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Abstract

In this work we set up a new, general and computationally efficient way to tackle
parametrized fluid flows modeled through unsteady Navier-Stokes equations defined on
domains with variable shape, when relying on the reduced basis method. We easily de-
scribe a domain by flexible boundary parametrizations, and generate domain (and mesh)
deformations by means of a solid extension, obtained by solving an harmonic extension
or a linear elasticity problem. The proposed procedure is built over a two-stages reduc-
tion: (i) first, we construct a reduced basis approximation for the mesh motion problem,
irrespectively of the fluid flow problem we focus on; (ii) then, we generate a reduced basis
approximation of the unsteady Navier-Stokes problem, relying on finite element snapshots
evaluated over a set of reduced deformed configuration, and approximating both velocity
and pressure fields simultaneously. To deal with unavoidable nonaffine parametric depen-
dencies arising in both the mesh motion and the state problem, we apply a matrix version
of the discrete empirical interpolation method, allowing to treat geometrical deformations
in a non-intrusive, efficient and purely algebraic way. The same strategy is used to per-
form hyper-reduction of nonlinear terms. To assess the numerical performances of the
proposed technique, we address the solution of parametrized fluid flows where the param-
eters describe both the shape of the domain, and relevant physical features. Complex flow
patterns such as the ones appearing in a patient specific carotid bifurcation are accurately
approximated, as well as derived quantities of potential clinical interest.

1 Introduction

The efficient numerical simulation of fluid flows is of paramount importance in several engi-
neering fields. Blood dynamics in arterial vessels and aerodynamics are just two examples
of contexts where scientific computing can provide quantitative indication about the physical
behavior of a system, in view of its better understanding, control, forecasting. Solving these
problems entails the numerical approximation of unsteady Navier-Stokes equations in three-
dimensional domains, requiring fine computational meshes if complex flow patterns must be
recovered, and ultimately yielding large-scale systems of equations to be solved.

Very often, such a problem depends on a set of input parameters, describing physical
and/or geometrical features; the resulting system must then be solved for several different pa-
rameter values, each one corresponding to a different scenario. This is the case, for instance,
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of blood flow simulations, where outputs of clinical interest often must be evaluated for dif-
ferent flow conditions and in different geometrical configurations. Dealing with domains with
variable shapes is indeed of interest, in this context, to (i) take into account natural intra-
patients variability in vessel morphology, as well as to (ii) describe the evolution of diseases
involving a narrowing of the vessel lumen, such as plaques, occlusions or stenosis. Charac-
terizing several virtual scenarios may thus require several input/output evaluations, each one
corresponding to a single query to the numerical model. If quantitative outputs are meant
to support clinicians and medical doctors in their decisions, each new numerical simulation
should be carried out very rapidly (order of minutes, say) on deployed platforms rather than
on huge parallel hardware architectures, possibly requiring limited data storage and memory
capacity. Meeting all these requirements is a challenging task, with the result that traditional
high-fidelity, or full-order, techniques – e.g. the finite element (FE) method – are ill-suited,
despite the constant growth of computer resources available.

Reduced-order models (ROMs) are emerging methodologies aimed at reducing the com-
putational complexity and costs entailed by the repeated solution of PDE problems [42]. In
the case of parametrized PDEs (i.e. PDEs depending on a vector of parameters), the reduced
basis (RB) method is a remarkable example of a ROM that enables dramatic reduction of
the dimension of the discrete problems arising from numerical approximation from millions to
hundreds, or thousands at most, of variables.

Several works have addressed the construction of rapid and reliable ROMs for Navier-
Stokes equations in the last two decades, mainly relying on the reduced basis (RB) method
[55] and exploiting either proper orthogonal decomposition (POD) [27, 30, 25, 6, 58, 12, 5, 18]
or greedy algorithms [43, 15, 29, 33, 61] for the construction of reduced order spaces. More-
over, we remark that other possibilities have been investigated, e.g. in [16], where proper
generalized decomposition is applied to Stokes equations in two-dimensional parametrized ge-
ometries. The RB approximation of parametrized Navier-Stokes equations is an involved task
because of the need of treating efficiently nonlinearities and parameter dependencies, approxi-
mating both velocity and pressure, and keeping error propagation in time under control. Last,
but not least, describing complex geometrical variations when dealing with fluid flows defined
over domains undergoing shape changes is not straightforward. Indeed, this feature highly
impacts on computational efficiency, since: (i) parametrizing a set of shape is usually a com-
plex, highly problem-dependent, task, and (ii) geometrical parametrizations imply strongly
nonaffine parametric dependencies.

Despite all these aspects have been considered, separately, in different works, a flexible
and computationally cheap way to treat the RB approximation of Navier-Stokes equations
accounting for all these aspects is still missing. A new, efficient (and rather general) way to
deal with fluid flows in domains with varying shapes addressing all the aspects mentioned
above is proposed in this paper. We extend the state-of-the-art framework of RB methods for
the treatment of the unsteady Navier-Stokes equations in nonaffinely parametrized geometries
by employing a mesh motion technique to tackle the domain deformation and a waterfall of
ROMs to deal at first with the computation of the domain displacement and then with the
fluid flow. In order to gain the maximum efficiency, an hyper-reduction strategy to treat the
nonaffine and nonlinear convective terms appearing in the NS equations is also devised, and
applied for the first time to complex three-dimensional flows.

In particular, we describe domain deformations by flexible boundary parametrizations,
and generate domain (and mesh) deformations by means of a solid extension, obtained by
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solving an harmonic extension (alternatively, a linear elasticity) problem, thus yielding a solid
extension mesh moving technique. We highlight that this is a new approach to deal with
PDEs defined on varying domains in the RB context, initially explored in [34] for the case of
scalar, linear problems defined on simple two-dimensional domains. We point out that previous
alternatives, such as volume-based parametrizations (induced by, e.g., free-form deformations
or interpolations relying on radial basis functions) have been used to deal with relatively simple
geometrical configurations [36, 35, 40] and recently extended to address complex shapes such
as bifurcating arteries and multiple by-pass configurations [3, 4], nevertheless entailing a huge
and troublesome work on the continuous formulation of the problem, as well as intrusive
changes to its high-fidelity implementation. Moreover, selecting the number of control points,
their position and admissible displacements is far from being trivial when dealing with complex
three-dimensional shapes [47].

Extending the procedure introduced in [34], we propose a two-stages reduction: (a) first,
we construct a RB approximation for the mesh motion problem, irrespectively of the fluid flow
problem we focus on; (b) then, we generate a reduced basis approximation of the unsteady
Navier-Stokes problem, exploiting a suitable enrichment of the velocity space to be able to
approximate both velocity and pressure fields at the same time. To deal with the complex
nonaffine parametric dependencies arising in both the mesh motion and the fluid flow problem,
as well as with nonlinearities, we rely on a matrix version of the (discrete) empirical interpo-
lation method (DEIM) allowing us to perform inexpensive evaluations of the online matrix
operators for both the deformation and the state problem. In particular, we first recover
an (approximate) affine parametric dependence in the high-fidelity arrays appearing in both
problems, by applying matrix DEIM (MDEIM) and DEIM for matrix and vector operators,
respectively. This is performed in a purely algebraic, black-box way, in order to overcome
the application of the EIM on the continuous formulation of the problem, which is usually
highly demanding, see e.g. [36, 35, 3, 4]. We then perform the RB approximation of both the
deformation and the state problem, relying on a Galerkin-POD technique. This results in an
extremely efficient, almost automatic (and less intrusive) framework capable to tackle fluid
flows in complex parametrized shapes.

The structure of the paper is as follows. We introduce the parametrized formulation of
unsteady Navier-Stokes equations we deal with in Sect. 2, as well as the high-fidelity, full-order
model (FOM) and its algebraic counterpart. In Sect. 3 we describe the ROM framework to
treat parametrized unsteady Navier-Stokes equations in domains of variable shape, detailing
how to build the RB spaces, treat the pressure ensuring the ROM stability, and enhance com-
putational efficiency by a suitable combination of DEIM and MDEIM to assemble nonlinear
and/or parameter-dependent arrays. In Sect. 4 we provide a self-contained description of the
solid extension mesh moving technique we employ to address shape deformations and their
parametrization, as well as a description of the entire reduction workflow. In Sect. 5 we re-
port our numerical results obtained with the proposed framework. A detailed analysis is first
carried out on a simpler Navier-Stokes flow in a parametrized cylinder, showing the interplay
between all the reduction stages; then, a problem of applied interest is considered, namely
blood flows in carotid bifurcations, showing the capability of the proposed reduction scheme
to compute, in an efficient way, accurate outputs of clinical interest related with the wall shear
stress exerted by blood on the arterial wall.
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2 Parametrized Navier-Stokes equations

In this section we introduce the Navier-Stokes (NS) equations for a viscous Newtonian incom-
pressible fluid. Throughout the paper, µ ∈ D denotes a parameter vector, whose components
might represent physical and/or geometrical features of interest; D ⊂ Rp denotes the corre-
sponding parameter space. Given an open bounded and µ-dependent domain Ω(µ) ⊂ Rd, d =
2, 3, such that ∂Ω(µ) = Γout(µ) ∪ Γin(µ) ∪ Γw(µ) and Γ̊out(µ) ∩ Γ̊in(µ) = Γ̊w(µ) ∩ Γ̊in(µ) =
Γ̊out(µ) ∩ Γ̊w(µ) = ∅, and a final time T > 0, unsteady NS equations read as follows:

∂~u(µ)

∂t
+ ~u(µ) · ∇~u(µ)−∇ · σ

(
~u(µ), p(µ)

)
+∇p(µ) = ~0 in Ω(µ)× (0, T )

∇ · ~u(µ) = 0 in Ω(µ)× (0, T )

~u(µ) = ~0 on Γw(µ)× (0, T )

~u(µ) = ~gNS(µ) on Γin(µ)× (0, T )

σ
(
~u(µ), p(µ)

)
~n(µ) = ~0 on Γout(µ)× (0, T )

~u(µ) = ~u0 in Ω(µ)× {t = 0}.

