
MOX-Report No. 1008/2015

Numerical simulation of geochemical compaction with
discontinuous reactions

Agosti, A.; Formaggia, L.; Giovanardi, B.; Scotti, A.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



Numerical simulation of geochemical compaction
with discontinuous reactions

ABRAMO AGOSTI], LUCA FORMAGGIA],
BIANCA GIOVANARDI], and ANNA SCOTTI]

February 2, 2015

] MOX– Modellistica e Calcolo Scientifico
Dipartimento di Matematica “F. Brioschi”

Politecnico di Milano
via Bonardi 9, 20133 Milano, Italy
abramo.agosti@polimi.it
luca.formaggia@polimi.it

bianca.giovanardi@polimi.it

anna.scotti@polimi.it

Keywords: compaction processes, discontinuous RHS ODE, mineral dissolution/precipitation.

Abstract

The present work deals with the numerical simulation of porous media subject
to the coupled effects of mechanical compaction and reactive flows that can sig-
nificantly alter the porosity due to dissolution, precipitation or transformation of
the solid matrix. These chemical processes can be effectively modelled by ODEs
with discontinuous right hand side, where the discontinuity depends on time and
on the solution itself. Filippov theory can be applied to prove existence and to de-
termine the solution behaviour at the discontinuities. From the numerical point of
view, tailored numerical schemes are needed to guarantee positivity, mass conser-
vation and accuracy. In particular, we rely on an event-driven approach such that,
if the trajectory crosses a discontinuity, the transition point is localized exactly
and integration is restarted accordingly.

1 Introduction

We propose a model to describe and simulate the compaction process under a progres-
sive burial of a layer of sediments in which a mineral can dissolve in the water flow and
precipitate on the grains of the rock. On one hand, compaction is due to the burial of
the layer, which makes the overburden increase. On the other, the presence of the pre-
cipitated mineral can affect the solid matrix porosity, since the dissolving mineral may
leave some void spaces, whereas the precipitating mineral may fill them. Moreover,
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an alteration of porosity implies a variation of permeability that affects the pressure of
the water flowing through the rock layer. Again, the fluid pressure counteracts com-
paction reducing the effective vertical stress, which has an effect on porosity. Finally,
the chemical reactions that cause the mineral to dissolve and precipitate are influenced
by the fluid flow, which transports the solute.

The result is a nonlinear system of strongly coupled equations. The flow is assumed
to obey Darcy’s law. We use a simplified description of chemical reactions to model the
precipitation and dissolution of a mineral, such as quartz, see [2, 7, 10]. The effect of
the fluid-solid conversion on porosity is accounted for by modifying Athy’s constitutive
law for the porosity [1], following [15, 16]. Again, we follow the strategy proposed
in [15] and recast the governing equations in a Lagrangian frame. We simulate the
sedimentation process by providing a sedimentation rate that cause the overburden to
increase.

The system is solved by splitting the stronger coupling between pressure and com-
paction from the solution of the advection-diffusion-reaction equation for the trans-
ported solute. One main issue is that the equation that models the reaction of the mineral
is a differential equation with discontinuous right hand side [9]. This led us to introduce
another splitting between the advection-diffusion part of this equation and the reaction
one, to take advantage of the available ad hoc methods to manage the discontinuity. In
particular, among the possible strategies such as time step adaptation, [8], or regular-
ization of the right hand side, [4], we chose to adopt an event-driven approach where
the crossing of the discontinuity is exactly localized before restarting integration [5].

The paper is structured as follows. In Section 2 we present the mathematical model
and we recast it into a Lagrangian frame. Section 3 deals with the numerical approach.
In particular, we dwell on the application of a method to treat ODEs with discontinuous
right hand side to our specific case. Finally in Section 4 the numerical solution obtained
in three test configurations are analyzed, while conclusions are drawn in Section 5.

