absorbed into the time step, but
keeping it explicit clarifies dimensions and reinforces the interpretation of βCG

k+1 as a discrete
“memory” (damping) factor. The matrix-valued analogue of this viewpoint is precisely (3)4,
where M and C play the role of mass and damping operators.

Remark 3.2 (From mass/damping matrices to a PCG-like structure). The scalar model in
Remark 3.1 extends verbatim to the matrix-valued mass and damping operators appearing in
(3)4, namely

u̇ = v, r = b− Au, M v̇ = r− C v,

where M maps accelerations to forces and C is a (typically SPD) damping operator. A key
point is that the update of v always involves an application of an inverse of a matrix built from
M and C, hence a natural preconditioning action on the residual.

(Explicit/semi-implicit Euler). With a step size αk = tk+1 − tk, freezing v over the step
in the first two equations gives

u(k+1) = u(k) + αk v
(k), r(k+1) = r(k) − αk Av(k).
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Discretizing M v̇ = r−Cv by a forward Euler step and using the updated residual r(k+1) yields

v(k+1) =
(
I − αkM

−1C
)
v(k) + αk M

−1r(k+1). (12)

Defining the preconditioned residual z(k+1) := M−1r(k+1), (12) shows that

v(k+1) ∈ span{z(k+1),v(k)},

which is the structural hallmark of a PCG-like two-term recurrence (compare with v(k+1) =
z(k+1) + βk+1v

(k) in the standard preconditioned CG algorithm).

(Backward Euler on the damping law). Using backward Euler for the damping equation
gives (

M + αkC
)
v(k+1) = M v(k) + αk r

(k+1), (13)

hence
v(k+1) = (M + αkC)−1M︸ ︷︷ ︸

=:Tk

v(k) + αk (M + αkC)−1r(k+1)︸ ︷︷ ︸
=:z(k+1)

.

Again v(k+1) ∈ span{z(k+1),v(k)}, but now the residual is filtered by the effective (precondition-
ing) operator (M + αkC)−1, which is unconditionally dissipative when C ⪰ 0.

Connection with PCG. For a fixed SPD preconditioner P , the (left-)preconditioned CG
method for Au = b can be written as

z(k) = P−1r(k), v(k+1) = z(k+1) + βk+1v
(k), u(k+1) = u(k) + αkv

(k),

with the classical choices

αk =
(r(k))Tz(k)

(v(k))TAv(k)
, βk+1 =

(r(k+1))Tz(k+1)

(r(k))Tz(k)
.

The dynamical discretizations above provide the same two-term span for the direction update
with a natural preconditioned residual z(k) (taking P = M in (12), or Pk = M + αkC in
(13)). Recovering the exact PCG coefficients αk, βk+1 amounts to enforcing the usual orthogo-
nality/conjugacy conditions (a Galerkin projection in the A-inner product), which is a discrete
constraint not built into the constant-coefficient time stepping.

3.2 Error propagation and the role of M and C

Let w(k) = u(k) − u be the algebraic error and let r(k) = b − Au(k) = −Aw(k). Equations
(10)–(11) define a linear homogeneous recurrence for the pair (w(k),v(k)), hence an iteration
matrix whose spectral properties determine convergence. At this level, M plays the role of
a left preconditioner : the stiffness matrix only appears through the product M−1A (or, more
generally, through the pencil (A,M)), so choosing M such that M−1A has a favorable spectrum
is expected to accelerate the iteration. The damping matrix C (together with γ and the time
steps τk) controls how aggressively high-frequency components are attenuated.
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3.3 Commuting damping and a mode-wise three-term recurrence

The previous discussion becomes particularly transparent when the damping operator commutes
with the stiffness operator in the generalized eigenbasis of the pencil (A,M). Assume through-
out that A and M are symmetric positive definite, so that there exists an M–orthonormal basis
{ϕi}ni=1 and real eigenvalues λi > 0 such that

Aϕi = λi M ϕi, ϕT
i M ϕj = δij. (14)

If, in addition, C is of Rayleigh form

C = a0M + a1A (a0 ≥ 0, a1 ≥ 0), (15)

then M−1C is diagonal in the same basis and each generalized mode evolves independently.
Let w(k) = u(k) − u denote the error and expand it as w(k) =

∑n
i=1 ξ

(k)
i ϕi (with ξ

(k)
i =

ϕT
i M w(k)). For β = 0, constant time step τk ≡ τ , and the choice γ = 1

2
, the homogeneous

Newmark scheme applied to (3) reduces, for each mode, to the scalar recursion

ξ
(k+2)
i = p(λi) ξ

(k+1)
i + q(λi) ξ

(k)
i , (16)

where the (mode-dependent) coefficients are

p(λ) =
4− 2λτ 2

2 + τ c(λ)
, q(λ) =

τ c(λ)− 2

2 + τ c(λ)
, c(λ) = a0 + a1λ. (17)

Thus the iteration acts as a spectral filter on the modes of M−1A: the choice of M shapes the
eigenvalue interval {λi}, while (a0, a1) and τ control the amplification factors through (17). In
the undamped case a0 = a1 = 0, (16) becomes the well-known central-difference recurrence [2, 3]

ξ
(k+2)
i = (2− λiτ

2)ξ
(k+1)
i − ξ

(k)
i . When a0 > 0 and a1 = 0, the coefficients are independent of λ

except for the term λτ 2 in p, and one recovers a standard momentum/heavy-ball behavior [4]
(made explicit in Proposition 3.2).

