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A WEIGHTED REDUCED BASIS METHOD FOR ELLIPTIC PARTIAL

DIFFERENTIAL EQUATIONS WITH RANDOM INPUT DATA

PENG CHEN 1 · ALFIO QUARTERONI1 2 · GIANLUIGI ROZZA 3

Abstract: In this work we propose and analyze a weighted reduced basis method to solve elliptic
partial differential equation (PDE) with random input data. The PDE is first transformed into a
weighted parametric elliptic problem depending on a finite number of parameters. Distinctive impor-
tance at different values of the parameters are taken into account by assigning different weight to the
samples in the greedy sampling procedure. A priori convergence analysis is carried out by constructive
approximation of the exact solution with respect to the weighted parameters. Numerical examples are
provided for the assessment of the advantages of the proposed method over the reduced basis method
and stochastic collocation method in both univariate and multivariate stochastic problems.

Keywords: weighted reduced basis method, stochastic partial differential equation, uncertainty
quantification, stochastic collocation method, Kolmogorov N-width, exponential convergence

1 Introduction

When modelling complex physical system, uncertainties inevitably arise from various sources, e.g.
computational geometries, physical parameters, external forces, initial or boundary conditions, and
may significantly impact on the computational results. When these uncertainties are incorporated
into the underlying physical system, we are facing stochastic problems or uncertainty quantification.
Various computational methods have been developed depending on the structure of the stochastic
problem, including perturbation, Monte Carlo, stochastic Galerkin, stochastic collocation, reduced
basis, generalized spectral decomposition methods [21, 41, 1, 33, 7].

The perturbation method [25] based on Taylor expansion was developed for the random functions
with only small fluctuation around a deterministic expectation. This method is only applicable when
dealing with small uncertainties and suffer from inevitable errors and extremely complicated structure
for high order expansions. The most commonly used “brute-force” Monte-Carlo method [20] as well
as its multiple versions, e.g. quasi Monte Carlo [30], multi-level Monte Carlo [23], converge very slowly
and become prohibitive for achieving accurate results.

Stochastic Galerkin method, originated from spectral expansion of the random functions on some
polynomial chaos, for instance Hermite polynomials of independent random variables, applies the
Galerkin approaches to approximate the solution in both stochastic and deterministic space [21, 2].
It enjoys fast convergence provided the solution is regular [14, 13]. However, it yields a very large
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algebraic system, leading to the challenge of designing efficient solvers with appropriate precondition-
ers [19].

Stochastic collocation method was developed from the non-intrusive deterministic collocation
method [36, 40, 1]. In principle, it employs multivariate polynomial interpolations for the integral
in the variational formulation of the stochastic system with respect to probability space rather than
the Galerkin approximation in the spectral polynomial space. Due to the heavy computation of a de-
terministic system at each collocation point in high dimensional space, isotropic or anisotropic sparse
grids with suitable cubature rules [31, 32] were analyzed and applied to reduce the computation load.
This method is preferred for more practical applications because it features the advantages of both
direct computation as Monte Carlo method and fast convergence as stochastic Galerkin method [3].

In principle, to solve a stochastic problem we need to solve one deterministic problem at many
different realizations of the random inputs in order to evaluate the quantity of interest depending on
the stochastic solutions. However, the solutions are “not far from” each other in practice. Therefore,
instead of projecting the solutions on some prescribed bases, such as polynomial chaos for stochastic
Galerkin method [41], we can project the solution on some space generated by a few precomputed
solutions, which leads to the development of reduced basis method. The reduced basis method has
been proposed to solve primarily parametric systems [37, 34] and applied to stochastic problems lately
[7, 6, 10]. In the later context, it regards the random variables as parameters and select the most
representative points in the parameter space by greedy sampling based on a posteriori error estima-
tion. The essential idea for deterministic and stochastic reduced basis method is to separate the whole
procedure into an offline stage and an online stage. During the former, the large computational ingre-
dients are computed and stored once and for all, including sampling parameters, assembling matrices
and vectors, solving and collecting snapshots of solutions, etc. In the online stage, only the parameter
related elements are left to be computed and a small Galerkin approximation problem needs to be
solved [34]. Both reduced basis method and stochastic collocation method use precomputed solu-
tions as approximation/construction bases. However the former employs a posteriori error estimation
for the construction, and thus is more efficient provided that a posteriori error estimation is easy
to compute. Comparison of convergence property as well as computational cost for offline construc-
tion and online evaluation between the reduced basis method and stochastic collocation method was
investigated in [10].

At our best knowledge, the reduced basis method is currently only used for stochastic problems
with uniformly distributed random inputs or parameter space with Lebesgue measure [6, 10]. In order
to deal with more general stochastic problems with other distributed random inputs, we propose
and analyze a new version of reduced basis method and name it “weighted reduced basis method”.
The basic idea is to suitably assign a larger weight to samples that are more important or have a
higher probability to occur than the others according to either the probability distribution function
or some other available weight function depending on the specific application at hand. The benefit
is to lighten the reduced space construction using a smaller number of bases without lowering the
numerical accuracy.

A priori convergence analysis for reduced basis method by greedy algorithm has been carried out in
previous works [28, 8, 5, 26] under various assumptions. More specifically, exponential convergence rate
for single-parameter elliptic PDE was obtained in [28] by exploring an eigenvalue problem; algebraic or
exponential convergence rate for greedy algorithm in multidimensional problem was achieved implicitly
depending on the convergence rate of Kolmogorov N-width in [8] and improved in [5]; exponential
convergence rate was also recently obtained in [39] through direct expansion of the solution on a series
of invertible elliptic operators. In this work, we carry out a priori convergence analysis of our weighted
reduced basis method based on constructive spectral approximation for analytic functions, which is
different from [28, 8, 5, 26].

The paper is organized as follows: an elliptic PDE with random input data is set up with ap-
propriate assumptions on both the random coefficient and forcing term in section 2. Section 3 is
devoted to the development of the weighted reduced basis method consisting of greedy algorithm, a
posteriori error estimate as well as offline-online computational decomposition, which is followed by a
priori convergence analysis in section 4. Numerical examples for both one dimensional problem and
multiple dimensional problem are presented as verification of the efficiency and convergence properties
in section 5. Some brief concluding remarks are drawn in the last section 6.
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2 Problem setting

Let (Ω,F , P ) be a complete probability space, where Ω is a set of outcomes ω ∈ Ω, F is σ-algebra
of events and P : F → [0, 1] with P (Ω) = 1 assigns probability to the events. Let D be a convex,
open and bounded physical domain in R

d (d = 1, 2, 3) with Lipschitz continuous boundary ∂D. We
consider the following stochastic elliptic problem: find u : D̄×Ω → R such that it holds almost surely

−∇ · (a(·, ω)∇u(·, ω)) = f(·, ω) in D,

u(·, ω) = 0 on ∂D,
(2.1)

where f : D×Ω → R is a random force term and a : D×Ω → R is a random coefficient; a homogeneous
Dirichlet boundary condition is prescribed on the whole boundary ∂D for simplicity. We consider the
following assumptions for the random functions f(·, ω) and a(·, ω):

Assumption 1 The random forcing term f(·, ω) is square integrable with respect to P , i.e.

