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Abstract

In this work we extend to the Stokes problem the Discontinuous Galerkin Reduced Basis Element (DGRBE)
method introduced in [1]. By this method we aim at reducing the computational cost for the approximation
of a parametrized Stokes problem on a domain partitioned into subdomains. During an offline stage,
expensive but performed only once, a low-dimensional approximation space is built on each subdomain. For
any new value of the parameter, the rapid evaluation of the solution takes place during the online stage
and consists in a Galerkin projection onto the low-dimensional subspaces computed offline. The high-fidelity
discretization on each subdomain, used to build the local low-dimensional subspaces, is based on spectral
element methods. The continuity of both the velocity and the normal component of the Cauchy stress tensor
at subdomain interfaces is weakly enforced by a discontinuous Galerkin approach.

Keywords: Reduced Basis Element method; Discontinuous Galerkin; Domain decomposition; Spectral
element methods; Parametrized PDE; Stokes equations

1. Introduction

The numerical approximation of Parametrized Partial Differential Equations (PPDEs) is a challenging
task, especially when a rapid computation of the solution is required for a new given value of the parameter.
In many applications, for instance real-time simulations, resorting to approximation methods like the Finite
Element Method (FEM) or the Spectral Element Method (SEM) can be too computationally demanding. To
face this problem, a wide range of model order reduction techniques have been proposed. The Reduced Basis
(RB) method have been successfully developed for problems defined on a single parametrized domain, see [2]
for a comprehensive presentation. The RB method provides an approximate solution of the PPDE using
a small number of basis functions, computed by a high-fidelity discretization of the given PPDE consisting
of a Galerkin method like FEM or SEM, typically featuring a very large number of degrees of freedom. In
case of partitioned domains, a suitable variant of the RB method is the so-called Reduced Basis Element
(RBE) method. This approach has been introduced in [3, 4] for elliptic problems and then extended to
the Stokes problem in [5, 6]. Its main feature is that local bases are built on every subdomain with the
aim that the space spanned by such local bases is able to represent the global reduced solution computed
through a Galerkin projection. Thus, in the RBE context, a major issue is to enforce the continuity of the
global reduced solution as well as the continuity of its flux (or of the normal component of the Cauchy stress
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tensor), by preserving the locality of the method and preventing it to become computationally unbearable.
Several approaches have been adopted to address this purpose until now, the most used are those based on
the introduction of Lagrange multipliers [7] and the discontinuous Galerkin (DG) method [8].

In the last years several improvements of the original idea of RBE have been proposed. We recall for
instance the static condensation Reduced Basis Element Method [9, 10, 11], based on the approximation
of the Schur complement that depends solely on the interface variables, and the Reduced Basis Hybrid
Method [12], developed in particular for the Stokes problem. In the latter, the continuity of the velocity is
enforced by using Lagrange multiplier at the interfaces while in order to recover the continuity of the normal
component of the Cauchy stress tensor a global coarse mesh is overlaid to the local bases. The issue of the
continuity can also be faced by introducing additional degrees of freedom corresponding to the high-fidelity
FEM basis functions on the interface, as it is done in the Reduced basis – Domain decomposition – Finite
elements (RDF) method [13]. Other approaches, similar to the RBE method, are also used for coupled
problems [14] as well as in the RB–multiscale research branch [15, 16].

In the present work we focus on the Discontinuous Galerkin Reduced Basis Element method (DGRBE).
This method, originally proposed in [1] for elliptic problems, relies on a discontinuous global reduced space
that is spanned by local bases built independently on each subdomain, that satisfy non-homogeneous Neu-
mann conditions on the interface in order to enhance the accuracy of the method. The (weak) continuity of
the solution and of the fluxes across the interfaces is recovered through a DG approach.

In this paper, we extend the DGRBE method to the Stokes problem. In such a case, the DG approach
aims to recover the (weak) continuity of the velocity and that of the normal component of the Cauchy stress
tensor at the interfaces. The main issue to address here is the stability of the reduced problem. Indeed,
differently from the elliptic case, the well-posedness of the global Stokes reduced problem is not necessarily
inherited from that of the global high-fidelity problem. More specifically, the condition that can get lost
at the reduced level is the inf-sup compatibility between the velocity and the pressure spaces. In order
to overcome such a drawback we adopt a technique proposed in [17] in the single domain case to enrich
the velocities of the snapshot system built during the Greedy step. Another novelty with respect to [1] is
that here a SEM (rather than a FEM) high-fidelity discretization is used. The reason is that SEM is more
coherent with the interface enrichment that is made of high order Legendre polynomials. In our numerical
tests we investigate the relation between the accuracy of the reduced model and the order of the Legendre
polynomials considered for the interface enrichment and we show that the DGRBE method can be convenient
in terms of computational savings.

This work is structured as follows: in Section 2 we introduce the model problem and give the main
definitions, in Section 3 we introduce the high-fidelity model and discuss its well posedness, in Section 4
we present and analyse the DGRBE method for Stokes problem and, finally, in Section 5 we show some
numerical results in order to assess the performance of the method.

2. Model problem

Let Ω be a bounded open subset of R2 such that Ω =
⋃NS

i=1 Ωi, where Ωi ⊂ R2, i = 1, . . . , NS . We also
assume that the partition is non-overlapping, i.e., Ωi∩Ωj = ∅ when i 6= j. Let then D ⊂ RP be the parameter
space. We consider the following Stokes equation: given µ ∈ D, find (u(µ), p(µ)) ∈ [H1(Ω)]2 × L2(Ω) such
that

−div(ν(µ)∇u(µ)) +∇p(µ) = f(µ) in Ω

divu(µ) = 0 in Ω

u = g(µ) on ΣD ⊆ ∂Ω

ν(µ)
∂u(µ)

∂n
− p(µ)n = h(µ) on ΣN = ∂Ω\ΣD

(1)

where n is the outward pointing normal unit vector to ∂Ω, ν(µ) is the viscosity, f(µ) ∈ [L2(Ω)]2 is a
forcing term, while g(µ) ∈ H1/2(ΣD) and h(µ) ∈ H−1/2(ΣN ) are given data on the boundaries ΣD and ΣN
respectively, where ΣD ∪ ΣN = ∂Ω and ΣD ∩ ΣN = ∅. We require that ∂Ωi ∩ ΣD 6= ∅ for i = 1, . . . , NS .
We denote with Γij the interface between the subdomains Ωi and Ωj and we define Γ =

⋃NS

i,j=1 Γij . We
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assume that ν(µ) is constant over the global domain Ω, in particular we set ν(µ) = µ0 with µ0 ∈ D0 ⊂
R+. We assume that D ⊂

∏NS

i=0Di, where Di, for i = 1, . . . , NS , is a subset of RPi . We denote with
µ = (µ0,µ1, . . . ,µNS

) a generic element of D, where µi ∈ Di, for i = 1, . . . , NS . Of course we require that
P = 1 +

∑NS

i=1 Pi. We finally assume that the forcing term and the boundary data, restricted to Ωi depend
only on µi, that is

f(µ)|Ωi = fi(µi), g(µ)|Ωi = gi(µi), h(µ)|Ωi = hi(µi).

