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Abstract

Starting from the fundamental laws of filtration and transport in bio-
logical tissues, we develop a computational model to capture the interplay
between blood perfusion, fluid exchange with the interstitial volume, mass
transport in the capillary bed, through the capillary walls and into the sur-
rounding tissue. These phenomena are accounted at the microscale level,
where capillaries and interstitial volume are viewed as two separate regions.
The capillaries are described as a network of vessels carrying blood flow.
We apply the model to study drug delivery to tumors. The model can be
adapted to compare various treatment options. In particular, we consider
delivery using drug bolus injection and nanoparticle injection into the blood
stream. The computational approach is prone to a systematic quantifica-
tion of the treatment performance, enabling the analysis of interstitial drug
concentration levels, metabolization rates and cell surviving fractions. Our
study suggests that for the treatment based on bolus injection, the drug
dose is not optimally delivered to the tumor interstitial volume. Using
nanoparticles as intermediate drug carriers overrides the shortcomings of
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the previous delivery approach. The present work shows that the proposed
theoretical and computational framework represents a promising tool to
compare the efficacy of different cancer treatments.

1 Introduction and motivations

Mass transport plays a fundamental role in the development of cancer. At
different phases of cancer disease, such as the propagation of growth signals,
the invasion of other tissue and the activation of angiogenesis, tumors use mass
transport phenomena to interact with the surrounding environment [20]. Mass
transport is also at the basis of cancer pharmacological treatment. Targeting
vascularized tumors using the vascular network is a natural therapeutic option.
Nevertheless, the success of anticancer therapies in treating cancer cells is limited
by their inability to reach their target in vivo in adequate quantities [21]. An
agent that is delivered intravenously reaches cancer cells via distribution through
the vasculature, transport across the wall of the vessels and transport through
the tissue interstitium. Each of these steps can be seen as a barrier to delivery.
In addition, delivered molecules may bind to constituents of the extracellular
matrix and be metabolised by cells.

The characteristic traits of cancer can be seen as the emergent effects of a
cascade of phenomena that propagate from the molecular scale, through the cell
and the tissue microenvironment, up to the systemic level. Transport phenomena
at the level of the capillary network (the microenvironment or microscale) play a
key role in this sequence of effects. In particular, the alterations of the capillary
phenotype of a tumor significantly affect the drug delivery process [7]. More
precisely, blood vessels in tumors are leakier and more tortuous than the normal
vasculature and the pressure generated by the proliferating cells reduces tumor
blood and lymphatic flow. These perturbations lead to an impaired blood supply
and abnormal tumor microenvironment characterized by hypoxia and elevated
interstitial fluid pressure. They also reduce the ability to deliver drugs.

The objective of this work is to perform a comparative study of different
modalities to deliver drug to a vascularized tumor mass. This is achieved by
developing a new computational pharmacokinetic model able to capture the ab-
sorption of a drug through the vascular network as well as its distribution and
metabolization in the tumor. Following the seminal sequence of works by Bax-
ter and Jain [2, 3, 4, 5], we believe that the interplay between blood perfusion,
fluid exchange with the interstitial volume, mass transport in the capillary bed,
through the capillary walls and into the surrounding tissue, are important ef-
fects to understand the delivery process at the microscale. Temporal and spatial
dependence will be fully accounted in our governing equations, in contrast to
the approach based on compartment models. Since we consider these phenom-
ena at the level of capillaries, it is possible to derive the governing equations
from a mechanistic standpoint based on the fundamental laws of flow and mass
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transport. The model is also prone to be adapted to different delivery meth-
ods. Besides studying the case of bolus injection, which consists in delivering a
solution containing the active drug into the peripheral systemic circulation, we
analyze the delivery of drug from nanoparticles, which are in turn injected into
the blood stream and interact with the capillary walls.

The analysis of tissue perfusion and mass transport has been addressed using
various advanced approximation approaches. Without any ambition to provide
an exhaustive literature review, we mention [9, 25] where the problem of cardiac
perfusion is addressed, [10, 34] where homogenization techniques are applied
to characterize the average transport properties of tumor tissue constructs and
[38] where isogeometric analysis is used to model angiogenesis in vascularized
tumors.

The model that we develop ends up to be a system of partial differential
equations, which are hard to solve with analytical tools. For this reason, we
complement the model with a state of art numerical solver, based on the fi-
nite element method. The numerical scheme is based on the idea to represent
the capillary bed as a network of one-dimensional channels that acts as a con-
centrated source of flow immersed into the interstitial volume, because of the
natural leakage of capillaries. As a result, it can be classified as an embedded
multiscale method. In the case of simple geometrical configurations of capillary
vessels, such as an array of straight channels, semi-analytic solutions of the prob-
lem have been developed [6, 16, 15]. A more extensive application of numerical
approximation methods has recently enabled the analysis of realistic microvas-
cular geometries [21, 8, 33, 36]. Here, we extend this approximation strategy to
problems involving blood flow and mass transport. The main advantage of the
proposed scheme is that the computational grids required to approximate the
equations on the capillary network and on the interstitial volume are completely
independent. As a result, arbitrarily complex microvascular geometries may be
potentially considered. From the standpoint of numerical approximation, the
theoretical aspects of the method have been addressed in the works by D’Angelo
[12, 13, 14].

Our results suggest that using nanoparticles as intermediate vectors for
chemotherapy improves the treatment. For the same amount of injected dosage,
drug charged nanoparticles provide higher concentration levels in the interstitial
tissue of the tumor and more persistent delivery over time with respect to bolus
injection. Thanks to the computational approach, these conclusions are based
on the analysis of specific performance indicators, such as the interstitial drug
concentration level, the drug metabolization rate, the cell surviving fraction and
the corresponding timecourse.
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2 Materials and methods

We start the derivation of the model by presenting the governing equations for
microcirculation, tissue perfusion and mass transport. In a second phase, we
will adapt these general equations to specific cases. The first case is the study of
the coupled transport of oxygen and tirapazamine, a drug specifically designed
to target hypoxic cells. In the second one we apply the theory to analyze the
delivery of drugs consequent to the injection of nanoparticles into the tumor
region.

We aim to model fluid and mass transport in a permeable biological tissue
perfused by a capillary network. We consider a domain Ω that is composed by
two parts, Ωv and Ωt, the capillary bed and the tumor interstitium, respectively.
To account for the microvascular network, we model the capillaries as cylindrical
vessels. We denote with Γ the outer surface of Ωv, with R its radius and with Λ
the centerline of the capillary network. A characteristic feature of the computa-
tional model is that the capillaries are actually represented as one-dimensional
channels. As shown in [6, 15, 16, 33] this approximation significantly simpli-
fies the problem at the computational level. This is done by taking the limit
R → 0 and shrinking the capillary bed to its centerline Λ. We denote with s
the arc length coordinate along this line. A sketch of the domains before and
after adopting the one-dimensional representation of the capillary network is
visualized in Figure 1.

Figure 1: Visualization of a realistic vascular network that is used in the simu-
lations, courtesy of Dr. T. Secomb, available online at [31]. The transition from
a three-dimensional to a one-dimensional description of the vessels is depicted
below. The colors on the sides of the tissue sample identify the inflow (red) and
the outflow (blue) sections of the capillary network.

After this step, we observe that the distinction between the subregion Ωt and
the entire domain Ω is no longer meaningful, because Λ has null measure in R

d.
For notational convenience, in what follows we will then identify Ωt with Ω and
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Ωv with Λ.
The physical quantities of interest are the flow pressure p, the velocity u and

the concentration of transported solutes c. They are all defined as fields depend-
ing on time t and space, being x ∈ Ω the spatial coordinates. Furthermore,
we denote with the subscript v their restriction to the capillary bed (vessels),
and with t the restriction to the interstitial tissue. The derivation of our model
stems from fundamental balance laws regulating the flow in the capillary bed,
the extravasation of plasma and solutes and their transport in the interstitial
tissue.

2.1 Governing equations for flow and mass transport

The flow model consists in two parts, the microcirculation and the flow in the
interstitial volume, which interact through suitable interface conditions. We
assume that the tumor interstitium behaves as an isotropic porous medium.
The flow through the interstitium is modelled by the Darcy’s law. A Newto-
nian model is applied for the blood flow in the capillaries. We want to take
into account of the lymphatic drainage, which plays an important role in the
phenomena we aim at studying [8, 35].

Microcirculation is an extreme case where the size of vessels is the smallest
and the effect of blood pulsation is almost negligible. The Reynolds and the
Womersley numbers characterizing the flow are very low if compared to other
regions of the vascular network. As a result, Poiseuille’s law for laminar station-
ary flow of incompressible viscous fluid appropriately describes this flow [2, 6].
Let us decompose the network Λ into individual branches Λi, i = 1, . . . , N . We
denote with λi an arbitrary orientation of each branch that defines the increasing
direction of the arc length si (see also Figure 1). Let λ, s be the same quantities
referring to the entire newtwork Λ.