∫

Ω×D

f2(x, ω)dxdP (ω) < ∞. (2.2)

Assumption 2 The random coefficient a(·, ω) is assumed to be uniformly bounded from below and

from above, i.e. there exist constants 0 < amin < amax < ∞ such that

P (ω ∈ Ω : amin < a(x, ω) < amax ∀x ∈ D̄) = 1. (2.3)

We introduce the Hilbert space V := L2
P (Ω)⊗H1

0 (D) and equip it with the following norm

||v||V = ||v||L2
P (Ω)⊗H1

0 (D) =

(∫

Ω×D

|∇v|2dxdP
)1/2

< ∞. (2.4)

The weak formulation of problem (2.1) is stated as: find u ∈ V such that

∫

Ω×D

a∇u · ∇vdxdP =

∫

Ω×D

fvdxdP ∀v ∈ V. (2.5)

The existence of a unique solution to problem (2.5) is guaranteed by Lax-Milgram theorem [36] under
Assumption 1 and Assumption 2 and the stability inequality holds for the solution straightforwardly

||u||V ≤ CP

amin
||f ||V , (2.6)

where the constant CP comes from the Poincaré inequality ||v||L2(D) ≤ CP ||∇v||L2(D) ∀v ∈ H1
0 (D).

The uncertainty of the random functions a(·, ω) and f(·, ω), in many practical applications, can be
approximately projected to a series of finite dimensional random variables via statistical techniques.
For instance, finite linear regression models are widely used to approximate various random fields [15];
under the assumption that the second moment of a(·, ω) exists, we can apply Karhunen-Loève expan-
sion [38] to the covariance kernel and truncate it up to a finite number of linear terms, etc. For this
consideration, we make further assumption to the random functions a(·, ω) and f(·, ω) as follows:

Assumption 3 The random coefficient a(·, ω) and forcing term f(·, ω) are linear combinations of a

number of random variables Y (ω) = (Y1(ω), . . . , YK(ω)) : Ω → R
K as follows

a(x, Y ) = a0(x) +

K
∑

n=1

ak(x)Yk(ω) and f(x, Y ) = f0(x) +

K
∑

n=1

fk(x)Yk(ω) (2.7)

where ak ∈ L∞(D) and fk ∈ L2(D) for 0 ≤ k ≤ K. More specifically, {Yk}Kk=1 are real valued
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random variables with joint probability density function ρ(y), being y = Y (ω) ∈ R. By denoting

Γk ≡ Yk(Ω), k = 1, . . . ,K and Γ = ΠK
k=1Γk, we can also view y as a weighted parameter in the

parametric domain Γ endowed with the measure ρ(y)dy.

Remark 2.1 When the random variables Y a
k , 1 ≤ k ≤ Ka for a and Y f

k , 1 ≤ k ≤ Kf for f are not

the same, we collect them as Y = (Y a
1 , . . . , Y

a
Ka

, Y f
1 , . . . , Y f

Kf
) and reorder them as (Y1, · · · , YK) with

K = Ka +Kf .

Remark 2.2 In the more general case that the random function a(x, Y ) does not depend on Y linearly,

for instance

a(x, Y ) = a0(x) + exp

(

K
∑

n=1

ak(x)Yk(ω)

)

, (2.8)

one can employ the empirical interpolation method [4, 12] to approximate (2.8) with finite affine terms

in the form

a(x, Y ) ≈ a0(x) +

K′

∑

n=1

a′k′(x)Θk′(Y (ω)), (2.9)

where Θk′(·), 1 ≤ k′ ≤ K ′ are functions of Y and can be transformed to random variables Zk′ =

Θk′(Y (ω)), 1 ≤ k′ ≤ K, resulting in a new random vector Z = (Z1, . . . , ZK′) and a(x, Z) still satisfies

Assumption 3.

Under the above assumptions, the weighted parametric weak formulation of the stochastic elliptic
problem reads: find u(y) ∈ H1

0 (D) such that the following equation holds for all y ∈ Γ

A(u, v; y) = F (v; y) ∀v ∈ H1
0 (D), (2.10)

where A(·, ·; y) and F (·; y) are parametrized bilinear and linear forms featuring the following expansion

A(u, v; y) = A0(u, v) +

K
∑

k=1

Ak(u, v)yk and F (v; y) = (f0, v) +

K
∑

k=1

(fk, v)yk, (2.11)

with the deterministic bilinear forms Ak(u, v) given by Ak(u, v) := (ak∇u,∇v), k = 0, 1, . . . ,K. Be-
cause of assumption (2.3) the bilinear form is coercive and continuous, thus the existence of a unique
parametric solution u(y) ∈ H1

0 (D) for ∀y ∈ Γ to problem (2.10) is guaranteed by Lax-Milgram theo-
rem [36]. More often, we are interested in a related quantity s(u; y) as output, e.g. the linear functional
F (u; y), as well as its statistics, e.g. the expectation E[s], which is defined as

E[s] =

∫

Γ

s(u; y)ρ(y)dy. (2.12)

3 Weighted reduced basis method

The basic idea behind weighted reduced basis method is to assign different weight in the construc-
tion of reduced basis space at different values of parameter y ∈ Γ according to a prescribed weight
function w(y). The objective is that when the parameter y has distinctive weight w(y) at different
values y ∈ Γ, e.g. stochastic problems with random inputs obeying probability distribution far from
uniform type, the weighted approach can considerably attenuate the computational effort for large
scale computational problems. The general paradigm of weighted reduced basis method is formulated
by following closely the reduced basis method in [34, 37, 10]:

Given any approximation space XN (e.g. finite element/spectral approximation space) of dimen-
sion N for the solution uN of problem (2.10), a training set of parameter samples Ξtrain ⊂ Γ as well as
a prescribed maximum dimension Nmax ≪ N , we build the N dimensional (Lagrange) reduced basis
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space XN
N for N = 1, . . . , Nmax in a hierarchical way by taking into account the weight of parameter at

different values until satisfying certain tolerance requirement. The reduced basis space XN
N is spanned

by the “snapshots” based on suitably chosen samples SN = {y1, . . . , yN} from the training set Ξtrain