Lemma 3.1 (Schur stability of a second-order recurrence). Consider the scalar linear recur-
rence

x(k+2) = p x(k+1) + q x(k), (18)

with real coefficients (p, q). Let r1,2 be the roots of the characteristic polynomial z2−pz−q = 0.
Then the following are equivalent:

(i) |r1| < 1 and |r2| < 1 (Schur stability);

(ii) |q| < 1 and 1− q > |p|.
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Proof. This is the standard Jury (Schur) criterion for a real quadratic polynomial; see, e.g., [11].
Consider the monic polynomial

π(z) = z2 + c1z + c0,

with real coefficients (c0, c1). The Jury test states that both roots of π lie strictly inside the
unit disk if and only if

|c0| < 1, 1 + c1 + c0 > 0, 1− c1 + c0 > 0.

Applying this to z2 − pz − q = 0 (i.e., c1 = −p and c0 = −q) yields |q| < 1, and

1− p− q > 0, 1 + p− q > 0,

which are equivalent to 1− q > |p|.

Proposition 3.1 (Step-size condition and convergence to the static solution). Assume A and
M are symmetric positive definite and C is of Rayleigh form (15) with (a0, a1) ̸= (0, 0). Let {λi}
be the generalized eigenvalues (14) and set λmax = maxi λi = λmax(M

−1A). For the Newmark
choice β = 0, γ = 1

2
and a constant time step τ > 0 satisfying

0 < τ 2 λmax < 4, (19)

the mode-wise recurrence (16) is Schur stable for every i, hence ξ
(k)
i → 0 as k → ∞ and

therefore u(k) → u for any initial data.

Proof. Fix a mode i and abbreviate λ = λi and d = τ c(λ) = τ(a0+a1λ). Since (a0, a1) ̸= (0, 0)
and λ > 0, we have d > 0. Using (17),

q(λ) =
d− 2

d+ 2
, p(λ) =

4− 2λτ 2

d+ 2
.

Then |q(λ)| < 1 holds for all d > 0. Moreover,

1− q(λ) =
4

d+ 2
, |p(λ)| = |4− 2λτ 2|

d+ 2
.

By Lemma 3.1, Schur stability is therefore equivalent to 4 > |4 − 2λτ 2|, i.e. to 0 < λτ 2 < 4.
Condition (19) implies 0 < λiτ

2 < 4 for every i, hence all modes decay and u(k) → u.

Theorem 3.1 (Rayleigh damping: modal recursion and contraction). Assume A ≻ 0 and
M ≻ 0, and let C = a0M + a1A with a0 ≥ 0, a1 ≥ 0 and (a0, a1) ̸= (0, 0). Consider the
explicit Newmark scheme with β = 0, γ = 1

2
and constant time step τ > 0. Let {λi}ni=1 be

the generalized eigenvalues of (A,M) and set L = λmax(M
−1A) = maxi λi. Then each modal

amplitude ξ
(k)
i of the error satisfies the two-step recursion (16) with coefficients (17). If

0 < τ 2 L < 4,
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then the characteristic roots of z2 − p(λi)z − q(λi) = 0 lie in the open unit disk for every i
and hence u(k) → u as k → ∞ for any initial data. Moreover, in the underdamped regime
p(λ)2 + 4q(λ) < 0 the roots are complex conjugates and their modulus is

|z±(λ)| =
√
−q(λ) =

√
2− τ c(λ)

2 + τ c(λ)
, c(λ) = a0 + a1λ,

so that the damping controls the asymptotic decay mode-wise, while the step-size restriction is
dictated by the interval of M−1A.

3.3.1 Mode-wise spectral radius and parameter tuning

For each mode i, define the dimensionless quantities

xi := τ 2 λi, di := τ c(λi) = τ (a0 + a1λi). (20)

In terms of (xi, di), the scalar recurrence (16) reads

p(λi) =
2(2− xi)

2 + di
, q(λi) =

di − 2

2 + di
, (21)

and the characteristic roots are

r±(λi) =
p(λi)±

√
p(λi)2 + 4q(λi)

2
. (22)

A short computation shows that the discriminant simplifies to

p(λ)2 + 4q(λ) =
4

(2 + d(λ))2

(
x(λ)2 − 4x(λ) + d(λ)2

)
, (23)

where x(λ) = τ 2λ and d(λ) = τ(a0 + a1λ).

Underdamped regime (complex roots). The roots are complex conjugate if and only if

(x− 2)2 < 4− d2 (necessarily 0 ≤ d < 2). (24)

In this case, the modulus is determined by the product r+r− = −q and one obtains the explicit
per-step amplification factor

|r±(λ)| =
√
−q(λ) =

√
2− d(λ)

2 + d(λ)
. (25)

In particular, in the proportional damping case C = ηM (so that d(λ) ≡ ητ), the damping
factor (25) is mode-independent whenever (24) holds.

10



Overdamped regime (real roots). If (24) fails, the roots are real and the spectral radius
for that mode is

ρ(λ) := max{|r+(λ)|, |r−(λ)|} =
|p(λ)|+

√
p(λ)2 + 4q(λ)

2
. (26)

The step-size condition (19) guarantees ρ(λ) < 1 for all λ ∈ (0, λmax], but the actual convergence
rate is governed by the worst-case value maxi ρ(λi).

Tuning guidelines. Equation (25) shows that increasing d(λ) (i.e. increasing a0 and/or a1)
decreases the modulus in the underdamped region, thus suppressing oscillations; however, too
large damping may push modes into the real-root regime and slow down asymptotic decay.
The Rayleigh term a1A makes d(λ) grow with λ, providing stronger damping of high-frequency
components (large λ) while leaving low-frequency components less damped.