2 The model

We consider a layer of a sedimentary rock subject to a progressive burial. We assume
that the porous medium is saturated with water. We are interested in modeling the
behavior of a reactive material that can be advected by the flow when dissolved in water,
and precipitate on the grains surface in the rocks. On the other hand, the precipitated
mineral may dissolve into the fluid. It is clear that this mechanism, together with the
increasing load due to the burial of the layer, affects the porosity φ of the sediments,
leading to both geochemical and mechanical compaction.

2.1 The domain

We consider a two-dimensional model of the aforementioned processes, simulated in
a vertical cross section of the sedimentary layer. Due to compaction, the domain of
interest Ω, evolves during the simulation. However, it is more convenient to cast the
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coupled problem of fluid flow, compaction and chemical reactions in a fixed geometry.
For this reason, under the assumption that compaction acts only vertically, we define a
fixed domain Ω̂, obtained from Ω = Ω(t), as its completely compacted configuration
once removed the reactive (dissolvable) part of the rock, as sketched in figure 1.

Ω̂ Ω(t)

x x

ξ z

ϕt

Figure 1: A sketch of the two domains involved. Ω(t) is the physical domain and Ω̂ is
not time-dependent.

More precisely, following [15] and [16], we assume that one can define at any point
x ∈ Ω(t) and at any time the field C = C(x, t), which represents the ratio between
the volume of the reactive part of the rock and the initial rock volume, so that the map
ϕt : Ω̂→ Ω(t), (x, ξ) 7→ (x, z(ξ, t)), is

ϕt(x, ξ) =

(
x, ztop(x, t)−

∫ ξ∗(x)

ξ

1− C0(x, ξ
′) + C(x, ξ′, t)

(1− C0(x, ξ′))(1− φ(x, ξ′, t))
dξ′
)
, (1)

where ξ∗(x) is the thickness of the layer along the ξ-axis, which is constant, ztop is
the thickness of the layer along the z-axis and is time-dependent, and C0(x, ξ

′) =
C(x, ξ′, 0).

The deformation gradient F associated to this map is

F := ∇ϕt =

[
1 0

∂z/∂x ∂z/∂ξ

]
, (2)

and the Jacobian reads

J := det(F) =
∂z

∂ξ
=

1− C0 + C

(1− C0)(1− φ)
> 0. (3)

Note that the time derivative of the map coincides with the velocity us of the sedi-
ments and that, due to the hypothesis of vertical compaction, us = uszez , being ez the
unit vector of the z-axis.
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2.2 Governing equations

In this section we present the equations governing the porous matrix evolution, fluid
flow and chemical reactions in the physical, thus time dependent, domain Ω(t).

In this framework, mass conservation of the solid phase in a porous medium implies

∂

∂t
((1− φ)ρs) +

∂

∂z
((1− φ)ρsusz) = Qs in Ω(t)× (0, T ), (4)

where Qs is a source/sink term that models the growth or consumption of the solid
grains. The density ρs of the solid matrix is obtained as the average of the density of
the inert part of the rock ρr and that of the precipitated mineral ρp, weighted with their
volume fractions, that is

ρs =
(1− C0)ρr + Cρp

1− C0 + C
. (5)

If we assume that no water is released or consumed during the reactions, mass
conservation for the fluid phase reads

∂

∂t
(φρw) + ∇ · (φρwuw) = 0 in Ω(t)× (0, T ), (6)

where ρw is the density of water and uw its macroscopic velocity.
The relative velocity of the water with respect to the solid matrix is related to the

pore pressure p by Darcy’s law, i.e.