The viscosity ν is taken independent of the parameters µ1, . . . ,µNs
since we are assuming that the fluid

is the same in the whole domain Ω. Nevertheless, our method can be extended to equations of different
nature like, e.g., the bi-harmonic one, in which the coefficient of the second order derivatives (the analogous
of ν) is related to Young’s modulus of the elastic material. The method is still well-posed even if such
coefficient is piece-wise constant (subdomain by subdomain) and it depends on the parameters µ1, . . . ,µNs .

Remark 1. To ease the presentation of our method we considered only “physical” parameters, i.e., parame-
ters affecting only the coefficients and the right-hand side of the equation (for instance the viscosity, the inlet
velocity), and not “geometrical” parameters that characterize the domain itself, cf. [18, 2]. When the domain
is parameter-dependent, it is customary to trace the problem back onto a parameter-independent domain. In
that case, on the reference domain, the geometrical parameters affect (through the transformation mapping)
the problem coefficients, and behave as if they were physical ones. In this context, in particular we deal
with anisotropic viscosity tensors ν(µ) that are discontinuous along the interfaces of the reference domain
and depend on the local geometrical parameters. However, our approach allows to effectively handle these
situations.

3. High-fidelity approximation

We introduce now the high-fidelity model, which we aim to reproduce using our reduced order approx-
imation that will be presented in Section 4. First of all, on each subdomain Ωi we define a conforming
quadrilateral mesh Th,i. Here h denotes the maximum element edge length. More precisely, we assume
that each element K of Th,i is the image through an invertible and differentiable map TK , with differen-
tiable inverse, of the reference square K̂ = [−1, 1]2. We also assume that ‖v‖H1(K) ∼ ch−1

K ‖v̂‖H1(K̂) if

v ∈ H1(K) and v̂ ∈ H1(K̂) are related by the Piola transform (this is true, e.g., if TK is either affine or
quadratic), see [19]. We finally require that each Th,i satisfies the usual hypotheses of shape regularity and
quasi-uniformity. We denote with Qp(K̂) the space of the polynomials defined on K̂, of degree at most p in
each variable. We then introduce the space

Qp(Th,i) = {z ∈ L2(Ωi) | z|K ◦ TK ∈ Qp(K̂) ∀K ∈ Th,i}.

We then define the local approximation spaces, for i = 1, . . . , NS ,

V Ni = {v ∈ [L2(Ω)]2 | v|Ωi
∈ [Qp(Th,i) ∩ C0(Ωi)]

2,v = 0 in Ω\Ωi},
QNi = {q ∈ L2(Ω) | q|Ωi ∈ Qp−2(Th,i), q = 0 in Ω\Ωi}

with p ≥ 2, and the global ones (the symbol
⊕

means direct sum):

V N =

NS⊕
i=1

V Ni , QN =

NS⊕
i=1

QNi .

Here N generically refers to the dimension of the high-fidelity space. More precisely we denote with N V
i ,

N V , NQ
i , NQ the dimensions of V Ni , V N , QNi , QN respectively. In this setting, we can express each element

vN ∈ V N and qN ∈ QN as

vN =

NS∑
i=1

vNi , qN =

NS∑
i=1

qNi , with vNi ∈ V Ni , qNi ∈ QNi for i = 1, . . . , NS .
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and these representations are unique. We look for two Lagrangian interpolation bases: that of V Ni is
associated with the Gauss-Legendre-Lobatto (GLL) nodes ((p + 1)2 in K), while the one of QNi with the
Gauss-Legendre (GL) nodes ((p− 1)2 in K), cf. [20, 19] for the definition and further details. The elements
of the global spaces V N are continuous inside each subdomain Ωi but discontinuous along the interfaces
Γij . The idea underlying our method is to use a spectral element method with numerical integration based
on Gauss-Lobatto formulae inside each subdomain, i.e., a SEM-NI approach [19], while exploiting DG
techniques in order to recover the (weak) continuity of the velocities and that of the Cauchy normal stresses
along the interfaces [21, 22, 23, 24].

Having that in mind, for i = 1, . . . , NS , for each K ∈ Th,i we introduce the following inner product

(wK , vK)K =

p+1∑
k,l=1

[wK ◦ TK(ξk, ξl)] [vK ◦ TK(ξk, ξl)] ωkωl |det JTK | ∀wK , vK ∈ C0(K),

where ξq, q = 1, . . . , p+1 are the GLL quadrature nodes on [−1, 1] and ωq the associated integration weights.
We have denoted with JTK the Jacobian matrix of the transformation TK . We can now define the discrete
subdomain-level products

(w, v)Ωi
=

∑
K∈Th,i

(w|K , v|K)K ∀w, v ∈ C0(Th,i).

where
C0(Th,i) = {z ∈ L2(Ωi) | z|K ∈ C0(K) ∀K ∈ Th,i}.

To keep the presentation simple, in this work we assume that the local meshes Th,i are conforming at the
interfaces, i.e., Th =

⋃NS

i=1 Th,i is a global conforming quadrilateral mesh. However, the DG approach can
be effectively combined with the SEM even in case of non-conforming grids, as shown in [25]. Then each
interface Γij is the union of straight segments e that are edges of elements of Th,i (or, equivalently, Th,j).
Clearly, also the boundary regions ∂Ωi ∩ ∂Ω can be seen as union of segments e such that both ∂Ω ∩ ΣD
and ∂Ω ∩ ΣN do not cut any e. Denoting with Te the affine transformation that maps ê = [−1, 1] onto e,
we define

(we, ve)e =

p+1∑
k=1

[we ◦ Te(ξk)][ve ◦ Te(ξk)]ωk |T ′e| ∀we, ve ∈ C0(e).

