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Abstract

We address the problem of predicting a target ordinal variable based on observ-
able features consisting of functional profiles. This problem is crucial, especially in
decision-making driven by sensor systems, when the goal is to assess a ordinal variable
such as the degree of deterioration, quality level, or risk stage of a process, starting
from functional data observed via sensors. We purposely introduce a novel approach
called functional-ordinal Canonical Correlation Analysis (foCCA), which is based on
a functional data analysis approach. FoCCA allows for dimensionality reduction of
observable features while maximizing their ability to differentiate between consec-
utive levels of an ordinal target variable. Unlike existing methods for supervised
learning from functional data, foCCA fully incorporates the ordinal nature of the
target variable. This enables the model to capture and represent the relative dissim-
ilarities between consecutive levels of the ordinal target, while also explaining these
differences through the functional features. Extensive simulations demonstrate that
foCCA outperforms current state-of-the-art methods in terms of prediction accuracy
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in the reduced feature space. A case study involving the prediction of antigen concen-
tration levels from optical biosensor signals further confirms the superior performance
of foCCA, showcasing both improved predictive power and enhanced interpretability
compared to competing approaches.

Keywords: Functional Data Analysis, Ordinal Data, Canonical Correlation Analysis, sen-
sors

1 Introduction

In the current industrial landscape, quality features - such as product flaws, process yield,
or degradation states—are increasingly linked to data acquired via sensors (e.g., signals,
images, and video images). In many cases, the quality level is measured on an ordinal scale,
while the observed signal data can be modeled as functional data. This problem naturally
arises in the presence of modern sensoring technologies that generate high-dimensional
temporal sequences of data through video or image records. Examples can be found in
manufacturing, where processes involving local thermal histories (e.g. welding, additive
manufacturing, casting) often correlate final local flaws (e.g., porosity) or microstructure
classifications to the spatio-temporal temperature patterns observed at the same location -
see Figure image a) and b) (Bugatti & Colosimo, 2022; Yan, 2022). Similarly, in life-science
and biotechnology applications, as the motivating example we will focus on, the reaction
class observed at a given location can be linked to the local intensity patterns captured
through video imaging (Figure 1, image c)).

(a) (b)

(c)

Figure 1: a) Functional data representing the cooling history observed during additive
manufacturing in one location and the final microstructure (fine microstructure on the top
and coarse microstructure on the bottom) b) Functional data representing two different
cooling history observed during additive manufacturing with negligible or severe hot-spot
phenomena (classified depending on severity) c) Functional data observed at different levels
of the antibody-antigene interactions (case study described in Section 5).

Further examples of works that employ time-varying signals for ordinal prediction are
typically found in the fields of psychometry and neuroscience (Li et al., 2023; Movahed et
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al., 2021), medicine (Ruan et al., 2022), and again in manufacturing (Kundu et al., 2022;
Zhou et al., 2011).

In this context, it is essential to define a method that leverages functional data as a
predictive driver to estimate the final quality class on an ordinal scale. Although critical
for the applications, to the best of our knowledge, no available methodology leverages
high-dimensional or functional signals to predict an ordinal variable. In fact, state-of-the-
art methods to address a similar problem typically include a preliminary dimensionality
reduction step, followed by a correlation analysis. The preliminary step aims to capture the
variability of the functional data without accounting for the need to explore their ability
to predict the ordinal target variable. For example, within the framework of functional
regression models, several authors have suggested using Functional Principal Component
Analysis (fPCA, Ramsay and Silverman (2005)) as a dimensionality reduction step (Müller,
2005). Here, fPCA is applied to reduce the dimensionality of the data, and then the
resulting scores are used in place of functional covariates (Akturk et. al, 2024), functional
responses (Beretta et. al, 2020), or both (Hullait et. al, 2020). Unfortunately, when dealing
with high-dimensional data, as in our case study, the global variability of the dataset can
hide the ordinal patterns, significantly limiting the prediction power of the fPC scores.
In the classification setting, functional Fisher’s Discriminant Analysis has been proposed
(Hastie et. al, 1995; Ramsay and Silverman, 2005), as an alternative to fPCA. However,
when applied to ordinal variables, Fisher’s approach may struggle to identify components
that effectively discriminate between consecutive levels, especially if the ordinal levels are
not evenly spaced.

Our novel contribution aims at bridging this gap by providing a statistical methodology
for ordinal prediction based on a functional signal. Our novel approach jointly tackles the
limitations of the current literature outlined above by proposing a novel method called
functional-ordinal Canonical Correlation Analysis (foCCA). Our approach is inspired by
functional Canonical Correlation Analysis (Ramsay and Silverman, 2005), but reinterprets
this in an ordinal setting, by adapting the key concept of optimal scoring discussed by
Hastie et. al (1995). In our newly developed solution, foCCA allows one to reduce the
dimensionality of a functional dataset while maximizing correlation of the scores with the
ordinal variable of interest, thus establishing interpretable differences between adjacent
levels through an appropriate weight function. We shall show that foCCA enables one
to (i) effectively reduce the data complexity, (ii) perform supervised classification of the
ordinal levels in the reduced space, and (iii) obtain a set of functional and ordinal directions
(which play the same role as the loadings in fPCA), which can be used to enhance the model
interpretation.