φ(uw − us) = − K

µw
(∇p− ρwg) in Ω(t)× (0, T ), (7)

with g = −gez . µw denotes the water viscosity and K is the permeability tensor, which
we assume to be isotropic, thus

K(φ) = K(φ)I (8)

being K(φ) given by the following relation, see [3],

K(φ) =





k0φ
3 if φ ≥ 0.1

100 k0φ
5

(1− φ)2
if φ < 0.1

. (9)

Mechanical compaction of porous media is usually modeled by a relation between
porosity and effective vertical stress known as Athy’s law, [1]. However, in the case
of our interest, porosity depends also on the concentration of precipitated mineral C.
According to [15], we model the coupled effect of dissolution/precipitation and com-
paction with the following equation,

φ = (φ0 + (1− φ0)(C0 − C)) e−β σ, (10)
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which is a generalization of Athy’s law. Here, σ denotes the vertical effective stress
defined as σ = s − p, where s is the overburden and can be obtained integrating the
differential equation

∂s

∂z
= −[(1− φ)ρs + φρf ] g (11)

with the boundary condition s(x, ztop, t) = stop(t), where stop is a given function
of time and accounts for the weight of the overlying layers. The equations (4), (6),
(11) describe the coupling between water flow and compaction. We now introduce
the chemical reactions that model the precipitation and dissolution of the transported
mineral specie. Let us introduce the field γ that represents the dissolved mineral con-
centration in terms of moles per unit volume of water. The dissolved mineral is allowed
to diffuse, to be transported by the fluid flow and to interact with the solid matrix, i.e.
to precipitate, behaving as prescribed by the following equation:

∂

∂t
(γφ) +∇ · (φγ(uw − us)−Dφ∇γ) = r(C, γ)φ in Ω(t)× (0, T ), (12)

where D > 0 is the diffusion coefficient and r(C, γ) is a source/well term that repre-
sents the dissolution/precipitation rate of the mineral. We point out that, since we are
considering low velocities we are here neglecting the effect of dispersion.

On the other hand, a source/sink term for equation (12) implies a sink/source term
for the equation of the volume fraction of the precipitated mineral, as stated by the
following equation:

∂C

∂t
= −Vmr(C, γ)φ, (13)

where Vm is the molar volume of the mineral.
Following [2], we model the reaction rate r as a discontinuous function of γ and C.

Let us introduce the following notation

x+ := max(0, x), x− := (−x)+.

We model the source/sink term for the equations (12) and (13) as

r(C, γ) = λ
(
sign(C)+F (γ)− − F (γ)+

)
, (14)

where
F (γ) =

γ

γeq
− 1, γeq > 0.

Here, γeq denotes an equilibrium concentration of the dissolved mineral. The rate con-
stant λ is modeled according to Arrhenius law as

λ = λ̄e−
E
RT > 0,

whereE is an activation energy,R is the gas constant and the temperature T is assumed
to be a given function of time.
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We observe that, if the solute concentration exceeds the equilibrium value, γ > γeq,

then F (γ) > 0 and r = −λ
(

γ
γeq
− 1
)
< 0. In this case, precipitation occurs. On

the other hand, if γ < γeq, then F (γ) < 0 and r = λ sign(C)+
(

1− γ
γeq

)
≥ 0. In

this case, if sign(C) > 0 (i.e. if some precipitated is available in the rock), dissolution
occurs. Finally, in case γ = γeq, F (γ) = 0 and the chemical equilibrium implies r = 0.

2.3 The equations in Ω̂× (0, T )

As we have anticipated, the physical domain Ω(t) is time dependent. For this reason,
it is convenient to solve the problem numerically in the artificial fixed domain Ω̂. The
generic scalar field in Ω becomes f̂ = f ◦ ϕt in Ω̂, and the generic vector field v is
transformed through the Piola transformation, that is v̂ = Ĵ F̂−1v ◦ϕt, where Ĵ and F̂
are the transformation of (2) and (3). Finally, the nabla operator in the fixed coordinate
system becomes

∇̂ =

(
∂/∂x
∂/∂ξ

)
= F̂∇ = F̂

(
∂/∂x
∂/∂z

)
.