We define the following sets

Eij = {e | e ⊂ Γij}, Ei,D = {e | e ⊂ ∂Ωi ∩ ΣD}, Ei,N = {e | e ⊂ ∂Ωi ∩ ΣN}

and introduce the scalar products

(w, v)Γij
=
∑
e∈Eij

(w|e, v|e)e , ∀w, v ∈ C0(Γij)

(w, v)∂Ωi∩ΣD
=
∑
e∈Ei,D

(w|e, v|e)e , ∀w, v ∈ C
0(ΣD,i)

(w, v)∂Ωi∩ΣN
=
∑
e∈Ei,N

(w|e, v|e)e ∀w, v ∈ C0(ΣN,i).
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We introduce the local forms

Ai(w
N
i ,v

N
i ;µ0) = µ0

(
∇wNi ,∇vNi

)
Ωi
− µ0

(
∇wNi ni,vNi

)
∂Ωi∩ΣD

− µ0

(
∇vNi ni,wNi

)
∂Ωi∩ΣD

+ γ µ0
p2

h

(
wNi ,v

N
i

)
∂Ωi∩ΣD

,

Bi(v
N
i , q

N
i ) = −

(
qNi ,div vNi

)
Ωi

+
(
qNi ,v

N
i · ni

)
∂Ωi∩ΣD

,

Fi(v
N
i ;µ0,µi) =

(
fi(µi),v

N
i

)
Ωi
− µ0

(
gi(µi),∇vNi ni

)
∂Ωi∩ΣD

+ γ µ0
p2

h

(
gi(µi),v

N
i

)
∂Ωi∩ΣD

+
(
hi(µi),v

N
i

)
∂Ωi∩ΣN

,

Gi(q
N
i ;µi) =

(
qNi , gi(µi) · ni

)
∂Ωi∩ΣD

for each wNi , vNi ∈ V Ni and for each qNi ∈ QNi , where ni is the outward pointing unit vector normal to ∂Ωi.
The coefficient γ > 0 has a stabilization role that will be discussed in the following. The products between
non-scalar quantities have to be intended component-wise. We then define the global bilinear forms

ADG(wN ,vN ;µ0) =

NS∑
i=1

Ai(w
N
i ,v

N
i ;µ0) +

∑
{i,j |Γij 6=∅}

[
−µ0

(
{∇wN }, [[[vN ]]]

)
Γij
− µ0

(
{∇vN }, [[[wN ]]]

)
Γij

+ γ µ0
p2

h

(
[[[wN ]]], [[[vN ]]]

)
Γij

]
,

BDG(vN , qN ) =

NS∑
i=1

Bi(v
N
i , q

N
i ) +

∑
{i,j |Γij 6=∅}

(
{qN }, JvN K

)
Γij

,

for each wN , vN ∈ V N and for each qN ∈ QN . Standard DG-notation is used for the interface terms,
namely on Γij average and jump terms have the following meaning3:

{ψ} =
ψi + ψj

2
, if ψ is a scalar or tensor-valued function,

[[[τ ]]] = τi ⊗ ni + τj ⊗ nj , Jτ K = τi · ni + τj · nj if τ is a vector-valued function,

Finally, we introduce the global right-hand side functionals

FDG(vN ;µ) =

NS∑
i=1

Fi(v
N
i ;µ0,µi), GDG(qN ;µ) =

NS∑
i=1

Gi(q
N
i ;µi).

Given µ ∈ D, the high-fidelity approximation of the solution (u(µ), p(µ)) of (1) is (uN (µ), pN (µ)) ∈
V N ×QN such that

ADG(uN (µ),vN ;µ0) +BDG(vN , pN (µ)) = FDG(vN ;µ) ∀vN ∈ V N ,
BDG(uN (µ), qN ) = GDG(qN ;µ) ∀ qN ∈ QN

(2)

Remark 2. We point out that we impose weakly the Dirichlet boundary datum, as customary in the DG
context and sometimes also for conforming methods, see [26].

3Here the operator ⊗ is such that, given a = (a1, a2)T, b = (b1, b2)T ∈ R2, it holds a⊗ b = abT =

(
a1b1 a1b2
a2b1 a2b2

)
.
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3.1. Well posedness of the high-fidelity approximation
In this section we investigate the well-posedness of problem (2), in particular we show that it admits a

unique solution. The key ingredient is to prove an inf-sup condition for the bilinear form BDG. We introduce
the following local norms

‖vNi ‖2V N
i

= ‖vNi ‖2H1(Ωi)
+ γ

p2

h

(
vNi ,v

N
i

)
∂Ωi∩ΣD

∀vNi ∈ V Ni ,

‖qNi ‖2QN
i

= ‖qNi ‖2L2(Ωi)
∀ qNi ∈ QNi ,

(3)

and the corresponding global ones

‖vN ‖2V N =

NS∑
i=1

‖vNi ‖2V N
i

+ γ
p2

h

∑
{i,j |Γij 6=∅}

(
[[[vN ]]], [[[vN ]]]

)
Γij

∀vN ∈ V N ,

‖qN ‖2QN =

NS∑
i=1

‖qNi ‖2QN
i

∀ qN ∈ QN .

(4)

By invoking [27, Th. 16.5], the well-posedness of the high-fidelity problem (2) is guaranteed by the following
lemma.

Lemma 1. Provided that the coefficient γ is large enough, there exists KNB > 0 and for each µ ∈ D there
exist KNA (µ0) > 0, KNF (µ) > 0 and KNG (µ) > 0 such that

|ADG(wN ,vN ;µ0)| ≤ KNA (µ0)‖wN ‖V N ‖vN ‖V N ∀vN ,wN ∈ V N , (5)

|BDG(vN , qN )| ≤ KNB ‖vN ‖V N ‖qN ‖QN ∀ qN ∈ QN , ∀vN ∈ V N , (6)

|FDG(vN ;µ)| ≤ KNF (µ)‖vN ‖V N ∀vN ∈ V N , (7)

|GDG(qN ;µ)| ≤ KNG (µ)‖qN ‖QN ∀ qN ∈ QN . (8)

Moreover, there exist αN (µ0) > 0 and βN > 0 such that

inf
vN∈V N

ADG(vN ,vN ;µ0)

‖vN ‖2
V N

≥ αN (µ0), (9)

inf
qN∈QN

sup
vN∈V N

BDG(vN , qN )

‖vN ‖V N ‖qN ‖QN
≥ βN . (10)