One of the functions of the capillary network is to transport and distribute
fluid and chemicals to the interstitial volume. This is achieved by means of the
leakage of the capillary walls. We model this effect using the Kedem-Katchalsky
equation, that is

Jv := Lp((pv − pt)−
∑

k

σk(πv,k − πt,k))

where Lp is the hydraulic conductivity of the vessel wall (see Table 1 for
units and physiological values). Because of osmosis, the pressure drop across
the capillary wall is affected by the difference in concentration of the chemicals
dissolved in blood, [11, 18], denoted here with the index k. This gives rise to
the oncotic pressure transmural gradient, namely πv,k −πt,k, where π = RgTc is
the oncotic pressure given by a concentration c of a given solute, being Rg the
universal gas constant and T the absolute temperature. The oncotic pressure
is modulated by the reflection coefficient σk that quantifies the departure of a
semi-permeable membrane from the ideal permeability (where any molecule is
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able to travel across the membrane without resistance). Although the index k
spans over all solutes that are dissolved in blood, not all of them significantly af-
fect the oncotic pressure. Only the large molecules, such as proteins, can induce
a significant oncotic pressure gradient. Indeed, the oncotic pressure gradient is
mainly due to the significant presence of albumin in blood, whose concentration
can be reasonably considered to be constant. According to data provided in
[11, 18, 28], the oncotic pressure gradient due primarily to albumin in arteri-
oles and capillaries is about 25 mmHg, which is comparable to the hydrostatic
pressure in the vessel. In contrast, we assume that solutes such as oxygen or
low concentrated drugs can not significantly contribute. This assumption will
be further discussed in what follows, on the basis of the physical parameters
characterizing the transport of the considered solutes (see Tables 1, 2). As a
result, for our purposes, the capillary leakage only depends on the hydrostatic
pressure according to the following expression,

Jb(pt, pv) := Lp((pv − pt)− σ(πv − πt)) = Lp((pv − pt)− σpRgT (cv,p − ct,p)) (1)

where, in agreement with the definition of π, cv,p and ct,p denote the constant
protein concentration in the capillaries and the interstitial tissue respectively. As
a consequence, the flow equations do not depend on the mass transport model
that will be developed in the next section.

To contrast capillary leakage, the venous and the lymphatic systems absorb
the fluid in excess. Following [3] and [35], we model them as a distributed
sink term in the equation for the tissue perfusion. More precisely, we assume
that the volumetric flow rate due to lymphatic vessels, ΦLF , is proportional
to the pressure difference between the interstitium and the lymphatics, namely
ΦLF (pt) = LLF

p
S
V (pt − pL), where LLF

p is the hydraulic conductivity of the lym-
phatic wall, S/V is the surface area of lymphatic vessels per unit volume of tissue
and pL is the hydrostatic pressure within the lymphatic channels. The values of
these parameters with the corresponding units are listed in Table 1. The coupled
problem for microcirculation and perfusion consists to find the pressure fields
pt, pv and the velocity fields ut, uv such that







































































−∇ ·

(

k

µ
∇pt

)

+ LLF
p

S
V (pt − pL)− fb(pt, pv)δΛ = 0 inΩ

ut = −
k

µ
∇pt in Ω

−
πR4

8µ

∂2pv
∂s2

+ fb(pt, pv) = 0 s ∈ Λ

uv = −
R2

8µ

∂pv
∂s

λ s ∈ Λ

(2a)

(2b)

(2c)

(2d)

fb(pt, pv) := 2πRLp((pv − pt)− σ(πv − πt))
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where the term fb(pt, pv)δΛ accounts for the blood flow leakage from vessels to
tissue and it has to be understood as the Dirac measure concentrated on Λ,
denoted with δΛ, and having line density fb. For an appropriate dimensional
interpretation of equation (2a), we remind that δΛ is not a dimensionless func-
tion. According to its definition

∫

Ω
fδΛ(dx)

3 =
∫

Λ
fds, the dimension of δΛ is

[length]−2. Equation (2c) represents Poiseuille flow on the capillary network.
Since the capillary bed is modelled as a one-dimensional network embedded
into the interstitial volume, the equations would be ill posed if the coupling
between the two subregions was considered pointwise [13, 14]. For this reason,
the function fb(pt, pv) is such that the capillary bed is affected by the average
of quantities in the interstitial tissue, calculated on a cylindrical surface that
represents the actual size of capillaries (see Figure 1 for a sketch). The average
value of pressure, velocity or concentration fields over the real surface of the
capillary bed is denoted by

g(s) :=
1

2πR

∫ 2π

0

g(s, θ)Rdθ.

For a more detailed derivation of this model from the problem formulation where
also the capillaries are modelled as three-dimensional channels, we refer the
interested reader to [8].

To model drug transport in the interstitial tissue we assume that molecules
are advected by the fluid and diffuse in all Ω. In addition chemical species may
be metabolised by the cells in the interstitial tissue. The distribution of solutes in
the interstitial tissue is also affected by the lymphatic drainage. According to the
assumptions at the basis of the flow model, the effect of lymphatic drainage on
mass transport is described as a distributed sink proportional to LLF

p
S
V (pt−pL)ct.

Mass transport in the capillary bed is modelled by means of advection-
diffusion equations. As shown in [12], the one dimensional model for mass
transport in the capillaries network can be derived starting from the actual
3D advection-diffusion problem. The coupled problem, accounting for transport
of chemicals from the microvasculature to the interstitium, consists to find the
concentrations cv and ct respectively, such that































∂cv
∂t

+
∂

∂s
(|uv|cv −Dv

∂

∂s
cv) = −

1

πR2
fc(pt, pv, ct, cv) in Λ

∂ct
∂t

+∇ · (ctut −Dt∇ct) +mct + LLF
p

S
V (pt − pL)ct =

= fc(pt, pv, ct, cv)δΛ in Ω

(3a)

(3b)

where Dv and Dt are the molecular diffusivities, in the capillaries and the in-
terstitium, respectively, assumed to be constant in each region. The rate of
metabolization in the interstitium is denoted by m. This parameter may in turn
be a function of the concentrations, as it will be pointed out later on (see Table 2
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for values and units). The function fc(pt, pv, ct, cv) is a mass flux per unit length
of the capillary vessels and it accounts for the mass transfer from the capillary
bed to the interstitial tissue. The concentration in the vascular network, cv, is
defined as mass per unit volume, therefore the linear concentration is given by
Acv, being A = πR2 the cross sectional area of a blood vessel. In order to restore
the dimensional homogeneity of equations (3a) and (3b), we divide all the terms
of (3a) by πR2. As a result, the factor (πR2)−1 multiplies the last term of (3a).
We describe the capillary walls as semipermeable membranes allowing not only
for the leakage of fluid, but also for the selective filtration of molecules. Again,
the Kedem-Katchalsky equations represent a good model for these phenomena
[18]. According to these equations, the flux of chemicals per unit surface across
the capillary walls is:

Jc(pt, pv, ct, cv) := (1− σ)Jb(pt, pv)ct/v + P (cv − ct) on Γ,

where P is the permeability of the vessel wall with respect to solutes, Jb is defined
in (1) and σ is the osmotic reflection coefficient. It quantifies the departure of
the membrane behavior from the case of ideal permeability. The symbol ct/v
denotes the average concentration within the capillary walls. It is defined as a
suitable combination of the concentrations on the two sides of the walls [28]. In
particular, we set ct/v := wct + (1 − w)cv where 0 < w < 1 is a weight that
depends on the Péclét number of the solute transport through the wall. Then,
under the assumption that capillaries can be modeled as cylindrical channels,
the magnitude of the mass flux exchanged per unit length between the network
of capillaries and the interstitial volume at each point of the capillary vessels is
the following,

fc(pt, pv, ct, cv) = 2πR
[

(1− σ)Jb(pt, pv)ct/v + P (cv − ct)
]

.

2.1.1 Boundary and initial conditions.

The fluid dynamics and mass transport equations are not complete yet. Before
being solved, they must be complemented with boundary conditions on the
artificial sections that separate the domains Ω and Λ from the surrounding tissue.
We model a sample of tissue that is able to exchange fluid and mass with the
exterior. In addition, for the governing equations that depend on time, we
need to prescribe the initial conditions of the system. Only the drug transport
equations depend on time. The initial drug concentrations will be set to the
basal values, equal to zero.