Since, as observed before, the time derivative of the map is the velocity us of the solid
matrix, equation (4) reformulated in Ω̂× (0, T ) simplifies and becomes

∂

∂t

(
(1− φ̂)ρ̂sĴ

)
= Q̂s Ĵ . (15)

Inserting (3) and (5) into (15) and developing the time derivative, the following expres-
sion for Q̂s can be obtained:

Q̂s = ρp
(1− φ̂)

1− Ĉ0 + Ĉ

∂Ĉ

∂t
. (16)

The solid mass conservation equation (4), completed with the right hand side (16),
allows us to compute, knowing porosity and precipitate concentration, the velocity of
the solid matrix and therefore the deformed configuration of the layer. Indeed, one can
solve (4) for usz with a Dirichlet condition on the bottom boundary, and solve then
∂z
∂t = usz with a proper initial condition. We point out that, since we are considering
the evolution of a single layer, such boundary conditions should be provided by the
reconstruction of the history of the whole sedimentary basin.

Equations (6), (7), (10), and (11) can be cast on Ω̂× (0, T ) as




∂(φ̂ρ̂wĴ)

∂t
+ ∇̂ · (φ̂ρ̂wû) = 0

φ̂û = −Ĵ K̃

µw

(
∇̂p̂− ρ̂wF̂T ĝ

)

φ̂ = (φ0 + (1− φ0)(Ĉ0 − Ĉ)) e−β (ŝ−p̂)

∂ŝ

∂ξ
= −[(1− φ̂)ρ̂s + φ̂ρ̂f ] ĝĴ

, (17)
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where we have set K̃ := F̂−1K(φ̂)F̂−T , and û = ûw − ûs.
Finally, the equations for the concentration of the transported mineral and for the

volume fraction of the precipitated on the solid matrix, in the fixed domain, are




∂

∂t
(γ̂φ̂Ĵ) + ∇̂ ·

(
φ̂γ̂û−Dφ̂F̂−T ∇̂γ̂

)
= r̂(Ĉ, γ̂)φ̂Ĵ

∂Ĉ

∂t
= −Vmr̂(Ĉ, γ̂)φ̂.

(18)

The system formed by equations (17) and (18), complemented with suitable initial
and boundary conditions, is a nonlinear system of strongly coupled equations. Indeed,
it is clear that the changes in porosity can cause overpressures (i.e. pressures larger than
hydrostatic) because permeability is a function of porosity, and moreover porosity plays
a role in the storage term of fluid mass conservation. On the other hand. fluid pressure
can counteract compaction reducing the effective vertical stress. Finally, chemical re-
actions are influenced by the fluid flow which transports the solute, and can increase
or reduce the porosity if dissolution or precipitation occur. The approximation strategy
implemented to tackle this coupling is illustrated in the next section.

3 The numerical approximation

For the solution of the coupled problem described in the previous section one could
opt for a fully coupled approach using Newton iterations. However, even if a fully
coupled approach is in general more robust, it is computationally very expensive and
moreover the Jacobian matrix is likely to be ill-conditioned because of the different
scales involved in the equations. For this reason we resort to an iterative splitting where
the problems are solved in sequence, performing fixed point iterations until convergence
is achieved.

3.1 Time discretization and iterative splitting

In principle all the aforementioned problems, i.e. fluid flow, compaction and solute dis-
solution/precipitation are coupled. If we assume that the effect of chemistry on poros-
ity is moderate and relatively ”slow” we can solve via fixed point iterations only the
stronger coupling between pressure and compaction, and solve the advection, diffu-
sion and reaction for the solute once per time step, reducing the computational cost.
Therefore, for each time, we are performing the following steps:

• integrate (18)

• enter the fixed point loop

– compute the sedimentary load and the effective stress

– update of the porosity

– solve Darcy’s problem, to obtain fluid pressure
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– check for convergence.