(1)

Here ~u(µ) and p(µ) are the velocity and the pressure of the fluid and σ
(
~u(µ), p(µ)

)
=

−p(µ)I+2νε
(
~u(µ)

)
denotes the stress tensor. Here ν = ν(µ) denotes the (possibly parameter-

dependent) kinematic viscosity, while ε
(
~u(µ)

)
= 1

2

(
∇~u(µ) +∇~u(µ)T

)
is the strain tensor.

Moreover, we assume that time dependence of Dirichlet boundary data can be expressed by
separating time and µ, that is,

~gNS(µ) = ~gNS(t;µ) = w(t)gD(µ). (2)

We define the Reynolds number Re = LŪ/ν as the non-dimensional ratio of convection to
diffusion, where L and Ū are the characteristic length of the domain and velocity of the flow,
respectively; here we deal with laminar flows, featuring Re ∈ [1, 103].

In order to introduce the variational formulation, let us denote by

VD = {~v ∈ H1(Ω(µ))d : ~v
∣∣
Γin(µ)

= ~gNS(µ) , ~v
∣∣
Γw(µ)

= ~0}, Q = L2(Ω(µ)), (3)

the functional spaces for velocity and pressure, respectively, and

V = {~v ∈ H1(Ω(µ))d : ~v
∣∣
Γin(µ)∪Γw(µ)

= ~0}.

We highlight that the functional spaces depend on the parameter µ, that is V = V (µ) and
Q = Q(µ), and similarly the FE spaces which will be introduced below; the µ-dependence will
be however omitted for the sake of clarity. The variational formulation of the parametrized
unsteady NS equations reads: for any t ∈ (0, T ), find (~u(µ), p(µ)) ∈ VD ×Q such that(

∂~u(µ)

∂t
,~v

)
+ d(~u(µ), ~v;µ) + b(~v, p(µ);µ) + c(~u(µ), ~u(µ), ~v;µ) (4)

+ b(q, ~u(µ);µ) = 0 ∀(~v, q) ∈ V ×Q

with ~u(µ) = ~u0 as initial condition at t = 0 and, for any ~u,~v, ~w ∈ H1(Ω(µ))d and q ∈ Q,

d(~u,~v;µ) =

∫
Ω(µ)

ν(µ)(∇~u+∇~uT ) : ∇~v dΩ(µ), b(q,~v;µ) = −
∫

Ω(µ)
q∇ · ~v dΩ(µ)

c(~u,~v, ~w;µ) =

∫
Ω(µ)

(~v · ∇)~u · ~w dΩ(µ).
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2.1 FE discretization and BDF time integration

Problem (4) is first discretized in space by means of the FE method, and in time with a
backward differentiation formula (BDF) scheme. Given two finite dimensional spaces Vh ⊂ V ,
Qh ⊂ Q with dimensions Nu

h , N
p
h , respectively, such that Nu

h +Np
h = Nh, the semi-discretized

problem reads: given µ ∈ D, for any t ∈ (0, T ), find (~uh(µ), ph(µ)) ∈ Vh ×Qh such that(
∂~uh(µ)

∂t
,~vh

)
+ d(~uh(µ), ~vh;µ) + b(~vh, ph(µ);µ) + c(~uh(µ), ~uh(µ), ~vh;µ) (5)

+ b(q, ~uh(µ);µ) = F1(t, ~vh;µ) + F2(t, qh;µ) ∀(~vh, qh) ∈ Vh ×Qh.

Here F1(t, ~v;µ), F2(t, q;µ) are linear (t,µ)-dependent forms encoding the action of the non
homogeneous DIrichlet condition ~uh(µ)

∣∣
Γin(µ)

= ~gNS(µ). Indeed, a lifting approach is used
to deal with non homogeneous Dirichlet boundary conditions, as detailed in Sect. 4.

A fully-discretized problem is finally obtained from (5) by using the BDF scheme of order
σ. To this aim, let us introduce a partition of the interval [0, T ] in Nt subintervals of equal
size ∆t = T/Nt, such that tn = n∆t, and approximate the time derivative as

d~uh(µ)

dt
≈
α1~u

n+1
h (µ)− ~un,σh (µ)

∆t
. (6)

In the numerical examples presented, we will limit ourselves to the case σ = {1, 2}, for which

~un,σh (µ) =

{
~unh(µ), n ≥ 0 and σ = 1

2~unh(µ)− 1

2
~un−1
h (µ), n ≥ 1 and σ = 2

(7)

and α1 = 1, 3/2 for σ = 1, 2, respectively. Here (~unh(µ), pnh(µ)) denotes the FE solution at
time n. The fully-discretized problem reads: given µ ∈ D, ~unh(µ), . . . , ~un+1−σ

h (µ), for n ≥ σ−1
find (~un+1

h (µ), pn+1
h (µ)) ∈ Vh ×Qh such that ~u0

h(µ) = ~u0 and(
α1~u

n+1
h (µ)− ~un,σh (µ)

∆t
, ~vh

)
+ d(~un+1

h (µ), ~vh;µ) + b(~vh, p
n+1
h (µ);µ) (8)

+ c(~un+1
h (µ), ~un+1

h (µ), ~vh;µ) + b(q, ~un+1
h (µ);µ)

= F1(t, ~vh;µ) + F2(t, qh;µ) ∀(~vh, qh) ∈ Vh ×Qh,

Following this strategy, the fully discrete formulation of problem (8) would consist in a
nonlinear problem to be solved at each time-step, e.g. with a Newton method. While a
fully implicit approach yields in general a stable time discretization scheme, the associated
computational costs may be remarkably high due to the repeated assembly of the residual
vector and Jacobian matrix, and the solution of the resulting linear system. To reduce the
cost entailed by the use of a fully implicit BDF approach, we consider instead a semi-implicit
BDF scheme, where the nonlinear term c(~un+1

h (µ), ~un+1
h (µ), ~vh;µ) is extrapolated by means

of the Newton-Gregory backward polynomials (see, e.g., [22, 21]). To this aim, we consider
the following extrapolations of order σ = 1, 2 for the velocity at the discrete time tn+1:

~un,∗h (µ) =

{
~unh(µ) if σ = 1

2~unh(µ)− ~un−1
h (µ) if σ = 2,
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and replace it into the nonlinear term, obtaining the fully discrete linearized semi-implicit for-
mulation of problem (8): given µ ∈ D, ~unh(µ), . . . , ~un+1−σ

h (µ), for n ≥ σ−1 find (~un+1
h , pn+1

h ) ∈
Vh ×Qh such that ~u0

h(µ) = ~u0 and(
α1~u

n+1
h (µ)− ~un,σh (µ)

∆t
, ~vh

)
+ d(~un+1

h (µ), ~vh;µ) + b(~vh, p
n+1
h (µ);µ) (9)

+ c(~un+1
h (µ), ~un,∗h (µ), ~vh;µ) + b(q, ~un+1

h (µ);µ)

= F1(t, ~vh;µ) + F2(t, qh;µ) ∀(~vh, qh) ∈ Vh ×Qh.

The fully discrete semi-implicit formulation (9) yields a linear problem in the variables
~un+1
h (µ) and pn+1

h (µ) to be solved only once at each time tn, n = 1, . . . , Nt. Our high-fidelity,
full order model (FOM) will consist of problem (9), where a FE approximation in space and
a BDF2 scheme in time are employed.

2.2 Algebraic formulation

Problem (9) leads to a sequence in time of parametrized linear systems of the form

N(un,∗(µ);µ)

[
un+1(µ)
pn+1(µ)

]
= gn+1(µ) n = 0, . . . , Nt − 1, (10)

where un(µ),un,∗(µ),un,σ(µ) ∈ RNu
h and pn(µ) ∈ RN

p
h denote the FE vector representation

of the FE functions ~unh(µ), ~un,∗h (µ), ~un,σh (µ) and pnh(µ), respectively, and u0(µ) = u0 ∈ RNu
h is

the initial condition. N(un,∗(µ);µ) ∈ RNh×Nh and gn+1(µ) ∈ RNh are given by

N(un,∗(µ);µ) =

[α1

∆t
Mu(µ) + D(µ) + C(un,∗(µ);µ) BT (µ)

B(µ) 0

]
,

gn+1(µ) =

[ 1

∆t
Mu(µ)un,σ(µ) + fn+1

1 (µ)

fn+1
2 (µ)

]
.

(11)

Here Mu(µ) ∈ RNu
h×N

u
h is the velocity mass matrix, that is(
Mu(µ)

)
ij

= (φuj , φ
u
i )L2(Ω(µ)) i, j = 1, . . . , Nu

h ,

D(µ) ∈ RNu
h×N

u
h and B(µ) ∈ RN

p
h×N

u
h are the velocity stiffness and the divergence operator,

respectively, defined as(
D(µ)

)
ij

= d(φ~uj (µ), φ~ui (µ);µ) ∀i, j = 1, . . . , Nu
h (12)(

B(µ)
)
ij

= b(φ~uj (µ), φpi (µ);µ) ∀i = 1, . . . , Np
h , j = 1, . . . , Nu

h .