Remark 3.3 (Matching classical heavy-ball parameters in the proportional case). In the pro-
portional case C = ηM , (10)–(11) induces a preconditioned heavy-ball iteration with parameters

α =
2τ 2

2 + d
, µ =

2− d

2 + d
, d = ητ. (27)

If one has estimates 0 < m ≤ λi ≤ L for the spectrum of M−1A, one may match the classical
“optimal” heavy-ball parameters on [m,L],

α⋆ =
4(√

L+
√
m
)2 , µ⋆ =

(√
L−

√
m√

L+
√
m

)2

, (28)

by enforcing µ = µ⋆ and α = α⋆ through (27), that is

d =
2(1− µ⋆)

1 + µ⋆
, τ 2 =

α⋆

2
(2 + d), η =

d

τ
. (29)

This provides a concrete “preconditioned design” recipe once rough spectral bounds for M−1A
are available.

Remark 3.4 (Preconditioning viewpoint). The step-size constraint (19) depends only on the
spectral radius of the preconditioned operator M−1A. Choosing M as an efficient SPD precon-
ditioner for A (so that the spectrum of M−1A is clustered) enlarges the admissible time step τ
and typically improves the convergence rate of the associated iteration.

Remark 3.5 (Beyond Rayleigh damping). The decoupling argument applies more generally
whenever M−1C is a (low-degree) polynomial in M−1A, or, equivalently, whenever C is in the
algebra generated by M and A. In such cases one obtains a scalar recursion of the form (16)
with coefficients that are rational functions of λ, and the design of (M,C, τ) can be guided by
the desired mode-wise amplification on a target eigenvalue interval.
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3.4 A clean case: proportional damping yields a preconditioned
heavy-ball method

A particularly transparent situation is obtained by assuming

C = ηM (η > 0), (30)

a constant time step τk ≡ τ , and the choice γ = 1
2
(often referred to as the “central difference”

value in structural dynamics). In this case the iteration can be written solely in terms of u (or
w) and becomes a standard momentum method for (1).

Proposition 3.2 (Equivalence with a preconditioned heavy-ball iteration). Assume (30), τk ≡
τ , γ = 1

2
, and β = 0. Then the displacement iterates {u(k)} produced by Newmark satisfy the

two-step recurrence

u(k+2) = u(k+1) + µ
(
u(k+1) − u(k)

)
+ αM−1

(
b− Au(k+1)

)
, (31)

with parameters

α =
2 τ 2

2 + η τ
, µ =

2− η τ

2 + η τ
. (32)

Equivalently, in terms of the error w(k) = u(k) − u,

w(k+2) =
(
I − αM−1A

)
w(k+1) + µ

(
w(k+1) −w(k)

)
. (33)

Proof. The proof is easiest in modal coordinates. Since C = ηM , the matrices M−1A and
M−1C = ηI commute and share the eigenvectors of the pencil (A,M) in Appendix A. Pro-
jecting the homogeneous scheme (i.e., b = 0 and u ≡ w) onto any generalized eigenvector of
(A,M) with eigenvalue λ = ω2 reduces (10)–(11) (with γ = 1

2
and τk ≡ τ) to a 2 × 2 linear

recurrence for the scalar pair (y(k), ẏ(k)). Eliminating ẏ(k) yields

y(k+2) = (1 + µ− αλ) y(k+1) − µ y(k),

with α, µ given by (32). Returning to vector form gives (33), and adding back the affine shift
u yields (31).

Remark 3.6 (Preconditioning viewpoint). In (31)–(33), the matrix M plays the role of a (left)
preconditioner. If M ≈ A is an approximation for which applying M−1 (i.e., solving with M)
is inexpensive, then the spectrum of M−1A is better clustered and the heavy-ball iteration (31)
can converge substantially faster.

Remark 3.7 (Parameter tuning and relation to CG). For SPD systems, if one has bounds
λmin ≤ λ(M−1A) ≤ λmax, then classical momentum methods suggest choosing (α, µ) as functions
of (λmin, λmax) to obtain near-optimal polynomial damping over the whole spectrum. This yields
a Chebyshev-type acceleration [5, 8]. Conjugate gradients can be viewed as producing, in an
adaptive way, an optimal polynomial in the A [6, 7, 8]-norm without requiring explicit spectral
bounds; connecting (31) to CG therefore typically requires allowing step-dependent parameters
(or additional orthogonality conditions), which we do not pursue here.
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Theorem 3.2 (Optimal contraction for proportional damping on a spectral interval). Assume
A and M are symmetric positive definite and that the generalized eigenvalues of (A,M) satisfy
0 < m ≤ λi ≤ L. Consider the explicit Newmark iteration with β = 0, γ = 1

2
, constant step

τ , and proportional damping C = ηM . Choose (τ, η) through the mapping (36) induced by the
classical “optimal” heavy-ball parameters (35) on [m,L]. Then the error satisfies

∥w(k)∥M ≤ ρ k
⋆

(
∥w(0)∥M + ∥w(1)∥M

)
with ρ⋆ =

√
L−

√
m√

L+
√
m

∈ (0, 1),

where ∥x∥2M = xTMx. Equivalently, the heavy-ball form (33) has a mode-wise spectral radius
bounded by ρ⋆ on [m,L].

Proof. Project (33) onto an M–orthonormal eigenvector of M−1A with eigenvalue λ ∈ [m,L].
The scalar error component ξ(k) satisfies

ξ(k+2) = (1 + µ− αλ) ξ(k+1) − µ ξ(k),

with (α, µ) = (α⋆, µ⋆) from (35). For these parameters, the characteristic roots are complex
conjugates for all λ ∈ [m,L] and their modulus equals

√
µ⋆ = (

√
L −

√
m)/(

√
L +

√
m) = ρ⋆.