Since the reaction term in the ADR equation for γ is discontinuous, its approxi-
mation can benefit from a tailored integration scheme. Therefore it is very convenient,
though not mandatory, to split the equation into an advection-diffusion part and a re-
action part. This way, starting from the coupled problem (18) we can split it into two
sub-problems:

Advection-diffusion equation

∂

∂t
(γ̂φ̂Ĵ) + ∇̂ ·

(
φ̂γ̂û−Dφ̂F̂−T ∇̂γ̂

)
= 0 (19)

Reaction system




∂γ̂

∂t
= r̂(Ĉ, γ̂)

∂Ĉ

∂t
= −Vmr̂(Ĉ, γ̂)φ̂

(20)

The two problems are solved in sequence according to a second order Strang split-
ting ( [11,13]). If we denote with γ̂n,n+1, Ĉn,n+1 the concentrations at the discrete time
tn and tn+1 respectively, with γ̂∗,∗∗ two intermediate values of γ̂ and with ∆t the time
step amplitude, the splitting consists in performing the following three steps

I)
2(γ̂∗φ̂Ĵ − γ̂nφ̂Ĵ)

∆t
+ ∇̂ ·

(
φ̂γ̂∗û−Dφ̂F̂−T ∇̂γ̂∗

)
= 0

II)





γ̂∗∗ − γ̂∗
∆t

= r̂(Ĉn, γ̂∗)

Ĉn+1 − Ĉn
∆t

= −Vmr̂(Ĉn, γ̂∗)φ̂

III)
2(γ̂n+1φ̂Ĵ − γ̂∗∗φ̂Ĵ)

∆t
+ ∇̂ ·

(
φ̂γ̂n+1û−Dφ̂F̂−T ∇̂γ̂n+1

)
= 0.

Note that we have chosen an implicit, thus more stable, discretization for the advection-
diffusion part, while as concerns the reaction part an explicit scheme is more suitable
for the implementation of the event detection method described in section 3.3. We
also point out that we are employing a higher order splitting to achieve better accuracy.
Since for each time step we also need to solve some fixed point iterations for pressure
and porosity, the use of an higher order splitting turns out to be to be more efficient than
using a smaller the time step.

3.2 Finite element discretization

We have chosen a mixed finite element method for both the Darcy’s problem and the
advection-diffusion part of the equation for the solute concentration. This allows us to
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use the same finite element approximation for the relative velocity û in equations (19)
and (17,1). The finite element space chosen for the relative velocity û is the lowest
order Raviart Thomas IRT0(Ω̂, Th) ⊂ H(div, Ω̂), while the solute concentration γ and
the water pressure p are in the space of the piece-wise constant functions IP0(Ω̂, Th) ⊂
L2(Ω̂). In both equations, since we are considering mixed formulations, the Dirichlet
boundary conditions on pressure and concentration are naturally included in the weak
formulation, while the Neumann boundary conditions on normal velocity and flux are
imposed with a Nitsche’s penalization technique (see [12]). Finally, the differential
equation for the computation of the overburden s is solved with a SUPG stabilized
finite element method, using P1 elements.

3.3 Numerical solution of the discontinuous ODEs for dissolution/precipitation

We now focus on the numerical approximation of the reaction part of the coupled prob-
lem (18). Thanks to the splitting we can employ an ad hoc method for discontinuous
ODEs. Indeed, once the problem has been discretized in space with the finite element
method as described in the previous section, equations (20) become a system of ODEs
for each single degree of freedom. If we denote as γ̂, Ĉ the vectors containing the
degrees of freedom representing the solute and precipitate concentrations, being r̂ the
corresponding vector of the reaction rates defined as in (14), (18) is an ODE system
with discontinuous right hand side, to whom Filippov theory can be applied. To this
purpose, we define

y =

[
γ̂

Ĉ

]
and f =

[
r̂

−Vmr̂φ̂

]
,

and we observe that

∂yi
∂t

=

{
f1i C = 0 and γi < γeq

f2i elsewhere
, (21)

where

f1 =

[
0
0

]
and f2 =


 λ

(
1− γ

γeq

)

−λφVm
(

1− γ
γeq

)

 .

Figure 2 shows the discontinuity of the right hand side on the phase plane (γ,C)
for the case of a single solute concentration γ and a single precipitate concentration C.

