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Abstract

We consider the issue of classification of functional data and, in par-

ticular, we deal with the problem of curve clustering when curves are mis-

aligned. In the proposed setting, we aim at jointly aligning and clustering

the curves, via the solution of an optimization problem. We describe an

iterative procedure for the solution of the optimization problem, and we de-

tail two alternative specifications of the procedure, a k-mean version and a

k-medoid version. We illustrate via applications to real data the robustness

of the alignment and clustering procedure under the different specifications.

1 Introduction

Unsupervised classification (or clustering) methods are an important topic in
statistics, with many applications in various fields; the aim of such techniques
is to classify a sample of data into homogeneous groups, without having any a
priori knowledge about the true underlying clustering structure. Here, we shall
consider the problem of clustering of functional data, and in particular of curves.
For an introduction to the statistical analysis of functional data, see the books
by Ramsay and Silverman [1] and by Ferraty and Vieu [2].
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Figure 1: Estimated first derivatives, x′, y′, z′, of the three spatial coordinates of
the 65 ICA centerlines.

Many methods for curve clustering have been proposed in the literature on
functional data analysis. For example, Shimizu and Mizuta [3], Tarpey and Ki-
nadeter [4] and Tokushige et al. [5] propose a generalization of k-mean clustering
algorithms for functional data, as a way to solve the problem of principal points
estimation. In Cuesta-Albertos and Fraiman [6], a robust k-mean clustering pro-
cedure is developed, based on the idea of “impartial trimming”, which proves to be
useful for high dimensional data. Another k-mean algorithm for functional data
can be found in Chiou and Li [7], where the efficiency of the clustering procedure
is improved thanks to the use of a non-parametric random-effect model.

When dealing with clustering of curves, we need to consider a problem which
is peculiar to functional data, namely the possible misalignment of the data. An
instance of this issue is given by the data in Figure 1, which are related to the
three spatial coordinates of 65 Internal Carotid Artery (ICA) centerlines (the pic-
ture in particular shows the estimated first derivatives of the three-dimensional
centerlines). Clustering of these data is of interest for the identification of ICA’s
with different morphological shapes. On the other hand, the evident misalign-
ment of the data acts as a confounding factor when trying to cluster the data,
and the above cited k-mean algorithms fail to give efficient results (see [8]). This
highlights the need for a clustering procedure which is able to jointly deal with
data alignment, decoupling the variability due to data misalignment (phase vari-
ability) and the variability due to the shape (amplitude variability).

The problem of curve alignment (or curve registration) has been considered
by a number of authors. Lawton et al. [9] and Altman and Villarreal [10] face
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this problem using self-modelling non-linear regression methods, Lindstrom and
Bates [11] develop non-linear mixed-effects models, and Ke and Wang [12] merge
the above approaches in the unifying framework of semiparametric non-linear
mixed-effects models. A different line of research, advocated by J. O. Ramsay, is
followed by Ramsay and Li [13], Ramsay and Silverman [1], James [14], Kaziska
and Srivastava [15] and Sangalli et al. [16], who define suitable similarity indexes
between curves and thus align the curves, maximizing their similarities by means
of a Procrustes procedure.

Following the latter line of research, in Sangalli et al. [8] we proposed a
procedure which is able to jointly cluster and align a set of functional data. We
stated the problem of joint clustering and alignment of functional data as an
optimization problem, and we proposed an iterative procedure for its solution.
This procedure was thus specified in a k-mean algorithm. Here, we describe
an alternative specification of the procedure, in a k-medoid algorithm version.
This new version approximates more directly the original optimization problem,
and is potentially less sensitive to the presence of anomalous data. Moreover,
this alternative version gives us the possibility of testing the robustness of our
alignment and clustering procedure under different algorithm specifications. See
Boudaoud et al. [17], Liu and Yang [18] and Liu and Muller [19] for other recent
approaches to the problem of clustering of misaligned functional data.