The matrix C(un,∗(µ);µ) ∈ RNu
h×N

u
h arises from the linearization of the nonlinear term,(

C(un,∗(µ);µ)
)
ij

= c(φuj , ~u
n,∗
h (µ), φui ;µ) i, j = 1, . . . , Nu

h . (13)

Remark 2.1. To guarantee the well-posedness of the algebraic problem (10), the velocity and
pressure FE spaces Vh and Qh must yield a divergence matrix B(µ) that fulfills the following
inf-sup condition: there exists βp > 0 such that

βµhp = inf
q∈RN

p
h

sup
v∈RN

u
h

vTB(µ)q

‖v‖Xu(µ)‖q‖Xp(µ)
≥ βp ∀µ ∈ D; (14)

A possible choice, which is the one used in the numerical experiments, consists in employing
Taylor-Hood FE spaces, that is P2 and P1 basis functions for velocity and pressure, respectively.
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The efficient solution of the sequence of linear systems defined in (10) calls into play suitable
numerical techniques, among which we mention, e.g., multilevel and domain decomposition
methods [20, 23, 54, 59] and block-preconditioning strategies [19, 14, 57], such as the least-
squares commutator [17, 37] and the pressure-convection-diffusion [28, 48] preconditioners. A
relevant preconditioner strategy employed for the solution of the NS equations is the SIMPLE
preconditioner [46, 56], which is based on the following factorization

N(un,∗(µ);µ) = Lbt(µ)U(µ) (15)

with

Lbt(µ) =

[
F(µ) 0
B(µ) S(µ)

]
, U(µ) =

[
INu

h
F−1(µ)BT (µ)

0 INp
h

]
. (16)

Here S(µ) = −B(µ)F−1(µ)BT (µ) denotes the Schur complement matrix and F(µ) is the
(1,1)-block of the matrix N(un,∗(µ);µ) defined in (11). The application of the SIMPLE
preconditioner, which we denote by PSIMPLE(µ), to the Krylov basis is carried out according
to Algorithm 1 (which is equivalent to a single iteration of the classical SIMPLE method),
where F(µ) is substituted by its diagonal in the definition of S(µ) and when performing
the update step. Moreover, in our implementation, steps 1-2 are replaced by inner GMRES
iterations. In our numerical experiments, the linearized linear system (10) will be solved with
the flexible GMRES (FGMRES) [45] method, employing a SIMPLE preconditioner.

3 A ROM framework for parametrized unsteady NS equations
in domains of variable shape

In this section we present a ROM technique to reduce the cost needed to solve the FE sys-
tem (10), by providing an algebraic, black-box, way to treat the NS equations parametrized
geometry and the nonaffine parametric dependence entailed by the nonlinear term. In the
numerical examples used to illustrate the method, we will put more emphasis on geometrical
parameters, however the construction is general and accounts for physical parameters as well.
For ease of notation, we will carry out the whole construction form an algebraic standpoint.

The RB approximation of velocity and pressure fields at time tn is expressed as a linear
combination of the RB basis functions,

un(µ) ≈ Vuu
n
N (µ), pn(µ) ≈ Vpp

n
N (µ) (17)

where Vu ∈ RNu
h×Nu and Vp ∈ RN

p
h×Np denote the matrices whose columns are the vectors

of degrees of freedom of the basis functions for the velocity and the pressure RB spaces,
respectively. The construction of these spaces will be detailed in the following section.

Algorithm 1 Computation of z = P−1
SIMPLEv (µ is omitted)

1: solve Fzu = vu
2: solve Szp = vp −Bzu
3: update zu = zu − F−1BT zp

7



Substituting (17) into (10) and performing a Galerkin projection, we obtain the following
Galerkin-RB problem: given µ ∈ D, unN , . . . , u

n+1−σ
N , for n ≥ σ−1 find (un+1

N (µ),pn+1
N (µ)) ∈

RNu × RNp such that u0
N (µ) = uN,0 and

NN (Vuu
n,∗
N (µ);µ)

[
un+1
N (µ)

pn+1
N (µ)

]
= gn+1

N (µ). (18)

The RB arrays NN (Vuu
n,∗
N (µ);µ) ∈ RN×N and gn+1

N (µ) ∈ RN are obtained by projecting
onto the RB spaces Vu and Vp the corresponding blocks defined in (11); in other words, they
can be obtained as

NN (Vuu
n,∗
N (µ);µ) =

[α1

∆t
Mu

N (µ) + DN (µ) + CN (Vuu
n,∗
N (µ);µ) BT

N (µ)

BN (µ) 0

]
,

gn+1
N (µ) =

[ 1

∆t
Mu

N (µ)un,σN (µ) + fn+1
N1 (µ)

fn+1
N2 (µ)

]
,

(19)

where

DN (µ) = VT
uD(µ)Vu, Mu

N (µ) = VT
uMu(µ)Vu, BN (µ) = VT

p B(µ)Vu,

fn+1
N1 (µ) = VT

u fn+1
1 (µ), fn+1

N2 (µ) = VT
p fn+1

2 (µ), uN,0 = VT
uu0.

(20)

Finally, the linearized term CN (Vuu
n,∗
N (µ);µ) is obtained by projecting its FE element coun-

terpart evaluated at the RB approximation, that is

CN (Vuu
n,∗
N (µ);µ) = VT

uC(Vuu
n,∗
N (µ);µ)Vu. (21)

Remark 3.1. An alternative to the Galerkin-RB formulation would consist in a Petrov-
Galerkin method. Such option is particularly convenient when dealing with turbulent flows,
since it allows to obtain a properly well-posed ROM in terms of long-term stability for highly
nonlinear dynamical systems, see e.g. [10]; however, for the regimes we are interested in, there
is not such an issue, and a Galerkin approach represents a reliable, and cheaper, option.

Remark 3.2. Throughout this chapter, we will use the matrices Xu ∈ RNu
h×N

u
h and Xp ∈

RN
p
h×N

p
h , which algebraically encode the scalar products (·, ·)Vh and (·, ·)Qh over the velocity

and pressure space, respectively, and define

Xh(µ) =

[
Xu(µ) 0

0 Xp(µ)

]
.

3.1 Basis construction: double POD strategy

To construct the reduced basis matrices Vu and Vp we rely on POD. This requires to collect
snapshots of the FOM solution for a sample of selected parameter values

{
µi
}ns
i=1

by com-
puting, for n = 0, . . . , Nt − 1, the solution of the high-fidelity linear system (10); then, we
perform POD separately on velocity and pressure snapshots. This procedure would in princi-
ple lead to either an SVD of very large snapshot matrices (of size nsNt ×Nu

h and nsNt ×Np
h ,

respectively), or an eigenproblem for two correlation matrices of size nsNt × nsNt. To make
the paper self-contained, we report a brief explanation of POD in the Appendix, Sect. A.1.

When the FOM dimension Nh is sufficiently large, both these options would entail an over-
whelming computational burden. To avoid such a cost, given the parameter values

{
µi
}ns
i=1

,
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we rather build the POD basis sequentially by performing at first (i) POD with respect to the
time trajectory (for a fixed µ) and, after collecting this information, (ii) POD with respect to
the parametric dependence. This procedure is carried out in the following steps:

1. POD in time. For each µi, i = 1, . . . , ns, we compute the solution of (10) for n =
0, . . . , Nt−1 and collect snapshots [u1(µi), . . . ,u

Nt(µi)] (resp. [p1(µi), . . . ,p
Nt(µi)]) in

a matrix Si~u (resp. Sip). Then, we perform SVD on the time trajectory, that is, for any
i = 1, . . . , ns, we compute

Si~u = [u1(µi), . . . ,u
Nt(µi)], Vi

u = POD(Si~u,Xu, εt),

Sip = [p1(µi), . . . ,p
Nt(µi)], Vi

p = POD(Sip,Xp, εt);

2. POD in parameter. After collecting all the basis functions obtained by the ns POD in
time, we perform a final POD of the matrix collecting the retained basis functions,

S~u = [V1
u, . . . ,V

ns
u ], Vu = POD(S~u,Xu, εµ),

Sp = [V1
p, . . . ,V

ns
p ], Vp = POD(Sp,Xp, εµ).

The tolerances εt ≥ εµ > 0 are used to set suitable stopping criteria, based as usual on
the (sum of) discarded singular values for POD in time and parameter, respectively; requiring
that εt ≥ εµ ensures that POD in parameter is based on a proper sampling in time.

3.2 ROM Stability

Performing, as in (18), a Galerkin projection onto the RB space built through the POD
procedure above, unfortunately, does not automatically ensure the stability of the resulting
RB problem (in the sense of the fulfillment of an inf-sup condition at the reduced level),
thus yielding a potentially singular matrix N(un,∗(µ);µ). Several strategies can be employed
to overcome this issue; here we augment the velocity space by means of a set of enriching
basis functions computed through the pressure supremizing operator, which depends on the
divergence term. This yields a RB problem with additional degrees of freedom for the velocity
field (as many as the pressure variable), see [44, 5] for the details.

To this aim, we introduce the pressure supremizing operator, such that, for any given
qh ∈ Qh, Tp(qh;µ) returns the solution of the following variational problem

(Tp(qh;µ), ~vh)V (µ) = b(~vh, qh;µ) ∀~vh ∈ Vh. (22)

We essentially extend the procedure explored in [5] to the time-dependent case, so that in
practice the enriching velocity functions are constructed as follows:

1. for each i = 1, . . . , ns and for each n = 1, . . . , Nt we compute the supremizers, by solving

Xu(µi)t
n
p (µi) = BT (µi)p

n(µi), (23)

we collect the supremizer snapshots in the matrix Si~t ∈ RNu
h×ns and compress them by

performing POD in time
Si~t = [t1

p(µi), . . . , t
Nt
p (µi)] Vi

s = POD(Si~t,Xu, εt);

2. we generate a global snapshot matrix and perform a POD in parameter to obtain an
enriching basis Vs ∈ RNu

h×Ns

S~t = [V1
s , . . . ,V

ns
s ] Vs = POD(S~t,Xu, εµ);

9



3. we finally perform a Gram-Schmidt orthonormalization to merge the supremizer basis
functions with the columns of Vu and obtain the basis matrix for the velocity space,

Vu = G-S([Vu,Vs],Xu).

In particular, an approximate supremizer option is pursued, in order the velocity space
not to be µ-dependent. Note that, for the case at hand, the supremizers must take into
account also time dependence. In presence of µ-dependent domains, the supremizing operator
is µ-dependent, too: in order to avoid the construction of the pressure supremizing operator
online, for each µ, an offline enrichment is employed. This strategy leads to a RB problem
which is inf-sup stable in practice, but whose well-posedness is not rigorously proven [44, 5].
Alternative strategies to ensure ROM stability would rely either on a Petrov-Galerkin (e.g.,
least squares, (LS)) RB method, or on the use of a stabilized FOM (like, e.g., a P1 − P1

Streamline Upwind Petrov-Galerkin (SUPG) finite element method).
In the former case, the resulting LS-RB method uses a test space which is obtained as the

image of the trial RB space through a global supremizing operator involving both velocity
and pressure fields, yielding an automatically stable RB problem. An in-depth analysis and
possible ways to ensure the computational efficiency of such a strategy have been presented by
the authors in [13]; further investigations regarding the Navier-Stokes case are still in progress.