Therefore each mode decays by at most ρ⋆ per step in the M–norm, and summing over modes
yields the stated bound.

Corollary 3.1 (Iteration complexity). Under the assumptions of Theorem 3.2, the number
of Newmark steps needed to reduce the M–norm of the error by a factor ε ∈ (0, 1) is k =
O(

√
κ log(1/ε)), where κ = L/m is the condition number of M−1A.

3.5 Beyond proportional damping

The proportional model (30) is primarily meant to expose the algebraic structure. More general
choices of C (e.g., Rayleigh damping C = a0M + a1A or other commuting constructions) lead
to similar modal recurrences in which each mode is damped by a polynomial in the generalized
eigenvalue ω2

i . This is precisely the mechanism that makes the “dynamic” viewpoint useful for
designing iterative solvers: by selecting M and C one shapes the iteration polynomial applied
to the preconditioned operator M−1A.

3.6 A simple design workflow

The previous results show that the convergence of the Newmark time-marching iteration is
controlled by the spectrum of the (preconditioned) operator M−1A together with the dimen-
sionless parameters x = τ 2λ and d(λ) = τ c(λ), where c(λ) is the modal damping induced by
C. This suggests a practical “design” viewpoint: choose M (as a preconditioner), estimate a
spectral interval for M−1A, and then tune (τ, C) to obtain a desirable spectral radius.
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Step 1: choose M as a preconditioner. Let M be any SPD matrix such that applying
M−1 (i.e., solving linear systems with M) is inexpensive (exactly or approximately). Typical
choices include diagonal scaling, incomplete factorizations, block preconditioners, or multilevel
approximations. [10, 8, 9] All results are naturally expressed in terms of the generalized eigen-
values λi of (A,M), i.e. of M−1A.

Step 2: estimate spectral bounds. Let 0 < m ≤ λmin(M
−1A) and L ≥ λmax(M

−1A) be
coarse bounds. In practice, a few steps of power iteration (for L) or Lanczos (for m and L) are
often sufficient; only matrix–vector products with A and solves with M are needed.

Step 3: pick a stable time step. For the explicit Newmark case β = 0 (with γ = 1
2
) the

basic stability requirement reads
0 < τ 2L < 4, (34)

so that a safe choice is τ = 2 θ/
√
L with θ ∈ (0, 1).

Step 4a: proportional damping C = ηM (heavy-ball form). If C = ηM , the iteration
on u can be written as a preconditioned heavy-ball scheme (see §3.4):

u(k+2) = u(k+1) + µ
(
u(k+1) − u(k)

)
+ αM−1(b− Au(k+1)).

Given a spectral interval [m,L], one may use the classical “optimal” heavy-ball parameters for
quadratic problems,

α⋆ =
4(√

L+
√
m
)2 , µ⋆ =

(√
L−

√
m√

L+
√
m

)2

. (35)

These map to Newmark parameters through

d⋆ := ητ =
2(1− µ⋆)

1 + µ⋆
, τ =

√
2α⋆

1 + µ⋆
, η =

d⋆

τ
, (36)

which automatically satisfies (34) since τ 2 = 4/(L +m) in this case. The resulting worst-case
contraction factor on [m,L] is given by Theorem 3.2.

Step 4b: Rayleigh damping C = a0M+a1A (mode-selective damping). With Rayleigh
damping, d(λ) = τ(a0+a1λ) increases linearly with λ. This allows one to damp high-frequency
modes more strongly while keeping low modes mildly damped. A simple two-point design is
obtained by prescribing

dm := d(m), dL := d(L),
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and solving for (a0, a1):

a1 =
dL − dm
τ(L−m)

, a0 =
dm
τ

− a1m. (37)

Typical choices keep dm small (to avoid overdamping low modes) and take dL closer to 2 to
quickly damp high modes, while maintaining (34). Setting a1 = 0 (i.e. dL = dm) reduces to
proportional damping.

Corollary 3.2 (Rayleigh damping as a smoother for high-frequency modes). Assume (34) and
consider Rayleigh damping with parameters chosen so that 0 ≤ d(λ) = τ(a0 + a1λ) < 2 for
λ ∈ [m,L]. For any subset of modes such that (24) holds (in particular, for sufficiently large λ
if a1 > 0), the corresponding error components satisfy the explicit bound

|ξ(k)(λ)| ≤

(√
2− d(λ)

2 + d(λ)

)k (
|ξ(0)(λ)|+ |ξ(1)(λ)|

)
.

Thus, selecting a1 > 0 to make d(λ) increase with λ yields stronger attenuation of high-frequency
components, a behavior analogous to smoothing in multilevel methods.

Remark 3.8 (Varying parameters and Chebyshev-like acceleration). When C = 0 and β = 0,
stability imposes only τ 2kλ ≤ 4 mode-wise. By letting τk (or, equivalently, the residual step
length) vary with k, one can realize polynomial filters closely related to Chebyshev semi-iteration
on the interval [m,L]. This viewpoint also clarifies the connection with Krylov methods: CG
adaptively builds near-optimal polynomials on [m,L], whereas the Newmark-based iteration pro-
duces a prescribed polynomial through (τk, C).

4 A compact iteration viewpoint

For the reader’s convenience, we summarize here the algebraic form of the explicit Newmark
scheme (β = 0) as a linear iteration for the error in (1). This provides a single “entry point”
for analysis (via iteration matrices or mode-wise recurrences) and for algorithmic design (via
the choice of (M,C, τk)).