In Section 2 we formulate the problem and we recall the dimensionality reduction meth-
ods typically employed in the functional setting. Section 3 introduces foCCA, providing
some insights in the discretization of the problem, the interpretation of the canonical di-
rections and the penalty parameter selection. In Section 4 we show an extensive Monte
Carlo simulation used to analyse the performance of foCCA and state-of-the-art methods
under varied conditions. This work, though widely applicable, is primarily motivated by a
monitoring challenge from biosensor data, specifically focused on assessing antigen concen-
tration levels within specific Regions of Interest (ROIs) based on video signals that track
the temporal progression of an antibody-antigen reaction. In Section 5 we present the
motivating case study and we show the performance of foCCA on its dataset. Section 6
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presents the main conclusions of the work.

2 Problem formulation and state of the art

Let C be an ordinal random variable with levels from 0 to nC.
Suppose that we are provided with n independent realizations of the functional variable

X and C, then our samples consists of pairs {xi(t), ci}ni=1. The main objective is to be able
to predict the level C, knowing the functional variable X. For any c ∈ {1, ..., nC}, let Dc

be defined as Dc = 1C≥c(C), and let {ec}c be the canonical basis of RnC .
Only in foCCA, we encode C into the random variable Y , defined as follow:

Y =

nC∑
c=1

Dcec (1)

Notice that, by construction, the vector Y and the variable C are in one-to-one correspon-
dence, hence they contain exactly the same information.

In Section 2.1 and 2.2, we provide an overview of classical methodologies that are widely
employed for dimensionality reduction, aiming to capture essential features within high-
dimensional datasets in a predictive context. Understanding these classical approaches is
fundamental for contextualizing and contrasting with the innovative method introduced
later in this study.

2.1 Functional Principal Component Analysis

PCA stands as a cornerstone in the field of dimensionality reduction, finding widespread
applications across various domains, from machine learning to statistics. The PCA objec-
tive is to identify linear combinations of features that maximize the variance within a given
dataset. While the introduction of PCA traces back to its roots in multivariate data anal-
ysis (Hotelling (1933)), its scope has considerably expanded in recent years to encompass
diverse contexts and various data types. This adaptability has allowed PCA to be applied
to entities ranging from points and functions to images and beyond. In this broad context,
fPCA (and its smoothed versions) allows to understand and extract patterns from func-
tional observations. In the following, we set the notation and briefly recall the smoothed
version of the methodology; we refer to Ramsay and Silverman (2005), for further details.
Let (Ω,F,P) be a probability space, and, for ω ∈ Ω, denote by X(ω) an element of the
functional Hilbert space L2(I), where I is a closed interval in R. Suppose we are provided
with a functional dataset {xi}ni=1, independent realizations of X, and we aim at reduc-
ing its dimensionality. Formally, the first functional principal component is the function
β∗(t) ∈ L2(I) that maximizes the penalized sample variance:

β∗(t) = argmax
β

V̂ar(⟨β,X⟩L2(I))

||β||L2(I) + λPen(β)
, (2)

where V̂ ar(·) is the sample variance and, typically, Pen(β) = ||β′′||2L2(I) and λ > 0 is

the penalization parameter (Silverman (1996)). We can compute the subsequent princi-
pal components, with the additional constraint of being orthogonal to previously found
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components, by solving the equivalent eigenvalue problem (Silverman (1996)). FPCA al-
lows to gain valuable insights into the inherent structures and dynamics of the underlying
processes. Nevertheless, when the objective is to utilize a functional dataset for predict-
ing a new object, employing fPCA does not guarantee that the extracted components are
the most appropriate for forecasting purposes, e.g. when the variance explained by any
covariate is masked by a high global variance.

2.2 Functional Fisher’s Discriminant Analysis

When the aim is supervised classification, a well-known dimensionality reduction technique
is Fisher’s Discriminant Analysis, by Fisher (1936). As PCA, this technique was extended
to the functional framework in Ramsay and Silverman (2005), based on Hastie et. al (1995),
in which Penalized Discriminant Analysis is discussed and the equivalence with Discrimi-
nant CCA and Optimal Scoring is demonstrated for categorical labels. Let X be a random
function as in the previous Section (2.1). Let us suppose that our dataset consists of pairs
{(xi(t), ci)}ni=1, where, for any i, xi is a realization of X and ci ∈ {c0, c1, c2, ..., cnC} is the
realization of a categorical variable. The first functional Fisher discriminant component is
a function β∗ ∈ L2(I) which maximizes the between-class sample variance, ensuring that
the projected classes are well-separated, while simultaneously minimizing the within-class
sample variance to maintain compactness within each class, formally:

β∗(t) = argmax
β

V̂arB(⟨β,X⟩L2(I))

V̂arW (⟨β,X⟩L2(I)) + λPen(β)
, (3)

where VarB is the between-class sample variance, and VarW is the within-class sample
variance, i.e.: 