In the latter case, the resulting Galerkin-RB approximation is well-posed; neither an en-
richment of the velocity space, nor a LS-RB formulation, are necessary to ensure the stability
of the corresponding RB system; see, e.g., [1, 38].

Galerkin projection would still provide a stable RB problem in the case pressure is treated
independently from velocity, and is reconstructed by solving a Poisson equation [8]. This
strategy, however, requires divergence-free velocity basis functions; for the case at hand, which
involves non closed fluid configurations, geometrical deformations and a lifting approach for
handling non homogeneous essential boundary conditions, this assumption is not met.

3.3 Enhancing efficiency by hyper-reduction

Because of the µ-dependence induced by the geometry deformation, all the matrices and vec-
tors in the ROM (10) depend nonaffinely on the parameter µ; moreover, a critical issue is
represented by the linearized term CN (Vuu

n,∗
N (µ);µ) appearing in (11). In order to assemble

it, we should at first build Vuu
n,∗
N (µ), required to assemble the FOM matrix C(Vuu

n,∗
N (µ);µ);

this latter must then be projected as in (21). Unfortunately, these operations would make the
assembling of ROM arrays very expensive, thus preventing an efficient offline/online decou-
pling. We highlight that such a difficulty arises because of the nonaffine parameter dependence
entailed by the geometrical deformation; if, instead, an affine parametrization is considered,
the quadratically nonlinear term CN (Vuu

n,∗
N (µ);µ) could be expressed as an sum of Nu affine

components, where Nu is the dimension of the RB velocity space [33].
Hyper-reduction techniques aim at enhancing the efficiency of a ROM during the online

stage, with the goal of pursuing an assembling phase independent of the very high-dimensional
FE arrays; the resulting hyper-reduced order model (HROM) relies on a set of µ-independent
quantities which can be stored and then combined for each new instance of the parameters to
be queried online. With this aim, we employ here, for the first time in the case of nonlinear
unsteady NS equations in parametrized geometries, the matrix version of the discrete empirical
interpolation method (DEIM). Such a procedure requires the evaluation of a sample of system
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(vectors and matrices) snapshots, followed by a POD on vectors and vectorized matrices, then
by a further selection of a set of well-chosen interpolation points.

To start with, MDEIM can be readily employed to compute an approximated affine de-
composition {Dq}Qdq=1 of the diffusion matrix D(µ), {Bq}Qbq=1 of the pressure-divergence matrix
B(µ), and {(Mu)q}Qbq=1 of the velocity mass Mu(µ) matrix, respectively. The corresponding
ROM arrays DN (µ), BN (µ) and Mu

N (µ) can then be approximated by

D̃N (µ) =

Qd∑
q=1

θqd(µ)Dq
N , B̃N (µ) =

Qb∑
q=1

θqb(µ)Bq
N , M̃u

N (µ) =

Qm∑
q=1

θqm(µ)(Mu
N )q, (24)

respectively, where the matrices Dq
N = VT

uDqVu, B
q
N = VT

p BqVu and (Mu
N )q = VT

u (Mu)qVT
u

can be assembled and stored once for all. The µ-dependent coefficients appearing in each of
the expansions above are determined by solving an interpolation problem for any new value
of µ, as usually when dealing with empirical interpolation, see Sect. A.2 in the Appendix.

The assumption on the inlet condition outlined in (2) allows, on the other hand, to uncouple
time and space-parameter contributions in the inlet Dirichlet condition. This is then reflected
in the corresponding contribution at the right hand side of (10), which can be expressed as

fn+1
1 (µ) = w(tn+1)f1(µ), fn+1

2 (µ) = w(tn+1)f2(µ), (25)

where fi(µ), i = 1, 2 are time-independent vectors, thus yielding

fn+1
N1 (µ) = w(tn+1)VT

u f1(µ) = w(tn+1)fN1(µ), fn+1
N2 (µ) = w(tn+1)VT

u f2(µ) = w(tn+1)fN2(µ).

Thanks to (25), we can use DEIM to build an affine approximation {f q1}
Q1
g

q=1, {f
q
2}

Q2
g

q=1 of f1(µ)
and f2(µ), respectively., which is then employed to precompute and store in the offline phase

the affine approximations {f qN1}
Q1
g

q=1, {f
q
N2}

Q2
g

q=1 for fN1(µ) and fN2(µ), respectively, such that

fN1(µ) ≈ f̃N1(µ) =

Q1
g∑

q=1

θN1(µ)f qN1, fN2(µ) ≈ f̃N2(µ) =

Q2
g∑

q=1

θN2(µ)f qN2. (26)

The linearized term C(Vuu
n,∗
N (µ);µ) nonaffinely depends on the parameter µ, however

an MDEIM-approximated affine decomposition is not readily computable, due to its depen-
dence on Vuu

n,∗
N (µ); hence, a different strategy, which takes advantage of a sequential time-

parameter POD approach is used in this respect. In particular, once the sequence of linear
systems (10) is solved for the parameter instances

{
µi
}ns
i=1

, the following steps are executed:

1. MDEIM in time. For each parameter µi, i = 1, . . . , ns, vectorized matrix snapshots
in time of the convective term are collected, and POD is applied to build a basis with
respect to the time trajectory of the system

SiC = [vec(C(u0,∗(µi);µi)), . . . , vec(C(uNt−1,∗(µi);µi))], Vi
C = MDEIM(SiC , ε

loc
C );

2. all the time matrix basis are gathered and a final approximated affine basis is constructed
with respect to the parameter dependence

SC = [V1
C , . . . ,V

ns
C ] VC = MDEIM(SC , εC);
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3. the approximate affine decomposition {Cq
N}

Qc
q=1 of CN (Vuu

n,∗
N (µ);µ) is finally built,

such that

CN (Vuu
n,∗
N (µ);µ) ≈ C̃N (Vuu

n,∗
N (µ);µ)

=

Qc∑
q=1

Θ̃q
c(µ)VT

uCqVu =

Qc∑
q=1

Θ̃q
c(µ)Cq

N . (27)

Here the matrices Cq ∈ RNu
h×N

u
h , q = 1, . . . , Qc, are the "unvectorized" columns of VC

and constitute an approximated affine basis for C(un,∗(µ);µ). As a matter of fact, the
µ-independent matrices Cq

N ∈ RN×N can be precomputed and stored once for all.

In the procedure above, εlocC and εC are the tolerances used to stop the modes selection
when performing POD in time (for each k = 1, . . . , ns) and in parameter, respectively. The
final algorithm involving the construction of the NS-HROM for the parametrized sequence of
algebraic system (10) is outlined in Algorithm 2.

When considering a new parameter online, we solve the approximated RB system

ÑN (Vuu
n,∗
N (µ);µ)

[
un+1
N (µ)

pn+1
N (µ)

]
= g̃n+1

N (µ), (NS-HROM)

where ÑN (Vuu
n,∗
N (µ);µ) features the same saddle-point structure as the matrix in (19), but

involves the approximated affine matrices D̃N (µ), B̃N (µ), M̃u
N (µ) and C̃N (Vuu

n,∗
N (µ);µ);

similarly the DEIM-approximated RB vectors (26) are employed for the cheap assembly of
the right hand side g̃n+1

N (µ).

Algorithm 2 Offline construction NS-HROM

1: procedure NS-RB_OFFLINE(
{
µi
}ns
i=1
, εt, εµ, ε

loc
C , εC , δmdeim, δdeim)

2: Use MDEIM to compute an affine decomposition of D(µ), B(µ), Mu(µ)
3: Use DEIM to compute an affine decomposition of f1(µ), f2(µ)
4: for i = 1 : ns do
5: Compute {un(µi)}Ntn=1, {pn(µi)}Ntn=1, {tnp (µi)}Ntn=1

6: Set Si~u = [u1(µi), . . . ,u
Nt(µi)] and Vi

u = POD(Si~u,Xu, εt)
7: Set Sip = [p1(µi), . . . ,p

Nt(µi)] and Vi
p = POD(Sip,Xp, εt)

8: Set Si~t = [t1
p(µi), . . . , t

Nt
p (µi)] and Vi

s = POD(Si~t,Xu, εt)

9: Set SiC = [vec(C(u0,∗(µi);µi)), . . . , vec(C(uNt−1,∗(µi);µi))]
10: and Vi

C = POD(SiC , I(Nu
h )2 , εlocC )

11: end for
12: Set S~u = [V1

u, . . . ,V
ns
u ] and Vu = POD(S~u,Xu, εµ)

13: Set Sp = [V1
p, . . . ,V

ns
p ] and Vu = POD(Sp,Xp, εµ)

14: Set S~t = [V1
s , . . . ,V

ns
s ] and Vs = POD(S~t,Xu, εµ)

15: Set SC = [V1
C , . . . ,V

ns
C ] and VC = MDEIM(SC , εC)

16: Orthonormalize: Vu = G-S(Vu,Vs,Xu)
17: Precompute and store the (approximated) RB affine decompositions:

18: {Dq
N}

Qd
q=1, {B

q
N}

Qb
q=1, {M

q
N}

Qm
q=1, {C

q
N}

Qc
q=1, {f

q
N1}

Q1
g

q=1, {f
q
N2}

Q2
g

q=1.
19: end procedure
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Remark 3.3. For the sake of computational efficiency, we compute snapshots of the non-
linear term SiC , for each parameter µi, i = 1, . . . , ns, by evaluating the entries of the matrix
C(un,∗(µi);µi), n = 1, . . . , Nt, obtained by linearizing the convective term around the FOM so-
lution u(µ), rather than around the ROM approximation. Evaluating this latter option would
indeed require the construction of a first ROM without taking into account hyper-reduction
of nonlinear terms, to be used to generate the ROM approximation required to evaluate the
snapshots of the nonlinear term. By avoiding this extra effort, we manage to evaluate all the
required snapshots by running just ns FOM simulations over the time interval (see lines 6-10
of Algorithm 2). Nevertheless, due to the quadratic nonlinearity, the additional error entailed
by this approximation does not impact on the overall accuracy of the proposed ROM.