The paper is organized as follows. In Section 2 we introduce a proper frame-
work for the problem of clustering and alignment, defining phase and amplitude
variability. In Section 3 we state the problem of curve clustering and alignment
as an optimization problem, and we propose an iterative procedure for its solu-
tion. In Section 4 we describe two approaches to the template identification step
in the procedure proposed in Section 3, obtaining a k-mean and a k-medoid spec-
ification of the iterative procedure. The two subsequent sections are devoted to
the application of the two algorithm versions to real data, with the aim of testing
the robustness of the proposed clustering and alignment procedure; in particu-
lar, Section 5 describes the clustering and alignment analysis of the data shown
in Figure 1, concerning three-dimensional vascular geometries, while in Section
6 the procedure is tested on a benchmark dataset, the Berkeley Growth Study
dataset. Some concluding considerations are drawn in Section 7. All analyses of
real datasets are performed in R [20].

2 Defining phase and amplitude variabilities

The variability among two or more curves can be though of as having two compo-
nents: phase variability and amplitude variability. Heuristically, phase variability
is the one that can be eliminated by suitably aligning the curves, and amplitude
variability is the one that remains among the curves once they have been aligned.
Consider a set C of curves c(s) : R → R

d. Aligning c1 ∈ C to c2 ∈ C means find-
ing a warping function h(s) : R → R, of the abscissa parameter s, such that the
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two curves c1 ◦ h and c2 are the most similar (with (c ◦ h)(s) := c(h(s))). It is
thus necessary to specify a similarity index ρ(·, ·) : C × C → R that measures the
similarity between two curves, and a class W of warping functions h (such that
c ◦h ∈ C, for all c ∈ C and h ∈ W ) indicating the allowed transformations for
the abscissa. Aligning c1 to c2, according to (ρ, W ), means finding h∗ ∈ W that
maximizes ρ(c1◦h, c2). This procedure decouples phase and amplitude variability
without loss of information: phase variability is captured by the optimal warp-
ing function h∗, whilst amplitude variability is the remaining variability between
c1◦h∗ and c2. Note that the choice of the couple (ρ, W ) defines what is meant
by phase variability and amplitude variability.

Many similarity indexes for measuring similarity between functions have been
considered in the literature on functional data analysis; for a proficient mathe-
matical introduction to the issue see the book by Ferraty and Vieu [2]. Sangalli
et al. [16, 8] proposed the following bounded similarity index between two curves
c1, c2 ∈ C, where C = {c : c ∈ L2(R; Rd), c′ ∈ L2(R; Rd), c′ 6= 0}

ρ(c1, c2) =
1

d

d
∑

p=1

∫

R
c′1p(s)c

′

2p(s)ds
√

∫

R
c′1p(s)

2ds
√

∫

R
c′2p(s)

2ds
, (1)

with cip indicating the pth component of ci, ci = {ci1, . . . , cid}; geometrically,
(1) represents the average of the cosines of the angles between the derivatives
of homologous components of c1 and c2. The two curves are said to be similar
when the index assumes its maximal value 1; for the similarity index defined in
(1), this happens when the two curves are identical except for shifts and dilations
of their components

ρ(c1, c2) = 1 ⇔
for p = 1, . . . , d, ∃θ0p ∈ R, θ1p ∈ R

+ :
c1p(s) = θ0p + θ1pc2p(s).

(2)

The choice of this similarity index comes along with the following choice for
the class W of warping functions of the abscissa

W = {h : h(s) = ms + q with m ∈ R
+, q ∈ R} (3)

i.e., the group of strictly increasing affine transformations.
The couple (ρ, W ) defined in (1) and (3) satisfies the following properties

(a)-(c) that we deem to be minimal requirements for coherence:

(a) The similarity index ρ is bounded, with maximum value equal to 1. More-
over, ρ is

reflexive: ρ(c, c)=1, ∀ c ∈ C;

symmetric: ρ(c1, c2)=ρ(c2, c1), ∀ c1, c2 ∈ C;

transitive:
[

ρ(c1, c2)=1 ∧ ρ(c2, c3)=1
]

⇒ ρ(c1, c3)=1
∀ c1, c2, c3 ∈ C.
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(b) The class of warping functions W is a convex vector space and has a group
structure with respect to function composition ◦.