4.1 State-space iteration matrix for the homogeneous error dynam-
ics

Consider the homogeneous error variables w(k) = u(k) − u and v(k) ≈ u̇(tk), so that r(k) =
b − Au(k) = −Aw(k). For a fixed time step τk ≡ τ and fixed γ ∈ [0, 1], the explicit scheme
(10)–(11) defines a linear recurrence(

w(k+1)

v(k+1)

)
= G

(
w(k)

v(k)

)
, (38)
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with a 2n × 2n iteration matrix G whose blocks depend only on M,C,A, τ, γ. To make this
explicit, rewrite (10) (using r(k) = −Aw(k)) as

w(k+1) =
(
I − τ2

2
M−1A

)
︸ ︷︷ ︸

=:G11

w(k) +
(
τI − τ2

2
M−1C

)
︸ ︷︷ ︸

=:G12

v(k). (39)

Next, insert r(k) = −Aw(k) and r(k+1) = −Aw(k+1) into (11) and solve for v(k+1):

v(k+1) = (M + γτC)−1
[
(M − (1− γ)τC)v(k) − τ

(
γAw(k+1) + (1− γ)Aw(k)

)]
. (40)

Combining (39)–(40) gives (38) with

G =

(
G11 G12

G21 G22

)
,

G21 = −(M + γτC)−1 τ
(
γAG11 + (1− γ)A

)
,

G22 = (M + γτC)−1
[
(M − (1− γ)τC)− τ γAG12

]
.

(41)

When G is constant (fixed τ), linear convergence is governed by the spectral radius ρ(G). The
Rayleigh and proportional settings singled out in §3.3–§3.4 correspond precisely to cases where
(38) decouples mode-wise and yields explicit scalar recurrences. In the variable-step setting τk,
(10)–(11) generate a product of matrices Gk; this is the natural framework for interpreting the
method as a polynomial (or rational) filter on the spectrum of M−1A.

5 Scope, assumptions, and limitations

The “dynamics-to-iteration” correspondence is cleanest under the standing SPD assumptions
used throughout. For robustness (and to guide future extensions), it is useful to keep the
following points explicit.

SPD structure. Most statements in the main text assume A ≻ 0 and M ≻ 0. The equi-
librium interpretation is still meaningful for symmetric indefinite problems, but stability and
convergence then depend on how the negative spectrum is handled (e.g., shifted dynamics or
stabilized saddle-point formulations), and CG/PCG no longer apply directly.

Damping and asymptotic decay. For the continuous system (5), C ≻ 0 yields global
asymptotic stability (Appendix B). If C ⪰ 0 one generally obtains Lyapunov stability; asymp-
totic decay requires excluding undamped modes. At the discrete level, using backward Euler
on the damping law (Remarks 3.1–3.2) is unconditionally dissipative in the C ⪰ 0 case.

Commutativity assumptions. The sharp mode-wise analysis in §3.3 relies on M−1C be-
ing diagonalizable in the generalized eigenbasis of (A,M) (e.g., Rayleigh/Caughey damping).
Without this property one can still analyze (38) via matrix norms or by bounding non-normality
effects, but closed-form scalar recurrences are typically unavailable.
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What is (and is not) “PCG” here. The Newmark-induced iterations naturally generate
a two-term (CG/PCG-like) span for the direction update (Remark 3.2), with a built-in pre-
conditioning action given by M−1 or (M + τC)−1. Recovering the exact PCG coefficients is a
separate step: it amounts to enforcing the discrete Galerkin orthogonality/conjugacy conditions
that characterize Krylov methods.

6 Numerical experiments

This section illustrates the practical meaning of the “dynamics-to-iteration” viewpoint through
a small set of reproducible SPD test problems. The aim is not to compete with optimized Krylov
solvers, but to document, in a controlled way, how the Newmark-induced iteration behaves as
a stationary filter whose design parameters are (M,C, τ).

6.1 Test problems and discretizations

All tests are posed on Ω = (0, 1)2 with homogeneous Dirichlet boundary conditions. We
discretize on a uniform n × n grid of interior points (n = 80 in all runs reported below), so
that the linear system dimension is N = n2. To remove PDE discretization error from the
comparison we use a manufactured solution strategy: we build a smooth “true” vector u⋆ as
a small combination of sine modes and set b = Au⋆. All methods start from u(0) = 0 (hence
r(0) = b) and stop when ∥r(k)∥2/∥b∥2 ≤ 10−10 or when k = maxit = 5000.

(T1) Poisson (5-point FD). A is the standard 5-point finite-difference Laplacian.

(T2) Heterogeneous diffusion (checkerboard). A is a finite-volume discretization of −∇·
(κ∇u) with a 8× 8 checkerboard coefficient taking values κlo = 1 and κhi = 104.

(T3) Anisotropic diffusion (rotated tensor). A corresponds to a constant anisotropic
tensor K = R(θ)diag(1, ε)R(θ)T with (θ, ε) = (π/6, 10−3), discretized by a standard 9-point
FD stencil.

6.2 Compared methods

We compare (i) reference Krylov methods and (ii) Newmark-induced iterations.

� CG/PCG (MATLAB pcg). We use either no preconditioner (CG) or a symmetric
SPD preconditioner P (PCG).

� Newmark–prop. The Newmark-induced stationary iteration with proportional damp-
ing C = ηM and β = 0, γ = 1

2
(the explicit-displacement scheme analyzed in the paper).
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� Newmark–Rayleigh. The same scheme but with Rayleigh damping C = a0M + a1A.
For M non-diagonal, the velocity update is solved inexactly by an inner PCG (see below).