XN
N = span{uN (yn), 1 ≤ n ≤ N}. (3.1)

Note that XN
1 ⊂ XN

2 ⊂ · · · ⊂ XN
Nmax

. In order to evaluate s(u; y) at any new parameter y ∈ Γ, we

first seek the solution uN
N ∈ XN

N ⊂ XN in the reduced basis space XN
N by solving a reduced system

A(uN
N , v; y) = F (v; y) ∀v ∈ XN

N (3.2)

and then approximate s(u; y) by s(uN
N ; y). Moreover, we can also compute the statistics of the output,

e.g. expectation E[sNN ] , by numerical quadrature formula (Gauss or Clenshaw-Curtis quadrature [32])

E[sNN ] ≈
M
∑

m=1

s(uN
N ; ym)w(ym), (3.3)

where ym and w(ym),m = 1, . . . ,M are the K dimensional quadrature abscissas and weights with
respect to the probability density function, which can be chosen based on different schemes, e.g. full
tensor product quadrature or sparse grid quadrature [32]. Note that the weights w(ym),m = 1, . . . ,M
may be distinct to each other depending on both the quadrature formula and the probability density
function, so that the solution uN

N (ym) is expected to be more accurate where w(ym) is significantly
larger than the other realization of the parameter y ∈ Γ.

Accurate computation of the solution uN
N and the output sNN depends crucially on the construction

of the reduced basis approximation space. More specifically, how to take different weight of the solution
into consideration, how to cheaply and accurately select the most representative samples in order to
hierarchically build the reduced basis space as well as how to efficiently evaluate the solution and
output based on the way of construction of the approximation space play a key role in the weighted
reduced basis method. We address these issues in the following three aspects: the weighted greedy
algorithm, the a posteriori error estimate and the offline-online computational decomposition.

3.1 Weighted greedy algorithm

The weighted greedy algorithm essentially deals with the L∞(Γ;Xw) (Xw is a weighted subspace of
X to be specified) optimization problem in a greedy way [37], seeking a new parameter yN ∈ Γ such
that

yN = arg sup
y∈Γ

||uN (y)− PNuN (y)||Xw , (3.4)

where PN : XN → XN
N is the Galerkin projection operator. By solving the infinite dimensional

problem (3.4) we would locate the least matching point yN ∈ Γ in || · ||Xw norm. A computable
(finite dimensional) greedy algorithm rely on twofolds: i), replace the parameter domain Γ by a finite
training set Ξtrain ⊂ Γ with cardinality |Ξtrain| = ntrain < ∞; ii), replace the mismatching term
||uN (y) − PNuN (y)||Xw by a cheap weighted posteriori error bound △w

N that should be as sharp as
possible, i.e.

cN△w
N (y) ≤ ||uN (y)− PNuN (y)||Xw

≤ CN△w
N (y) (3.5)

where CN/cN is close to 1. We leave the computation of a posteriori error bound to the next section
and present the weighted greedy algorithm in the following procedure, see Algorithm 1.

We note that for the sake of efficient computation of Galerkin projection and offline-online decom-
position in practice, we normalize the snapshots by Gram-Schmidt process to get the orthonormal basis
of {ζN1 , . . . , ζNN } such that (ζNm , ζNn )X = δmn, 1 ≤ m,n ≤ N and construct XN

N = span{ζN1 , . . . , ζNN }.
Another algorithm that might be used for the sampling procedure is proper orthogonal decom-

position, POD for short [37], which is rather expensive in dealing with L2(Ξtrain;X) optimization
and thus more suitable for low dimensional problems. We remark that for both the greedy algorithm
and the POD algorithm, an original training set Ξtrain is needed. Two criteria ought be followed for
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Algorithm 1 A weighted greedy algorithm for the construction of reduced basis approximation space

1: procedure Initialization:

2: sample the training set Ξtrain ⊂ Γ according to probability density function ρ;
3: specify a tolerance εtol as stopping criteria of the algorithm;
4: define the maximum number of reduced bases Nmax;
5: choose the first sample y1 ∈ Ξtrain and build the sample space S1 = {y1};
6: solve the problem (2.10) at y1, construct the reduced basis space XN

1 = span{uN (y1)};
7: end procedure

8: procedure Construction:

9: for N = 2, . . . , Nmax do

10: compute a weighted posteriori error bound △w
N−1(y) for ∀y ∈ Ξtrain;

11: choose the parameter to maximize △w
N−1, i.e. y

N = argmaxy∈Ξtrain
△w

N−1(y);
12: if △w

N−1(y
N ) ≤ εtol then

13: Nmax = N − 1;
14: end if

15: solve problem (2.10) at yN to obtain uN (yN );
16: augment the sample space SN = SN−1 ∪ {yN};
17: augment the reduced basis space XN

N = XN
N−1 ⊕ span{uN (yN )};

18: end for

19: end procedure

its choice: 1, it should be cheap without too many ineffectual samples in order to avoid too much
computation with little gain; 2, it should be sufficient to capture the most representative snapshots
so as to build an accurate reduced basis space.

Adaptive approaches for building the training set have also been well explored by starting from a
small number of samples to more samples in the space Γ adaptively, see [42] for details.

3.2 A posteriori error bound

The efficiency and reliability of the reduced basis approximation by weighted greedy algorithm relies
critically on the availability of an inexpensive, sharp and weighted a posteriori error bound △w

N . For
every y ∈ Γ, let R(v; y) ∈ (XN )′ be the residual in the dual space of XN , which is defined as

R(v; y) := F (v; y)−A(uN
N (y), v; y) ∀v ∈ XN . (3.6)

By Riesz representation theorem [36], we have a unique function ê(y) ∈ XN such that

(ê(y), v)XN = R(v; y) ∀v ∈ XN and ||ê(y)||XN = ||R(·; y)||(XN )′ (3.7)

where the XN -norm could be specified as, e.g. ||v||XN = A(v, v; ȳ) at some reference value ȳ ∈ Γ,
which is equivalent to H1

0 (D) norm. Define the error between the “truth” solution and the reduced
basis solution as e(y) := uN (y)− uN

N (y); by (2.10), (3.2) and (3.6) we have the equation

A(e(y), v; y) = R(v; y) ∀v ∈ XN . (3.8)