For the prescription of boundary conditions on the capillary network we have
to define what are the inflow and outflow boundaries. As shown in Figure 1 using
different colors and arrows, we denote by ∂Λin and ∂Λout the inflow and outflow
sections of ∂Λ respectively. We regulate the flow by enforcing the values of the
blood pressure at the extrema of the capillaries. As a result, we prescribe the
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following conditions:

pv = p0 +∆p on ∂Λin and pv = p0 on ∂Λout,

where the total pressure drop ∆p is computed to ensure that the average blood
velocity in the network fits with the measured values in healthy human mi-
crovasculature [8]. In order to model the administration of the drug through
the vascular system, we assume that a fixed drug concentration, denoted with
cv,max, is injected in the blood stream for a period of time t ∈ (0, T ). We then
enforce

cv = cv,max if t ∈ (0, T ), cv = 0 otherwise, on ∂Λin and ∂scv = 0 on ∂Λout.

On the outflow boundary of the network we constrain the derivatives of the drug
concentration, rather than the value itself. As a consequence, the concentration
value is determined by the model, on the basis of the convection and reaction
mechanisms.

The interstitial tissue, Ω, is assumed to be an isotropic material. To comply
with this property, we enforce on all the artificial interfaces of the tissue, ∂Ω,
boundary conditions that mimic the resistance of the surrounding material. For
the fluid dynamics equations, these conditions are discussed in detail in [8] and
read as follows:

−κt∇pt · n = βb(pt − p0) (4)

where n is the outer unit normal vector of the interstitial boundary, p0 is the
basal (atmospheric) pressure and βb is a parameter inversely proportional to
the resistance of the surrounding tissue. Equation (4) is very general. When
βb → 0 it corresponds to infinite resistance. In this case the fluid flow can
not cross the boundaries of Ω. Conversely, large values of βb (asymptotically
βb → ∞) correspond to enforcing pt = p0 on the boundaries. The sensitivity of
the solution with respect to βb and suitable expressions to calculate it on the
basis of the other model parameters are provided in [8]. We proceed analogously
for the transport of solutes by setting,

−Dt∇ct · n = βcct

where βc quantifies the permeability of the outer tissue with respect to solute
transport. Here, we have implicitly assumed that the basal solute concentration
is equal to zero. The values of βb, βc used in the simulations are reported in
Tables 1, 2, respectively.

2.2 Coupled system of O2 and tirapazamine

Hypoxia targeted drugs, such as tirapazamine (TPZ), are designed to be metabolised
more quickly by hypoxic cells. The distribution of such drugs in the interstitial
tissue then depends on the local availability of oxygen. Mathematical models
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and simulations have already been applied to study these effects [21]. The objec-
tive of this section is to adapt the single-specie mass transport model developed
above to the case of multiple solutes, in order to reproduce the study presented
in [21], with a more detailed mathematical description.

We study the distribution of the oxygen partial pressure, denoted by cox.
Since oxygen is persistently supplied by the capillary bed, we rely on the steady
problem formulation. Oxygen distributes into the interstitial volume thanks
to diffusion and transport. The rate of oxygen absorption depends in turn on
the oxygen partial pressure profile itself. This dependence is represented by a
Michaelis-Menten formula [18],

mox(coxt ) =
mox

0

coxt + cox0

where mox
0 represents the maximal oxygen demand, i.e. the rate of oxygen con-

sumption when oxygen is not limited, and cox0 is the oxygen concentration at
which the reaction rate is half of mox

0 . Let us now denote by ctpz the concen-
tration of TPZ. This is a relatively small molecule that obeys to the governing
equations of mass transport described in (3a). Following [21] the consumption
rate of TPZ depends on the oxygen concentration through the following expres-
sion

mtpz(coxt ) = mtpz
0

ctpz0

ctpz0 + coxt
,

where mtpz
0 is the metabolization rate when TPZ metabolism is not limited by

the oxygen concentration, and ctpz0 is the oxygen concentration at which the
consumption rate for TPZ is halved compared to that under anoxia. Accord-
ing to Table 2, the dimensions of the metabolization kinetic terms mox(coxt )
and mtpz(coxt ) are [time]−1, which make them match with the other terms of
equations (5a) and (5b), respectively.

The general mass transport model (3), adapted to the previous assumptions,
ends up with the following equations,
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∂coxt
∂t

+∇ · (coxt ut −Dox
t ∇coxt ) +mox(coxt )coxt +

+ LLF
p

S
V (pt − pL)c

ox
t = fox

c (pt, pv, c
ox
t , coxv )δΛ in Ω

∂ctpzt

∂t
+∇ · (ctpzt ut −Dtpz

t ∇ctpzt ) +mtpz(coxt )ctpzt +

+ LLF
p

S
V (pt − pL)c

tpz
t = f tpz

c (pt, pv, c
tpz
t , ctpzv )δΛ in Ω

∂coxv
∂t

+
∂

∂s
(|uv|c

ox
v −Dox

v

∂

∂s
coxv ) =

= −
1

πR2
fox
c (pt, pv, c

ox
t , coxv ) on Λ

∂ctpzv

∂t
+

∂

∂s
(|uv|c

tpz
v −Dtpz

v

∂

∂s
ctpzv ) =

= −
1

πR2
f tpz
c (pt, pv, c

tpz
t , ctpzv ) in Λ

(5a)

(5b)

(5c)

(5d)

f∗
c (pt, pv, c

∗
t , c

∗
v) = 2πR

[

(1− σ∗)Lp

(

(pv − pt)− σ(π∗
v − π∗

t )
)

ct/v + P ∗(c∗v − c∗t )
]

2.2.1 Parameters of the model and dimensional analysis.

We apply the coupled oxygen-TPZ model, namely equations (5a)-(5d), to calcu-
late the time and space dependent concentration profiles of TPZ in the interstitial
volume, after a bolus injection of TPZ equal to Ctpz

max for a duration of Tmax = 20
minutes. More precisely, we enforce the boundary condition ctpzv = Ctpz

max on ∂Λin

for t ∈ (0, Tmax). The numerical simulation is however extended for a longer time
interval. The parameters needed to feed the fluid dynamics and the mass trans-
port equations are taken from different sources. For the fluid equations we refer
to [8] and references therein. For the transport of oxygen and TPZ we use the
dataset provided in [21]. The parameters that will be used in the numerical
simulations (and the corresponding sources) are reported in Table 1.

Before proceeding, we aim to use the available data to verify the assumption
that the contribution of oxygen and TPZ to the oncotic pressure is negligible.
This hypothesis has already been widely investigated for oxygen, [28, 26], and
it results to be accurately satisfied, because oxygen is a very small molecule.
For TPZ the question remains open. An upper bound for the oncotic pressure
generated by TPZ dissolved in blood is πtpz

max = σtpzRgTC
tpz
max. The main issue

is the quantification of the reflection coefficient σtpz. According to [11, 18, 28],
this parameter can be estimated as

σtpz =
(

1−
(

1−
rtpz

rpores
)2
)2

and rtpz =
kBT

6πµDtpz
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parameter units value source

p0 +∆p mmHg 35 [18]
∆p mmHg 1.25 [8]
σπv mmHg 28 [18]
σπt mmHg 0.1 [18]
Lp m2s/kg 10−10 [23]

LLF
p

S
V mmHg−1 hours−1 0.5 [3]

βb – 10−6 [8]

Table 1: Physical parameters characterizing the perfusion problem.

parameter units oxygen TPZ

Dt cm2/s 1.35 ×10−5 [21] 1.87 ×10−6 [21]
Dv cm2/s 1.35 ×10−3 −− 1.87 ×10−4 −−
P cm/s 3.5 ×10−3 [33] 5 ×10−3 −−

mtpz
0 s−1 0.0317 [21]

mox
0 mmHg/s 8.0645 [21]

Ctpz
max g/m3 48 [21]

Cox
max mmHg 100 [32]
βc – 10−3 [8] 10−3 [8]

Table 2: Physical parameters for oxygen and TPZ delivery, transport and me-
tabolization.

where rtpz is an estimate of the TPZ molecular radius and rpores quantifies the
average dimension of the endothelial fenestrations in the capillary walls. For the
latter, following [28] and references therein, we take rpores = 5×10−9 m. For the
former, we use the Stokes-Einstein equation (i.e the formula for rtpz reported
above, where kBT is the Boltzmann thermal energy and µ is the viscosity of
blood plasma) to approximate the TPZ radius using the molecule diffusivities,
provided in Table 1. This results in the following upper bound for the TPZ
radius rtpz < 3×10−10 m. When we compare this estimate with the Bohr radius
(the most probable distance between the proton and electron in a hydrogen
atom), it turns out that one TPZ molecule should span approximately over 5
radii, which seems to be appropriate for the molecule, whose chemical formula
is C7H6N4O2. Using the available estimate for rtpz we obtain σtpz < 0.013,
which completely justifies our assumption. Indeed, the corresponding oncotic
pressure is πtpz

max = σtpzRgTC
tpz
max < 0.08 mmHg. This value is almost negligible

with respect to the oncotic pressure gradient induced by the blood proteins that
amounts to 25 mmHg.