(c) The index ρ and the class W are consistent in the sense that, if two curves c1

and c2 are simultaneously warped along the same warping function h ∈ W ,
their similarity does not change

ρ (c1, c2) = ρ (c1◦h, c2◦h) , ∀ h ∈ W. (4)

This guarantees that it is not possible to obtain a fictitious increment
of the similarity between two curves c1 and c2 by simply warping them
simultaneously to c1◦h and c2◦h.

Together, (b) and (c) imply the following property

(d) For all h1 and h2 ∈ W ,

ρ (c1 ◦ h1, c2 ◦ h2) = ρ
(

c1 ◦ h1 ◦ h−1
2 , c2

)

= ρ
(

c1, c2 ◦ h2 ◦ h−1
1

)

.

This means that a change in similarity between c1 and c2 obtained by
warping simultaneously c1 and c2, can also be obtained by warping the
sole c1 or the sole c2.

Moreover, the couple (ρ, W ) defined in (1) and (3) satisfies the additional auxil-
iary property

(e) Let W d be the set of all transformations r : R
d −→ R

d such that

x = (x1, ..., xd) ∈ R
d 7−→ r(x) = (r1(x1), . . . , rd(xd)) ∈ R

d,

with r1, . . . , rd ∈ W . Then, for all r1 and r2 ∈ W d,

ρ(r1(c1), r2(c2)) = ρ(c1, c2) .

In words, the similarity index between two curves is unaffected by strictly
increasing affine transformations of one or more components of the curves.

For c = {c1, . . . , cd} ∈ C, assume the existence of ϕ = {ϕ1, . . . , ϕd} ∈ C and
of a parameter vector θ = (θ01, . . . , θ0d, θ11, . . . , θ1d, θ2, θ3), with θ0p ∈ R and
θ1p ∈ R

+ for p = 1, . . . , d, θ2 ∈ R, θ3 ∈ R
+, such that

cp(s) = θ0p + θ1pϕp(θ2 + θ3s) for p = 1, . . . , d. (5)

We shall write c ∈ SIM(ϕ), since the condition (5) means that c falls within a
shape invariant model (SIM), with characteristic shape curve ϕ. For d = 1, SIM
models were introduced by Lawton et al. [9]. For further details, see Kneip and
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Gasser [21]. SIM models are strongly connected with the couple (ρ, W ) defined
in (1) and (3). Indeed,

∃h ∈ W : ρ(c ◦ h,ϕ) = 1 ⇔ c ∈ SIM(ϕ); (6)

this follows directly from (2) and (3). Note that, thanks to property (d), the roles
of c and ϕ can be swapped. Now, consider a set of N curves {c1, . . . , cN} ⊂ C,
such that ci ∈ SIM(ϕ) for i = 1, . . . , N ; then, the following property follows
immediately:

(f) For all ci, cj , with i, j = 1, . . . , N , ∃hi ∈ W, hj ∈ W such that

ρ (ci ◦ hi, cj ◦ hj) = ρ (ci ◦ hi,ϕ) =

= ρ (cj ◦ hj ,ϕ) = 1 ∀ i, j = 1, . . . , N.

3 Curve clustering when curves are misaligned

Consider the problem of clustering and aligning a set of N curves {c1, . . . , cN}
with respect to a set of k template curves ϕ = {ϕ1, . . . ,ϕk} (with {c1, . . . , cN} ⊂
C and ϕ ⊂ C ). For each template curve ϕj in ϕ, define the domain of attraction

∆j(ϕ) = {c ∈ C : sup
h∈W

ρ(ϕj , c◦h) ≥ sup
h∈W

ρ(ϕr, c◦h),∀ r 6= j}, j = 1, . . . , k.