V̂arB(⟨β,X⟩L2(I)) =
1

nC

∑
c∈{c0,...,cnC}

n(c)(⟨β, x̄c − x̄⟩)2

V̂arW (⟨β,X⟩L2(I)) =
1

n

∑
i∈{1,...,n}

(⟨β, xi − x̄ci⟩)2

x̄c =
1

n(c)

∑
i:ci=c

xi and x̄ =
1

n

∑
i∈{1,...,n}

xi

n(c) = |{i : ci = c}| for any c ∈ {c0, c1, .., cnC}

(4)

This technique allows to extract the component that best discriminates among the classes.
The Fisher’s concept can be modified to be used with an ordinal label, rather than cat-
egorical, extending the idea of (McFee and Ellis (2005)) to the functional framework, i.e.
substituting the classical sample between covariance VarB with:

V̂ar
O

B(⟨β,X⟩) =
nC−1∑
c=0

n(c)(⟨β, x̄c − x̄+
c ⟩)2 + n(c+1)(⟨β, x̄c+1 − x̄+

c ⟩)2 (5)

where x̄+
c is the mean vector of the xi’s belonging to the union of the two consecutive levels

c and c+ 1. With this modification, the discrimination is maximized between consecutive
levels instead of among all the possible classes. In the following, we will refer to this method
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with the name functional-ordinal Fisher Discriminant (foFD). When the underlying data
distribution is approximately Gaussian and the class covariances are assumed to be equal,
foFD provides an optimal linear transformation for discrimination. In view of this, foFD
could be considered as a competitor method of that proposed in this work. However, we
do not pursue this approach further as it is subject to limitations, e.g., when data do not
come from a Gaussian process (Johnson and Wichern (2015)), when the variance within
each class is maximized along the same direction as the variance between classes (since the
same direction maximizes the numerator and the denominator of the fraction in Equation
3) or when the groups are separated by very different distances. The latter issue holds also
net of the modification of the between variance definition for ordinal labels, proposed by
McFee and Ellis (2005).

3 Functional-ordinal Canonical Correlation Analysis

We here present the functional-ordinal Canonical Correlation Analysis, which aims to pro-
vide a dimensionality reduction of a functional dataset, as to maximize the discrimination
ability, in the reduced space, among the levels of an ordinal variable.

3.1 The maximization problem

Suppose that we are provided with n independent realizations of the functional variable X
and the vector Y , which is defined in Equation 1 starting from an ordinal random variable
C. Thus, our samples consists of pairs {xi(t), yi}ni=1 ∈ L2(I)×{0, 1}nC . The main objective
is to be able to predict the Y , i.e. the level C, knowing the functional variable X. We can
reduce the dimensionality of the functional part of the dataset while extracting the features
that best discriminate among different levels, adapting Canonical Correlation Analysis to
the functional-ordinal context. More precisely, foCCA looks for β∗ ∈ L2(I) and θ∗ ∈ RnC

that maximize the sample correlation between the following random variables

⟨β,X⟩L2(I) and ⟨θ, Y ⟩RnC

.
We call β(t) the functional canonical component and θ the ordinal canonical component,
while ⟨β,X⟩L2(I) and ⟨θ, Y ⟩RnC are, respectively, the functional and the ordinal scores. For-
mally, in analogy to Leurgans et al. (1993), where both datasets are functional, we want
to find the functional object β∗(t) and the vector θ∗ that maximize the penalized squared
sample correlation:

ccorsqλ1,λ2(β, θ) =
Ĉov(⟨β,X⟩L2(I), ⟨θ, Y ⟩RnC )2(

V̂ar(⟨β,X⟩L2(I)) + λ1Pen(β)

)(
V̂ar(⟨θ, Y ⟩RnC ) + λ2Pen(θ)

) (6)

where Ĉov(·) and V̂ ar(·) are, respectively, the sample covariance and variance, Pen(β)
is a smoothing penalization and Pen(θ) is an elastic net penalization, with the respec-
tive penalty parameters λ1 > 0, λ2 > 0. The need for penalization is deeply discussed
in Silverman (1996). In our work, for the functional canonical component the penaliza-
tion is Pen(β) = ||β′′||2L2(I), typically used in smoothing spline regression (Ramsay and
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Silverman (2005)), and for the ordinal canonical component Pen(θ) = ||θ||2, i.e. the Ridge
penalization (Hoerl and Kennard (1970)). Given that the described optimization problem
is equivalent to a generalized eigenvalue problem, we can derive the first pair of canoni-
cal components (β(1)(t), θ(1)) corresponding to the largest eigenvalue ρ(1), the second pair
(β(2)(t), θ(2)) corresponding to the second largest eigenvalue ρ(2), and so forth, up to a de-
sired number of components m. In the next Section 3.2 we elucidate the computational
tools employed to derive the pairs of canonical components, providing a detailed resource.