Given the set of parameters, our first step towards the application of the
models is to perform a dimensional analysis of the corresponding equations. The
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results will inform us on the relative magnitude of the concurrent phenomena
that affect mass transport, such as molecular diffusion, convection and ligand-
receptor interactions. We choose length, velocity and concentration as primary
variables for the analysis. The characteristic length, d = 50µm, is the average
spacing between capillary vessels, the characteristic velocity, U = 100µm/s, is
the average velocity in the capillary bed, δP = 1 mmHg is the characteristic hy-
drostatic pressure drop along the extrema of the capillary network that will be
considered in the simulations and the characteristic concentration, Cmax (Table
1), is defined as the maximal admissible value at the systemic level for each con-
sidered chemical specie. The dimensionless form of the mass transport problem
is then,



























∂c∗t
∂t

+∇ · (c∗tut −A∗
t∇c∗t ) +Da∗t (c

ox
t )c∗t +QPL(pt − pL)c

∗
t

= f∗
c (pt, pv, c

∗
t , c

∗
v)δΛ in Ω

∂c∗v
∂t

+
∂

∂s
(|uv|c

∗
v −A∗

v

∂

∂s
c∗v) = −

d2

πR2
f∗
c (pt, pv, c

∗
t , c

∗
v) in Λ

f∗
c (pt, pv, c

∗
t , c

∗
v) = 2π(R/d)

[

(1− σ∗)Q
(

(pv − pt)− σ(πv − πt)
)

c∗t/v +Υ∗(c∗v − c∗t )
]

where all the symbols now refer to dimensionless quantities and the superscript
∗ stands for either oxygen (ox) or tirapazamine (tpz). For convenience, we do
not differentiate the notation from the dimensional setting. The dimensionless
groups that characterize the flow are

ut =
|ut|

U
, uv =

|uv|

U
, Q =

LpδP

U
, QPL = LLF

p
S
V

δPd

U
.

We refer to [8] for a detailed discussion of their interplay. Here, we are par-
ticularly interested in the analysis of mass transport, which is described by the
following quantities:

A∗
v =

D∗
v

dU
, A∗

t =
D∗

t

dU
, Da∗t = m∗ d

U
, Υ∗ =

P ∗

U

The groups A∗
t , A

∗
v are the inverse of the Péclét numbers in the interstitium

and the blood stream, respectively. They quantify the ratio of diffusion and
transport phenomena. The Damkohler number, Da∗t , represents the magnitude
of metabolism with respect to diffusion. Finally, Υ∗ characterizes the magnitude
of leakage from the capillary bed. Using the parameters reported in Table 2, the
magnitude of the dimensionless groups for oxygen and TPZ, respectively, is

Aox
v = 100, Aox

t = 0.27, Daoxt = 4.0323, Υox = 0.364

Atpz
v = 7, Atpz

t = 0.0187, Datpzt = 0.0159, Υtpz = 0.52

where to quantify the reaction coefficients Daoxt and Datpzt , we take maximal
oxygen concentration, i.e. Cox = 100 mmHg.
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We observe that Aox
v > Atpz

v > 1 > Aox
t > Atpz

t . Since the molecular diffu-
sivity of oxygen and TPZ in the interstitial tissue is rather low, the dynamics
of these molecules in the interstitium is moderately transport dominated. We
notice, however, that this conclusion is based on the mean blood velocity in
the capillaries, U , used to quantify transport. It could thus lead to a slight
overestimation of the transport phenomena in the tissue.

Concerning the Damkohler numbers, we notice that Daoxt > Aox
t , which

means that the distribution of oxygen in the tissue is reaction dominated, while
for TPZ these two mechanisms are almost in equilibrium, i.e. Datpzt ≃ Atpz

t .

2.3 Transport of nanoparticles and drug delivery

Nanoparticles are used as vectors for the delivery of drugs to the tumor tis-
sue. The advantage of this technology with respect to systemic delivery is that
chemoterapic agents are released selectively to the tumor mass [19]. The side
effects of drugs on patients health are thus reduced. We aim at modeling the
transport of nanoparticles in the capillary network and the consequent delivery
of a drug, which in our case is again TPZ, to enable comparisons with the bolus
injection delivery method. A large variety of cancer treatment methods based
on nanoparticle delivery is available or under development [37]. Thanks to its
generality, the computational model could be adapted to describe many of them.
Here, we focus on modeling drug delivery from particles designed to travel the
vascular network and selectively interact with particular receptors on the capil-
lary walls. Mathematical models describing these phenomena have been recently
proposed, we refer to [17, 22]. They are based on similar concepts. In the former
study, nanoparticle adhesion to tumor vasculature is addressed. The latter one
is devoted to study the interaction of nanoparticles with the coronary arteries,
in presence of regions affected by inflammation. Our model arises from the gen-
eral equations of blood flow and mass transport, with some modifications. In
particular, it has to be adapted to account for three different stages of the deliv-
ery process: (i) the transport of nanoparticles in the capillary network; (ii) the
adhesion of the particles to the capillary wall, adopting the framework proposed
in [17, 22]; (iii) the delivery of the encapsulated drug to the surrounding tissue.
Given the moderately short time scales addressed in the forthcoming numerical
examples, as well as the complexity of the biological phenomena involved, many
of which are not completely understood yet, we do not consider modeling of
nanoparticles extravasation and migration into the interstitial volume.

Steps (i) & (ii): nanoparticle transport and adhesion. The model ac-
counting for nanoparticle transport in the blood stream and their adhesion to
the wall results in the following equations:

∂cv
∂t

+
∂

∂s
(|uv|cv −Dv

∂cv
∂s

) +
2πR

πR2
Πcv = 0 in Λ× (0, T )
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where cv(x, t) is the nanoparticle concentration inside the vessels and it is mea-
sured as number of particles per unit volume [♯/m3]. The adhesion of particles
to the wall, that was not accounted in the general model, is described as a sink
term distributed along the length of the capillary network, namely Πcv on Λ.
The new term Πcv is a flux of particles sequestrated to the flow per unit surface
of capillary wall. Since we consider a one-dimensional model along the capillary
axis, we use the corresponding flux per unit length 2πRΠcv. The sink term,
per unit volume, equivalent to this flux is then obtained by scaling the flux per
unit length with the vessel cross section, that is πR2. The vascular deposition
parameter, Π, is estimated using a ligand-receptor model for the interaction of
particles with the endothelial layer. In particular, we use the model setting of
[22]. For the sake of completeness, we report here the main components of the
model. The vascular deposition parameter is defined as

Π(s) = Pa|S(s)|
dp
2

where Pa is the probability of particle adhesion, S(s) is the the wall shear rate
and dp is the diameter of the considered nanoparticles. Given the plasma viscos-
ity µ, the wall shear stress at the axial coordinate s along the capillary network
is µS(s). As a result, we compute the wall shear rate using the Poiseuille’s flow
equation. To this aim, we remind that the network Λ can be decomposed into
individual branches Λi, i = 1, . . . , N . Then, the shear rate assumes a constant
value on each branch given by

|Si| =
R

2µ

|∆ipv|

Li

where |∆ipv| is the absolute value of the pressure drop along each branch of the
network and Li is the branch length. The probability of adhesion, Pa, is in turn
defined as a function of particle size, shape and surface properties,

Pa(s) = mlK
0
aα2πr

2
0exp

(

− β
µ|S(s)|

α2

)

.

In the above expressionml is the surface density of the ligand molecules that dec-
orate the nanoparticle surface and K0

a is the affinity constant of the interaction
between ligands and receptors. The parameter α2, defined as

α2 = mr

[

1−

(

1−
∆

dp/2

)2]

is a function of the density of receptors on the endothelial surface, mr, and of the
separation distance between the particle and the substrate at the equilibrium, ∆.
The parameter r0 represents the radius of the adhesion point and β = λ6F

kBT is a
constant, where F is the coefficient of hydrodynamic drug force on the spherical
particle and kBT is the Boltzmann thermal energy.
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The model must be complemented by suitable initial and boundary condi-
tions. At the inlet ∂Λin we prescribe a Dirichlet boundary condition c0v, which
represents the amount of injected particles. At the outflow ∂Λout we specify a
homogeneous Neumann boundary condition. We assume that the blood stream
does not contain any particle at the initial time.