By choosing v = e(y) in (3.8), recalling the coercivity constant α(y) with the definition of its lower
bound αLB(y) ≤ α(y) of the bilinear form A(·, ·; y), and using Cauchy-Schwarz inequality, we have

αLB(y)||e(y)||2XN ≤ A(e(y), e(y); y) = R(e(y); y) ≤ ||R(·, y)||(XN )′ ||e(y)||XN = ||ê(y)||XN ||e(y)||XN ,
(3.9)

so that we can define a weighted posteriori error bound △w
N (y) for the solution uN

N (y), y ∈ Γ as

△w
N (y) := ||ê(y)||Xw

/αLB(y) (3.10)
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and obtain immediately the relation ||uN (y)− uN
N (y)||Xw

≤ △w
N (y) from (3.9). As for output s(u),

|s(uN )− s(uN
N )| ≤ ||s||(XN )′ ||uN (y)− uN

N (y)||XN , (3.11)

where ||s||(XN )′ is a constant independent of y, the same error bound can also be used in the greedy

algorithm when considering the output sNN . The efficient computation of a sharp and accurate a
posteriori error bound thus relies on the computation of a lower bound of the coercivity constant
αLB(y) as well as the value ||ê(y)||Xw

for any given y ∈ Γ. For the former, we apply the successive
constraint linear optimization method [24] to compute a lower bound αLB(y) close to the “truth”
value α(y). For the latter, we turn to an offline-online computational decomposition procedure.

3.3 Offline-online computational decomposition

The evaluation of the expectation E[sNN ] and the weighted a posteriori error estimator △w
N requires to

compute the output sNN and the solution uN
N many times. Similar situations can be encountered for

other applications in the context of many query (optimal design, control) and real time computational
problems. One of the key ingredients that make reduced basis method stand out in this ground is
the offline-online computational decomposition, which becomes possible due to the affine or linear
assumption such as that made in (2.7). To start, we express the reduced basis solution in the form

uN
N (y) =

N
∑

m=1

uN
Nm(y)ζNm . (3.12)

Upon replacing it in (3.2) and choosing v = ζNn , 1 ≤ n ≤ N , we obtain

N
∑

m=1

(

A0(ζ
N
m , ζNn ) +

K
∑

k=1

ykAk(ζ
N
m , ζNn )

)

uN
Nm(y) = (f0, ζ

N
n ) +

K
∑

k=1

(fk, ζ
N
n )yk 1 ≤ n ≤ N. (3.13)

From (3.13) we can see that the quantities Ak(ζ
N
m , ζNn ), 0 ≤ k ≤ K, 1 ≤ m,n ≤ Nmax and (fk, ζ

N
n ), 0 ≤

k ≤ K, 1 ≤ n ≤ Nmax are independent of y, we may thus precompute and store them in the offline
procedure. In the online procedure, we only need to assemble the stiffness matrix in (3.13) and solve
the resulting N × N stiffness system with much less computational effort compared to solve a full
N × N stiffness system. As for the computation of the error bound △N (y), we need to evaluate
||ê(y)||XN at y chosen in the course of sampling procedure. We expand the residual (3.6) as

R(v; y) = F (v; y)−A(uN
N , v; y) =

K
∑

k=0

(fk, v)yk −
N
∑

n=1

uN
Nn

(

K
∑

k=0

Ak(ζ
N
n , v)yk

)

, where y0 = 1. (3.14)

Set (Ck, v)XN = (fk, v) and (Lk
n, v)XN = −Ak(ζ

N
n , v) ∀v ∈ XN

N , 1 ≤ n ≤ N, 0 ≤ k ≤ K, where Ck and
Lk
n are the representatives in XN of fk and ζNn , respectively, whose existence is secured by the Riesz

representation theorem. By recalling (ê(y), v)XN = R(v; y), we obtain

||ê(y)||2XN =

K
∑

k=0

yk

(

K
∑

k′=0

yk′(Ck, Ck′)XN

)

+

K
∑

k=0

N
∑

n=1

yku
N
Nn(y)

(

K
∑

k′=0

yk′2(Ck′ ,Lk
n)XN +

K
∑

k′=0

N
∑

n′=1

yk′uN
Nn′(y)(Lk

n,Lk′

n′)XN

)

.

(3.15)

Therefore, we can compute and store (Ck, Ck′)XN , (Ck′ ,Lk
n)XN , (Lk

n,Lk′

n′)XN , 1 ≤ n, n′ ≤ Nmax, 0 ≤
k, k′ ≤ K in the offline procedure, and evaluate ||ê(y)||XN in the online procedure by assembling
(3.15) with O((K +1)2N2) scalar products, which is far efficient provided that O((K +1)2N2) ≪ N .
As for the weighted error bound ||ê(y)||Xw

, one option is to simply use ||ê(y)||Xw
= w(y)||ê(y)||XN .
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4 A priori convergence analysis

Without loss of generality, we work in the space X rather than in the discretization space XN (the
stochastic convergence results hold the same for both spaces) and define the Hilbert space C0

w(Γ;X)
equipped with the following norm

||v||C0
w(Γ;X) = max

y∈Γ
(w(y)||v(y)||X) (4.1)

for any positive continuous bounded weight function w : Γ → R+. Because of Assumption 3, the
linear coefficient a and forcing term f satisfy a ∈ C0(Γ;L∞(D)) and f ∈ C0

w(Γ;L
2(D)).

Theorem 4.1 Under the Assumption 1-3, the reduced basis approximation to the solution PNu of

the problem (2.10) enjoys the following exponential convergence (the complex region Σ(Γ; τ) will be

specified later)

||u− PNu||C0
w(Γ;X) ≤ Cwe

−rN max
z∈Σ(Γ;τ)

||u(z)||X (4.2)

where the constant Cw depends on the weight w and is independent of N , and the rate r is defined as

1 < r = log

(

2τ

|Γ| +
√

1 +
4τ2

|Γ|2

)

. (4.3)

Remark 4.1 The convergence rate stated above does not depend on the specific problem (2.1). In

fact, as long as u = u(y) is an analytic function, the exponential convergence rate (4.2) holds for

reduced basis approximation as demonstrated in the proof of this theorem later, which provides the

same a priori convergence property for problems other than the elliptic problem (2.1) under linear or

affine assumptions (2.7) as studied in [28, 26].

Remark 4.2 The exponential convergence result (4.2) holds for the case of a single parameter in a

bounded parameter domain |Γ| < ∞. Extension to a single parameter in unbounded domain, e.g. nor-

mal distributed random variable, requires that the data a and f feature a fast decrease at the parameter

far away from the origin (in particular, belonging to a Schwartz space), and the constructive approx-

imation by spectral expansion on Chebyshev polynomials is replaced by that on Hermite polynomials,

see [1].