3.2 Discretization of the maximization problem

We here enter into the details of the discretizaton of the dataset and of the optimization
problem. Moreover, we provide the subsequent derivation of the generalized eigenvalue
problem. These steps allows the computation of the sequence of m canonical correlation
components. In the following, we assume both the functional and the ordinal data to be
empirically centered to facilitate the computations. Net of the centering, the maximization
problem (6) is equivalent to the following:

(β∗, θ∗) = argmax
β,θ

1

n

n∑
i=1

⟨β,Xi⟩L2(I)⟨θ, yi⟩RnC(
1

n

n∑
i=1

⟨β,Xi⟩2L2(I) + λ1⟨β, β⟩2L2(I)

)(
1

n

n∑
i=1

⟨θ, yi⟩2RnC + λ2⟨θ, θ⟩2RnC

) (7)

Let us focus on the discretization of the functional dataset, as the ordinal dataset is already
finite dimensional. Suppose that we can represent, possibly after a smoothing regression, each
functional datum xi(t), where 1 ≤ i ≤ n, through a finite basis expansion, i.e.:

xi(t) =

nJ∑
j=1

aijϕj(t)

where aij is the coefficient associated with the basis function ϕj(t) ∈ L2(I). If we define the
following matrices:

• A = {aij}ij , where aij is the coefficient of the i-th unit associated to the j-th spline, in
centered dataset {xi(t)}i.

• D = {dil}il where dil is the coefficient of the i-th unit associated to the c-th basis vector, in
the centered {yi}i.

• V12 = n−1ATD, V11 = n−1ATA, V22 = n−1DTD.

• K =

{∫
I

∂2ϕj

dt2
∂2ϕk

dt2

}
j,k

• J =

{∫
I
ϕjϕk

}
j,k

By setting β(t) =
∑

j bjϕj(t), the maximization problem in Equation 7 can be discretized as
follows:

(b∗, θ∗) = argmax
b,θ

(bTJV12θ)
2

(bTJV11Jb+ λ1bTKb)(θTV22θ + λ2θT θ)
(8)
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which is in turn equivalent to maximize the value (bTJV12θ) imposing (bTJV11Jb + λ1b
TKb) =

(θTV22θ + λ2θ
T θ) = 1. Hence, the optimization problem in (6) is equivalent to the following

generalized eigenvalue problem (Ramsay and Silverman (2005)):[
0 JV12

V21J 0

] [
b
θ

]
= ρ

[
JV11J + λ1K1 0

0 V22 + λ2I

] [
b
θ

]
(9)

The eigenvector [b∗T , θ∗T ] with highest eigenvalue ρ allows to reconstruct the first canonical
component as β∗(t) =

∑
j b

∗
jϕj(t), while the second block θ∗ directly provides the first ordinal

canonical component.

3.3 Interpretation of canonical components

In this section, we enter into the interpretation of the canonical components derived from the
maximization problem introduced above. By elucidating the interpretation of these components,
we seek to unravel valuable insights into the relationships between the functional and the ordinal
datasets. Recall that foCCA computes the function β∗ ∈ L2(I) and the vector θ∗ ∈ R

nC that
maximize the correlation between the functional scores ⟨β,X⟩L2(I) =

∫
I β(t)X(t)dt and the ordinal

scores ⟨θ, Y ⟩ =
∑

j=1,...,nC
θjYj . The functional canonical component β∗(t) is the weight given to

the functional datum X(t) across time, in the functional score computation. This function makes
clear which are temporal intervals that are valuable for discrimination and highlights how they
influence the functional score that optimizes the prediction of the ordinal variable. For what
concerns the ordinal canonical component, notice that the suitable representation of C through
Y allows to make flexible the distance between consecutive levels in the correlation analysis,
exploiting the ordinal nature of the variable C. Indeed, θ∗ contains the components representing
the step between two consecutive ordinal variables. For instance, if we consider two realizations
of Y , such that c1 = ĉ− 1 and c2 = ĉ (ĉ ∈ {1, ..., nC}), i.e.

y1 =
ĉ−1∑
c=1

ec and y2 =
ĉ∑

c=1

ec ,

then the difference between the two ordinal scores is (θ∗T y2−θ∗T y1) = θ∗T (y1−y2) = θ∗T eĉ = θĉ.
It is important to note that even after centering the dataset Y , the disparity between two ordinal
observations remains constant. Consequently, the interpretation of the coefficients in θ∗ remains
unaffected by this centering process.

3.4 A note on penalty parameter selection

Since our final goal is to optimize the dimensionality reduction in terms of classification power,
we select the parameters with a cross-validation method: we fix the K-fold Cross Validated Mean
Absolute Error (MAECV ) as the loss function, i.e.:

MAECV =
K∑
k=1

∑
i∈Fk

|ci − ĉ
(−Fk)
i |

nFk

, (10)

where ĉ
(−Fk)
i is the level associated with the nearest centroid (calculated by excluding Fk) within

the space of the first m components, where m is fixed. Here, we identify the penalty parameters
corresponding to the minimum of the smoothed loss curve (or surface). As revealed by sensitivity
analyses, smoothing is essential as the narrow selection of the penalty parameter based solely
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on the raw loss curve (or surface) may be influenced by the subdivision into K-folds. To elab-
orate further, the loss is smoothed through smoothing cubic splines regression (with smoothing
parameter selected via GCV, Wood (2004)); since in foCCA we have to select two parameters,
we consider smoothing regression with tensor product of cubic splines (Wood et. al (2015)).