Proof. Conditions (5), (6), (7) and (8) can be obtained using standard Cauchy-Schwarz inequalities, cf. [27],
considering the following norms

|||vN |||2V N = ‖vN ‖2V N +
h

p2

NS∑
i=1

‖∇vNi ‖2L2(∂Ωi)
, |||qN |||2QN = ‖qN ‖2QN +

h

p2

NS∑
i=1

‖qN ‖2L2(∂Ωi)
, (11)

cf. [21], which allow to control the interface terms. However, the norms (11) are equivalent to those in (4) for
vN ∈ V N , qN ∈ QN , thanks to standard inverse inequalities, cf. [21]. The coercivity condition (9) can be
obtained as in the case of DG elliptic operators, cf. [28, 29, 30]. Let us focus on the inf-sup condition (10).
First of all, we observe that we can rewrite it as: there exists βN > 0 such that

∀ qN ∈ QN ∃vN ∈ V N , vN 6= 0, s. t. BDG(vN , qN ) ≥ βN ‖vN ‖V N ‖qN ‖QN . (12)

Let K̂ = [−1, 1]2. It is known (see [31, Chap. IV, Prop. 7.2]) that BK̂(v, q) = −(q,div v)L2(K̂) satisfies the

inf-sup condition on the spaces V K̂p = Qp(K̂)∩ [H1
0 (K̂)]2, QK̂p = Qp−2(K̂)∩L2

0(K̂) and the inf-sup constant
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is βK̂p ∼ cp−
1/2, with c independent of p. Thanks to our assumptions on the mesh (shape regularity in each

Ωi, global conformity and p ≥ 2), by using Boland-Nicolaides arguments (cf. [32]) the form BΩ(v, q) =
−(q,div v)L2(Ω) satisfies the inf-sup condition on the spaces V Ω,0 = Qp(Th) ∩ [H1

0 (Ω)]2, QΩ,0 = Qp−2(Th) ∩
L2

0(Ω), and the inf-sup constant is βΩ,0 = β0
2 (minK∈Th β

K
p + 1) (where β0

2 is the inf-sup constant of the
couple Q2 −Q0 in Ω, while βKp = cβK̂p for each K ∈ Th, with c independent of both p and meas(K), cf. [19,
pag. 285]). By applying the arguments of [33, Prop 5.3.2], BΩ satisfies the inf-sup condition on the spaces
V Ω = Qp(Th) ∩ [H1

0,ΣD
(Ω)]2, QΩ = Qp−2(Th) and the inf-sup constant is 0 < βΩ < βΩ,0, that is

∀ qN ∈ QΩ ∃wN ∈ V Ω, wN 6= 0 such that BΩ(wN , qN ) ≥ βΩ ‖wN ‖H1(Ω) ‖qN ‖QN .

As wN ∈ V Ω, it is continuous on Ω and null on ΣD and it holds that

‖wN ‖V N = ‖wN ‖H1(Ω) and BDG(wN , qN ) = BΩ(wN , qN ) ∀ qN ∈ QN ,

because the interface and boundary terms vanish. Recalling that QN = QΩ, we can now obtain (12) with
βN = βΩ by taking vN = wN .

Remark 3. In case of geometrical parameters, Ω = Ω(µ) and the bilinear form BDG become parameter
dependent [34]. The inf-sup condition (10) still holds true, however with a µ-dependent constant βN (µ).
The proof follows by using the same arguments of Lemma 1. The main difference is that the global mesh
to be considered is Tµ(Th), the image through the geometrical transformation Tµ : Ω → Ω(µ) of a regular
mesh Th defined on a reference domain Ω. The map Tµ is assumed to be sufficiently regular in order to
ensure the needed regularity properties of Tµ(Th).

4. DGRBE approximation

In this section we present our Discontinuous Galerkin Reduced Basis Element (DGRBE) method that
extends the method proposed in [1] for elliptic equations. The main novelty of the present work consists in
introducing basis enrichment techniques in order to guarantee the inf-sup stability for the reduced problem.

Like most of the reduced basis methods, cf. [2], our DGRBE method is built on two computational stages,
one offline, the other online. During the offline stage (typically expensive) we build low-dimensional local
approximation spaces V RBi and QRBi spanned by a small number of high-fidelity solutions of local Stokes
problems computed in correspondence of Ni parameters selected by the Greedy algorithm [2]. Then, for any
given new value of the parameter µ ∈ D, the global reduced approximate solution of (1) is computed in the
(inexpensive) online stage.

Remark 4. We assume that our bilinear and linear forms depend “affinely” on the parameter µ, cf. [2].
In the particular case of the DGRBE, this requirement is discussed in [1, Appendix A] together with the
implementation details.

4.1. Local reduced spaces construction
The construction of the reduced spaces is made independently on each subdomain using a standard

RB Greedy algorithm [34]. In our case the computational cost of this operation does not depend on the
dimensions N V , NQ of the global high-fidelity spaces , but only on that of the local ones, i.e. N V

i , NQ
i .

Let us focus on the generic subdomain Ωi. The method used to build V Ni and QNi is similar to the one
presented in [1], which is based on the introduction of an additional discrete parameter η whose role is to
select different functions to be used as Neumann data on the boundary regions Γi = ∂Ωi\∂Ω. Under the
assumption that Γi is the union of straight segments Γij , these functions are set null on Γi except on one
segment Γij where they are Legendre polynomials of degree s ≤ Mi, as in the so-called “Method B” of [1].
Since the Legendre polynomials form a complete basis of L2(−1, 1), we expect that using these polynomials
up to degree Mi to reproduce the unknown normal component of the Cauchy stress tensor of the exact
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φ
2,3
i

Γi1

Γi2

Ωi
Γi3

∂Ω

Figure 1: Definition of the parameters η following the formulas (14). In the example we takeMi = 4 (the maximum polynomial
degree), Γi is formed by NJi

= 3 segments, we take j = 2 and s = 3. Starting from the Legendre polynomial φ2,3i (red line) we
have η = 17 (for k = 1) and η = 18 (for k = 2)

global solution across the interface Γi will provide an accurate system of snapshots in the reduced basis,
either of local (in Ωi) or global (in Ω) type.