4 Sequential ROMs for deformation and fluid flows

To deal with complex domains and their deformations in an extremely flexible way, we exploit
a general mesh deformation technique, in which deformations result from an additional FE
problem either describing the behavior of the structure with respect to given inputs or an
harmonic extension of boundary data. Such a technique belongs to the class of so called mesh-
based variational methods (see, e.g., [50]), which compute smooth harmonic [2], biharmonic [26]
or elastic [53, 52, 51] deformations by solving Laplacian, bi-Laplacian or elasticity problems,
respectively, and often are referred to as solid-extension mesh moving techniques (SEMMT).

Here we assume that domain deformations result from the harmonic extension of a bound-
ary displacement; other options could be considered as well, without impacting too much on
the designed reduction workflow. In all these cases, indeed, we can set

Ω(µ) = {~x(µ) ∈ R3 : ~x(µ) = ~x+ ~d(µ), ~x ∈ Ω0}, (28)

where Ω0 is a given, reference domain and ~d(µ) is the solution of the following variational
problem: given µ ∈ D, find the displacement field ~d(µ) ∈ Vd, such that

ad(~d(µ), ~w;µ) = fd(~w,µ), ∀~w ∈ Vd (29)

where Vd is a suitable Hilbert space. Problem (29) arises, for instance, when an harmonic or
solid extension is considered to extend a boundary data to the whole fluid domain, see e.g.
[50, 2, 52]. By relying, e.g., on the FE method, problem (29) yields a linear system to solve,

Ad(µ)d(µ) = fd(µ), (30)

where Ad(µ) ∈ RNd
h×N

d
h is the FE matrix obtained1 from ad(·, ·;µ) and the right hand side

fd(µ) ∈ RNd
h is obtained from fd(·,µ). Here fd(µ) encodes the action of the nonhomogeneous

conditions imposed on the deformable portion of the boundary; in particular, we can prescribe
either a boundary displacement, or a condition on the stress load, according to suitable Dirich-
let or Neumann conditions, respectively. In this work we consider both these options, relying
on the choice of suitable µ-dependent analytic functions to model deformations occurring on
either a large or a small portion of the boundary.

1Note that, very often, the dependence of problem (30) on the parameters defining the family of boundary
deformations is only through its right-hand side fd(µ); additional parameters could be employed to specify
some features of the differential operator, e.g., when dealing with elastic deformations.
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Remark 4.1. The corresponding meshes are also taken as a deformation of a reference mesh,
hence not affecting the topology of the degrees of freedom. Denoting by Ω0

h the computational
mesh over which the state problem is solved, solving (30) yields a deformed volumetric mesh
Ωh(µ) = {xh ∈ R3 : xh(µ) = xh + d(µ), xh ∈ Ω0

h} where the nodes position is modified (so
that Ωh(µ) conforms to the updated boundary) while keeping fixed the mesh connectivity.

Hence, when aiming at solving the NS system (10) for any new instance of the geometric
parameters, the FE problem (30) describing the deformation must first be solved. Additionally,
to handle non homogeneous Dirichlet boundary conditions in the NS system (9), a suitable
lifting function must be determined. In nontrivial geometries, this task entails a third problem
to be solved: given µ ∈ D, find ~l(µ) ∈ Vl such that

al(~l(µ), ~w;µ) = fl(~w,µ), ∀~w ∈ Vl, (31)

where Vl = Vl(µ) is a proper Hilbert space and ~l(µ) is the lifting function. As for (29), problem
(31) can be discretized by the FE element method, yielding the following linear system:

Al(µ)l(µ) = f l(µ), (32)

with l(µ) ∈ RN l
h , Al(µ) ∈ RN l

h×N
l
h and f l(µ) ∈ RN l

h .
When performing the offline phase to build the HROM for the fluid problem (Algorithm

2), problems (30) and (32) must be solved for each µi, i = 1, . . . , ns. The same operations
are required during the online phase, when the NS-HROM is queried for new instances of
the parameter; even though the NS problem is typically the most demanding one, solving
problems (30) and (32) may hamper the overall efficiency of the method. To speed up their
evaluation, we sequentially build two HROMs – again, by relying on the RB method – for the
efficient approximation of the displacement d(µ) and the lifting function l(µ):

• we rely on POD to build a Nd-dimensional RB matrix Vd ∈ RNd
h×Nd for approximating

the deformation, exploiting MDEIM and DEIM to construct an affine decomposition of
Ad(µ) and fd(µ), respectively. Then, d(µ) ≈ VddN (µ), where dN (µ) ∈ RNd solves

Ãd
N (µ)dN (µ) = f̃dN (µ); (D-HROM)

the arrays Ãd
N (µ) ∈ RNd×Nd and f̃dN (µ) ∈ RNd appearing in the RB problem (D-HROM)

above are obtained by Galerkin projection of the corresponding FOM arrays onto the
subspace spanned by the columns of Vd;

• similarly, we rely on POD to build an Nl-dimensional RB projection matrix Vl for
approximating the lifting function, exploiting MDEIM and DEIM to construct an affine
decomposition of Al(µ) and f l(µ), respectively. The RB problem (D-HROM) is used
in view of the computation of the snapshots {l(µli)}

nls
i=1 required by POD, and Al(µli),

f l(µli) required by (M)DEIM. Finally, l(µ) ≈ VllN (µ), where lN (µ) ∈ RNl solves

Ãl
N (µ)lN (µ) = f̃ lN (µ); (L-HROM)

as before, Ãl
N (µ) ∈ RNl×Nl and f̃ lN (µ) ∈ RNl are obtained by Galerkin projection of the

corresponding FOM arrays onto Vl.

Problems (D-HROM) and (L-HROM) are then used in the construction of (NS-HROM) in
Algorithm 2. The complete procedure is outlined in Figure 1.
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Figure 1: Offline strategy to build NS-HROM. Red blocks highlight collection of solution,
matrix and right hand side snapshots, while green blocks refer to HROMs construction.

Remark 4.2. As a matter of fact, by replacing problem (30) with its reduced counterpart
(D-HROM) we introduce an automatic, low-dimensional parametrization of domain deforma-
tions. For any µ ∈ D, the corresponding volumetric mesh we actually deal with is given by
ΩN (µ) = {xN ∈ R3 : xN (µ) = xh+VddN (µ), xh ∈ Ω0

h}. The smaller the error between d(µ)
and VddN (µ) – this is indeed ensured by the Galerkin-RB formulation of problem (D-HROM)
– the more accurate the approximation ΩN (µ) of Ωh(µ).

5 Numerical results for NS-HROM

We show in this section numerical results provided by the proposed ROM workflow on two
different cases: the former deals with a simpler fluid flow in a parametrized cylinder, and
allows to assess accuracy and efficiency of each ROM; the latter deals instead with a more
involved blood flow in carotid bifurcation, showing the capability of the proposed framework
to provide reliable evaluations of possible outputs of interest.

5.1 Test case I: NS flow in a parametrized cylinder

We first consider a fluid flow (viscosity ν = 0.01) over the time interval (0, 0.5) in a parametrized
three-dimensional cylinder Ω(µ) ⊂ R3. We start from a reference domain Ω0 = {~x ∈ R3 :
x2

1 + x2
1 < 0.25, x3 ∈ (0, 5)} for which Γin = ∂Ω0 ∩ {x3 = 0}, Γout = ∂Ω0 ∩ {x3 = 3}, and

Γw = ∂Ω \ (Γin ∪ Γout). The µ-dependent domain Ω(µ) is generated by deforming Ω0 as in
(28), by a displacement ~d(µ) obtained as the solution of the (vector) Laplace problem{

−∆~d(µ) = ~0 in Ω0

~d(µ) = ~h(µ) on ∂Ω0;
(33)

boundary portions Γin(µ), Γout(µ), Γw(µ) are obtained correspondingly. For the case at hand,
displacement ~d(µ) then results from the harmonic extension of a boundary deformation
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~h(µ) =

−x1µ1 exp{−5(x3 − µ2)2}
−x2µ1 exp{−5(x3 − µ2)2}

0

 ,
entailing either a narrowing or an enlargement (according to the sign of µ1) of the cylinder
section at different positions along the coordinate x3 (according to the value of µ2). In our
numerical experiments we take µ = (µ1, µ2) ∈ D = [−0.3, 0.3] × [2, 3]. The numerical
approximation ~d(µ)h of ~d(µ), solution of problem (30), is built by employing the FE method
(with P2 basis functions). Note that in the case (33), the FE matrix Ad(µ) is µ-independent.
In Figure 2, the deformation dh(µ) is reported for three different values of µ ∈ D.

(a) µ = (2.7, 0.12) (b) µ = (2,−0.3) (c) µ = (3, 0.3)

Figure 2: Displacement for different values of µ.

Once the computational domain has been deformed, the lifting function ~r~gD(µ) is computed
similarly by solving the following problem

−∆~r~gD(µ) = ~0 in Ω(µ)

~r~gD(µ) = ~gNS(µ) on Γin(µ)

~r~gD(µ) = ~0 on Γw(µ)

∂~n(µ)~r~gD(µ) = ~0 on Γout(µ),

(34)

which is an harmonic extension of the µ-dependent component ~gNS(µ) of the Dirichlet data
appearing in (1) (see equation (2)). For the case at hand, ~gNS(µ) is taken as a parabolic
profile vanishing on Γw and such that the flow rate at the inlet Γin(µ) is equal to 1; regarding
the time dependent contribution, we take w(t) = sin(2πt). Problem (34), too, is discretized
with the FE method with P2 basis functions, leading to the parametrized linear system (32).
The FE solver (AMG-preconditioned GMRES) takes on average 0.55 and 0.41 seconds for the
deformation and lifting problem, respectively (a stopping criterion of 10−9 on the FE residual
rescaled with the Euclidean norm of the right hand side is used).