Once the problem for particle transport and adhesion is solved, we compute
the density of nanoparticles adhering per unit surface to the wall as

Ψ(s, t) :=

∫ t

0

Π(s)cv(s, τ)dτ.

Step (iii): drug release from nanoparticles. The particles decorating the
capillary wall are loaded with drug and they are able to release it to the sur-
rounding tissue. Observing that the particles are in direct contact with the
capillary wall, we assume that the drug release rate to the interstitial volume
per unit capillary surface is determined by the combination of the flux delivered
by a single particle with the density of particles adhering to the wall. Deter-
mining the release profile of a single (spherical) loaded particle is a well studied
problem in pharmacology [24]. Here, following [24, 1, 27] we define it using a
power law model,

q(t)

q∞
=

tb

tb +m
, q∞ = c∗npVnp, then q(t) =

tb

tb +m
c∗npVnp,

where q(t) is the amount of drug released and q∞ is the total drug load of a
nanoparticle, given by the total drug concentration inside the nanoparticle, c∗np
(where ∗ denotes an unspecified drug loaded on the particles), multiplied by the
nanoparticle volume Vnp. The parameterm is expressed in dimensions of [time]b.
The two parameters m and b reflect the structural and geometric properties of
the delivery system. The drug release rate from a single nanoparticle is therefore
obtained as

Jnp(t) =
dq(t)

dt
=

m · b · tb−1

(tb +m)2
c∗npVnp,

and the total drug release rate per unit surface is computed as,

J(s, t) = Jnp(t)Ψ(s, t).

To conclude, we apply the immersed boundary method to describe the capil-
lary bed as a source term concentrated on the centerline Λ. More precisely, the
action of drug loaded nanoparticles on the interstitial tissue is described by the
source term 2πRJ(s, t), assuming that the capillaries are cylindrical channels of
radius R. To compare the nanoparticle delivery approach with the bolus deliv-
ery strategy previously considered, we load the particles with TPZ. The drug
concentration into the tissue is modeled by the following equations:
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parameter units value

β N−1 2.39 ×1011

µ Ns/m2 0.001
dp m 2 ×10−6

α2 ♯/m2 3.4 ×109

mlK
0
ar

2
0 m2 1.2585 ×10−9

b – 0.8
m hoursb 1

Cnp
max ♯/m3 1.4354×1012

Dv cm2/s 6.98×10−9

Table 3: Physical parameters used to model nanoparticle injection and adhesion
[22].



























∂ctpzt

∂t
+∇ · (ctpzt ut −Dtpz

t ∇ctpzt ) +mtpz(coxt )ctpzt

+ LLF
p

S
V (pt − pL)c

tpz
t = 2πRJ(t)δΛ in Ω× (0, T ]

Dtpz
t ∇ctpzt · n = βc(c

tpz
t − ctpz0 ) on ∂Ω× (0, T ]

(6a)

(6b)

2.3.1 Parameters of the model.

The nanoparticle transport and adhesion model requires to characterize several
parameters, for which we refer to Table 1 in [22]. Furthermore, it is possible
to calibrate the power law model in order to describe different scenarios, for
example a fast release mechanism or a slow release rate. We fix the parameters
of the model, m and b, such that 90% of the total drug is released within one
day. The parameter values characterizing particle adhesion and drug release are
reported in Table 3.

Another important quantity is the concentration of nanoparticles injected at
the inflow of capillary network. Since we are interested in comparing the amount
of TPZ delivered from bolus and nanoparticle injection, we aim at determining
the concentration of injected nanoparticles that match the TPZ bolus concen-
tration, previously defined as Ctpz

max. Similarly, the concentration of injected
nanoparticles will be denoted by Cnp

max and its value is determined according to
the following balance equation,

Cnp
maxc

tpz
np Vnp = Ctpz

max.

To determine the value of Cnp
max we need an estimate of the amount of drug cast in

each particle, namely ctpznp . To determine this value we rely on two assumptions:
(i) the drug mass fraction in each particle, denoted as f tpz, is equal to the unity;
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(ii) the density of the particles is comparable to the density of water, ρw. As a
result, we conclude that

ctpznp = ρwf
tpz.

and we compute the value of Cnp
max that is reported in Table 3.

2.4 Computational methods

For complex geometrical configurations explicit solutions of problems (2), (5)
and (6) are not available. Numerical simulations are the only way of applying
the model to real cases. The discretization of the flow problem (2) is described in
[8] and it is achieved by means of the finite element method that arises from the
variational formulation of the problem combined with a partition of the domain
into small elements. We follow the same method also to discretize problems (5)
and (6). More precisely, starting from the problems of oxygen and TPZ mass
transport, we multiply each tissue equation in (5) for a test function qt ∈ Vt =
H1

α(Ω), where H1
α(Ω) with α ∈ (0, 1) is the natural trial space for the problem

in the interstitium, as discussed in [8] and references therein. We integrate over
Ω and the transport operator is treated using integration by parts combined, for
the sake of simplicity, with homogeneous Neumann conditions on ∂Ω. Regarding
the interface flux term we write

(

f∗
c (pt, pv, c

∗
t , c

∗
v)δΛ, qt

)

Ω
=

(

f∗
c (pt, pv, c

∗
t , c

∗
v), qt

)

Λ
.

We proceed similarly for the governing equation on the capillary bed. Integrating
by parts on each branch Λi separately, it is possible to manipulate the resulting
equations in order to naturally impose the mass conservation at each node of
the network, see [8] for details. This property is satisfied provided that the test
functions of the pressure field on the capillary bed are continuous on the entire
network, namely qv ∈ C0(Λ). In particular we choose Vv,0 as the subspace of
H1(Λ) of functions which vanish on the boundaries of Λ and therefore Vv,0 ⊂
C0(Λ) on 1D manifolds. This allows us to obtain

(∂c∗v
∂t

, qv
)

Λ
+
(

|uv|c
∗
v−D∗

v

∂

∂s
c∗v,

∂

∂s
qv
)

Λ
=

(

−
1

πR2
f∗
c (pt, pv, c

∗
t , c

∗
v), qv

)

Λ
, ∀qv ∈ Vv,0.

Then the weak formulation of (5) requires to find c∗t ∈ Vt and c∗v ∈ Vv,0 with
∗ = ox, tpz such that,



























(∂c∗t
∂t

, qt
)

Ω
+ at(c

∗
t , qt) + btΛ(c

∗
t , qt) = btΛ(c

∗
v, qt), ∀qt ∈ Vt,

(∂c∗v
∂t

, qv
)

Λ
+ av(c

∗
v, qv) + bvΛ(c

∗
v, qv) = bvΛ(c

∗
t , qv), ∀qv ∈ Vv,0,

(7a)

(7b)
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with the following bilinear forms,

at(c
∗
t , qt) :=

(

c∗tut −D∗
t∇c∗t ,∇qt

)

Ω
+
(

m∗(coxt )c∗t , qt
)

Ω
+ LLF

p
S
V

(

(pt − pL)c
∗
t , qt

)

Ω
,

av(c
∗
v, qv) :=

(

|uv|c
∗
v −D∗

v

∂

∂s
c∗v,

∂

∂s
qv
)

Λ
,

btΛ(c
∗
v, qv) :=

(

2πR
[

(1− σ∗)Lp

(

(pv − pt)− σ(πv − πt)
)

(1− w)c∗v + P ∗c∗v
]

, qv
)

Λ
,

btΛ(c
∗
t , qt) :=

(

2πR
[

(1− σ∗)Lp

(

(pv − pt)− σ(πv − πt)
)

wc∗t − P ∗c∗t
]

, qt
)

Λ
,

bvΛ(c
∗
v, qv) :=

(

2/R
[

(1− σ∗)Lp

(

(pv − pt)− σ(πv − πt)
)

(1− w)c∗v + P ∗c∗v
]

, qv
)

Λ
,

bvΛ(c
∗
t , qt) :=

(

2/R
[

(1− σ∗)Lp

(

(pv − pt)− σ(πv − πt)
)

wc∗t − P ∗c∗t
]

, qt
)

Λ
.

We proceed in a similar way also for equations (6). The variational problem for
nanoparticle transport and TPZ delivery requires to find ctpzt ∈ Vt and cv ∈ Vv,0

such that














(∂ctpzt

∂t
, qt

)

Ω
+ atpzt (ctpzt , qt) = F (t), ∀qt ∈ Vt,

(∂cv
∂t

, qv
)

Λ
+ atpzv (cv, qv) = 0, ∀qv ∈ Vv,0,

(8a)

(8b)

and the bilinear forms are,

atpzt (ctpzt , qt) :=
(

ctpzt ut −Dtpz
t ∇ctpzt ,∇qt

)

Ω
+

(

mtpz(coxt )ctpzt , qt
)

Ω
+
(

LLF
p

S
V (pt − pL)c

tpz
t , qt

)

Ω
,

atpzv (cv, qv) :=
(

|uv|cv −Dv
∂cv
∂s

,
∂

∂s
qv
)

Λ
+

(2πR

πR2
Πcv, qv

)

Λ
,

F (t) :=
(

2πRJ(t), qt
)

Λ
.