We denote with DBCi ⊂ N the set in which η takes values. We then define the extended parameter space
Dexti = D0 ×Di ×DBCi and denote with µ̃i = (µ0,µi, η) its generic element. Then, let (ũNi (µ̃i), p̃

N
i (µ̃i)) ∈

V Ni ×QNi be the solution of

Ai(ũ
N
i (µ̃i),v

N
i ;µ0) +Bi(v

N
i , p̃

N
i (µ̃i)) = δ0,η Fi(v

N
i ;µ0,µi) + 〈Iηi ,v

N
i 〉 ∀vNi ∈ V Ni ,

Bi(ũ
N
i (µ̃i), q

N
i ) = δ0,η Gi(q

N
i ;µi) ∀ qNi ∈ QNi ,

(13)

where δa,b denotes the Kronecker delta and the functional Iηi has the role to impose a Neumann boundary
condition on Γi . When η = 0, we set Iηi = 0, thus problem (13) has homogeneous Neumann conditions on the
Γi. To precisely define the functional Iηi when η 6= 0, let us introduce the set Ji = {j |Ωi∩Ωj 6= ∅} and assume
that each interface Γij , j ∈ Ji, is a straight segment so that there exists an affine map TΓij

: [−1, 1]→ Γij . We
denote withNJi the number of elements of Ji and for the sake of exposition we assume that Ji = {1, . . . , NJi}.
We then denote with φ̂s the Legendre polynomial of degree s defined on [−1, 1] and φj,si = φ̂s ◦T−1

Γij
. We set

Mi as the maximum admissible degree for the Legendre polynomials and define the additional parameter
space DBCi = {0, . . . , 2NJi(Mi + 1)}. We point out that the value Mi is set a priori during the offline
stage. At the moment the convergence analysis of DGRBE for the Stokes problem is in progress, thus a
rule to choose Mi is not available yet. Nevertheless, we propose a possible strategy to set Mi that consists
in selecting the minimum polynomial degree such that the ratio between the RB error and the high-fidelity
one, tested on a set of random parameters, is less than 10 (see Sect. 5). Let us denote with (·, ·)Γij

the L2

inner product on Γij , then (when η 6= 0) we define the functionals Iηi as follows:

for j = 1, . . . , NJi (j identifies the segment Γij)
for s = 0, . . . ,Mi (s is the degree of the Legendre polynomial on Γij)

for k = 1, 2 (k identifies the vector component)

set η = 2(Mi + 1)(j − 1) + 2s+ k

set 〈Iηi ,vN 〉 =


((

φj,si
0

)
,vN

)
Γij

if k = 1((
0

φj,si

)
,vN

)
Γij

if k = 2

(14)

In this way, the parameters η are defined univocally in each subdomain (see Fig. 1). All these combinations
allow us to approximate in a very effective way the normal component of the Cauchy stress tensor of the
global solution (uN (µ), pN (µ)), that is not known during the local offline computation.

During the Greedy procedure a set of values of parameters Si = {µ̃1
i , . . . , µ̃

Ni
i } ⊂ Dexti is selected and
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the following spaces are built (for details on the algorithm see [35])

V RBi = span({ũNi (µ̃1
i ), . . . , ũ

N
i (µ̃Ni

i )} ∪ {σ̃Ni (µ̃1
i ), . . . , σ̃

N
i (µ̃Ni

i )}),
QRBi = span{p̃Ni (µ̃1

i ), . . . , p̃
N
i (µ̃Ni

i )}.

Here σ̃Ni (µ̃ki ), k = 1, . . . , Ni, are the supremizers, see e.g. [17]. They are defined as

σ̃Ni (µ̃ki ) ∈ V Ni : (σ̃Ni (µ̃ki ),vNi )V N
i

= Bi(p
N
i (µ̃ki ),vNi ) ∀vNi ∈ V Ni , (15)

where (·, ·)V N
i

is the inner product associated with the norm ‖ · ‖V N
i

defined in (3). The supremizers are
added in order to ensure the inf-sup stability of the reduced problem

Ai(ũ
RB
i (µ̃i),v

RB
i ;µ0) +Bi(v

RB
i , p̃RBi (µ̃i)) = δ0,η Fi(v

RB
i ;µ0,µi) + 〈Iηi ,v

RB
i 〉 ∀vRBi ∈ V RBi ,

Bi(ũ
RB
i (µ̃i), q

RB
i ) = δ0,η Gi(q

RB
i ;µi) ∀ qRBi ∈ QRBi .

(16)

Finally, we would like to point out that the Greedy algorithm terminates when

‖ri
(
·; (ũRBi (µ̃i), p̃

RB
i (µ̃i)

)
, µ̃i)‖(V N

i ×QN
i )′/‖F(·)‖(V N

i ×QN
i )′ ≤ ε∗ ∀µ̃i ∈ Ξi ⊂ Dexti , (17)

where ε∗ is a given tolerance, F(·) is the right hand side of system (16), and ri
(
·; (ũRBi (µ̃i), p̃

RB
i (µ̃i)), µ̃i

)
:

V N ×QN → R is the residual of (13), i.e.

ri
(
(vNi , q

N
i ); (ũRBi (µ̃i), p̃

RB
i (µi)), µ̃i

)
= δ0,η Fi(v

N
i ;µ0,µi) + 〈Iηi ,v

N
i 〉 −Ai(ũRBi (µ̃i),v

N
i ;µ0)

+Bi(v
N
i , p̃

RB
i (µ̃i)) + δ0,η Gi(q

N
i ;µi)−Bi(ũRBi (µ̃i), q

N
i ).

The discrete set Ξi in (17) is the so-called training set used to perform the Greedy procedure. As a
result of the Greedy algorithm, some η ∈ {0, . . . , 2NJi(Mi + 1)} can be missing in the µ̃ki when h is large, p
is small andMi � p (as a consequence of the fact that the high-fidelity space is very small and the RB space
rapidly tends to it during the Greedy algorithm), otherwise in general all the η are present as components
of the µ̃ki , for k = 1, . . . , Ni.

4.2. Global reduced solution
We define the global reduced spaces as

V RB =

NS⊕
i=1

V RBi , QRB =

NS⊕
i=1

QRBi .

We denote with NV
i , NV , NQ

i , NQ the dimensions of V RBi , V RB , QRBi , QRB , respectively. We require,
for i = 1, . . . , NS , that NV

i � N V
i and NQ

i � N
Q
i , where N V

i and NQ
i are the dimensions of V Ni and

QNi . Once we have the global reduced spaces, we can project our problem in order to rapidly compute the
reduced solution. The DGRBE approximation (uRB(µ), pRB(µ)) ∈ V RB ×QRB then satisfies the Galerkin
problem:

ADG(uRB(µ),vRB ;µ0) +BDG(vRB , pRB(µ)) = FDG(vRB ;µ) ∀vRB ∈ V RB ,
BDG(uRB(µ), qRB) = GDG(qRB ;µ) ∀ qRB ∈ QRB .