4 Simulation Study

In this section, we present a simulation study conducted to assess the performance of the di-
mensionality reduction method foCCA, and comparing it with the performance of fPCA and
foFD, under specific conditions, via Monte Carlo simulations. The foCCA method, by design, is
expected to outperform competitors in identifying functional components that effectively differ-
entiate between various levels of an ordinal variable, even in cases where the intervals between
consecutive levels are not uniformly distanced. Consequently, we conduct comparative analyses
across two distinct simulated scenarios: (a) A scenario where the variance attributed to the ordi-
nal variable is lower than the overall dataset variance, which, in particular, poses challenges for
fPCA; (b) A scenario where the successive levels of the ordinal variable exhibit non-uniformity in
distance, which, in principle, poses challenges to all the methods. Codes and data to reproduce
the simulated experiments are available at https://github.com/gPatstat/foCCA.

This structured approach allows us to systematically evaluate and compare how each method
responds to challenges specific to the underlying data structures, providing information into their
respective strengths and limitations in practical applications.

4.1 Simulated scenarios

The simulated functional dataset consists of n = 1000 functional data built on a basis of J = 10
cubic B-splines, with equispaced knots and range I = [0, 100], where the coefficients of the splines
are independently randomly sampled from a distribution that depends on the scenario we aim at
creating. The number of levels is fixed equal to (nC+1) = 9, as in the case study in Section 5, and
for any unit i ∈ {1, .., n}, the level ci is randomly sampled from the discrete uniform distribution
over {0, 1, 2, ..., 8}.

In the scenario (a), a singular Monte Carlo simulation consists of a dataset of realizations
(xi(t), ci)

n
i=1. For any unit i ∈ {1, ..., n}, xi(t) =

∑J
j=1 aijϕj(t), where aij is the coefficient of

the i − th unit associated with the j − th spline of the basis. The coefficients {aij}ni=1 are in-
dependently sampled from the normal distribution N (µj + hij , σj), where, for any spline j, µj

is the general mean, hij is a level-specific increment and σj is the standard deviation. For any
Monte Carlo simulation, {µj}Jj=1 are i.i.d sampled from U([−10, 10]), and {σj}Jj=1 are i.i.d sam-
pled from U([0, 10]). The level-specific increment hij is equal to

∑ci
k=0 γ(k) if j = s, and it is

equal 0 otherwise. For any Monte Carlo simulation the spline s = argmin
j∈{1,...,J}

{σj} is the spline

along which we generate the ordinal pattern, defined by the increment γ(k) ∼ N (qa · 10, 1) for
any k ∈ {1, ..., nC} and γ(0) = 0. In particular, qa denotes a parameter that controls the severity
of the perturbations across levels applied in the generated scenario. The reason why we generate
different {µj}Jj=1, {σj}Jj=1 and γ for each Monte Carlo simulation, is that we want to be sure that
all the methods are challenged: indeed, for any simulated dataset we change the mean function,
the direction along which the ordinal pattern is built, the direction along which the global vari-
ance is the highest and the mutual distances between the consecutive levels. Hence, the methods
are compared on an exhaustive and wide scenario. Notice that, when qa = 0 the increment is
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null for each spline j, i.e. the variance explained by the ordinal variable is zero along the entire
domain. On the contrary, when qa > 0, along the spline s the coefficients have a mean increment
(qa · 10)ci, i.e. the larger qa, the higher the expected ratio between the variance explained by the
ordinal variable and the global variance. See Figure 2 to see some examples of scenarios of type
(a).

In the scenario (b) the successive levels of the ordinal variable exhibit a non-uniform separa-
tion, both in terms of distance and in terms of component along which the distance is max-
imized. Each Monte Carlo simulation consists of a dataset of realizations (xi(t), ci)

n
i=1, with

xi(t) =
∑J

j=1 aijϕj(t), where aij are independently sampled from N (µij , 1). In particular,

µij = µ
(0)
j + qb1{ci≥1}(

∑
1≤c≤min(4,ci)

µ
(1)
j ) + 1{ci≥5}

∑
5≤c≤ci

µ
(2)
j , where for any Monte Carlo

simulation µ
(k)
j are i.i.d sampled from U(−1, 1)). Hence, the mean µij is characterized by a global

mean term µ
(0)
j and by two additional terms that depend on the level ci associated with the

unit. More precisely, µ
(1)
j is the increment applied to µij for each level k ≤ ci with k = 1, ..., 4,

while µ
(2)
j is the analogous increment among contiguous levels but for the highest levels k ≥ ci

with k = 5, ..., 8. In practice, let us consider to start with µij = µ
(0)
j . The value qb is the ratio

between the increments of the highest levels and the one of the lowest levels, hence it represents
the severity of the Scenario (b). A lower value of qb indicates less uniform separation between
consecutive levels, illustrating greater disparity in the increments for higher levels compared to
lower levels.
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Figure 2: Examples of simulated scenarios of type (a), depending on qa
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Figure 3: Examples of simulated scenarios of type (b), depending on qb

