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Abstract 
 
Background: Congestive Heart Failure (HF) is a widespread chronic disease 
characterized by a very high incidence in elder people. The high mortality and readmission 
rate of HF strongly depends on the complicated morbidity scenario often characterising it. 
Methods: Data were retrieved from the healthcare administrative datawarehouse of 
Lombardy, the most populated regional district in Italy. Network analysis techniques and 
community detection algorithms are applied to comorbidities registered in hospital 
discharge papers of HF patients, in 7 cohorts between 2006 and 2012. 
Results: The relevance network indexes applied to the 7 cohorts identified death, 
ipertension, arrythmia, renal and pulmonary diseases as the most relevant nodes related 
to HF, in terms of prevalence and closeness/strenght of the relationship. Moreover, 3 
clusters of nodes have been identified in all the cohorts, i.e. those related to cancer, lung 
diseases and heart/circulation related problems. 
Conclusions: Network analysis can be a useful tool in epidemiologic framework when 
relational data are the objective of the investigation, since it allows to visualize and make 
inference on patterns of association among nodes (here HF comorbidities) by means of 
both qualitative indexes and clustering techniques. 
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Introduction 
 
Congestive Heart Failure (HF in the following) is a widespread chronic disease 
characterized by a very high incidence in elder people [1]. HF prevalence steeply 
increases with aging [2]. One year mortality ranges from 35-40% and more than 50% of 
patients are readmitted to hospital between 6 months and 1 year after the diagnosis, due 
to a complicated morbidity scenario, among others. In this epidemiological setting, elders 
with HF are representative of a growing segment living longer with chronic conditions 
prone to multiple transitions from hospital to home and vice versa. This unavoidably affects 
their quality of life, and turns in an important healthcare management and costs issue. Last 
but not least, in such a context it is pretty unreasonable to consider the health status of a 
patient as due to a “main” disease surrounded by other possible minor diseases. It is more 
often the case that more than one condition contributes to determine the health need and 
consumption. 
 
Another issue related to HF and related healthcare practice and management is the 
following: it is more and more common nowadays to make use of secondary databases to 
conduct epidemiological enquires concerning HF. In fact, patients with HF randomized in 
controlled trials are generally selected and do not fully represent the “real world” [3]. 
 
For all these reasons, the objective of our study (more details in [4]) is to show the 
potential, the usefulness and the advantages of applying Network analysis ([5], [6], [7]) and 
in general a relational approach in the study of the comorbidities recorded in 
hospitalizations charts of HF patients [8]. Specifically, we wish to investigate relationships 
among the possible evolution of morbidities patterns accompanying HF and their 
relationship with death over the years. targeting this goal for the first time in literature using 
administrative data ([9],[10]). This allows us to study the pathologies taking advantage of 
techniques of network analysis. 
 
The article is organized as follow: after an introduction to the basics of network analysis 
and a brief description of data, we illustrate the applications of network analysis to our data 
and finally the results’ discussion. 
 
 

Methods 
 
Network analysis in a nutshell 
 
A network is a graph with N nodes (or vertices) and L links (or edges) that can be weighted 
or unweighted, directed or not. An unweighted network is completely represented by its N 
x N adjacency matrix A such that Aij = 1 if node i points to node j, Aij = 0 otherwise. 
Let G = (V; E) be a graph, where V is the set of its vertices such that |V| = N and E is the 
set of its edges such that |E| = L. There are many important properties through which a 
network can be described ([5],[7]). In [1] and references therein, all the definition needed 
for the following analyses both in terms of centrality/relevance indexes of nodes as well as 
communities can be found. 
 
Setting 
 
Data were retrieved from the healthcare administrative datawarehouse of Lombardy, a 
region of Italy which accounts for about 16% (almost ten million) of its population. The 



National Health Service covers the entire Italian population and in Lombardy this has been 
associated since 1997 with an automated system of databases to collect a variety of 
information. Full details about the dataset and selection criteria of the cohort are reported 
in [11]. 
 
Data analysis 
 
Analyses are carried out with R software ([12],[13]) and network dedicated packages, like 

igraph [14]. 