(7)

Moreover, define the labeling function

λ(ϕ, c) = min{r : c ∈ ∆r(ϕ)}. (8)

Note that λ(ϕ, c) = j means that the similarity index obtained by aligning c to
ϕj is at least as large as the similarity index obtained by aligning c to any other
template ϕr, with r 6= j. Thus ϕλ(ϕ,ci) indicates a template the curve c can be

best aligned to and hence λ(ϕ, c) a cluster which c should be assigned to.

Case of known templates. If the k templates ϕ = {ϕ1, . . . ,ϕk} were known,
then clustering and aligning the set of N curves {c1, . . . , cN} with respect to
ϕ would simply mean to assign ci to the cluster λ(ϕ, ci) and align it to the
corresponding template ϕλ(ϕ,ci), for i = 1, . . . , N .

Here we are interested in the more complex case when the k templates are un-
known.

Case of unknown templates. Ideally, if our aim is clustering and aligning
the set of N curves {c1, . . . , cN} with respect to k unknown templates, we should
first solve the following optimization problem

6



(i) find ϕ = {ϕ1, . . . ,ϕk} ⊂ C and h = {h1, . . . , hN} ⊂ W such that

1

N

N
∑

i=1

ρ(ϕλ(ϕ,ci), ci◦hi) ≥
1

N

N
∑

i=1

ρ(ψλ(ψ,ci), ci◦gi), (9)

for any other set of k templates ψ = {ψ1, . . . ,ψk} ⊂ C and any other set
of N warping functions g = {g1, . . . , gN} ⊂ W ,

and then, for i = 1, . . . , N ,

(ii) assign ci to the cluster λ(ϕ, ci) and warp ci along hi.

The optimization problem (i) describes a search both for the set of optimal
k templates, and for the set of optimal N warping functions. Note that the
solution (ϕ,h) to (i) has mean similarity 1

N

∑N
i=1 ρ(ϕλ(ϕ,ci), ci◦hi) equal to 1 if

and only if it is possible to perfectly align and cluster in k groups the set of N

curves, i.e. if and only if there exists h = {h1, . . . , hN} ⊂ W and a partition
P = {P1, . . . , Pk} of {1, . . . , N} in k elements, such that ρ(ci◦hi, cj◦hj) = 1 for
all i and j belonging to the same element of P. Because of (6), this is equivalent
to the existence of k characteristic shape curves, ϕ1, . . . ,ϕk, such that

∀ i = 1, . . . , N, ∃ li ∈ {1, . . . , k} : ci ∈ SIM(ϕli
). (10)

In this case the optimization problem (i) is solved by setting ϕλ(ϕ,ci) ≡ ϕli
.

It should also be noted that, thanks to property (c), if {ϕ1, . . . ,ϕk} and
{h1, . . . , hN} provide a solution to (i), then also {ϕ1 ◦ g1, . . . ,ϕk ◦ gk} and

{

h1◦
gλ(ϕ,c1), . . . , hN ◦ gλ(ϕ,cN )

}

is a solution to (i), for any {g1, . . . , gk} ⊂ W . More-

over, this solution identifies the same clusters (i.e., is associated to the same
partition P = {P1, . . . , Pk} of {1, . . . , N}).

The optimization problem (i) is not analytically solvable in its complete gen-
erality. For this reason, in [8] we proposed to simultaneously deal with (i) and
(ii) via an iterative clustering and alignment algorithm, which alternates tem-

plate identification steps and assignment and alignment steps. In the template
identification step we estimate the set of k templates associated to the k clusters
identified at the previous assignment and alignment step; in the assignment and
alignment step, we align the N curves to the set of the k templates obtained in
the previous template identification step, and we assign each of the curves to one
of the k clusters. As we shall see, the proposed clustering and alignment proce-
dure also considers the problem of non-uniqueness of the solution, by targeting
a specific solution via a normalization step.