We can observe that, since the right hand side is discontinuous, it is impossible
to state the existence of a solution via Peano’s theorem. For this type of problems
the Caratheodory existence theorem [14] does not apply either since it considers only
discontinuities in the t variable, while here the discontinuity depends on the solution
itself. Thus, we need to resort to Filippov’s theory [6] to determine the behavior of the
solution at the discontinuities. We also observe that at Ĉ = 0 we have a finite jump
in the right hand side. Figure 3 illustrates, in phase plane, the possible behaviors of
the solution at the discontinuity. If we denote with n the normal to the hypersurface of
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γ

C

γ = γeq

f 2
1 = λ


1− γ

γeq




f 2
2 = −λφVm


1− γ

γeq




f 1
1 = 0 f 1

2 = 0

Figure 2: The phase plane associated with the ODE system. The right hand side is
discontinuous over the red line, that is C = 0 and γ < γeq.

γ

C

f2

f1

γ

C

f2

f1

γ

C

f2
f1

Figure 3: The possible behavior of the solution at the discontinuity in the phase plane.
From left to right: crossing, sliding, and tangent.

discontinuity Σ (in our case, it is simply the line Ĉ = 0), once the trajectory reaches
the discontinuity we have the following possibilities:

(a) crossing solution, if (nT f1) · (nT f2) > 0

(b) sliding solution, if (nT f1) · (nT f2) < 0. In this case the the solution remains on
Σ. It means that y(t) eventually is a solution of

dy(t)

dt
= fF (t,y(t)),

where fF is an appropriate vector field which can be computed as a linear com-
bination of f1 and f2.

Note that, indeed, in the case of our interest, f1 is identically null. It can be shown
that once we reach the discontinuity Ĉ = 0 we have there fF = [0, 0]T , i.e. the solution
will remain constant.

Numerical methods for the integration of DRH-systems can deal with the disconti-
nuity with different approaches, such as step adaptation, or smoothing of the right hand
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side. The computational approach used in this work, proposed by [5], is designed to
locate with accuracy the points where the transition occurs and check the transversal-
ity/sliding conditions stated above through the following steps:

• integration of the ODE outside Σ, in particular, we use an explicit order 2 Runge
Kutta method;

• location of the point y ∈ Σ reached by a trajectory, and the corresponding time
t∗ with an iterative method;

• check of the transversality or sliding conditions;

• in case of sliding motion, integration on Σ with the proper right hand side;

These steps are performed for each degree of freedom during the integration of (20)
to achieve a good accuracy and, most of all, to avoid unphysical solutions such as the
occurrence of negative concentrations, as we will show in the results.

4 Results

We simulate the compaction process of a 200m × 120m sedimentary layer buried at
the depth d. At the beginning o the simulation d = d0, then a sedimentation velocity
∂d
∂t > 0 brings the domain at a depth d(t). We do not model the addition of extra
layers due to the progressive burial and the sedimentation acts only as a variation of
the boundary conditions. For this reason, the boundary conditions for pressure and
overburden are time-dependent. Temperature is a given field and is obtained with a
geothermal gradient ∂T

∂d and a surface temperature T0. The main parameters used for
the following simulations are summarized in table 1.

Value Unit Value Unit
β 10−8 Pa−1 φ0 0.5 -
d0 2000 m ∂d

∂t 100 m/My

T0 20 ◦C ∂T
∂d 0.035 ◦C/m

k0 10−6 Darcy g 9.81 m/s2

µw 0.001 Pa s D 1.58 10−8 m2/s

ρw 1000 kg/m3 Vm 0.0226 m3/mol

ρm 2660 kg/m3 ρd 2500 kg/m3

ρ̄ 2500 kg/m3 γeq 0.167 mol/m3

E 60.1 kJ/mol λ̄ 8.37 10−6 mol/(m3 s)

Table 1: Physical parameters for the simulation.