We consider only the last hospitalization of each patient in the period 2006-2012, since it is 
assumed to describe his/her most compromised clinical condition. In doing so, we end up 
with 7 networks (i.e., 7 cohorts), obtained by projection of the bipartite network “patients-
comorbidity” on the “comorbidity” dimension. Each patients contributes to the network 
related to the year of his/her last hospitalization. Nodes are represented by comorbidities 
(Death is a node of the comorbidity network, since we want to identify which pathologies 
are most connected to it). Two nodes are connected by an edge, weighted according to 
the amount of patients presenting that couple of comorbidities. The strength of the 

association between two nodes is measured in terms of -correlation [15]. For each 
patient, in addiction to the comorbidities and death/survival indicators, information about 
age [years] and gender are available.  
From the procedure described above, we get a dense network [5], which is odd to treat 
both from a modelling and computational point of view. Therefore, a thresholding [6] is 
needed, and we adopted the following criterion: let G be the undirected network under 

study, and  a prescribed or desired density for the network. Then the network density 

(defined as  = L/[N(N-1)/2], where L and N the number of links and nodes of the network 
G, respectively) can be tuned in order to maintain edges only if they fulfill the requirement 

 > . 

Figure 1 shows networks concerning the years 2006 and 2012, with  = 0.02. The shape of 
the nodes are defined according to the presence of men (higher if the node is square 
shaped) or women (higher if the node is circle shaped) presenting that pathology, and the 
colors are related to the prevalence. 
For each node in each network, an index of relevance is computed. The index is 
composed by degree centrality (measuring the number of connected pathologies), strenght 
(measuring the strength of the connection with other patologies), weighted local transitivity 
or closeness centrality (measuring the proximity to other pathologies) and prevalence of 
that node. This allows to identify which nodes are more relevant within each network and 
within each year. Finally, a community detection algorithm based on modularity 
maximization ([16],[17],[18]) is applied in order to find relevant communities of nodes 
within the networks. 
 



 
Figure 1: Representations of the 2006 (left panel) and 2012 (right panel) networks. 

 
Results 

 
The procedure described in the last Section results in 7 networks to be analyzed. We 

reduced the density of the graphs considering only links that had a -correlation greater 

than  = 0.02 (Figure 1).  
The relevance indexes identified death, hypertension, arrhythmia, renal and pulmonary 
diseases as the most relevant nodes related to death, in terms of prevalence and 
closeness/strenght of the relationship.  
Figure 2 shows the communities detected in 2007 and 2009 cohorts, which are those 
related to cancer, lung diseases and heart/circulation related problems. These 
communities are present in almost all the cohorts in the same configuration. 
 

 
Figure 2: Communities of nodes (i.e., comorbidities) detected  

in the 2007 (left panel) and 2009 (right panel) networks. 

 



These results show that even in a simple example like the one proposed, patterns of 
connections among comorbidities related to HF may be discovered and monitored in their 
relationships with death. From these preliminary results, it seems that such patterns do not 
evolve along time. Further investigations are needed to consider potential risk profiles of 
patients to be monitored in dedicated programs. 
 
 

Discussion and Further Developments 
 
In this work we showed a promising approach to the analysis of comorbidity patterns in 
patients affected by HF using networks. It represents an innovative and flexible method 
that can be adopted for many different kind of epidemiological investigations. Many 
features that emerged thanks to the network approach we adopted might be exploited 
further through more classical statistical methods. 
In general, network analysis can be considered a useful tool in epidemiologic framework 
when relational data are the objective of the investigation, since it allows to visualize and 
make inference on patterns of association among nodes (here HF comorbidities) by 
means of both qualitative indexes and clustering techniques. This is particularly relevant 
when the size of the network (i.e., the number o nodes) becomes high. 
 
Future developments of the present work may regard: 

 to increase the size of the network, using DRGs instead of comorbidities; 

 to consider bipartite networks of patients and comorbidities (or diagnoses) directly, 
without projecting and thresholding; 

 to define an unique index that takes the prevalence, degree, strength and closeness 
into account, properly weighting their contributes (possibly according to clinicians’ 
suggestions); 

 to refine the community detection, exploiting techniques like stochastic block 
models (SBM) [19] or latent class models for bipartite newtorks. 
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