Remark 4.3 A straightforward extension to multidimensional case (e.g. K parameters) leads to non-

optimal convergence rate with e−rN replaced by e−rKN1/K

. However, when K becomes large, it severely

deteriorates the convergence rate. An improved convergence rate e−r′Nβ/(β+1)

was achieved [5] provided

that the Kolmogorov N-width by the optimal N dimensional approximation decays as e−rNβ

(although

the Kolmogorov N-width is not available in general, some estimation is possible, see [26]). In fact, a

direct bound of the reduced basis approximation error σN in terms of the Kolmogorov N-width dN was

proven in [5] to be σN ≤ 2N+1dN/
√
3, and improved recently, see [16] for details.

In order to prove Theorem 4.1, we need the analytic regularity of the solution of problem (2.10)
with respect to the parameter y ∈ Γ, which is studied through the following three lemmas.

Lemma 4.2 Under Assumption 1-3, the solution to problem (2.10) satisfies u ∈ C0
w(Γ;H

1
0 (D)) for

any positive continuous weight w : Γ → R+. Moreover, if u and ũ are two weak solutions of problem

(2.10) associated with data a, f and ã, f̃ respectively, we have the stability estimate

||u− ũ||C0
w(Γ;H1

0 (D)) ≤
CP

amin
||f − f̃ ||C0

w(Γ;L2(D)) +
CP

a2min

||f̃ ||C0
w(Γ;L2(D))||a− ã||C0(Γ;L∞(D)) (4.4)
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Proof We rewrite (2.10) explicitly as: ∀y ∈ Γ

∫

D

a(x, y)∇u(x, y) · ∇v(x)dx =

∫

D

f(x, y)v(x)dx ∀v ∈ H1
0 (D). (4.5)

A similar problem holds for f̃ and ã. By subtraction we obtain the difference equation:

∫

D

a∇(u− ũ) · ∇vdx =

∫

D

(f − f̃)vdx+

∫

D

(ã− a)∇ũ · ∇vdx. (4.6)

By taking v = u− ũ, applying Cauchy-Schwarz and Poincaré inequalities and using Assumption 2 we
have

amin||u− ũ||2H1
0 (D) ≤ CP ||f − f̃ ||L2(D)||u− ũ||H1

0 (D) + ||ũ||H1
0 (D)||u− ũ||H1

0 (D)||a− ã||L∞(D). (4.7)

so that the following stability estimate holds for ∀y ∈ Γ by the fact ||ũ||H1
0 (D) ≤ (CP /amin)||f̃ ||L2(D):

||u(y)− ũ(y)||H1
0 (D) ≤

CP

amin
||f(y)− f̃(y)||L2(D) +

CP

a2min

||f̃(y)||L2(D)||a(y)− ã(y)||L∞(D). (4.8)

Setting ã(y) = a(y + δy) and f̃(y) = f(y + δy) such that y + δy ∈ Γ, we have by the fact a ∈
C0(Γ;L∞(D)) and f ∈ C0

w(Γ;L
2(D)) that ũ(y) = u(y + δy) → u(y) in H1

0 (D) when δy → 0.
Therefore, the solution is continuous with respect to the parameter y ∈ Γ, i.e. u ∈ C0(Γ;H1

0 (D)). An
immediate consequence is that any positive continuous weight function w : Γ → R+, we have

||u||C0
w(Γ;H1

0 (D)) ≤
CP

amin
||f ||C0

w(Γ;L2(D)) (4.9)

Hence, u ∈ C0
w(Γ;H

1
0 (D)) and (4.4) holds straightforwardly from (4.8) by taking the weight function

w into consideration. �

A direct application of Lemma 4.2 leads to the following lemma for the existence of partial deriva-
tives of the solution with respect to the parameter y ∈ Γ as well as their bound in H1

0 (D).

Lemma 4.3 For any y ∈ Γ, there exists a unique ∂ν
yu(y) in H1

0 (D) provided that the assumptions in

Lemma 4.2 as well as Assumption 1-3 are satisfied for any y ∈ Γ and ν = (ν1, . . . , νK) ∈ Λ, where

Λ ⊂ N
K is a multiple index set. Moreover, we have the following estimate

||∂ν
yu||H1

0 (D) ≤ B|ν|!αν +
CP

amin
|ν|!

∑

k:νk 6=0

(

αν−ek ||fk||L2(D)

)

(4.10)

where

B =
CP

amin
||f(y)||L2(D), |ν|! = (ν1 + · · ·+ νK)!, αν =

K
∏

k=1

ανk

k , αk =
||ak||L∞(D)

amin
(4.11)

Proof First of all, when |ν| = 0, we have the existence of a unique solution u ∈ H1
0 (D) and the

stability estimate from (4.9) only in physical space, leading to (4.10) as

||∂ν
yu(y)||H1

0 (D) = ||u(y)||H1
0 (D) ≤

CP

amin
||f(y)||L2(D) = B. (4.12)

For |ν| ≥ 1, we expect the general recursive equation for ∂ν
yu as (write a(y) in short for a(x, y), etc.)
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∫

D

a(y)∇∂ν
yu(y) · ∇v = −

∑

k:νk 6=0

νk

∫

D

ak∇∂ν−ek
y u(y) · ∇v +

∑

k:ν=ek

∫

D

fkv, (4.13)

where ek is a K dimensional vector with the kth element as 1 and all the other elements as 0. Indeed,
suppose that |ν̃| = |ν| − 1 and that ν̃ = ν − ej for some j = 1, . . . ,K, by hypothesis (4.13) holds for
ν̃, then we claim that it also holds for ν. To see that, take the derivative of (4.13) with respect to yj
by replacing ν as ν̃ = ν − ej , we have

∫

D

a(y)∇∂ν
yu(y) · ∇v+

∫

D

aj∇∂ν−ej
y u(y) · ∇v = −

∑

k 6=j:νk 6=0

νk

∫

D

ak∇∂ν−ek
y u(y) · ∇v

−(νj − 1)

∫

D

aj∇∂ν−ej
y u(y) · ∇v +

∑

k:ν=ek

∫

D

fkv,

(4.14)

which can be simplified by summing up the same term of integral to end up with the equation (4.13).
Upon replacing v by ∂ν

yu(y) in (4.13) and multiplying the weight function w, we have by Assumption
2 as well as Cauchy-Schwarz and Poincaré inequalities the following estimate

||∂ν
yu(y)||H1

0 (D) ≤
∑

k:νk 6=0

νkαk||∂ν−ek
y u(y)||H1

0 (D) +
CP

amin

∑

k:ν=ek

||fk||L2(D). (4.15)