We discuss three different initial configurations. In the first case, there is an initial
concentration of precipitated mineral in rock in three ”bricks” and no mineral dissolved
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in water (γ0 = 0). In the second configuration, we have no precipitated mineral nor
solute at the initial time, but the dynamics is driven by a boundary condition which
prescribes γ greater than that of equilibrium at the top of the domain. In the third
simulation, we combine the initial concentration of mineral in rock of the first case and
the boundary condition on γ of the second simulation.

4.1 Configuration 1: The dissolution of the mineral

In figure 4 the set up for the simulation is shown. We have set for pressure an hydrostatic
Dirichlet boundary condition at the top of the domain and at the bottom. The domain is
considered as a part of a longer thin layer of rock, lying along the x-direction, hence no-
flux boundary conditions are imposed on the lateral edges. Finally, a Dirichlet condition
for the overburden is set at the top and we assume that the bottom of the domain moves
downwards with a given, and in our case uniform, velocity.

We solve the problem on a triangular mesh 50×30 with time step ∆t = 0.5 1011 s ≈
1.5 ky to simulate a time span of T = 10 My.

C0 = 0

120 m

200 m
x

z

C0 = 0.1

C0 = 0.1

C0 = 0.1

150 m

10 m

γ0 = 0 p = ρwgd
d γ = 0s = ρ̄gd

û · n = 0 û · n = 0

x

z

γ = 0p = ρwg(d + Lz)

Lz

∇γ · n = 0∇γ · n = 0

Figure 4: Configuration 1: Numerical setup.

The rock is initially filled with water with no dissolved mineral (γ0 = 0). The initial
condition for pressure is the hydrostatic pressure and the initial conditions for stress and
porosity are computed with some fixed point iterations of the stationary problem. The
initial distribution of the precipitated mineral in the rock is sketched in figure 4. Finally,
û0 = 0.

Since the initial concentration of mineral in water is zero, the precipitated mineral
in rock starts to dissolve. Figures 5 and 6 show an increase of γ and a decrease of C.
This behavior lasts as long as there is mineral in rock that can dissolve. Once C = 0,
due to the choice of the boundary conditions, transport and diffusion of the dissolved
material in water let the mineral flow out of the domain, leading to a final state where
no mineral, either on the rock or in the fluid, is present in the layer.

In figure 7, the porosity is shown, which decreases during the simulation due to the
increase of overburden. An higher porosity is obtained, as expected, where the mineral
originally present on the rock dissolves. Due to the non-uniform porosity, the domain
compacts in a non-uniform way and we can clearly see at the end of the simulation that
region in which precipitated mineral dissolves in water compacts more than its neighbor
region.
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Figure 5: Plot of C at t = 0, t = 10/3 My, t = 20/3 My, and t = 10 My. The
precipitated mineral is decreasing due to γ < γeq, until at the end no mineral is present
in the layer.

Figure 6: Plot of γ at t = 0, t = 10/3 My, t = 20/3 My, and t = 10 My. The
dissolved mineral increases as long as there is material in rock that can dissolve. Finally
transport and diffusion let the mineral flow out of the layer.
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Figure 7: Plot of porosity versus z at t = 0, t = 10/3 My, t = 20/3 My, and
t = 10 My, taken on the vertical line that halves the domain. The dashed and the solid
lines represent the initial and the final porosity respectively. Porosity increases in the
regions where the mineral on the rock dissolves.
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4.2 Configuration 2: The precipitation of the mineral

The numerical setup of this simulation is shown in figure 8. The same boundary condi-
tions as in section 4.1 are set, except for that of the dissolved mineral at the top of the
domain. Indeed, we set here γ = 1.5γeq.

We solve the problem on a triangular mesh 50×30 with time step ∆t = 0.5 1011 s ≈
1.5 ky to simulate a time span of T = 25 My.

As expected, the mineral in water starts immediately to precipitate at the top of the
domain, where its concentration is higher than that of equilibrium, while the solute con-
centration varies uniformly from the top to the bottom boundary condition (see figures
9 and 10).