4.2 Results

In this Section, we aim to estimate the performance of foCCA via Monte Carlo simulations, built
by varying the ratio qa, i.e. generating scenarios of type (a), and qb, i.e. generating scenarios
of type (b). We compare the results with the ones obtained through fPCA and foFD. We run
M = 500 simulations for each scenario, letting qa and qb vary in the range {0, 0.1, 0.2, ..., 1}., and
we evaluate the K-fold MAE, defined in Section 3.4, with K = 5. By doing this, we can see how
the severity of the scenario affects the models.
Results are depicted in Figure 4. In the scenario (a) we can observe that the performances of all
the three methods improve as qa increases. This is due to the fact that, the higher qa, the clearer
the separation of the levels (see also Figure 2). Indeed, a high ordinal variability, with respect
to the global variability, drive all the methods towards the identification of components that
intrisically separate the levels. However, foCCA proves consistently better than the competitors
across all the severity levels. Notice that, when qa is high, foFD is the worst method. A possible
reason for this result relies in the fact that the direction that maximizes the ordinal variance is,
by construction, the same as the one that maximizes the global variance. Contrarily, when qa
is small, the performance of fPCA is the poorest. This phenomenon can be explained by the
fact that, in this scenario, the ordinal variance is negligible with respect to the global variance,
hindering the identification of discriminant directions through fPCA.
Let us now focus on scenario (b). In this scenario, whatever the value of qb, the levels are not
equally separated. However, as qb grows, the recognition of the lowest levels should, in principle,
be possible for each method. We can observe from the Monte Carlo simulations, in Figure 4,
that as qb increases, the error of all the methods decreases. However, for each qb ∈ [0, 1], while
fPCA and foFD tends to overlap in terms of MAE, the difference between these two methods and
foCCA is always high in mean. In conclusion, foCCA is able to keep a significantly lower error
than competitors in both scenarios proposed. The methods behave in a similar way only when
there is an ordinal variance comparable to the global one, with levels equispaced along the same
components.
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Figure 4: Monte Carlo simulations: the line represents the mean values, while the bands’
boundaries are the pointwise quantiles 5% and 95%

5 A case study: analyzing biological interactions from

biosensor video signals

5.1 Optical biosensors data: background

In recent decades, optical biosensors have become increasingly important in a wide variety of
areas such as biomedical diagnostics (Sharma et al. (2021)), drug discovery (Cooper (2006)), food
safety (Narsaiah et al. (2012)), or environmental monitoring (Sharma & Sharma (2023); Long, Zhu
& Shi (2013)). To enhance the time-efficiency and sustainability of optical biosensors, imaging
techniques have been developed to measure multiple interactions between the receptor (such as an
enzyme, nucleic acid, an antibody, tissue, organelles or even whole cell) and the analyte (e.g. an
antigen of interest) in parallel. Due to these challenges and progressions in complexity and design
(Narlawar et al. (2024); Gauglitz (2010)), the generated datasets are becoming high-dimensional,
yielding time-consuming and memory-intensive data processing.

In this study, a reflectometric imaging sensor is used to track the progression of the interaction
between an antibody and an antigen immobilized onto a transducer, based on a video of the light
intensity. The primary statistical challenge lies in analyzing temporal profiles of light intensity
within Regions of Interest (ROIs), where the antibody is present with a nominal concentration
level. In particular, our interest lies in analyzing the light intensity evolution depending on the
level of antigen concentration, and therefore, in predicting the level of antigen concentration,
based the optical signal, in a new ROI.

5.2 Preprocessing

The available dataset consists of a video signal, recording one image per second, captured through
a reflectometric sensor. Each frame represents the light intensity of the reflected light, measured
at a time instants. Here, 1035 spots–each containing a certain concentration of the antigen t-BSA–
are arranged in a regular grid on the sensor surface, identifying 1035 regions of interest (ROIs). In
practice, some spots may not exist or contain minimal reagent concentration. Note that visually
detecting the presence of a spot is straightforward, as it appears darker than the background in
the reflectometric image. Figure 5 reports a schematic representation of the dataset.
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Figure 5: Biosensor data, a zoom on a subset of ROIs labeled with a nominal concentration
level. On the right, the functional boxplot of the smoothed log-ratio, stratified by concen-
tration level. Coloring of the boxplots is consistent with that of the associated levels (on
the right). Note that levels 0 denotes the control group, only levels ci > 1 display a spot
on the image, and only levels ci > 2 presents a positive antigen concentration.

Preprocessing of the video signal consists of light cleaning and subsequent construction of the
ordinal-functional dataset, where the statistical unit is the ROI and the target variables are (i)
a functional data point that represents the temporal evolution of the light intensity and (ii) an
ordinal variable that represents the level of concentration of reagent.