For the spatial approximation we first introduce an admissible family of
partitions of Ω into tetrahedrons K ∈ T h

t , where the apex h denotes the mesh
characteristic size. For the discretization of the capillary bed, each branch Λi is
partitioned into a sufficiently large number of linear segments E, whose collection
is Λh

i , which represents a finite element mesh on a one-dimensional manifold. Let
Λh := ∪N

i=1Λ
h
i be the finite element partition of the entire capillary bed. At the

discrete level, one of the advantages of our problem formulation is that the
partition of the domains Ω and Λ into elements are completely independent.
The computational meshes used to solve the transport problems are reported in
Figure 2.

Let V h
t := {v ∈ C0(Ω) : v|K ∈ P

1(K), ∀K ∈ T h
t } be the space of piecewise

linear continuous finite elements on T h
t and let V h

v,i := {v ∈ C0(Λi) : v|E ∈

P
1(E), ∀E ∈ Λh

i } be the piecewise linear and continuous finite element space on
Λi. The numerical approximation of the equation posed on the capillary bed is
then achieved using the space V h

v :=
(

∪N
i=1 V

h
v,i

)

∩C0(Λ). The discrete problems

arising from (7) and (8) require to find c∗ht ∈ V h
t , c

∗h
v ∈ V h

v,0 and ctpz,ht ∈ V h
t and
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Figure 2: On the left: meshes used to solve problems (10), (11) and (12). The
partition of the domains Ω and Λ into elements are completely independent. In
particular the partition of Ω is composed by 32624 elements, while the partition
of Λ is composed by 8400 nodes, 80 nodes for each branch. On the right: compu-
tational time for solving the algebraic systems of the flow equations, the oxygen
transport problem and the TPZ mass transport problem for the two different
modalities of transport. We represent one single time step for the solution of the
TPZ transport problem. The bars quantify the CPU time measured in seconds.

chv ∈ V h
v,0 such that



























(∂c∗ht
∂t

, qht
)

Ω
+ at(c

∗h
t , qht ) + bt

Λh(c
∗h
t , qht ) = bt

Λh(c
∗h
v , qht ), ∀qht ∈ V h

t ,

(∂c∗hv
∂t

, qhv
)

Λ
+ av(c

∗h
v , qhv ) + bv

Λh(c
∗h
v , qhv ) = bv

Λh(c
∗h
t , qhv ), ∀qhv ∈ V h

v,0,

(9a)

(9b)



















(∂ctpz,ht

∂t
, qht

)

Ω
+ atpzt (ctpz,ht , qht ) = F (t), ∀qht ∈ V h

t ,

(∂chv
∂t

, qhv
)

Λ
+ atpzv (chv , q

h
v ) = 0, ∀qhv ∈ V h

v,0,

(10a)

(10b)

where the bilinear forms at(·, ·), av(·, ·), bΛh(·, ·), a
tpz
t (·, ·), atpzv (·, ·) are the same

as before, with the only difference that bΛh(·, ·) is now defined over the discrete
representation of the network Λh. The interpolation and average operators, that
are need to evaluate the bilinear form bΛh(·, ·), are described in [8] and the error
analysis of the present scheme can be addressed with the tools provided in [13].

The space discretization must be complemented with a time advancing scheme.
For the numerical approximation of the variational problems (9) and (10), we
consider a standard backward Euler time advancing method. Let ∆t > 0 be
the time step, tn = n∆t the n-th time point, and c∗h,nt ∈ V h

t , c
∗h,n
v ∈ V h

v,0, the

numerical approximations of c∗ht (tn) and c∗hv (tn). As a result, we obtain the
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following discrete problems: given c∗h,nt ∈ V h
t and c∗h,nv ∈ V h

v,0 find c∗h,n+1

t ∈ V h
t

and c∗h,n+1
v ∈ V h

v,0, such that



















































( 1

∆t
c∗h,n+1

t , qht
)

Ω
+ at(c

∗h,n+1

t , qht ) + bt
Λh(c

∗h,n+1

t , qht )

=
( 1

∆t
c∗h,nt , qht

)

Ω
+ bt

Λh(c
∗h,n+1
v , qht ), ∀qht ∈ V h

t ,

( 1

∆t
c∗h,n+1
v , qhv

)

Λ
+ av(c

∗h,n+1
v , qhv ) + bv

Λh(c
∗h,n+1
v , qhv )

=
( 1

∆t
c∗h,nv , qhv

)

Λ
+ bv

Λh(c
∗h,n+1

t , qhv ), ∀qhv ∈ V h
v,0,

(11a)

(11b)

An equivalent approach is applied to discretize equations (10).
Finally, we observe that the equation which describes the oxygen concen-

tration transport, (5), involves a non linear term, represented by the Michelis-
Menten reaction formula. To solve the problem, we apply an iterative scheme
strategy, where the oxygen concentration is evalutated at the previous iterative
step. For simplicity of notation, to address this iterative scheme we drop the
time index n + 1. This index will be explicitly indicated only when referring
to a time step different than tn+1. For the same reason, we drop the index h
everywhere. Then, for all n = 1, . . . , N given an initial guess cox,0t , cox,0v and

a tolerance ε, the iterative strategy consists to find a sequence cox,kt , cox,kv for
k = 1, 2, . . . such that,































































( 1

∆t
cox,kt , qt

)

Ω
+
(

cox,kt ut −Dox
t ∇cox,kt ,∇qt

)

Ω

+
(

mox(cox,k−1

t )cox,kt , qt
)

Ω
+ LLF

p
S
V

(

(pt − pL)c
ox,k
t , qt

)

Ω

=
( 1

∆t
cox,k,nt , qt

)

Ω
− bt

Λh(c
ox,k
t , qt) + bt

Λh(c
ox,k
v , qt), ∀qt ∈ V h

t ,

( 1

∆t
cox,kv , qv

)

Λ
+ av(c

ox,k
v , qv) + bv

Λh(c
ox,k
v , qv)

=
( 1

∆t
cox,k,nv , qv

)

Λ
+ bv

Λh(c
ox,k
t , qv), ∀qv ∈ V h

v,0,

(12a)

(12b)

until the following stopping criterion is satisfied:

‖cox,kt − cox,k−1

t ‖0

‖cox,kt ‖0
+

‖cox,kv − cox,k−1
v ‖0

‖cox,kv ‖0
< ε. (13)

where ‖ · ‖0 is the Euclidean norm of the vector of nodal values.
Regarding the coupling between the oxygen and the TPZ concentration, we
actually solve the steady counterpart of (11) for the oxygen transport, because
oxygen is persistently supplied by the capillary bed. Therefore, once computed
the oxygen concentration profile, we use it to determine once for all the reaction
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term that appears in the TPZ transport equation. This choice seems to be
reasonable also because there isn’t any feedback of the TPZ concentration on
the oxygen consumption.

Bolus injection Nanoparticles release

problems initialization 301.7 301.59
assembling fluid system 1.02 1.04
solving fluid system 5.62 5.39
assembling O2 system 1.32 1.35
solving O2 system 61.36 60.86

assembling drug system 1.37 1.48
solving drug system (one single step) 1.2 0.21
solving drug system (T=20 min) 3374.04 1231.24

Table 4: Computational time for solving different parts of problems (10), (11)
and (12). Computational time is measured in seconds.

For the numerical solution of problems (12), (11) and (10) we use GetFem++,
a general purpose C++ finite element library [30]. The discretization of flow
problem (2), already described in [8], is solved applying the GMRES method
with incomplete-LU preconditioning. The tolerance for the stopping criterion
for the iterative method to solve the oxygen transport equations (12) is fixed
to ε = 10−8. We reach the convergence in 61 iterations. At each iteration, we
apply the GMRES method to solve the corresponding linear systems. Regarding
the TPZ transport, the monolithic algebraic system constructed from (11) is
again solved using the GMRES method with incomplete-LU preconditioning.
Conversely, the two equations composing system (10) are actually decoupled,
therefore they are addressed in sequence: we solve the vessel equation (10b)
first, in order to compute the flux J(t), which is the forcing term of the tissue
equation (10a). Since these equations are independent, their numerical solution
turns out to be faster than the one of system (11), as we observe from the results
reported in Figure 2 and in Table 4.