(18)

We observe that the algebraic problem associated with (18) has dimensions (NV + NQ), hence it is much
smaller than the dimension of the high-fidelity problem, that is (N V + NQ). Note that the DGRBE
approximation (18) is the projection of (2) onto the reduced space V RB ×QRB .

Remark 5. Differently from the elliptic case studied in [1], here the well-posedness of the reduced problem
is not inherited from the high-fidelity one. Nevertheless, the use of supremizers introduced in (15) ensures
that the bilinear form BDG satisfies the inf-sup condition

inf
qRB∈QRB

sup
vRB∈V RB

BDG(vRB , qRB)

‖qRB‖QN ‖vRB‖V N
= βRB > 0. (19)

Although not rigorously proved, experiments show that, with our approach, condition (19) is numerically
satisfied, as we will see in Section 5.
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Figure 3: DGRBE error ‖u(µ) − uRB(µ)‖V N (RBE)
and hi-fi error ‖u(µ)−uN (µ)‖V N (hf) versus Mi. Here
h = 1/32 and N = 6. The errors are an average over a
sample of 20 random parameter values.

5. Numerical results

In this section we provide numerical verification of the method presented in the previous sections. We
consider the domain Ω = (0, 4) × (0, 2), partitioned into Ω1 = (0, 2) × (0, 2) and Ω2 = (2, 4) × (0, 2). The
domain is sketched in Figure 2. The right-hand side functional of (1) and the boundary conditions are
chosen in order to obtain that the exact solution is

u(µ)(x, y) =

(
µ1(−ex(y cos y + sin y)) + µ2ex+y,

µ1(exy sin y) + µ2(−ex+y)

)
, p(µ)(x, y) = µ1(2 ex sin y)− µ2π cos(π x) cos(π y).

Here we do not have local parameters, but only global ones. Thus, we set D1 = D2 = [0, 1]2 and in the
setting defined in Section 2, the parameter space D can be expressed as D = {(µ1,µ2) ∈ D1 × D2 |µ1

1 =
µ1

2, µ2
1 = µ2

2} where µi = (µ1
i , µ

2
i ) i = 1, 2.We set µ0 = 1, actually we are not considering the viscosity

as a parameter. The aim of this experiment is to investigate the conditions in which our reduced strategy
yields significant computational savings without losing accuracy. We applied the DGRBE method to the
SEM high-fidelity (hi-fi) discretization with mesh size h and polynomials degree p. We performed the Greedy
algorithm using a tolerance ε∗ = 10−5 and the value of Mi shown in Table 1 (which is set a priori in the
offline stage). More precisely, for each couple (h, p), we choose (a priori) the minimum value of Mi, i = 1, 2,
s.t. max{EVr , E

Q

r } ≤ 10, being E
V

r and E
Q

r the average over a sample of 20 random parameter values of

EVr (µ) =
‖u(µ)− uRB(µ)‖V N

‖u(µ)− uN (µ)‖V N
and EQr (µ) =

‖p(µ)− pRB(µ)‖QN

‖p(µ)− pN (µ)‖QN
,

respectively. This means that the average error of the DGRBE approximation can be at most one order of
magnitude higher than the average hi-fi error. The optimal value of Mi has been determined by multiple
experiments. In some cases (those corresponding to the starred values in Table 1) the desired accuracy
cannot be reached by increasing Mi. In Figure 3 we show the behaviour of ‖u(µ) − uRB(µ)‖V N versus
Mi and we compare it with ‖u(µ) − uN (µ)‖V N , in the case h = 1/32 and N = 6. We observe that there
is a plateau. The plateau is a consequence of the fact that the local spaces built by the Greedy procedure
are able to reproduce the hi-fi approximation only up to a value related to the tolerance ε∗. In Table 2 we
compare the dimension of both the SEM hi-fi discretization and that of the DGRBE one.

In Table 3 we show the computational speed-up, i.e., the ratio between the computational time Thf of
the hi-fi model and the one Ton of the online stage of the DGRBE. Moreover, we analyse the trade-off, that
is the number Nto of online simulations to be performed in order to have an effective advantage w.r.t. solve
Nto hi-fi problems. It is computed as Nto = Toff

Thf−Ton
, where Toff is the computational time of the offline

stage. A significant computational speed-up is obtained even guaranteeing that the accuracy of the DGRBE
approximation and the hi-fi one are comparable, provided that we are able to choose a suitable maximum
degree Mi of the Legendre interface conditions that grows w.r.t. both p and 1/h. From this simple test case

10



p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

h = 1 −1 0 1 2 3 4 5
h = 1/2 −1 1 2 3 4 6 8
h = 1/4 0 2 3 5 6 8 10
h = 1/8 0 2 4 6 8 10 12
h = 1/16 1 3 6 8 10 12 20∗

h = 1/32 2 5 8 20∗ 20∗ 20∗ 20∗

Table 1: Minimum value of Mi for which it holds max{EV
r (µ), EQ

r (µ)} ≤ 10. The value −1 means that no Legendre interface
conditions are used. The superscript ∗ means that the tolerance on the ratio has not been reached.

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

h = 1 38/8 72/24 118/36 176/48 246/60 328/72 422/84
h = 1/2 108/12 228/36 396/48 612/60 876/72 1188/96 1548/120
h = 1/4 356/24 804/48 1444/60 2276/84 3300/96 4516/120 5924/144
h = 1/8 1284/24 3012/48 5508/72 8772/96 12804/120 17604/144 23172/168
h = 1/16 4868/36 11652/60 21508/96 34436/120 50436/144 69508/168 91652/264
h = 1/32 18948/48 45828/84 84996/120 136452/264 200196/264 276228/264 364548/264

Table 2: Spaces dimensions. We compare here the dimension of the hi-fi space V Ni ×QNi (on the left) with the dimension of
the DGRBE space V RB ×QRB (on the right), built by using the Mi shown in Table 1.

it turns out that both the speed-up and the trade-off are better for those values of p and h corresponding
to the lower triangle of the blocks in Table 3, i.e., the larger p, the larger h.

Finally in Table 4 we show the discrete inf-sup constant for both the hi-fi and the DGRBE model. These
values have been computed by solving the generalized eigenproblem shown in, e.g., [36]. We observe that
the supremizer enrichment allows to recover good stability properties for the reduced problem. The data
shown in Tables 3 and 4 are averaged over a sample of 20 parameter values.