For each ROI, the nominal concentration level is associated with an ordinal label. In order
to detect magnitude outliers among the ROIs, we eliminate exogenous sources of light from the
reflectometric images, such as external lights and irregularities in the surface coating. In our case
study, it is realistic to assume that the exogenous sources of light are constant over time. We
model the logarithm of light intensity at time 0 as a Generalized Additive Model (GAM, Hastie
and Tibshirani (1986)), using as predictor the pixels’s spatial coordinates (x, y), with a nonlinear
contribution, and the categorical information of whether or not the pixel belongs to a ROI. By
dividing the light intensity by the model-based expected light disturbance (or by subtracting in
the case of their logarithms) on the reflectometric images, we effectively minimize variations in
light that do not stem from the presence of the antigen spot. Net of the light cleaning, we can
easily check if a pixel belongs to random spots or determine if a randomly sampled pixel is located
within or outside an ROI.

Figure 6: Light intensity vs cleaned light intensity at time 0
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The light intensity, ranging from 0 to 216−1, exhibits a compositional nature. To conduct standard
statistical analyses like dimensionality reduction, modeling, or clustering, it is crucial to work with
absolute values, rather than the relative information associated with the compositional nature of
the data (Pawlowsky-Glahn et. al (2015)). Various transformations for compositional data have
been proposed in the literature to ensure meaningful and interpretable results. Among these,
the log-ratio approach, initially introduced by Aitchison (1982), stands out as one of the most
popular methodologies. Following these principles, we construct a functional datum representing
the light intensity of the i-th ROI as follows. We subtract the GAM model from the logarithm
of light intensity, obtaining a cleaned, time-varying log-light intensity, fj(t), for each pixel j in
the image D. For each ROI i, we compute the 5%-trimmed mean of the cleaned signals fj(t)
corresponding to N = 100 randomly extracted pixels within the ROI, resulting in f̄ROI

i (t). The
trimming is based on the Modified Band depth, introduced by Lopez-Pintado and Romo (2009).
This ensures robustness in estimating the mean function within the ROI, which is then taken
as representative of the signal for that ROI. Additionally, we sample N = 100 pixels in the
neighborhood of each ROI i and compute the 5%-trimmed mean f̄BG

i (t) to robustly estimate the
mean in the background area adjacent to ROI i. After conducting a sensitivity analysis regarding
the quantity of points sampled within and outside the region of interest, it became apparent that
selecting more than 100 points does not result in a noticeable enhancement. To account for the
compositional nature of the signals, we compute the log-ratio of the light intensity:

xi(t) = (f̄ROI
i (t)− f̄ROI

i (0))− (f̄BG
i (t)− f̄BG

i (0)) . (11)

We then smooth the log-ratio (11) using smoothing splines regression (Reinsch (1967)), employing
20 cubic splines with equally distributed knots and a penalty parameter of 104 selected via GCV
to obtain a meaningful functional profile. In conclusion, each ROI i is associated with a func-
tional datum xi(t) and a concentration level ci of the reagent. Figure 5 displays (on the right) the
functional boxplot of the log-ratio of the light intensity, colored according to the associated level
of antigen concentration. The final dataset consists of the logratio profiles dataset deprived of the
level-specific functional outliers, recognised through the Modified Band Depth (Lopez-Pintado
and Romo (2009)).

5.3 Dimensionality reduction

In this section, we show the results obtained by applying the method foCCA, presented in Section
3, to the preprocessed dataset introduced in Section 5.2. From a biophysical standpoint, levels 0
and 1 do not have intrinsic distinctions, and our interest does not lie in differentiating between
them. However, in general, the difference between consecutive levels is not known a priori. For this
reason, at the training phase (including the training steps in the iterations of each K-fold CV), we
did not merge these two classes and thus challenged the methods to select the best components for
ordinal prediction when the differences in levels are extremely uneven. We merge them into a single
level, denoted as 1, only to display and evaluate the confusion matrices. We select the penalty
parameters, among a grid of proposed parameters, via K-fold Cross Validation, as detailed in
Section 3.4, with K = 5. The selected couple of parameters for foCCA are (λ1, λ2) = (100, 1000).
For the analysis here presented, the dataset cleaned from outliers was used; hence, hereafter we do
not consider robust estimators for the mean and the covariance operators of the quantity involved.
Alternatively, one may use one of the robust estimation procedures present in the literature (see,
e.g., Bali et. al (2011)).
The first row of Figure 7 displays the scatterplot of the first two functional scores of foCCA,
alongside the marginal densities of these scores. Notably, the marginal densities of the first score
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distinctly separate the highest concentration levels, while the lowest four levels remain largely
overlapped. The second component effectively distinguishes levels {0, 1} from levels {2, 3, 4}, i.e.
ROIs without spots from those with spots and a low antigen concentration.
The method foCCA also provides a clear understanding of the difference, with respect to the most
relevant features of the functional profiles, among the levels. Indeed, by observing the first ordinal
components (Figure 8, right) combined with their respective functional components (Figure 8,
left), we can understand, for every couple of consecutive levels, how much they are separated by
the corresponding functional score. In addition, we can determine whether moving to the next
level results in an increase or a decline of the functional score. In Figure 9 it is clear that the first
functional component gives a high weight to the final phase of the reaction (time t ≥ 400). The
vector θ1, i.e. the first ordinal component takes high values in the last components, in particular
between levels 5 and 6 (see the right plot in Figure 8), where θ1 has the maximum value. All these
considerations are consistent with the fact that the highest levels are well separated in the 2D
functional scores’ space (Figure 7, top) and the levels 5 and 6 are here the most distant. On the
contrary, the second score seems to separate the lowest levels (spot vs. non-spot); this observation
is coherent with the information given by the right plot in Figure 8, where the highest component
of θ2 is 1:2, i.e. the increment on the ordinal score passing from level 1 to level 2 (see Section 3.3 to
interpret the ordinal component). Lastly, in Figure 8, one may notice that the second functional
component gives a negative weight in the initial slot (approximately t < 60): this first phase, in
practice, is fundamental to discriminate between levels 1 and 2, since the initial light intensity
variation is due to the presence of the spot and the lower the concentration of antigen (null at
level 2) the higher the power of this variation. In conclusion, foCCA is able to provide further
analysis of the levels paired with the functional profiles and, in our case study, it is consistent
with the biological knowledge.