Referring to the dimensional analysis performed in Section 2.2.1, we notice
that the Damkohler number for the oxygen transport equation is bigger than
the molecular diffusivity in the tissue, namely Daoxt > Aox

t , which means that
the distribution of oxygen in the tissue is reaction dominated, while for TPZ
these two mechanisms are almost in equilibrium, i.e. Datpzt ≃ Atpz

t . We also ob-
serve that the magnitude of leakage, Υ∗, is always bigger than that of diffusivity
in the interstitium, A∗

t . To cope with the reaction dominated nature of these
mass transport equations, we adopt the mass lumping stabilization techniques
addressed in [29] for the reaction terms corresponding to the coefficients Daoxt
and Υ∗. Although the dimensional analysis addressed in Section 2.2.1 suggests
that the mass transport problems in the interstitial tissue may be moderately
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transport dominated, numerical experiments confirm that resorting to stabiliza-
tion methods for the convective terms is not required for the applications that
will be addressed.

3 Results and discussion

The delivery of anticancer agents mediated through nanoparticle injection in
the blood stream features significant advantages with respect to the traditional
drug bolus delivery, because it increases the permanence of drug available in
the systemic circulation [37]. We aim to explore the potential of the proposed
simulation framework to capture these effects.

3.1 Indicators of drug delivery performance

The concentration profiles in the vessels, cv(t, s), and in the tissue, ct(t, x) are the
natural outputs of the mass transport model described so far. From the clinical
standpoint, these may not be the most significant indicators of the treatment
performance. For this reason, we also study the amount of TPZ metabolised
by cells up to a given reference time. We denote this quantity as M tpz(t, x).
In addition, for more quantitative comparisons, we look at the total amount of
TPZ metabolised in the considered portion of tissue, that is M

tpz
(t). On the

basis of the Michaelis-Menten metabolization kinetics adopted in equation (5),
these indicators are defied as

M tpz(t,x) =

∫ t

0

mtpz
(

coxt (τ,x), ctpzt (τ,x)
)

dτ, M
tpz

(t) =

∫

Ω

M tpz(t,x)dx.

Following [21], the amount of drug metabolised in the tissue can be related to
the cell survival. In particular, the cell surviving fraction (SF ) represents the
complement of the fraction of cells treated (killed) by TPZ with respect to the
number of control cells (the total number of cells in the tissue, before treatment
started). Several models are available to quantify the surviving fraction [21]. In
particular, we use

SF (t,x) = exp
(

− αM tpz(t,x)
)

, SF (t) = exp
(

− αM
tpz

(t)
)

where α is a phenomenological coefficient. For the following calculations we
assume α = 2.52× 10−4 µM−1 (0.0014 g/m3) as in [21].

3.2 Oxygen transport and TPZ delivery from bolus injection

We analyze the simulations of oxygen and TPZ transport obtained with model
(5). In Figure 3 we compare the oxygen and the TPZ concentrations 20 minutes
after that the delivery of TPZ into the systemic circulation has started. Oxy-
gen concentration patterns substantially depend on the density of capillaries per
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unit volume. Regions of the sample tissue not well perfused by the capillary
network show low oxygen concentrations, justifying the risk of hypoxic condi-
tions for an irregular configuration of the microvessels. This conclusion is also
supported by the dimensional analysis of the governing equations. Since oxygen
transport in the interstitial volume is reaction dominated, regions free of oxygen
sources will easily experience low oxygen supply. The visualization of oxygen
concentration maps of Figure 3 can be directly compared with the results of
[33], see in particular Figure 3A, obtained using an equivalent model for oxygen
transport. As a preliminary and qualitative validation of our results, we observe
that the contour plots of the calculated oxygen concentration look remarkably
similar in the two cases. As expected, the TPZ concentration is significantly
influenced by the distribution of oxygen concentration. The distribution of TPZ
in the considered tissue sample seems to be more uniform than in the case of
oxygen. Again, dimensional analysis supports this conclusion, because it shows
that diffusion and reaction equivalently contribute to TPZ transport.

In spite of the difference between the governing mechanisms at the basis of
oxygen and TPZ transport, the simulated concentration maps of these species
share common traits. This may be explained by two concurrent factors. On
one hand, both solutes are affected by the distribution of capillaries. On the
other hand, the metabolization of TPZ increases in hypoxic regions. This effect
sustains TPZ concentration gradients similar to the ones of oxygen, by turning
off TPZ absorption where oxygen concentration is elevated, and promoting TPZ
metabolization where oxygen is low. Finally, the inspection of metabolized TPZ,
namely M tpz(t, x), shows that the objective of reaching the hypoxic regions with
a chemotherapy agent is substantially achieved, see in Figure 3 (left). More
precisely, oxygen and M tpz(t, x) maps show a complementary pattern. It means
that most of TPZ is metabolized in hypoxic regions.

Before proceeding, we study the sensitivity of these results with respect to the
boundary conditions applied on the artificial sections separating the interstitial
volume from the exterior. The simulations reported in 3 (top row) are obtained
using −Dt∇ct · n = βcct with a positive value of βc is provided in Table 2. We
compare these results with Figure 3 (bottom row), showing the concentration
maps when homogeneous Neumann conditions (no flux) are prescribed for the
concentrations on the boundary of Ω. This is equivalent to set βc = 0. A slight
increase in the TPZ concentration field is observed, in agreement with the fact
that the outgoing diffusive flux is set to zero with the choice βc = 0. For a
more quantitative comparison, we study the sensitivity of the total amount of
metabolized TPZ, M

tpz
(t). After injecting TPZ for 20 minutes, we calculate

M
tpz

(t) = 7.76838 × 10−9 g/m3 when using Robin boundary conditions and

M
tpz

(t) = 8.6685 × 10−9 g/m3 in the case of Neumann conditions. Owing to
these results, we conclude that the parameter βc is not a factor of primary
importance to determine the concentrations of oxygen and TPZ and we will use
Robin conditions for all the forthcoming simulations.
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Figure 3: Oxygen concentration profile, TPZ concentration profile and metabo-
lized drug profile are visualized from left to right. On the top row, simulations
are performed using Robin boundary conditions for the concentrations of oxy-
gen and TPZ at the boundary of the interstitial volume with the exterior. The
results obtained using homogeneous Neumann conditions are depicted below.

3.3 Nanoparticle adhesion patterns and delivery of TPZ from

nanoparticle injection

We split the analysis of the TPZ delivery from nanoparticles in two parts. First
we focus on the nanoparticle adhesion model, with the aim to validate our results
with respect to the ones reported in [22]. In a second phase, we analyze the
concentration of TPZ delivered from the nanoparticles that decorate the capillary
walls.

Nanoparticle adhesion is regulated by the vascular adhesion parameter Π,
which in turn depends on the shear rate arising from the interaction of blood
flow with the capillary walls. These two quantities are depicted in Figure 4. We
observe that the wall shear rate features a significant spatial variation, although
the capillary radius is constant along the network. This effect is due to the
variable pressure, and consequently variable flow rate, along the network. We
observe that the calculated values of wall shear rate fall in the physiological
range [22]. According to the adopted adhesion model, the variability of wall
shear rate is propagated to the adhesion parameter, reported on Figure 4 (left).
As a result, we expect to observe a non uniform concentration of nanoparticles
adhering to the wall.

The nanoparticle concentration, namely Ψ(s, t), depends on the adhesion
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parameter and on the particle concentration traveling through the vascular net-
work. A preliminary validation of our simulations arises observing that the
nanoparticle density per unit capillary surface, calculated for an injection phase
lasting 20 seconds, is comparable to the one reported in [22]. To compare the
delivery of TPZ from nanoparticles with the case of bolus injection, we con-
sider a constant concentration of injected particles for 20 minutes. The analysis
of adhered particles at 20 minutes after the initial time, shows that adhesion
progressively increases. The results of Figure 4 (left and middle panels, bottom
row) refer to the concentration of adhered nanoparticles normalized with respect
to the injected value. On the right, we show the density of adhering particles
when we consider the initial particle concentration Cnp

max, which is calculated in
order to match the the total flow of TPZ already used in the case of direct bolus
injection.

Figure 5 shows the TPZ concentration delivered from nanoparticles at 20
seconds and 20 minutes after particle injection has started. Although the con-
centration levels are significantly different in the two cases, because of the time
scales, the concentration maps share some similarities. In both cases, however,
the geometry of the network can not be immediately related to the TPZ concen-
tration map. Indeed, it is rather the distribution of the adhesion factor along the
network, Π, that affects the calculated concentration field. Finally, the amount
of metabolized TPZ shown in Figure 5 (right) seems to be rather independent
from the previous factors, but mostly influenced by the oxygen concentration
field.