6. Conclusions

We proposed an extension of the DGRBE method [1] for Stokes problem. The high-fidelity model is based
on spectral elements approximation. The basis functions are discontinuous along the subdomain interfaces
and the DG approach has been followed in order to recover the continuity of the velocities and of the normal
component of the Cauchy stress tensor. We proved the well-posedness of the high-fidelity approximation.
We then introduced the reduced model and proposed a space enrichment technique in order to recover the
inf-sup stability of the reduced model, which is not rigorously proven but it is numerically evident. In the
numerical tests we have analysed how the accuracy of the DGRBE approximation depends on the maximum
degreeMi of the Legendre polynomials used as interface conditions during the offline stage. We also assessed
that the DGRBE approach provides significant computational savings in a certain range of the discretization
parameters (h, p), and the larger p, the larger h.

Further work should be devoted to improve the space enrichment technique as well as to develop an
effective a posteriori error estimator for the certification of the global reduced solution.

References

[1] P. F. Antonietti, P. Pacciarini, A. Quarteroni, A discontinuous Galerkin reduced basis element method for elliptic problems,
ESAIM: M2AN (2015). In press. doi:10.1051/m2an/2015045.

[2] A. Manzoni, F. Negri, A. Quarteroni, Reduced Basis Methods for Partial Differential Equations, Springer, 2015.
[3] Y. Maday, E. M. Rønquist, A reduced-basis element method, in: Proceedings of the Fifth International Conference on

Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), Vol. 17, 2002, pp. 447–459.
[4] Y. Maday, E. M. Rønquist, The reduced basis element method: application to a thermal fin problem, SIAM J. Sci. Comput.

26 (1) (2004) 240–258.

11



p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

h = 1 4.59 · 100 1.55 · 100 1.90 · 100 2.47 · 100 3.49 · 100 4.65 · 100 7.10 · 100
h = 1/2 1.68 · 100 2.57 · 100 4.51 · 100 7.61 · 100 1.16 · 101 1.74 · 101 1.91 · 101
h = 1/4 2.75 · 100 6.79 · 100 1.44 · 101 2.11 · 101 3.84 · 101 5.37 · 101 7.11 · 101
h = 1/8 7.49 · 100 3.24 · 101 6.49 · 101 1.19 · 102 1.79 · 102 2.79 · 102 3.58 · 102
h = 1/16 3.73 · 101 1.92 · 102 4.02 · 102 7.22 · 102 1.16 · 103 1.83 · 103
h = 1/32 3.22 · 102 1.28 · 103 2.91 · 103

h = 1 1.83 · 102 1.35 · 103 8.09 · 102 1.00 · 103 1.48 · 103 1.03 · 103 7.08 · 102
h = 1/2 8.02 · 102 4.86 · 102 9.50 · 102 6.48 · 102 4.18 · 102 3.83 · 102 4.51 · 102
h = 1/4 5.99 · 102 6.69 · 102 3.92 · 102 3.47 · 102 2.70 · 102 3.08 · 102 3.49 · 102
h = 1/8 6.77 · 102 2.19 · 102 1.87 · 102 7.43 · 101 6.98 · 101 8.20 · 101 1.02 · 102
h = 1/16 2.24 · 102 6.59 · 101 5.16 · 101 5.06 · 101 5.17 · 101 6.16 · 101
h = 1/32 9.89 · 101 4.01 · 101 3.44 · 101

Table 3: Computational speed-up Thf
Ton

(top block) and Trade-off Nto = Toff
Thf−Ton

(bottom block). We show only the (h, p)

couples satisfying the accuracy condition max{EV
r (µ), EQ

r (µ)} ≤ 10.

p = 2 p = 4 p = 6 p = 8

h = 1 7.18 · 10−1/7.18 · 10−1 4.13 · 10−1/4.11 · 10−1 3.99 · 10−1/3.99 · 10−1 3.98 · 10−1/3.98 · 10−1

h = 1/2 5.25 · 10−1/5.24 · 10−1 4.00 · 10−1/4.00 · 10−1 3.99 · 10−1/3.98 · 10−1 3.98 · 10−1/3.81 · 10−1

h = 1/4 4.39 · 10−1/4.38 · 10−1 3.99 · 10−1/3.81 · 10−1 3.98 · 10−1/2.79 · 10−1 3.98 · 10−1/1.97 · 10−1

h = 1/8 4.11 · 10−1/2.30 · 10−1 3.99 · 10−1/2.41 · 10−1 3.98 · 10−1/1.56 · 10−1 3.98 · 10−1/9.88 · 10−2

h = 1/16 4.02 · 10−1/2.29 · 10−1 3.99 · 10−1/1.95 · 10−1 3.98 · 10−1/1.24 · 10−1 3.98 · 10−1/1.44 · 10−1

Table 4: Discrete inf-sup constant. The value on the left refers to the hi-fi model, the value on the right to the DGRBE one.

[5] A. E. Løvgren, Y. Maday, E. M. Rønquist, A reduced basis element method for the steady Stokes problem, M2AN Math.
Model. Numer. Anal. 40 (3) (2006) 529–552.

[6] A. E. Løvgren, Y. Maday, E. M. Rønquist, A reduced basis element method for the steady Stokes problem: application
to hierarchical flow systems, Model. Identif. Control 27 (2) (2006) 79–94.

[7] L. Iapichino, A. Quarteroni, G. Rozza, A reduced basis hybrid method for the coupling of parametrized domains represented
by fluidic networks, Comput. Methods Appl. Mech. Engrg. 221/222 (2012) 63–82.

[8] Y. Chen, J. S. Hesthaven, Y. Maday, A seamless reduced basis element method for 2D Maxwell’s problem: an introduction,
in: Spectral and high order methods for partial differential equations, Vol. 76 of Lect. Notes Comput. Sci. Eng., Springer,
Heidelberg, 2011, pp. 141–152.

[9] D. B. P. Huynh, D. J. Knezevic, A. T. Patera, A static condensation reduced basis element method: approximation and
a posteriori error estimation, ESAIM Math. Model. Numer. Anal. 47 (1) (2013) 213–251.

[10] D. B. P. Huynh, D. J. Knezevic, A. T. Patera, A static condensation reduced basis element method: complex problems,
Comput. Methods Appl. Mech. Engrg. 259 (2013) 197–216.

[11] K. Smetana, A new certification framework for the port reduced static condensation reduced basis element method,
Comput. Methods Appl. Mech. Engrg. 283 (2015) 352–383.