5.4 Validation

We now validate our method by comparing the dimensionality reduction obtained through foCCA
with the ones obtained with fPCA, foFD, focusing on the ability to separate the consecutive levels
of concentration. Moreover, we will compare the nearest centroid classifiers built on the first two
components identified by foCCA, fPCA and foFD. For the sake of completeness, we shall also
compare the results with a scalar competitor, built upon considering as score the last value of the
log-ratio. The latter is a heuristic alternative to the first three methods, since, at a first sight, it
can seem sufficient to predict the level of concentration. In order to have a fair comparison among
foCCA, fPCA and foFD, we select the penalty parameters at the best of their ordinal classification
power (analogously as in Section 3.4). The parameter selected for fPCA is λ = 106, while for foFD
is λ = 108. Figure 7 shows that, as foCCA, fPCA and foFD provide a first score that distinctly
separate the highest concentration levels. However, the second component of fPCA, contrarily to
foCCA, does not exhibit clear separation between any pair of successive levels, while the second
component of foFD separates the consecutive levels 1:2, but in a much weaker way than foCCA.
By observing the confusion matrices in Figure 12, it is clear that only foCCA has a high accuracy
in the low levels of concentration. Moreover, fPCA, foFD and, even more, the heuristic method,
show frequent misclassifications of 2 or more levels, especially when the target level is low, while
in foCCA it happens much more rarely.
A possible interpretation of these results can be given. Indeed, the functional direction along which
the level 1 (i.e. 0 and 1) and the levels higher than 1 are most separated do not present a high global
variance. For this reason, fPCA does not identify this direction as relevant. Moreover, the levels
are not intrinsically equidistant, hence foFD tends to find the functional directions that maximize
the separation among the most different successive levels. Contrarily, foCCA, through the use of
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vector θ, naturally handles the varying distances of consecutive levels, approaching or moving away
from levels to maximize correlation with the functional component. Lastly, the heuristic method,
which would provide a fast and simple alternative to the functional methodologies, suggests that
a scalar index does not contain enough information to distinguish all the levels. In conclusion,
foCCA outperforms all the tested competitors in predicting the level of concentration of antigen,
thanks to the flexibility gained with the ordinal canonical component θ, and the targeting of the
ordinal variable in its objective functional.
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Figure 7: A comparison of the three methods. First column: the scatterplots of the first
two scores. Second column: boxplots of the first score. Third column: boxplots of the
second score.
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Figure 8: The first two components of foCCA
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Figure 12: Comparison of the K-fold CV confusion matrices, with K = 5

Method Accuracy

foCCA 0.804
fPCA 0.634
foFD 0.72
heuristic 0.579

Table 1: Accuracy

Figure 13: Comparison of sensitivity and specificity
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6 Conclusions

The work presented is inspired by a case study, when we want to maximize the ability to predict
the antigen concentration level of each ROI, based on an optical signal. At this aim, we proposed
a novel methodology to predict ordinal variables based functional data, foCCA. Through an ex-
tensive simulation study, we showed that foCCA performs significantly better, from an ordinal
predictive point of view, than the competitors ( i.e. fPCA and foFD) in two realistic scenarios
for any level of severity of both. In the case study, foCCA gives better ordinal predictive results
than competitors, both functional (fPCA and foFD) and scalar (heuristic method) and, addition-
ally, it provides signal-based distances between the consecutive levels, which in principle are not
homogeneous. Moreover, the results are consistent with the physical knowledge about the ROIs.
Our approach is particularly suitable when the final aim is ordinal prediction based on high di-
mensional data or when the signal-based differences between consecutive levels are considered of
particular interest. As future improvement, the foCCA can be made able to predict in real-time
the ordinal level. Indeed, in process control an early predicted level can be fundamental to take
real-time actions, e.g. with the aim in view of building a digital twin.

Acknowledgements

The authors gratefully thank Johanna Hutterer (University of Tübingen) for the interesting dis-
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