Finally, regarding the FOM for the NS system, we use a computational domain with
13’603 vertices and Taylor-Hood FE spaces, that is with P2 − P1 basis functions, leading to
Nu
h = 306′735 and Np

h = 13′603 degrees of freedom for velocity and pressure, respectively, and
a total dimension Nh = 320′338 of the FOM. We employ the BDF2 method with ∆t = 0.01
for the time discretization. The FE problem (10) is solved with FGMRES preconditioned with
a SIMPLE preconditioner, where the solves (steps 1 and 2 in Algorithm 1) are carried out by
inner iterations up to a tolerance of 10−5 using an Additive Schwarz preconditioner from the
Ifpack package of Trilinos.

5.1.1 Offline phase

The offline phase consists of the subsequent construction of HROMs for the domain deforma-
tion, the lifting function and the fluid flow; below we detail the three stages.
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(D-HROM) construction. The offline phase is carried out with nds = 30 snapshots for
POD and DEIM (MDEIM is not employed since the matrix Ad(µ) is µ-independent); the
singular value decompositions (SVDs) corresponding to the construction of the RB matrix
Vd and the DEIM affine approximation are reported in Figure 3a. By setting a tolerance of
10−7 we come up with Nd = 11 RB function for the state approximation and Qdf = 11 DEIM
basis functions for approximating the right hand side with f̃dN (µ); in Figure 3a the singular
values corresponding to POD and DEIM are reported. As a matter of fact, only a few RB
functions are necessary to accurately approximate the solution of (33). The offline phase
takes toff = 51.17 seconds; by testing online the HROM for the deformation on 50 parameter
instances, we obtain an average FE residual rRB = 5.5 · 10−7, with a solution computed in
0.026 seconds on average, see Table 1. This yields a computation about 10 times faster than
the one entailed by solving the FE problem, which in this context represents a relevant boost,
since the deformation problem is solved for each snapshot toward the construction of the lifting
HROM (L-HROM) and the NS-HROM (see Figure 1).

Table 1: D-HROM: POD for state reduction and DEIM have been run with εPOD = δdeim =
10−7. Computational times are expressed in seconds.

Nd Qdf Qda rRB tonl
RB tFE nds toff

11 1 11 5.5e-7 0.026 0.25 30 25.53

(L-HROM) construction. The HROM for the lifting function is fed with the approximated
deformation computed above. The offline phase is performed with nls = 150 snapshots for
POD, DEIM and MDEIM; the singular value decompositions (SVDs) corresponding to the
construction of the RB matrix Vl and the (M)DEIM affine approximations are reported in
Figure 3b. By setting a tolerance of εPOD = 10−7 we come up with Nl = 42 RB function
for the state approximation, Qlf = 22 DEIM basis functions for approximating the right hand
side and Qla = 44 MDEIM basis matrices for Al(µ); the offline phase takes toff = 89.13. By
testing online the HROM for the lifting on 50 parameter instances, we obtain an average FE
residual rRB = 7.3 · 10−6, with a solution computed in 0.03 seconds on average, see Table 2.
The resulting ROM yields a speed up of about 14 with respect to the solution of the FE linear
system, similarly to the D-HROM.

Table 2: L-HROM: POD for state reduction and (M)DEIM have been run with εPOD =
δdeim = δmdeim = 10−7. Computational times are expressed in seconds.

Nl Qlf Qla rRB tonl
RB tFE nls toff

42 22 44 7.3e-6 0.030 0.41 50 89.13

(NS-HROM) construction. The most demanding stage of the offline phase is the construc-
tion of the HROM for the NS equations, on top of the previous two. To this aim, we employ
ns = 50 snapshots for the state reduction, keeping fixed the tolerance for the POD in time to
εt = 10−7, and varying the tolerance εµ, for building the final velocity and pressure RB spaces.
We highlight that for the enriching RB matrices Vi

s, i = 1, . . . , ns and the final Vs, we use
a tolerance equal to εt/10 and εµ/10, respectively. On average, the POD in time retains 20
basis functions for the velocity, 13 for the pressure and 20 for the enriching functions. Thus,
the RB matrices Vu,Vp,Vs are built with POD starting from 1000, 1000 and 645 snapshots,
respectively, and their dimensions depend on the value of εµ.
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Figure 3: SVDs for building D-HROM and L-HROM problems.

Regarding the system approximation, the construction of an approximate affine decom-
position (through MDEIM) of D(µ), B(µ) and Mu(µ), and an approximation of f1(µ) and
f2(µ) (through DEIM) employs ns = 150 snapshots, with tolerances δmdeim and δdeim which
are varied in the experiments. Similarly, the influence of εlocC for computing the basis in time
with MDEIM of the linearized term and the tolerance εC for the ultimate MDEIM is ana-
lyzed. A summary of the considered combinations of these tolerances is reported in Table 3;
in general, we choose δmdeim = δdeim = εlocC < εC , where the latter inequality is motivated by
the fact that a proper sampling in time must be carried out in order to obtain an accurate
affine approximation of the term C(Vuu

n,∗
N (µ);µ).
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Figure 4: SVDs for building final RB spaces (left) and final MDEIM of the linearized term
(right). Notice that in the latter, according to the tolerance εlocC of the MDEIMs in time, the
number of snapshots and the decay of the resulting SVD for the final MDEIM change.

The results of the offline phase corresponding to the settings in Table 3 are reported in
Table 4. In particular, Nu, Ns, Np denote the number of RB functions retained by the PODs
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Table 3: Chosen settings for numerical experiments of NS-HROM.

Setting εt εµ δdeim = δmdeim = εlocC εC
SET 1 10−7 10−3 10−5 10−3

SET 2 10−7 10−3 10−7 10−3

SET 3 10−7 10−3 10−7 10−5

SET 4 10−7 10−5 10−7 10−3

Table 4: Results of the offline phase for settings defined in Table 3. Computational times are
reported in seconds.

Setting Nu Ns Np Qtc Qc toff

SET 1 210 303 86 4 36 22596.8
SET 2 210 303 86 9 69 22733.7
SET 3 210 303 86 9 203 23610.0
SET 4 512 612 237 9 69 27941.1

for velocity, enriching velocities and pressure, respectively; the corresponding singular values
are reported in Figure 4a, showing that the decay of pressure singular values is faster than
the one obtained for velocity and supremizers; therefore, fewer modes are retained. The decay
of velocity and supremizer snapshots is similar, however by using a smaller tolerance for the
latter, Vs has a larger dimension than Vu. These functions are then merged through a Gram-
Schmidt orthonormalization procedure. The total number of RB functions finally ranges from
599 to 1361, depending on the chosen tolerance εµ. The number of matrix basis computed
by MDEIM in time Qtc and the final MDEIM Qc for the linearized term range from 4 to 9
in the former case, and from 36 to 203 in the latter case, respectively. Singular values decay
for the approximation of the linearized term is shown in Figure 4b. By decreasing tolerances,
the offline time increases accordingly, since it includes the computation of the RB affine basis
for the matrices and right hand sides (see lines 17-18 of Algorithm 2); however, the most
demanding stage remains the calculation of the snapshots for the NS problem.

5.1.2 Online phase

During the online phase we assess the four ROMs defined in Table 3 on a test sample of 50
parameter vectors (not including those sampled offline). Examples of the solution of (10) for
different values of the parameter and times are reported in Figure 5. In order to assess the
quality of the RB approximation, we define

euRB(µ) =

√√√√∑Nt
n=1 ‖un(µ)−VuunN‖2Xu∑Nt

n=1 ‖un(µ)‖2Xu

, epRB(µ) =

√√√√∑Nt
n=1 ‖pn(µ)−VppnN‖2Xp∑Nt

n=1 ‖pn(µ)‖2Xp

(35)

as the velocity and pressure relative errors, respectively, on the time interval [0, T ]. We denote
by ēuRB, ē

p
RB the corresponding quantities averaged on the test sample; their values are reported

in Table 5, together with the CPU time tonl
RB required to compute the RB solution in the online

phase and the speedup obtained with respect to the FOM simulation.
We first consider SET 1 and SET 2, in which only the tolerance εlocC varies; by decreasing it

from 10−5 to 10−7, relative errors (35) decrease of one order of magnitude. This is due to the
fact that the time trajectory of the linearized term is not well approximated in the first case
and the corresponding MDEIM basis in time is not accurate, yielding a poor final MDEIM
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(a) µ = (0.13, 2.6), t = 0.25 (b) µ = (0.13, 2.6), t = 0.5

(c) µ = (−0.125, 2.08), t = 0.25 (d) µ = (−0.125, 2.08), t = 0.5

(e) µ = (0.13, 2.6), t = 0.25 (f) µ = (0.13, 2.6), t = 0.5

(g) µ = (−0.125, 2.08), t = 0.25 (h) µ = (−0.125, 2.08), t = 0.5

Figure 5: Velocity (lines 1,2) and pressure (lines 3,4) for different values of parameters and at
time t = 0.25 (left) and t = 0.5 (right).

Table 5: Results averaged on 50 instances of the parameter considered online. Times are
reported in seconds.