6.3 Preconditioners, parameter selection, and inner solves

We test three choices of “mass/preconditioner” M :

M = I, M = D := diag(A) (Jacobi), M = PIC := LICL
T
IC (ICscaled).

Here PIC is built by an incomplete Cholesky factorization of D−1/2AD−1/2 (MATLAB ichol,
ict, with droptol= 10−3, diagcomp= 0.05, and michol=on) followed by rescaling back to the
original variables; this is the same preconditioner used for the PCG–ICscaled baseline.

Newmark–prop. We set ητ = 1 (equivalently, η = 1/τ) and choose τ from the stability
bound τ 2λmax(M

−1A) < 4 by setting

τ =
2θ√

λmax(M−1A)
, θ = 0.95,

where λmax(M
−1A) is estimated by a few eigs iterations when M is diagonal and by a power

iteration on P−1
IC A when M = PIC.

Newmark–Rayleigh. We set a target damping ratio ζ = 0.7 and determine (a0, a1) from
approximate spectral bounds 0 < m ≤ σ(M−1/2AM−1/2) ≤ L using the standard Rayleigh
matching

a0 = 2ζ

√
mL

√
m+

√
L
, a1 = 2ζ

1
√
m+

√
L
. (42)

This yields moderate damping across the full spectrum while preserving the M−1A-modal
structure. We keep the same τ as in Newmark–prop.

Inner PCG for the velocity update (Rayleigh, M = PIC). With non-diagonal M , the
velocity update requires solving

Qv(k+1) = rhs, Q = (1 + γτa0)M + (γτa1)A,

with a variable tolerance tol in scaled to the current outer residual. Specifically, at outer step
k we set

tol in(k) = min(10−2,max(10−4, 0.1 ∥rk∥2/∥b∥2))

and solve until the relative inner residual drops below tol in(k). We precondition the inner solve
by M (one application of M−1 per inner step), warm-start from v(k), cap the inner iterations
to 60, and track the total number of inner iterations.
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T1 T2 T3

Method it final it final it final

CG 13 8.5×10−11 2287 7.8×10−11 569 9.7×10−11

PCG–Jacobi 13 8.5×10−11 555 9.2×10−11 569 9.7×10−11

PCG–ICscaled 46 5.5×10−11 119 4.2×10−11 91 8.0×10−11

Newmark–prop (M = I) 5000 2.1×10−4 5000 7.9×10−4 5000 6.0×10−4

Newmark–prop (M = D) 5000 2.1×10−4 5000 1.4×10−4 5000 6.0×10−4

Newmark–prop (M = PIC) 367 9.4×10−11 5000 6.9×10−5 464 9.9×10−11

Newmark–Rayleigh (M = D) 788 1.0×10−10 5000 1.2×10−6 896 9.8×10−11

Newmark–Rayleigh (M = PIC) 124 7.9×10−11 2626 9.9×10−11 140 7.6×10−11

Table 1: Iteration counts (outer iterations) and final relative residuals. For Newmark–Rayleigh
with M = PIC the total number of inner PCG steps is: T1: 215, T2: 2742, T3: 320.

6.4 Work units

As a hardware-agnostic proxy for cost, we count A–matvecs. Table 1 reports outer iteration
counts and, when applicable, the total number of inner PCG steps; from these one can re-
construct A–matvec counts via the rules below. For PCG, one iteration corresponds to one
A–matvec. For Newmark–prop, one outer step uses one A–matvec. For Newmark–Rayleigh,
one outer step uses two A–matvecs (one for Av(k), one for Au(k+1)), plus one A–matvec per
inner PCG step.

6.5 Results

Figures 1–3 show residual histories. Table 1 summarizes iteration counts and (when applicable)
the total number of inner PCG steps.

Discussion. Two qualitative behaviors are consistent with the theory developed above. First,
proportional damping (C = ηM) behaves as a smoother : it contracts high-frequency compo-
nents but may stall before reaching a tight tolerance unless the preconditioner is strong enough
(compare M = I,D vs. M = PIC). Second, Rayleigh damping can be tuned to damp both ends
of the spectrum and, when combined with a strong M , yields a robust stationary iteration that
reaches the PCG tolerance even on the high-contrast test (T2), at the price of substantially
more outer steps. In all reported runs, the inner PCG cost for the velocity update remained
modest (of the same order as the number of outer iterations), suggesting that the inexact
Rayleigh variant is feasible as a “preconditioner-in-the-loop” mechanism.

19



Figure 1: (T1) Poisson. Residual histories for CG/PCG and Newmark-induced iterations.

Figure 2: (T2) Heterogeneous diffusion (contrast 104). The proportional-damping Newmark
iteration stalls at a relatively large plateau, while Rayleigh damping combined with M = PIC

reaches the Krylov tolerance (oscillations correspond to underdamped modes).
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Figure 3: (T3) Anisotropic diffusion. Newmark–Rayleigh with M = PIC converges robustly
with a small total inner cost.

6.6 Sensitivity and scaling

To assess robustness beyond the default parameter set used in Table 1, we report two additional
checks: (i) a damping-ratio sweep for the high-contrast test (T2), and (ii) a mild grid-refinement
study.