Observe that when |ν| = 1, there must be some k = 1, . . . ,K such that ν = ek, the estimate (4.15)
becomes

||∂ν
yu(y)||H1

0 (D) = ||∂yk
u(y)||H1

0 (D) ≤ Bαk +
CP

amin
||fk||L2(D), (4.16)

which is the same as in (4.10). Meanwhile, if we take ã(y) = a(y−hek), f̃(y) = f(y−hek) and ũ(y) =
u(y − hek) in (4.6) and set vh = (u(y)− u(y − hek))/h, then (4.6) becomes

∫

D

a(y)∇vh(y)∇vh(y) =

∫

D

fkvh −
∫

D

ak∇u(y − hek) · ∇vh, (4.17)

which results in a unique solution vh ∈ V . Taking the limit h → 0, we have by continuity that
u(y − hek) → u(y) so that v0 satisfies the recursive equation for ∂ν

yu in (4.13). Therefore, ∂ν
yu exists

and is a unique solution to (4.13) for ν = ek. By induction it exists for general ν ∈ Λ and satisfies the
recursive estimate (4.15). If |ν| > 1, the estimate (4.15) becomes

||∂ν
yu(y)||H1

0 (D) ≤
∑

k:νk 6=0

νkαk||∂ν−ek
y u(y)||H1

0 (D). (4.18)

Suppose for any |ν̃| < |ν|, the general bound (4.10) holds, then we have

||∂ν
yu(y)||H1

0 (D) ≤
∑

k:νk 6=0

νkαk||∂ν−ej
y u(y)||H1

0 (D)

≤
∑

j:νj 6=0

νjαj



B(|ν| − 1)!αν−ej +
CP

amin
(|ν| − 1)!

∑

k:νk 6=0

(

αν−ej−ek ||fk||L2(D)

)





= B





∑

j:νj 6=0

νj



 (|ν| − 1)!αν +
CP

amin





∑

j:νj 6=0

νj



 (|ν| − 1)!
∑

k:νk 6=0

(

αν−ek ||fk||L2(D)

)

= B|ν|!αν +
CP

amin
|ν|!

∑

k:νk 6=0

(

αν−ek ||fk||L2(D)

)

≡ Ca,f |ν|!αν ,

(4.19)
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where the constant Ca,f is

Ca,f = B + CP

∑

k:νk 6=0,||ak||L∞(D) 6=0

||fk||L2(D)

||ak||L∞(D)
. (4.20)

The proof can now be achieved by an induction argument. �

An analytic extension of the solution u in a certain region Σ such that Γ ⊂ Σ is a consequence of the
regularity result in Lemma 4.3 provided suitable conditions, as stated in the following lemma.

Lemma 4.4 Holding all the assumptions in Lemma 4.3, and defining

Σ =

{

z ∈ C : ∃ y ∈ Γ s.t. α · |z − y| =
K
∑

k=1

αk|zk − yk| < 1

}

, (4.21)

we have the existence of an analytic extension of the stochastic solution u in the complex region Σ and

we define Σ(Γ; τ) := {z ∈ C : dist(z,Γ) ≤ τ} ⊂ Σ for the largest possible vector τ = (τ1, . . . , τK).

Proof By Taylor expansion of u(z) about y ∈ Γ in the complex domain we obtain

u(z) =
∑

ν

∂ν
yu(y)

ν!
(z − y)ν , (4.22)

with ν! = ν1! · · · νK !. Thanks to the regularity result in Lemma 4.3, we obtain

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

ν

∂ν
yu(y)

ν!
(z − y)ν

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H1
0 (D)

≤
∑

ν

|z − y|ν
ν!

||∂ν
yu(y)||H1

0 (D)

≤ Ca,f

∑

n≥0:|ν|=n

|ν|!
ν!

(α · |z − y|)ν

= Ca,f

∑

n≥0

(

K
∑

k=1

αk|zk − yk|
)n

=
Ca,f

1−∑K
k=1 αk|zk − yk|

,

(4.23)

where the second inequality is due to Lemma 4.3 and the first equality comes from the generalized
Newton binomial formula. In the complex region defined in (4.21), we obtain that the function u(z)
admits a Taylor expansion around y ∈ Γ so that the solution u can be analytically extended to the
complex region (4.21). �

To prove the exponential convergence of the weighted reduced basis method for problem (2.10), we
bound the error by another type of constructive spectral approximation, or more specifically, extension
of Chebyshev polynomial approximation for analytic functions (see [17], Chapter 7). The idea has
also been used in the proof of exponential convergence property of stochastic collocation method [1].

Proof of Theorem (4.1): First, we note that the results obtained in the above lemmas in H1
0 (D)

norm are still valid in the equivalent X = A(v, v; ȳ) norm. For any analytic function u : [−1, 1] → X,
their exists a spectral expansion on the standard Chebyshev polynomials ck : [−1, 1] → R and |cn| ≤
1, n = 0, 1, . . . in the form

u(t) =
u0

2
+

∞
∑

n=1

uncn(t). (4.24)
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The nth Chebyshev coefficient satisfies [17]

un =
1

π

∫ π

−π

u(cos(t)) cos(nt)dt, ||un||X ≤ 2̺−n max
z∈D̺

||u(z)||X , n = 0, 1, . . . , (4.25)

where the elliptic disc D̺ is bounded by the ellipse E̺ with foci ±1 and the sum of the half-axes ̺.
Therefore, the error of the truncated Chebyshev polynomial approximation is bounded by

||u−ΠNu||X ≤
∑

n≥N+1

||un||X ≤ 2

̺− 1
e−rN max

z∈D̺

||u(z)||X , (4.26)

being the constant r = log(̺). For any function u : Γ → X, we map the parameter domain Γ → [−1, 1]
and obtain the same estimate (4.26) with the largest value of r given in (4.3) inside the rescaled complex
region Σ([−1, 1], 2τ/|Γ|). It’s left to prove that the reduced basis approximation error is bounded by
the above truncated error. In fact, since the reduced basis approximation adopts Galerkin projection
in the reduced basis space XN , we have by Cea’s lemma [36] that

||u− PNu||X ≤ C1 inf
v∈XN

||u− v||X , (4.27)

where the constant C1 is independent of N . Moreover, for any function u ∈ PN (Γ) ⊗ X, a tensor
product of polynomial space of polynomials with total degree no more than N and X, we have that
PN+1u = u [9, 34], so that the following estimate holds for some constant C2 independent of N

inf
v∈XN+1

||u− v||X ≤ C2 inf
v∈PN (Γ)⊗X

||u− v||X . (4.28)