3.1 Clustering and alignment iterative procedure

Let ϕ[q−1] = {ϕ1[q−1], . . . ,ϕk [q−1]} be the set of templates after iteration q−1, and
{c1[q−1], . . . , cN [q−1]} be the N curves aligned and clustered to ϕ[q−1]. At the qth
iteration the algorithm performs the following steps.
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Template identification step. For j = 1, . . . , k, the template of the jth
cluster, ϕj [q], is estimated using all curves assigned to cluster j at iteration q−1,
i.e. all curves ci[q−1] such that λ(ϕ[q−1], ci[q−1]) = j. Ideally, the template ϕj [q]

should be estimated as the curve ϕ ∈ C that maximizes the within-cluster total
similarity

∑

i:λ(ϕ[q−1],ci[q−1])=j

ρ(ϕ, ci[q−1]), (11)

i.e., ϕj [q] should be the functional median, or Fréchet median, associated to the
similarity ρ.

Assignment and alignment step. The set of curves {c1[q−1], . . . , cN [q−1]} is
clustered and aligned to the set of templates ϕ[q] = {ϕ1[q], . . . ,ϕk [q]}: for i =
1, . . . , N, the i-th curve ci[q−1] is aligned to ϕλ(ϕ[q],ci[q−1]) and the aligned curve

c̃i[q] = ci[q−1] ◦ hi[q] is assigned to cluster λ(ϕ[q], ci[q−1]) ≡ λ(ϕ[q], c̃i[q]).

Normalization step. After each assignment and alignment step, we also per-
form a normalization step. In detail, for j = 1, . . . , k, all the Nj [q] curves c̃i[q]

assigned to cluster j are warped along the warping function (h̄j [q])−1, where

h̄j [q] =
1

Nj [q]

∑

i:λ(ϕ[q],c̃i[q])=j

hi[q] (12)

obtaining ci[q] = c̃i[q] ◦ (h̄j [q])−1 = ci[q−1] ◦ hi[q] ◦ (h̄j [q])−1. In this way, at each
iteration, the average warping undergone by curves assigned to cluster j is the
identity transformation h(s)=s. Indeed:

1

Nj [q]

∑

i:λ(ϕ[q],ci[q])=j

(

hi[q] ◦ (h̄j [q])−1
)

(s) = s, j = 1, . . . , k. (13)

The normalization step is thus used to select, among all candidate solutions to
the optimization problem, the one that leaves the average locations of the clusters
unchanged, thus avoiding the drifting apart of clusters or the global drifting of the
overall set of curves. Note that the normalization step preserves the clustering
structure chosen in the maximization step, i.e., λ(ϕ[q], c̃i[q]) = λ(ϕ[q], ci[q]) for all
i.

The algorithm is initialized with a set of initial templates, ϕ[0] = {ϕ1[0], . . . ,

ϕk [0]} ⊂ C , and with {c1[0], . . . , cN [0]} = {c1, . . . , cN}, and stopped when, in the
assignment and alignment step, the increments of the similarity indexes are all
lower than a fixed threshold.
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4 Template identification

Whilst the assignment and alignment step and the normalization step are strai-
ghtforward, the template identification step is more troublesome, since identifica-
tion of the template ϕj [q], as the curve ϕ ∈ C that maximizes the total similarity
(11), cannot be easily dealt with. For this reason, in [8] we proposed to estimate
the template ϕj [q] as a loess, with Gaussian kernel and appropriate smoothness
parameter, of the curves assigned to cluster j at iteration q−1 (i.e. all curves
ci[q−1] such that λ(ϕ[q−1], ci[q−1]) = j). See [8] for details on the implementation.
The algorithm obtained with this specification for the template identification step
was named k-mean alignment, in analogy with the k-mean clustering algorithms
for multivariate and for functional data.

On the other hand, the fact that the template is estimated by loess of the
curves assigned to the cluster, instead of the curve that maximize the total simi-
larity (11), raises doubts about a possible distortion of the algorithm. Moreover,
estimating the template by loess of the curves assigned to the cluster might make
this step sensitive to the presence of anomalous data.