Sensitivity to the target damping ratio ζ (T2). We keep the same preconditioner M =
PIC and the same stability-driven step size τ = 2θ/

√
λmax(M−1A) with θ = 0.95, and vary

only the Rayleigh coefficients (a0, a1) through the target damping ratio ζ in (42). Table 2
summarizes the outer iteration count, the final relative residual, and the total number of inner
PCG steps (for the v-update) for a representative set of ζ values. In our experience, too small ζ

ζ outer it final relres inner it (total) notes

0.30 5000 2.07× 10−9 5167 maxit
0.50 3829 9.95× 10−11 3958
0.70 2629 9.87× 10−11 2749
0.90 2111 9.88× 10−11 2376
1.20 2177 9.95× 10−11 3014

Table 2: Damping-ratio sweep for T2 with Newmark–Rayleigh and M = PIC.
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underdamps low-frequency modes and slows the tail convergence, while too large ζ overdamps
and reduces the effective contraction per step. A moderate range (e.g. ζ ∈ [0.5, 1.0]) typically
balances these effects. In Table 2, ζ = 0.9 yields the smallest outer iteration count among
the tested values, while ζ = 0.3 does not reach the target tolerance within the prescribed cap
(maxit=5000).

Scaling with grid refinement (T2). We repeat the T2 experiment for increasing grid sizes
n (hence N = n2), using the same setup (manufactured u⋆, M = PIC, and Rayleigh damping
with ζ = 0.7). Table 3 reports the iteration counts of PCG–ICscaled and Newmark–Rayleigh
with M = PIC, together with the cumulative inner PCG steps for the latter. These results

n N PCG–ICscaled it Rayleigh outer it Rayleigh inner it (total)

40 1600 67 1697 1772
80 6400 119 2629 2748
120 14400 165 3778 3927

Table 3: Grid-refinement study for T2.

provide a basic sanity check that the method does not rely on an accidental grid-dependent
parameter choice. In this small range of sizes, the cumulative inner work stays close to the
outer count (about 4–5% more in Table 3), suggesting that the inexact Q-solve can be kept
inexpensive when preconditioned by M = PIC. At the same time, the Rayleigh outer iterations
grow markedly faster than PCG–ICscaled iterations, which is consistent with the fact that PCG
is optimal in a Krylov subspace whereas the Newmark-induced iteration is a fixed-parameter
stationary process. A detailed complexity study (wall time, matvec counts, and factorization
cost) is beyond the scope of this note and is left for future work.

7 Conclusions

We developed a dynamical viewpoint in which explicit Newmark time stepping, applied to a
suitably chosen damped second-order dynamics, induces stationary iterations for solving large
sparse SPD linear systems Au = b. In this interpretation the “mass” operator M plays the role
of a preconditioner, while the “damping” operator C introduces memory and spectral filtering,
thus shaping the effective iteration polynomial.

From the algorithmic side, proportional damping (C = ηM) yields inexpensive smoother-like
schemes that can stagnate at moderate accuracies, whereas Rayleigh damping (C = a0M+a1A),
combined with an effective choice of M (e.g., IC-scaled approximations), produces robust solver
behavior. In our diffusion benchmarks, including high-contrast heterogeneous coefficients, the
Rayleigh design with M = PIC reaches tight tolerances using an inexact inner solve on Q =
M + γτC whose total inner PCG iterations remain comparable to the number of outer steps.

22



Sensitivity tests indicate that moderate-to-high damping ratios (e.g. ζ ≈ 0.7–0.9 in the reported
setting) offer a good trade-off between contraction and work.

Several directions deserve further investigation. While we used a constant time step τ ,
Newmark naturally allows variable τk; designing τk adaptively may provide a non-stationary
acceleration akin to Chebyshev-type strategies and further reduce iteration counts on difficult
spectra. Automated parameter selection for (a0, a1) and ζ based on inexpensive spectral es-
timates or residual-driven criteria would also strengthen robustness. Finally, extending the
approach beyond SPD systems and to block-structured problems is a natural next step.
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A Modal analysis

Standing assumptions. In this appendix we assume that A and M are symmetric positive
definite. Moreover, we assume classical (proportional) damping, namely that the damping
matrix C is diagonalizable in the same M -orthonormal modal basis as the pencil (A,M), with
strictly positive modal damping coefficients (equivalently, (49) holds with D ≻ 0). Under these
assumptions we prove (6) (global asymptotic stability in the sense of Lyapunov) for (5). Let
(ω2

i ,ϕi) be a generalized eigenpair of the pencil (A,M), defined by

Aϕi = ω2
iM ϕi, i = 1, 2, . . . , n, (43)

where ωi > 0 and ϕi ∈ Rn is the i-th normal mode. These modes form a basis of Rn and are
assumed to be orthonormal with respect to the mass matrix, i.e.,

ϕT
i M ϕj = δij, (44)

where δij is the Kronecker symbol. In matrix form, (43) reads

AΦ = M ΦΩ2, (45)

where Φ,Ω2 ∈ Rn×n are defined by Φ = [ϕ1,ϕ2, . . . ,ϕn] and Ω2 = diag(ω2
i ).

For any time t, let
w(t) = Φy(t) (46)

be the expansion of the solution of (5) in terms of the normal modes. Substituting (46) into
(5) yields 

MΦ ÿ + CΦ ẏ + AΦy = 0, t > 0

Φy(0) = Φy(0)

Φ ẏ(0) = Φy
(0)
1 ,

(47)
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with w(0) = Φy(0) and w
(0)
1 = Φy

(0)
1 . Using (45) in the first equation of (47), multiplying on

the left by (MΦ)−1, and applying Φ−1 to the initial conditions, we obtain
ÿ + Φ−1M−1CΦ ẏ + Ω2 y = 0, t > 0

y(0) = y(0)

ẏ(0) = y
(0)
1 .