Setting ēuRB ēpRB tonl
RB SPEEDUP

SET 1 3.07e-02 3.60e-02 4.48 71
SET 2 1.91e-03 3.80e-04 9.60 33
SET 3 1.88e-03 1.52e-04 10.96 29
SET 4 3.51e-04 1.04e-04 32.08 10

approximation. This fact can also be highlighted by the decay of singular values of MDEIM in
parameter, in which the bases in time have been computed using εlocC = 10−5, 10−6 and 10−7;
the decay of the singular values significantly changes by considering smaller values of εlocC .
As a matter of fact, the number of computed affine terms is 36 for SET 1 and 69 for SET 2,
even though the same tolerance εC has been used (cf. Table 4). In the next experiments we
consider εlocC = 10−7.
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Let us now consider SET 3 and SET 4, where either εC or εµ is decreased to 10−5. The
former option has not a beneficial impact on the solution accuracy, since the error is almost
constant: error convergence is indeed hampered by the too coarse state reduction. The latter
option yields an improvement of the RB approximation accuracy, especially for the velocity.
This fact is confirmed by considering the velocity and pressure relative errors

euRB(tn;µ) =
‖un(µ)−Vuu

n
N‖2Xu

‖utn(µ)‖2Xu

epRB(tn;µ) =
‖pn(µ)−Vpp

n
N‖2Xu

‖pn(µ)‖2Xu

as function of the time step tn, which are reported for two randomly selected values of the
parameters in Figure 6 for both SET 2 and SET 4.
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(a) Velocity relative error µ = (0.27, 2.95).
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(b) Pressure relative error µ = (0.27, 2.95).
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(c) Velocity relative error µ = (−0.27, 2.05).
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(d) Pressure relative error µ = (−0.27, 2.05).

Figure 6: Velocity and pressure errors entailed by the NS-HROM as function of time for two
values of the parameter.

As a matter of fact, the velocity is approximated at every time step with the same dis-
crepancy by the HROM in the SET 2 and SET 4 settings; the pressure error follows instead
different paths according to the employed setting.

Regarding the CPU time required to compute the RB approximation of NS equations,
it ranges from about 4.5 to 32 seconds, with a speed up which varies from 10 to 71 times
compared to the FOM solution, whose computational cost is on average 318.16 seconds. The
HROM we have constructed therefore entails a significant speed up for the computation of
an accurate solution of the unsteady NS problem. Furthermore, the new treatment of the
nonlinear term shows to be a reliable option for the efficient assembling of the RB system in
the NS case.
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5.2 Blood flows in carotid bifurcations

The second test case we deal with is related with the efficient characterization of blood flows
in a subject-specific three dimensional carotid bifurcation, where both the domain and inlet
boundary conditions are parametrized, in terms of both flow variables and derived outputs
of interest. The carotid bifurcation is located along the sides of the neck and furnishes the
blood supply to the face and the brain [60]. Three branches can be distinguished: the common
carotid artery (CCA) which then splits in the internal carotid artery (ICA) and the external
carotid artery (ECA), see Figure 7a. In adult age, the carotid bifurcation may be subject
to atherosclerosis, that is a narrowing of the artery in the bifurcation region, which might
ultimately lead to stroke in most of the patients. The fluid dynamics of blood plays an
important role in the development of such disease and CFD can be of help in the prediction of
possible diseases. One of the main indicators employed in the risk analysis is distribution of
the wall shear stresses (WSSs) occurring at the bifurcation [49], in this perspective, numerical
simulations can play a relevant role in providing quantitative results able to support clinicians;
recent results are reported, e.g., in [31, 24]. Here we exploit the proposed ROM workflow to
investigate the behavior of blood flows when different physical and geometrical configurations
described in terms of parameters are considered.

5.2.1 Test case setting

To start with, we define a family of parametrized geometrical configurations by deforming the
reference domain shown in Figure 7a; deformation here is obtained as the harmonic extension
of a Neumann boundary datum, by solving the following (vector) Laplace problem

−∆~d(µ) = ~0 in Ω(µ)
~d(µ) = ~0 on Γin ∪ Γout

∂ ~d(µ)

∂~n
= ~h(µ) on Γw.

(36)

Here Γin represents the CCA inlet boundary portion, located at the bottom of the bifurcation
in Figure 7a; Γout is given by the two ECA and ICA outflow boundaries, located on its top;
finally, Γw = ∂Ω \ (Γin ∪ Γout). Here the parametrized datum ~h(µ) represents a stress load
entailing a deformation which narrows the two branches of the bifurcation,

~h(µ) = h(~x;µ) = −µ1(1− r2(~x))~nXA(~x), ~x ∈ R3,

where the portion A of the boundary where ~h(µ) acts as a load is defined as

A =
{
~x ∈ R3 : r2 ≤ R2

}
∩ ∂Ω(µ), r2 = r2(~x) = x2

1 + (x2 − 2.5)2 + x2
3. (37)

Here µ1 is a parameter determining the magnitude of the load and XA(~x) is the indicator
function equal to 1 on A and vanishing otherwise. The region identified by the set A is
located at the separation of the CCA in the ECA and the ICA, see Figure 7b.

By following the setup employed in [31], at the CCA inlet boundary we prescribe a
parametrized flow rate QCCA(t;µ), obtained as a suitable modification of the reference flow
rate Q0

CCA(t), which has been acquired from echo-color Doppler and is reported in Figure
7c for a single heartbeat. The resulting inlet velocity ~gNS(µ) to be prescribed is the unique
parabolic function, in the normal direction to Γin(µ) and vanishing in the tangential ones,
such that
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∫
Γin

~gNS(t;µ) · ~n dΓin = QCCA(t;µ) = µ2Q
0
CCA(t).

We highlight that assuming a parabolic profile at the inlet represents a proper choice when
dealing with carotid bifurcations, see e.g. [9].

The parameter vector for the case at hand is µ = (µ1, µ2) ∈ D = [0.2, 0.4]×[0.85, 1.0] ⊂ R2;
the value of µ1 entails a narrowing of the bifurcation, thus simulating the effect of a stenosis
obstructing the vessel; µ2 determines instead the magnitude of the flow rate at the inlet
entering the CCA. The radius at the inlet boundary at the entrance of the CCA measures
approximately 0.27cm, leading to a peak of the inlet velocity profile of approximately 59 cm
s−1, when µ2 = 1, during the systolic phase. Two examples of deformation with respect
to the reference domain are reported in Figure 8 for different instances of the parameter
µ1 = (0.375, 0.975) and µ2 = (0.225, 0.875). Finally, the blood kinematic viscosity is chosen
as ν = 0.035cm2s−1, which represents a physiological value. By using these characteristic
length and velocity, the resulting Reynolds number is about Re ≈ 450.

Taylor-Hood (P2 − P1) finite elements are employed for the spatial discretization, leading
to Nu

h = 248′019 dofs for the velocity and Np
h = 11′911 for the pressure, respectively, such

that Nh = Nu
h + Np

h = 259′930, and the BDF2 scheme with ∆t = 0.02 for the time dis-
cretization. In order to simulate an entire heartbeat, we take T = 0.64 seconds as final time.
The deformation problem (36) is discretized by means of the FE method and solved with the
AMG-preconditioned CG up to a tolerance of 10−7. A similar procedure has been followed
to calculate the lifting function; here we omit the details for the sake of space. Numerical
simulations have been carried out by employing 32 cores.
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Figure 7: Left: Reference domain Ω(µ); common carotid artery (CCA), internal carotid artery
(ICA) and external carotid artery (ECA). Center: Region A (as defined in (37)) where the
stress ~h(µ) is applied. Right: reference inlet flow rate Q0

CCA(t) [cm3s−1] with highlighted
systole, mid deceleration and diastole phases.

We employ in the offline phase ns = 20 parameter instances {µi}nsi=1 , chosen on a 5 × 4
tensor grid with equidistant points of D. These parameter instances represent the training
set used to compute the matrix snapshots for the affine approximations of the matrices D(µ),
B(µ) and Mu(µ), which leads to Qa = Qd+Qb+Qm = 12 affine terms for their approximation
in total. Similarly, an affine approximation of the right-hand sides made by Q1

g + Q2
g = 19

terms is obtained by DEIM. The same offline parameters are then employed to construct the
solution snapshots (each one consisting of Nt = T/∆t = 0.64/0.02 = 32 time steps).
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(a) Starting mesh for Ω(µ). (b) µ1 = (0.375, 0.975). (c) µ2 = (0.225, 0.875).

Figure 8: Starting mesh for Ω(µ) (left) and deformation obtained with parameters µ1, µ2

(middle and right): the higher the value of µ1, the larger the displacement entailed by ~h(µ).

For the convective term C(Vuu
n,∗
N (µ);µ), we compute the affine approximation following

the double POD strategy as outlined in Sect. 3.3, by first constructing for each parameter µi,
i = 1, . . . , ns an MDEIM basis in time with a tolerance εlocC = 10−7; for the case at hand,
Qtc = 32 matrix bases are retained on average for each i = 1, . . . , ns. Notice that compared to
the test case of the previous section, a much larger number of bases are retained to properly
approximate the time trajectory of C(Vuu

n,∗
N (µ);µ), due to the larger Reynolds number of

the case under examination. MDEIM in parameter finally retains Qc = 463 affine terms by
employing a tolerance εC = 5 · 10−5. Regarding state reduction, the RB matrices Vu,Vp,Vs

for velocity, pressure and supremizing functions, respectively, are built with POD; this latter
retains Nu = 776, Np = 370, and Ns = 705 basis functions, respectively.

Examples of solutions for different values of the parameters, computed with the HROM,
are reported in Figure 9. On average, the NS system is solved by the HROM with a compu-
tational cost of 1.84 seconds per time step, yielding a speedup of 8.1 with respect to the FOM
(GMRES with SIMPLE preconditioner). The numerical results are summarized in Table 6.
A comparison between the velocity fields computed by the HROM and the FOM for a given
parameter vector, as well as the resulting error between the two, are reported in Figure 10.

Figure 9: Slices of the velocity magnitude computed by the HROM for µ1 = (0.375, 0.975)
(top) and µ2 = (0.225, 0.875) (bottom) at time t = 0.2, 0.3, 0.4 seconds (from left to right).
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Table 6: Summary results for blood flow in bifurcation. Computational times are expressed
in seconds and tonl

RB and tonl
FE refer to the average time needed for the solution of one time step

with the ROM and the FOM, respectively. The computation has been carried out with the
cluster Fidis at EPFL, an Intel Broadwell based cluster, composed of 408 compute nodes,
each with 2 Intel Broadwell processors running at 2.6 GHz, with 14 cores each (28 cores per
machine).