For this reason, we propose here an alternative specification of the template
identification step, that constitutes a direct approximation to the maximization
of the total similarity (11). In particular, we restrict the set over which the
maximization is carried out, limiting the search to functions of the sample. The
template ϕj [q] is thus estimated as the curve ϕ, among all curves assigned to
cluster j at iteration q−1 (i.e. all curves ci[q−1] such that λ(ϕ[q−1], ci[q−1]) = j),
that maximizes the total similarity (11)

ϕj [q] = arg max
ci[q−1]:λ(ϕ[q−1],ci[q−1])=j

∑

k:λ(ϕ[q−1],ck[q−1])=j

ρ(ci[q−1], ck [q−1]).

Note that the k curves selected as templates, in the template identification step,
shall skip the subsequent assignment and alignment step and normalization step.

The algorithm obtained with this specification for the template identification
step will be named k-medoid alignment, in analogy with the k-medoid clustering
algorithms described for instance by [22] and [23]. The same analogy suggests
that this novel specification of the template identification step is robust to the
presence of anomalous data. In particular, the comparison of the clustering
results obtained with the two alternative algorithm specifications, the k-mean
and the k-medoid version, might indicate accidental anomalous data, as we shall
see in the applications to real data described in the following sections. Moreover,
this alternative version will also give us the possibility of testing the robustness of
our alignment and clustering procedure under different algorithm specifications.
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5 An application to the analysis of three-dimensional

cerebral vascular geometries

In this section, k-mean and k-medoid alignment are used to improve upon the
exploratory statistical analyses of the AneuRisk Project1 dataset (previous anal-
yses are detailed in [16, 24, 8]). The AneuRisk Project is a joint research pro-
gram that aims at evaluating the role of vascular geometry and hemodynamics
in the pathogenesis of cerebral aneurysms. The data considered in the analysis
here presented are the three spatial coordinates (in mm) of 65 Internal Carotid
Artery (ICA) centerlines, measured on a fine grid of points along a curvilinear
abscissa (in mm), decreasing from the terminal bifurcation of the ICA towards
the heart. Estimates of these three-dimensional curves are obtained by means of
three-dimensional free-knot regression splines, as described in Sangalli et al. [25].
Details about the elicitation of discrete observations from row data can be found
in Antiga et al. [26]. Figure 1 displays the first derivatives, x′, y′ and z′, of the
estimated centerlines. We are interested in clustering the three-dimensional cen-
terlines, with the aim of identifying ICA’s with different morphological shapes.
Since the shape of the ICA influences the pathogenesis of cerebral aneurysms
through its effects on the hemodynamics, such a classification could in fact be
helpful in the determination of the risk level of a given patient.
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Figure 2: Left: in orange (blue), boxplots of similarity indexes between the orig-
inal centerlines and their mean (medoid) curve, “orig”, and boxplots of similarity
indexes between the k-mean aligned (k-medoid aligned) centerlines and their
estimated templates, for k = 1, 2, 3. Right: corresponding means of similarity
indexes.

In the medical literature (see, e.g., [27]) ICA’s are classified in Γ-shaped, Ω-

1The project involves MOX Laboratory for Modeling and Scientific Computing (Dip. di
Matematica, Politecnico di Milano), Laboratory of Biological Structure Mechanics (Dip. di
Ingegneria Strutturale, Politecnico di Milano), Istituto Mario Negri (Ranica), Ospedale Ni-
guarda Ca’ Granda (Milano), and Ospedale Maggiore Policlinico (Milano), and is supported
by Fondazione Politecnico di Milano and Siemens Medical Solutions Italia.
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Figure 3: First derivatives of 2-mean (left) and 2-medoid (right) aligned center-
lines, with superimposed first derivatives of estimated templates (black lines);
the curve color depends on cluster assignment.

shaped, and S-shaped ICA’s, according to the form of their distal part, which
may resemble the letters Γ, Ω or S, in presence of zero, one, or two siphons,
respectively. In [8], using k-mean alignment, we were able to identify a cluster
of Ω-shaped ICA’s and a cluster S-shaped ICA’s, in the AneuRisk dataset. We
want here to verify if this clustering result is confirmed by application of k-medoid
alignment, and recognize accidental anomalous data.