(48)

In the undamped case (C = 0), (48) decouples into n independent second-order equations since
Ω2 is diagonal. This is no longer true when C ̸= 0. To still obtain a decoupled system we
impose the condition

Φ−1M−1CΦ = D, (49)

for some diagonal matrix D ∈ Rn×n with positive entries. Equivalently,

C Φ = M ΦD, (50)

i.e., the normal modes of (45) are also eigenvectors of the pencil (C,M). A sufficient (and, in
this setting, essentially equivalent) condition is that A and C commute1, namely

CM−1A = AM−1C. (51)

Two classical choices used to enforce (49) (and hence (51)) are Rayleigh and Caughey
damping. In the Rayleigh model,

C = a0M + a1A, (52)

for some positive constants a0, a1. The Caughey model reads

C = M
+∞∑

i=−∞

ai (M
−1A)i. (53)

Rayleigh damping is recovered as the special case ai = 0 except for i = 0 and i = 1. Moreover,
by the Cayley–Hamilton theorem applied to M−1A, the number of linearly independent terms
in (53) is at most n.

When (49) holds, system (48) decouples into the scalar equations
ÿi + 2 ξi ωi ẏi + ω2

i yi = 0, t > 0

yi(0) = y
(0)
i

ẏi(0) = y
(0)
1,i ,

(54)

1This commutativity condition (equivalently, simultaneous diagonalization by the undamped modal basis)
goes back to Caughey [12] and to the necessary-and-sufficient characterization of Caughey and O’Kelly [13]; see
also Adhikari and Phani [14] for a concise modern discussion.
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for i = 1, . . . , n. Here the diagonal entries dii > 0 of D in (50) are written as

dii = 2 ξi ωi, (55)

where ξi > 0 is the damping ratio of the i-th mode. The solutions of (54) are linear combinations
of

e−ξiωit
(
αi cos

(
ωi

√
1− ξ2i t

)
+ βi sin

(
ωi

√
1− ξ2i t

))
ξi < 1

e−ξiωit
(
αie

ωi

√
ξ2i −1 t + βie

−ωi

√
ξ2i −1 t

)
ξi > 1

e−ξiωit(αi + βi t) ξi = 1,

(56)

corresponding to the underdamped, overdamped, and critically damped cases, respectively. In
all cases limt→+∞ yi(t) = 0, which implies (6) after returning to w via (46).

B State-space representation

Standing assumptions. In this appendix we assume that A and M are symmetric positive
definite and that C is symmetric positive definite. (The argument can be adapted to C ⪰ 0,
but in that case one generally obtains Lyapunov stability rather than asymptotic decay unless
all undamped modes are excluded.) Under these assumptions we give a second proof of (6)
based on a state-space formulation. We rewrite (2) as a first-order time-invariant linear system,
compute its solution via the matrix exponential, and infer (6) from the spectral properties of
the associated matrix.

We proceed in two steps. First, introduce the change of variables

z = M1/2w, (57)

where M1/2 denotes the (unique) symmetric positive definite square root of M . This yields
z̈+M−1/2CM−1/2︸ ︷︷ ︸

F

ż+M−1/2AM−1/2︸ ︷︷ ︸
E2

z = 0, t > 0

z(0) = M1/2w(0)

ż(0) = M1/2w
(0)
1 ,

(58)

with F and E symmetric positive definite. Next, introduce the auxiliary variables

U = E z, V = ż. (59)

Using (U ,V) instead of the more natural pair (w, ẇ) leads to a state-space representation for
which the location of the eigenvalues is straightforward to characterize. With (59), system (58)
becomes {

Ẋ +AX = 0, t > 0

X(0) = X0,
(60)
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where

X =

(
U
V

)
, A =

(
0 −E

E F

)
, X0 =

(
EM1/2w(0)

M1/2w
(0)
1

)
. (61)

The solution of (60) is given by the matrix exponential

X(t) = e−A t X0. (62)

The key point is that the eigenvalues of A lie in the open right half-plane.

Lemma B.1. The eigenvalues of A have strictly positive real parts.

Proof. Let (λ, Y ) be an eigenpair of A (with possibly complex entries). Then

Y ∗AY = λ ∥Y ∥2,

where ∗ denotes the Hermitian conjugate and ∥Y ∥2 = Y ∗Y . Writing Y = (yT
1 yT

2 )
T , a direct

computation gives
Y ∗AY = y∗

2 F y2︸ ︷︷ ︸
T1

+y∗
2 E y1 − y∗

1 E y2︸ ︷︷ ︸
T2

.

Taking the complex conjugate, we obtain

(Y ∗AY )∗ = y∗
2 F y2︸ ︷︷ ︸
T1

+y∗
1 E y2 − y∗

2 E y1︸ ︷︷ ︸
−T2

.

Hence T1 is real and T2 is purely imaginary. Therefore,

ℜ (Y ∗AY ) = y∗
2 F y2 = ℜ (λ) ∥Y ∥2, (63)

and since F is positive definite we deduce ℜ(λ) ≥ 0. Moreover, the eigenvalue relationAY = λY
is equivalent to {

− E y2 = λy1

E y1 + F y2 = λy2.
(64)

If ℜ(λ) = 0, then (63) implies y2 = 0, and (64)2 yields Ey1 = 0. Since E is nonsingular, we
get y1 = 0, contradicting Y ̸= 0. Hence ℜ(λ) > 0. (In particular, the same argument shows
that A is nonsingular.)

Lemma B.1 implies that the state-space system (60) is globally asymptotically stable, and
therefore limt→+∞ X(t) = 0 for all X0. Finally, (6) follows by returning to the primitive variable
w through (60), (59), and (57).
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