By the fact that Chebyshev polynomial ck ∈ PN ([−1, 1]), k = 0, 1, . . . , N , we have

inf
v∈PN (Γ)⊗X

||u− v||X ≤ ||u−ΠNu||X . (4.29)

A combination of (4.26), (4.27), (4.28) and (4.29) leads to the following bound for the reduced basis
approximation error with C = 2C1C2e

r/(̺− 1)

||u− PNu||X ≤ Ce−rN max
z∈D̺

||u(z)||X . (4.30)

Since the reduced basis approximation PNu satisfies the linear system (3.13), which can be written in
the compact form as

A(PNu, v; y) = F (v; y) ∀v ∈ XN , (4.31)

we obtain the same regularity for PNu as for the solution u to system (2.10) with respect to the
parameter y. In particular, PNu ∈ C0

w(Γ;X), so that u − PNu ∈ C0
w(Γ;X). Multiplying both sides

of (4.30) by the weight function w and taking the maximum value over the parameter domain Γ, we
have by noting D̺ ⊂ Ξ(Γ; τ) that the exponential convergence (4.2) holds.

�

A direct consequence of Theorem 4.1 for the convergence of s(PNu) and E[s(PNu)] is as follows:

Corollary 4.5 Suppose that the assumptions in Theorem 4.1 are satisfied, we have

||s(u)− s(PNu)||C0
w(Γ) ≤ ||s||X′ ||u− PNu||C0

w(Γ;X) ≤ Cw||s||X′e−rN max
z∈Ξ(Γ;τ)

||u(z)||X , (4.32)

and

|E[s(u)]− E[s(PNu)]| ≈
∣

∣

∣

∣

∣

M
∑

m=1

(s(u; ym)− s(PN ; ym))w(ym)

∣

∣

∣

∣

∣

≤ M ||s(u)− s(PNu)||C0
w(Γ). (4.33)
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5 Numerical examples

In this section, we present several numerical examples to illustrate the efficiency of the weighted
reduced basis method compared to the reduced basis method and the stochastic collocation method.
The output of interest is defined as the integral of the solution over the physical domain D

s(y) =

∫

D

u(x, y)dx. (5.1)

We define the following two errors as criteria of different numerical methods

||s− sN ||C0
w(Γ) and |E[s]− E[sN ]|, (5.2)

where sN is the approximated value of s obtained usingN bases for (weighted) reduced basis method or
N collocation points for stochastic collocation method. In particular, we use the weight function in one
dimension as the probability density function of the random variable obeying Beta(α, β) distribution
with shape parameter α and β providing distinctive property of the weight, defined as

w(y;α, β) =
1

2Beta(α, β)
(1 + y)α−1(1− y)β−1 y ∈ [−1, 1], (5.3)

where Beta(α, β) is a constant (beta function) chosen so that w(·;α, β) is a probability density function.
In our numerical experiments, we use the Gauss-Jacobi quadrature formula to compute the expectation
(5.2) with the solution at the abscissas evaluated by the reduced basis methods. As for the stochastic
collocation method, we use the Gauss-Jacobi abscissas as the collocation points, which is more accurate
than other choices, especially when the weight function is more concentrated. We specify the detailed
setting of the weighted reduced basis method in the following subsections. The physical domain is
a square D = (−1, 1)2 and homogeneous Dirichlet boundary conditions are prescribed on the entire
boundary ∂D.

5.1 One dimensional problem

We set the stochastic coefficient a(x, ω) in problem (2.1) as

a(x, ω) =
1

10
(1.1 + sin(2πx1)Y (ω)), (5.4)

with random variable Y ∼ Beta(α, β) with (α, β) = (1, 1), (10, 10) and (100, 100), respectively. The
left of Figure 5.1 depicts the shape of weight at different locations. The forcing term is the deterministic
value f = 1 for simplicity. We use a tolerance at the same value ε = 1×10−15 for three different weight
functions to stop the greedy algorithm. ntrain = 1000 samples are uniformly selected to construct
the reduced basis space. Another 1000 samples are used to test the accuracy of different methods.
The exponential convergence of the error ||s− sN ||C0

w(Γ) in logarithmic scale for three different weight
functions is displayed on the right of Figure 5.1 for weighted reduced basis method. The maximum
number of bases Nmax = 16, 11, 6 built at the training samples with selection order are visualized by
the marker size on the left of Figure 5.1; they are quite different for different weight functions. From
the location and selecting order of the samples on the left of Figure 5.1, we can tell that the weight
function plays an important role in choosing the most representative bases.

In the comparison of the convergence property of the reduced basis method, the weighted reduced
basis method as well as the stochastic collocation method, we select the weight function of Beta(10, 10)
and compute the two errors defined in (5.2) with the results shown in Figure 5.2. It’s evident that
the weighted reduced basis method outperforms the reduced basis method in both norms, and these
two methods are more accurate than the stochastic collocation method in || · ||C0

w(Γ) norm. As for the
expectation, the weighted reduced basis method is the best and the reduced basis method does not
beat the stochastic collocation method due to the fact that it doesn’t take the weight into account.

However, as demonstrated in [10], the computation of both reduced basis methods is more expensive
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Figure 5.1: Left: Probability density function of Beta(α, β) distribution with different α, β and samples
selected by weighted reduced basis approximation in order, the bigger the size the earlier it has been
selected; Right: convergence of the error log10

(

||s− sN ||C0
w(Γ)

)

by weighted reduced basis method.
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Figure 5.2: Left: convergence of the error log10
(

||s− sN ||C0
w(Γ)

)

by reduced basis method (RBM),
weighted reduced basis method (wRBM) and stochastic collocation method (SCM); Right: conver-
gence of the error log10 (|E[s]− E[sN ]|) by RBM, wRBM and SCM, both with K = 1,Beta(10, 10).

than that of the stochastic collocation method because of the offline construction with a large number
of training samples, especially for the problem requiring low computational effort in one deterministic
solving. Similar numerical examples for some other weight functions are presented in the appendix
for expository convenience.