[12] L. Iapichino, Reduced basis methods for the solution of parametrized PDEs in repetitive and complex networks with
application to CFD, Ph.D. thesis, EPFL, Lausanne (2012).

[13] L. Iapichino, A. Quarteroni, G. Rozza, Reduced basis method and domain decomposition for elliptic problems in networks
and complex parametrized geometries., Computers & Mathematics with Applications 71 (1) (2016) 408–430.

[14] I. Martini, G. Rozza, B. Haasdonk, Reduced basis approximation and a-posteriori error estimation for the coupled stokes-
darcy system, Advances in Computational Mathematics (2014) 1–27.

[15] F. Albrecht, B. Haasdonk, S. Kaulmann, M. Ohlberger, The localized reduced basis multiscale method, in: Proceedings
of contributed papers and posters, 2012, pp. 393–403.

[16] S. Kaulmann, M. Ohlberger, B. Haasdonk, A new local reduced basis discontinuous Galerkin approach for heterogeneous
multiscale problems, C. R. Math. Acad. Sci. Paris 349 (23-24) (2011) 1233–1238.

[17] G. Rozza, K. Veroy, On the stability of the reduced basis method for Stokes equations in parametrized domains, Comput.
Methods Appl. Mech. Engrg. 196 (7) (2007) 1244–1260.

[18] A. Quarteroni, G. Rozza, A. Manzoni, Certified reduced basis approximation for parametrized partial differential equations
and applications, J. Math. Ind. 1 (2011) Art. 3, 44.

[19] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods. Evolution to Complex Geometries and Appli-
cations to Fluid Dynamics, Springer, Heidelberg, 2007.

12



[20] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods. Fundamentals in Single Domains, Springer,
Heidelberg, 2006.

[21] A. Toselli, hp discontinuous Galerkin approximations for the Stokes problem, Math. Models Methods Appl. Sci. 12 (11)
(2002) 1565–1597.

[22] P. Houston, D. Schötzau, T. P. Wihler, Energy norm a posteriori error estimation for mixed discontinuous Galerkin
approximations of the Stokes problem, J. Sci. Comput. 22/23 (2005) 347–370.

[23] V. Girault, B. Rivière, M. F. Wheeler, A discontinuous Galerkin method with nonoverlapping domain decomposition for
the Stokes and Navier-Stokes problems, Math. Comp. 74 (249) (2005) 53–84.

[24] B. Rivière, Discontinuous Galerkin methods for solving elliptic and parabolic equations, Vol. 35 of Frontiers in Applied
Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2008.

[25] I. Mazzieri, Non-conforming high order methods for the elastodynamics equation, Ph.D. thesis, Politecnico di Milano
(2012).

[26] Y. Bazilevs, T. J. R. Hughes, Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput. & Fluids
36 (1) (2007) 12–26.

[27] A. Quarteroni, Numerical Models for Differential Problems, 2nd ed., Springer, 2014.
[28] M. F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal. 15 (1) (1978)

152–161.
[29] D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (4) (1982)

742–760.
[30] D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic

problems, SIAM J. Numer. Anal. 39 (5) (2001/02) 1749–1779.
[31] C. Bernardi, Y. Maday., Approximations Spectrales de Problèmes aux Limites Elliptiques, Springer Verlag, Paris, 1992.
[32] J. M. Boland, R. A. Nicolaides, Stability of finite elements under divergence constraints, SIAM J. Numer. Anal. 20 (4)

(1983) 722–731.
[33] A. Quarteroni, A. Valli, Domain decomposition methods for partial differential equations, Oxford University Press, 1999.
[34] G. Rozza, D. B. P. Huynh, A. Manzoni, Reduced basis approximation and a posteriori error estimation for Stokes flows

in parametrized geometries: roles of the inf-sup stability constants, Numer. Math. 125 (1) (2013) 115–152.
[35] P. F. Antonietti, P. Gervasio, P. Pacciarini, A. Quarteroni, A unified discontinuous Galerkin Reduced Basis Element

approach for the approximation of second order parametrized partial differential equations on partitioned domains, Tech.
rep., in preparation (2016).

[36] F. Ballarin, A. Manzoni, A. Quarteroni, G. Rozza, Supremizer stabilization of POD-Galerkin approximation of
parametrized steady incompressible Navier-Stokes equations, Int. J. Numer. Meth. Engrg. 102 (5) (2015) 1136–1161.

13



MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

05/2016 Alfio Quarteroni, A.; Lassila, T.; Rossi, S.; Ruiz-Baier, R.
Integrated Heart - Coupling multiscale and multiphysics models for the
simulation of the cardiac function

06/2016 Micheletti, S.; Perotto, S.; Signorini, M.
Anisotropic mesh adaptation for the generalized Ambrosio-Tortorelli
functional with application to brittle fracture

01/2016 Domanin, M.; Buora, A.; Scardulla, F.; Guerciotti, B.; Forzenigo, L.; Biondetti, P.; Vergara, C.
Computational fluid-dynamic analysis of carotid bifurcations after
endarterectomy: closure with patch graft versus direct suture

02/2016 Crivellaro, A.; Perotto, S.; Zonca, S.
Reconstruction of 3D scattered data via radial basis functions by efficient and
robust techniques

03/2016 Tarabelloni, N.; Ieva, F.
On Data Robustification in Functional Data Analysis

04/2016 Pettinati, V.; Ambrosi, D; Ciarletta P.; Pezzuto S.
Finite element simulations of the active stress in the imaginal disc of the
Drosophila Melanogaster

62/2015 Signorini, M.; Zlotnik, S.; Díez, P.
Proper Generalized Decomposition solution of the parameterized Helmholtz
problem: application to inverse geophysical problems.

63/2015 Lancellotti, R.M.; Vergara, C.; Valdettaro, L.; Bose, S.; Quarteroni, A.
Large Eddy Simulations for blood fluid-dynamics in real stenotic carotids

61/2015 Tagliabue, A.; Dedè, L.; Quarteroni, A.
Fluid dynamics of an idealized left ventricle: the extended Nitsche’s method
for the treatment of heart valves as mixed time varying boundary conditions

59/2015 Menafoglio, A.; Guadagnini, A.; Secchi, P.
Stochastic Simulation of Soil Particle-Size Curves in Heterogeneous Aquifer
Systems through a Bayes space approach


	qmox07-copertina
	mox-20162191149
	qmox07-terza_di_copertina