Nu Np Ns Qtc Qc toff tonl
RB tonl

FE SPEEDUP

776 370 705 32 463 28579.94 1.84 15.01 8

Figure 10: Slices of the velocity magnitude computed by the FOM (top) and HROM (middle)
for a given parameter vector at time t = 0.2, 0.3, 0.4 seconds, and relative errors between
FOM and HROM approximations (bottom).
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Figure 11: Flow rate QICA(t;µ) (left) and ratio QICA(t;µ)/QCCA(t;µ) (right) for different
values of µ.
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Figure 12: Relative error ERBi =
|QRBi (t;µ)−QFEi (t;µ)|

|QFEi (t;µ)| , i = ICA,ECA, between FOM and ROM
approximations of flow rates at the ICA (left) and ECA (right) outflows, for the values of µ
considered in Figure 11.

The velocity pattern is affected by the parameter values, also influencing the flow rate at
the outlet boundaries: in Figure 11 we report the outflow rate QICA(t;µ) at the ICA boundary
as function of time, as well as the ratio QICA(t;µ)/QCCA(t;µ), that is, the percentage of flow
rate exiting from the ICA branch. As a matter of fact, the physical parameter µ2 mainly
affects the absolute value of QICA(t;µ), whereas the geometrical parameter µ1 mostly affects
the way blood flow is distributed between the two branches: the higher µ1, the larger the
portion of blood directed in the ICA with respect to the one entering the ECA. Relative
errors between FOM and ROM approximations of flow rates at ICA and ECA outflows, are
reported in Figure 12 for some parameter values; errors on the flow rate at ICA are slightly
larger than those at ECA, both of them being on average lower than 1%.

As already remarked, a relevant quantity of interest when dealing with cardiovascular
simulations is the wall shear stress (WSS) distribution on Γw, which is defined as

~τw = (2µ̄ε(~u)~n) · ~t = 2µ̄(ε(~u)~n− (ε(~u)~n · ~n)~n),

where ~n and ~t are the (outer) normal and tangential unit vectors on Γw, respectively, ε is the
strain tensor defined in (4.3) and µ̄ is the dynamic viscosity of the fluid. In this context the
WSS distribution clearly depends on the parameter µ, that is ~τw = ~τw(µ), due to the of both
the solution ~u(µ) and the geometry, that is ~n = ~n(µ) and ~t = ~t(µ), in its definition.

In Figure 5.8 the WSS magnitude distribution is reported for different values of the pa-
rameters and times; as expected, WSS magnitude is higher during the systolic peak and
concentrated close to the bifurcation. To further investigate the phenomenon, we place three
probes in different location on Γw (see Figure 13): P2 is located close to the outflow of the
ICA, whereas P1 and P3 close to the bifurcation, at the entrance of ICA and ECA, respec-
tively. The time dependence of the WSS magnitude at the points identifies by P1, P2 and P3
is reported for the values of µ1 = (0.375, 0.975) (top) and µ2 = (0.225, 0.875). As a matter
of fact, both the geometrical and physical parameters give a large contribution to the time
variability of τw, especially close to the bifurcation (points P1 and P3). In particular, the
smaller the diameter of the ECA, the larger the WSS magnitude, as expected in practice.
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Figure 13: Wall shear stress (WSS, [dyn · cm−2]) magnitude distribution computed by the
HROM for µ1 = (0.375, 0.975) (top) and µ2 = (0.225, 0.875) (bottom). From left to right:
probes P1, P2, P3 location, visualization of WSS over the wall boundary at time t = 0.2, 0.3,
0.4 seconds, and evolution of WSS magnitude at the probes.

6 Conclusions

In this paper we have extended the state-of-the-art framework of RB methods for the treat-
ment of unsteady NS equations in nonaffinely parametrized geometries. This is pursued by
employing a mesh motion technique to tackle the domain deformation and a waterfall of ROMs
to deal at first with the computation of the domain displacement and then with the fluid flow.
In order to gain the maximum efficiency, an hyper-reduction strategy relying on the matrix
version of DEIM has been employed to treat the nonaffine and nonlinear convective terms
appearing in the NS equations. Moreover, a low-dimensional geometrical parametrization is
devised in an almost automatic way, relying on the RB method for this goal as well. This
results in an extremely efficient, purely algebraic (and less intrusive) framework capable to
tackle fluid flows in complex parametrized shapes. By relying on a POD-Galerkin strategy,
a suitable enrichment of the velocity space must be taken into account so that the stability
of the resulting ROM is ensured; at the moment, further analysis concerning the possibility
to rely on a coarse algebraic least squares RB method is ongoing; this latter option has been
introduced and validated in [13] in the case of Stokes equations. This strategy, relying on a
RB least squares method, would allow to recover automatically the stability of the resulting
ROM, without entailing the cumbersome extracts usually entailed by Petrov-Galerkin RB
method. Further extensions could involve the use of local reduced bases of smaller dimension
(see, e.g., [41]) if compared to the global POD basis used to approximate the state solution in
the proposed methodology.

27



A Appendix

A.1 Proper Orthogonal Decomposition

In this paper we employ POD both for the construction of RB spaces (see Sect. 3.1) and for
the efficient approximation of µ-dependent arrays (see Sect. 3.3). For simplicity, here we focus
on the former aspect; see, e.g., [39] and the following section for further insights on the latter.

Let us denote by S = [sµ1 | . . . |sµns ] ∈ RNh×ns a matrix collecting as columns ns FE
vectors {sµi}Nsi=1 ⊂ RNh (called snapshots). For any prescribed dimension N , POD provides
the N -dimensional subspace, spanned by the columns of V = [ξ1| . . . |ξN ] ∈ RNh×N , which
best approximates {sµi}Nsi=1 among all possible N -dimensional subspaces. To this goal, POD
computes the singular value decomposition (SVD) X

1
2 S = UΣZT of the matrix S, with

respect to a scalar product induced by a symmetric positive definite matrix X, where U ∈
RNh×Nh and Z ∈ Rns×ns denote orthogonal matrices and Σ ∈ RNh×ns is a diagonal matrix
containing the singular values σ1 ≥ σ2 ≥ · · · ≥ σns ≥ 0. The matrix V is obtained by retaining
the first N columns of U and represents, by construction, an X-orthonormal basis of the best
N -dimensional subspace approximating the snapshot set. In particular, we have that

ns∑
i=1

‖si −VVTXsi‖2X = min
W∈VN

ns∑
i=1

‖si −WWTXsi‖2X =

ns∑
i=N+1

σ2
i .

where VN = {W ∈ RNh×N : WTXW = IN} and IN is the N -dimensional identity matrix.
Moreover, the discarded singular values provide an estimate of the relative error, since

1
ns∑
i=1
‖si‖2X

ns∑
i=1

‖si −VVTXsi‖2X =
1

ns∑
i=1

σ2
i

ns∑
i=N+1

σ2
i . (38)

POD is performed by means of Algorithm 3; for a given tolerance εPOD, (38) is employed
to control the relative error on the approximation of the snapshots and to select N basis
functions; alternatively, one could directly provide a dimension N instead of εPOD.

Algorithm 3 Proper Orthogonal Decomposition (POD)

1: procedure POD(S, X, εPOD)
2: form the correlation matrix Cns = STXS
3: solve the eigenvalue problem Cnsψi = σ2

iψi, i = 1, . . . , ns and set ξi = 1
σi

Sψi

4: define N as the minimum integer such that
∑N
i=1 σ

2
i∑ns

i=1 σ
2
i
> 1− ε2

POD and V = [ξ1| . . . |ξN ]

5: end procedure

A.2 Matrix DEIM

Because of its pivotal role in enhancing the efficiency of the proposed ROM workflow, here we
sketch some details about the way (discrete) empirical interpolation can be used to approxi-
mate a matrix K(τ) : T 7→ RNh×Nh , where τ denotes a parameter vector and/or time. Given
K(τ) : T 7→ RNh×Nh , MDEIM provides M � Nh functions θq : T 7→ R and τ -independent
matrices Kq ∈ RNh×Nh , 1 ≤ q ≤M , such that

28



Algorithm 4 Matrix Discrete empirical interpolation method (MDEIM)

1: procedure MDEIM(S, δmdeim)
2: [φ1 | . . . , | φM ] = POD(S, δmdeim, I)
3: im = arg maxi=1,...,Nq |(φ1)i|
4: Φ = φ1, I = {i1},
5: for m = 2 : M do
6: r = φm −ΦΦ−1

I (φm)I
7: im = arg maxi=1,...,Nq |ri|
8: Φ← [Φ φm], I ← I ∪ im
9: end for

10: end procedure

K(τ) ≈ Km(τ) =

M∑
q=1

θq(τ)Kq. (39)

To avoid misunderstadings, here we adopt a different notation from the one used in Section
A.1, although some operations are indeed very similar. The offline stage of MDEIM consists
of two main steps. First we express K(τ) in vector format by stacking its columns, that is, we
set k(τ) = vec(K(τ)) ∈ RN2

h . Hence, (39) can be reformulated as: find {Φ,θ(τ)} such that

k(τ) ≈ km(τ) = Φθ(τ), (40)

where Φ ∈ RN2
h×M is a τ -independent basis and θ(τ) ∈ RM the corresponding coefficients

vector. Then, we apply DEIM as in [11] to a set of snapshots S = [vec(K(τ1)), . . . , vec(K(τns))]
in order to obtain the basis Φ and a set of interpolation indices I ⊂ {1, · · · , N2

h}. The former
is computed by applying POD (for a given tolerance δmdeim) over the columns of S, whereas
the latter is iteratively selected by employing the magic points algorithm [32]. Both these
steps are reported in Algorithm 4.

During the online phase, given a new τ ∈ T , we can compute Km(τ) as
Km(τ) = vec−1(Φθ(τ)) with θ(τ) such that ΦIθ(τ) = KI(τ), (41)

where ΦI and KI(τ) denote the matrices formed by the I rows of Φ and K(τ), respectively.
Note that evaluating KI(τ) online can be performed efficiently when K(τ) results from a FE
discretization of a PDE operator, by employing the same assembly routine used for the FOM
on the reduced mesh associated to the selected interpolation indices I; see, e.g., [39, 7].
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