5.2 Multiple dimensional problem

For the test of multiple dimensional problem, we specify the coefficient a(x, ω) as

a(x, ω) =
1

10

(

4 +

(√
πL

2

)1/2

y1(ω) +

2
∑

n=1

√

λn (sin(nπx1)y2n(ω) + cos(nπx1)y2n+1(ω))

)

, (5.5)

where yk, 1 ≤ k ≤ 5 obeying Beta(100, 100), L = 1/4 and λ1 ≈ 0.3798, λ2 = 0.2391, which comes from
a truncation of Karhunen-Loève expansion [32]. A sufficient number of ntrain = 10000 samples (in fact
ntrain = 1000 provides almost the same result in this example) obeying independent and identically
distributed yk ∼ Beta(100, 100), 1 ≤ k ≤ 5 are taken within the parameter domain Γ = [−1, 1]5 to
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construct the reduced basis space and another 1000 samples following the same distribution are taken
independently to test different methods. We compare the performance of the weighted reduced basis
method, the reduced basis method and a sparse grid collocation method, with results displayed in
Figure 5.3. The two reduced basis methods are obviously more efficient in both norms (5.2) with the
weighted type providing faster convergence: the number of bases constructed for the weighted reduced
basis method (Nmax = 15) is half that necessary to the reduced basis method (Nmax = 30).

10
0

10
1

10
2

10
3

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

 N

 l
o
g
1
0
(|

|s
−

s
N
||

C
0 w
(Γ

))

 

 

 RBM

 wRBM

 SCM

10
0

10
1

10
2

10
3

−16

−14

−12

−10

−8

−6

−4

 N

 l
o
g
1
0
(|

E
[s

]−
E

[s
N
]|
)

 

 

 RBM

 wRBM

 SCM

Figure 5.3: Left: convergence of the error log10
(

||s− sN ||C0
w(Γ)

)

; Right: convergence of the error
log10 (|E[s]− E[sN ]|), computed by RBM, wRBM and SCM, both with K = 5,Beta(100, 100).

As for the computational effort, the stochastic collocation method with sparse grid depends crit-
ically on the dimension [32] while the reduced basis methods are near the best approximation in the
sense that it considerably alleviate the “curse-of-dimensionality” for analytic problem and save the
computational effort significantly for high dimensional problems, especially those with expensive cost
for one deterministic solving. The weighted reduced basis method uses less bases than the conventional
reduced basis method in both offline construction and online evaluation and thus costs less compu-
tational effort, particularly for high concentrated weight function as shown in the above examples.
For detailed comparison of computational cost for reduced basis method and stochastic collocation
method in various conditions, notably for large scale and high dimensional problems, see [10].

6 Concluding remarks

We proposed a weighted reduced basis method to deal with parametric elliptic problems with distinc-
tive weight or importance at different values of the parameters. This method is particularly useful
in solving stochastic problems with random variables obeying various probability distributions. Ana-
lytic regularity of the stochastic solution with respect to random variables was obtained under certain
assumptions for the random input data, based on which an exponential convergence property of this
method was studied by constructive approximation of general functions with analytic dependence on
the parameters. The computational efficiency of the proposed method in comparison with the reduced
basis method as well as the (sparse grid) stochastic collocation method was demonstrated numerically
for both univariate and multivariate stochastic elliptic problems.

There are a few potential limitations we would like to warn the reader on: firstly, the performance of
the weighted reduced basis method for low regularity problems is to be investigated, possibly improved
by combination of “hp”-adaptive reduced basis method [18]. Secondly, efficient empirical interpolation
method [4, 12] needs to be applied in order to use the weighted reduced basis method to solve non-linear
stochastic problems or linear stochastic problems with non-affine random inputs exhibiting various
probability structure. Finally, we would like to mention that application of the weighted reduced basis
method to more general problems, e.g. parabolic problems [22], fluid dynamics [35], multi-physical
problems [27], stochastic optimization problems [11], inverse problems [29], as well as more general
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stochastic problems with various probability structures are ongoing research.

Acknowledgement: We acknowledge the use of the Matlab packages MLife previously developed
by Prof. Fausto Saleri from MOX, Politecnico di Milano. This work is partially supported by Swiss
National Science Foundation under grant N.200021 141034. G. Rozza acknowledges the support pro-
vided by the program NOFYSAS (New Opportunities for Young Scientists) at SISSA, International
School for Advanced Studies, Trieste.

7 Appendix

To illustrate more about the efficiency of the weighted reduced basis method, we present the following
numerical examples with some widely used weight functions other than those considered in section 5:

1. weight function as truncated probability density function of normal distributed random variable:

a(x, ω) =
1

10
(3.1+sin(2πx1)Y (ω)I(|Y | ≤ 3)), Y ∼ Normal(µ, σ);w(y) =

1√
2πσ

exp

(

− (y − µ)2

2σ2

)

;

2. weight function as truncated probability density function of gamma distributed random variable:

a(x, ω) =
1

10
(10.1+sin(2πx1)Y (ω)I(Y ≤ 10)), Y ∼ Gamma(k, γ);w(y) =

1

γkΓ(k)
yk−1 exp(−y

γ
);

3. weight function as truncated probability density function of Poisson distributed random variable:

a(x, ω) =
1

10
(100.1 + sin(2πx1)Y (ω)I(Y ≤ 100)), Y ∼ Poisson(λ);w(y) =

λye−λ

y!
.

The selected samples for different weight functions and error of log10(||s − sN ||C0
w(Γ)) are displayed

in Figure 7.1, 7.2 and 7.3, respectively, from which we can observe that the samples are effectively
chosen according to the weight functions. Consequently, both the offline construction and the online
evaluation become more efficient by the weighted reduced basis method than the conventional one.
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Figure 7.1: Left: Probability density function of Y ∼ Normal(µ, σ) with different µ, σ and samples
selected by weighted reduced basis approximation in order, the bigger the size the earlier it has been
selected; Right: convergence of the error log10

(

||s− sN ||C0
w(Γ)

)

by weighted reduced basis method.
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Figure 7.2: Left: Probability density function of Y ∼ Gamma(k, γ) with different γ and samples
selected by weighted reduced basis approximation in order, the bigger the size the earlier it has been
selected; Right: convergence of the error log10

(

||s− sN ||C0
w(Γ)

)

by weighted reduced basis method.
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Figure 7.3: Left: Probability density function of Y ∼ Poisson(λ) with different λ and samples selected
by weighted reduced basis approximation in order, the bigger the size the earlier it has been selected;
Right: convergence of the error log10

(

||s− sN ||C0
w(Γ)

)

by weighted reduced basis method.
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[1] I. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method for elliptic partial
differential equations with random input data. SIAM Journal on Numerical Analysis, 45(3):1005–
1034, 2007.
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