3.4 Comparison of TPZ delivery from bolus and nanoparticle

injection

The proposed model enables us to compare how the concentration of delivered
drug varies in space and time for the two considered modalities of drug deliv-
ery. We also point out that, although the delivery pathway is different, the
comparisons refer to the same amount of drug injected into the system.

In Figure 6 we visualize the TPZ concentration maps in the two cases, re-
ported at 20 minutes, 40 minutes and at a final times comparable to the time
at which there will be no longer drug to be delivered. The magnitude of the
end time may differ in bolus and nanoparticle injection. The first time point
corresponds to the instant when the injection of drug or particles into the ves-
sels is turned off. The analysis of the results reveals some differences since the
beginning of the delivery process. The drug concentration in the case of nanopar-
ticle delivery is larger than the one of bolus delivery at all time points and the
discrepancy increases with time.

Figure 6 also shows that the concentration of TPZ delivered from bolus
injection rapidly vanishes after the injection is switched off. At 40 minutes after
the injection has started, there is only a negligible trace of TPZ in the tissue,
while after 6 hours the drug has completely vanished. This is clearly due to
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t=20 s t=20 min t=20 min
normalized Cnp

max normalized Cnp
max absolute Cnp

max

Figure 4: Top panel: profiles of wall shear rate and vascular deposition pa-
rameter Π(s) along the capillary network. Bottom, starting from the left: the
density of nanoparticles decorating the wall, Ψ, at 20 seconds and at 20 minutes
after nanoparticle injection has started. These values refer to a nominal unit
concentration of injected particles (♯/m3). Bottom right: Ψ at 20 minutes after
injection for an inlet nanoparticle concentration equal to Cnp

max.

Figure 5: TPZ concentration maps at 20 seconds and 20 minutes after start-
ing nanoparticle release (left and central panels). On the right we show the
metabolized drug after 20 minutes. Robin boundary conditions are used in all
cases.

drug metabolization. Surprisingly, TPZ drug concentration from bolus delivery
is also lower at the first time point. The superior performance of the nanoparticle
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delivery system on the short time scale can be justified by the role of nanoparticle
adhesion. This effect helps to harvest drug from the blood stream and to store it
on the capillary walls. As a result drug may be delivered in higher concentrations
to the interstitial volume and at the same time a lower fraction of the injected
drug is washed away by the blood stream leaving the tissue sample.

ctpzbol 20 min 40 min 6 hours

ctpznp 20 min 40 min 48 hours

Figure 6: Comparison of TPZ concentrations released from bolus injection (sub-
script bol) and nanoparticle injection (subscript np).

In addition, the release rate from nanoparticles is more persistent. Drug will
be delivered to the tissue over a period of time that is significantly longer than
20 minutes. This is due to the nanoparticle porous matrix, which represents a
diffusional barrier to drug release. In this case, delivery and metabolization rates
nearly balance, because the TPZ concentration in the interstitial volume slowly
decreases for a period of almost 48 hours. This interpretation is supported by
the visualization of the timecourse of the total drug amount available in the
tissue, namely the volumetric integral of the TPZ concentration, reported in
Figure 7. These results further highlight the inefficiency of drug bolus delivery
when compared to drug delivery from nanoparticles.

The model suggests that bolus injection turns out to be a sub-optimal de-
livery strategy for two reasons. On one hand, tissue drug concentration rapidly
reaches a plateau, much before the final injection time. The drug injected during
this plateau phase is more likely to be washed out by the blood stream. On the
other hand, the bolus injection system lacks of any buffer mechanism. Once
the injection is switched off, drug levels rapidly decrease. In comparison, the
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bolus injection nanoparticle injection

Figure 7: Comparison of systemic and nanoparticle release timecourses. The
variation of

∫

Ω
ctpzt and M

tpz
over time is visualized. The red line marks the

time at which the injection of drug or particles into the vessels is stopped.

nanoparticle delivery system features two significant advantages. First, the par-
ticle adhesion mechanism allows for the accumulation of drug on the capillary
walls. Secondly, the presence of particles decorating the capillary walls ensures
a persistent drug release rate after that the injection of particles has stopped.

The profiles of TPZ concentration have a direct impact on the amount of
metabolized drug. The maps of metabolized drug are shown in Figure 8. We
observe that these maps look alike in all reported cases. This similarity con-
firms the dominant role of oxygen concentration to selectively activate the drug
metabolization. However, the magnitude drastically changes from case to case.
Since for the bolus delivery mode the drug supply to the tissue stops at 20 min-
utes, the amount of metabolized drug remains almost constant after this time.
In contrast, the buffer effect provided by the adhered nanoparticles is responsible
to a significant increase of metabolized drug over time. More precisely Figure
7 shows that M

tpz
np is about 10 times larger than M

tpz
bol 6 hours after injection.

Similarly, from Figure 8 we observe that the pointwise values of M tpz
np and M tpz

bol

scale by a factor 20 at 48 hours after delivery.
Finally, we compare the cell surviving fractions (SF) relative to bolus and

nanoparticle injection. The cell surviving fraction depends on space and time,
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M tpz
bol 20 min 40 min 6 hours

M tpz
np 20 min 40 min 48 hours

Figure 8: Comparison of metabolized TPZ released from bolus injection (sub-
script bol) and nanoparticle injection (subscript np).

but also on the oxygen availability. To selectively attack tumor mass, TPZ
it targeted to treat hypoxic tissue. As shown in [21], it is convenient to plot
the dependence of SF on oxygen partial pressure. This visualization of SF is
displayed in Figure 9. The points of the diagram correspond to the nodes of the
computational grid in the interstitial volume, denoted with xi. For each node,
we extract the value of oxygen concentration and surviving fraction, at the final
time,

(t = T,xi) → coxt (t = T,xi), SF (t = T,xi).

Then, in the diagrams of Figure 9 the surviving fraction is plotted with respect to
the corresponding oxygen concentration, while the spatial information is hidden.
As expected, SF sharply decreases for low oxygen concentrations, confirming
that TPZ is able to selectively target hypoxic regions. The nanoparticle delivery
mode results to be more effective also with respect to this indicator. On a short
time scale, equivalent to the injection time, the efficacy of the bolus injection
treatment is not particularly satisfactory because more than 50% of the cells still
survive in hypoxic regions. For nanoparticle injection, the plot of SF after 20
minutes has a similar pattern, but the minimum of SF reaches 10%, confirming
that this delivery modality is more effective. While the situation is almost
unchanged for longer time scales in the case of bolus delivery, the performance
further improves for nanoparticles on the time scale of 48 hours. Indeed, the
SF profile has shifted downwards and its minimum reaches zero for low oxygen
concentrations, meaning that almost all the cells in the interstitial volume are
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treated. A slight drawback of the treatment based on nanoparticles can be
detected looking at the distribution of the points in the SF plot. The dispersion
of the point cloud increases and the slope of the underlying curve decreases with
respect to the corresponding plot for bolus injection. This suggests that action of
TPZ becomes less selective to target cells exposed to low oxygen concentration.

SF tpz
bol 20 min 6 hours

SF tpz
np 20 min 48 hours

Figure 9: Comparison of cell surviving fraction (SF) when TPZ released from
bolus injection (subscript bol) and nanoparticle injection (subscript np).

4 Conclusions, limitations and future perspectives

In this study we have developed a model capable to simulate the spatio-temporal
evolution of drugs delivered to a tumor mass. The analysis is performed at the
microscale, where the fundamental physics at the basis of flow and transport can
be directly applied. We have used the model to compare bolus and nanoparticle
injection for delivering chemotherapy agents. The model provides different in-
sights on treatment performance, based on the analysis of specific quantitative
indicators, such as the cell surviving fraction. On one hand, the model sug-
gests that bolus injection does not ensure an optimal delivery. Drug washout
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by the blood stream and saturation of the concentration level in the interstitial
tissue play as limiting factors for the amount of drug that reaches the intersti-
tial volume, where malignant cells are active. On the other hand, we observe
that a more controlled drug delivery process, achieved by means of nanoparticle
injection, helps to override the previous limitations.

Besides these encouraging results, the model is prone to several improve-
ments. One line of development consists in coping with the rapid technological
progress in designing innovative methods to efficiently and selectively deliver
drugs [19, 37]. Indeed, the model can be extended to encompass different drug
delivery platforms. Further ramifications of this study will also be devoted to
develop specific models for different types of cancer. We expect that tumors
developing in the brain, breast, liver or lungs may feature significant differences
in their transport properties. The physiology of these organs as well as available
metrics to characterize their transport properties will be combined to set up spe-
cific variants of the model for different tumors. Another limitation of the study
consists to consider a tumor as a static environment. Future developments of the
model will indeed consider the tumor microenvironment as a dynamic system
where angiogenesis, cell proliferation and drug treatment constantly interact.
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