C0 = 0
120 m

200 m
x

z

150 m

10 m
γ0 = 0

p = ρwgd
d γ = 1.1γeqs = ρ̄gd

û · n = 0 û · n = 0

x

z

γ = 0p = ρwg(d + Lz)

Lz

∇γ · n = 0∇γ · n = 0

Figure 8: Configuration 2: Numerical setup.

Figure 9: Plot of C at t = 0, t = 8 My, t = 16 My, and t = 24 My. C is high at the
top, where the mineral in water precipitates.

Also in this case, porosity decreases through the simulation due to the progressive
burial. The lower porosity at the top of the domain that we see in figure 11 is caused by
the precipitation of the mineral.
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Figure 10: Plot of γ at t = 0, t = 8 My, t = 16 My, and t = 24 My.

Figure 11: Plot of porosity versus z at t = 0, t = 8 My, t = 16 My, and t =
24My, taken on the vertical line that halves the domain. The dashed and the solid lines
represent the initial and the final porosity respectively. Porosity is significantly lower at
the top of the domain (on the right) due to the precipitated material.
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4.3 Configuration 3: The general case

The numerical setup of this simulation is shown in figure 12. We have set the same
boundary conditions as in section 4.2 and the same initial conditions as in section 4.1.

We solve the problem on a triangular mesh 50×30 with time step ∆t = 0.5 1011 s ≈
1.5 ky to simulate a time span of T = 25 My.

The results obtained are shown in figures 13 and 14.
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z

C0 = 0.1

C0 = 0.1

C0 = 0.1

150 m
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γ0 = 0 p = ρwgd
d γ = 1.1γeqs = ρ̄gd

û · n = 0 û · n = 0

x

z

γ = 0p = ρwg(d + Lz)

Lz

∇γ · n = 0∇γ · n = 0

Figure 12: Configuration 3: Numerical setup.

Figure 13: Plot of C at t = 0, t = 8 My, t = 16 My, and t = 24 My.

Also in this case, see figure 15, porosity is higher where the precipitate concen-
tration was non-zero at the initial time, since the dissolving mineral leaves some void
spaces. On the other hand, porosity is lower at the top of the domain, where the mineral
precipitates.

Finally, we compare the solutions obtained with two different methods. In figure 16
we shown the concentration of the precipitate obtained with a classical finite element
method (dashed line) and that obtained with the ad hoc method for ODEs with discon-
tinuous right hand side discussed in section 3 (solid line). We can see that, contrarily to
the classical method, the event-driven method prevents C from becoming negative.
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Figure 14: Plot of γ at t = 0, t = 8 My, t = 16 My, and t = 24 My.

Figure 15: Plot of porosity versus z at t = 0, t = 8 My, t = 16 My, and t = 24 My,
taken on the vertical line that halves the domain.The dashed and the solid lines represent
the initial and the final porosity respectively.
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Figure 16: Plot ofC versus z at t = 0, t = 8My, t = 16My, and t = 24My, taken on
the vertical line that halves the domain. The dashed line represents the solution obtained
with a classical finite element method, while the solid line is the solution obtained with
the ad hoc method for ODE with discontinuous right hand side discussed. Notice that
the first method allows the solution to become negative, which is nonphysical.
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5 Conclusion

We have proposed and tested a discretization method for the simulation of compaction
in porous media with a particular focus on the numerical treatment of the discontinuous
reaction terms that may arise in the modeling of geochemical processes. Even if we are
considering a simplified model where only one mineral is allowed to precipitate, dis-
solve and be advected by the water flow, the results are qualitatively correct and most
of all, it is evident that a rigorous treatment of the discontinuity avoids the occurrence
of negative concentrations and oscillations. The whole approximation strategy has been
developed with the aim of finding a trade-off between accuracy and computational ef-
ficiency. However, there is still room for improvement: in particular a more precise
assessment of the error introduced by the splittings, will be the subject of future work.
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