Figure 2, left, shows in orange the boxplots of the similarity indexes be-
tween the original centerlines and their estimated loess (indicated in the figure
as “orig”), and the boxplots of the similarity indexes between the k-mean aligned
centerlines and the associated estimated templates, for k = 1, 2, 3; the same
panel also displays in blue the boxplots of the similarity indexes between the
original centerlines and their estimated medoid, and the boxplots of the simi-
larity indexes obtained by k-medoid alignment, for k = 1, 2, 3. Figure 2, right,
displays the corresponding means of the similarity indexes, in orange for k-mean
alignment and in blue for k-medoid alignment. Note that both 1-mean alignment
and 1-medoid alignment lead to a large increase in the similarities, with respect
to the similarities of the original curves, but a further considerable gain can be
obtained by setting k=2 in the clustering and aligning procedure, both 2-mean
and 2-medoid, whereas an eventual choice of k = 3 is not justified by an addi-
tional increase in the similarities. Thus, k-medoid alignment, likewise k-mean
alignment, suggests the presence of k =2 shape characteristic curves within the
analyzed centerlines.

Figure 3 compares the first derivatives of 2-mean and 2-medoid aligned cen-
terlines (left and right, respectively). The two clusters identified by 2-medoid
alignment, similarly to the two clusters identified by 2-mean alignment, can be
described as the Ω-shaped ICA’s cluster (orange) and S-shaped ICA’s cluster
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Figure 4: Three-dimensional image of
the estimated templates found by 2-
mean alignment of ICA centerlines.
The template of the orange cluster
is a prototype of Ω-shaped ICA (one
siphon), whereas the one of the green
cluster is a prototype of S-shaped ICA
(two siphons).

Figure 5: Three-dimensional image of
the estimated templates found by 2-
medoid alignment of ICA centerlines.
The template of the orange cluster
is a prototype of Ω-shaped ICA (one
siphon in the distal part), whereas the
one of the green cluster is a prototype
of S-shaped ICA (two siphons in the
distal part).

(green). This can be better appreciated in Figures 4 and 5 that give three-
dimensional visualizations of the two estimated template curves, obtained by
2-mean and 2-medoid alignment, respectively. In both figures, in fact, the tem-
plate of the orange cluster is a prototype of Ω-shaped ICA (one siphon in the
distal part), whereas the template of the green cluster is a prototype of S-shaped
ICA (two siphons in the distal part).

Finally, Table 1 compares the cluster assignments obtained by 2-mean and
2-medoid alignment (“Ω” stands for the cluster of Ω-shaped ICA’s, and “S” for
the one of S-shaped ICA’s). This table shows that only 4 out of the 65 ICA’s are
differently clustered by the two algorithms. Two of these four data might in fact
be interpreted as anomalous data, one because of the shortness of the observed
centerline, and the other because of the morphological shape, that resembles a
Γ-shaped ICA rather than a Ω or a S-shaped one.

Table 1: Comparison between cluster assignments obtained by 2-mean and 2-
medoid alignment algorithms (“Ω” stands for the Ω-shaped cluster and “S” stands
for the S-shaped one).

2-medoid
Ω S

2-mean Ω 34 1
S 3 27
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6 An application to the analysis of growth data

In this section we apply k-mean and k-medoid alignment for the analysis of a
benchmark data set in the functional data analysis literature: the 93 growth
curves from Berkeley Growth Study (see Tuddenham and Snyder [28]). These
data have been previously considered by a number of authors (see for exam-
ple Ramsay and Li [13], Ramsay and Silverman [1], James [14], and references
therein); in particular, in this paper we will improve upon the analysis illustrated
in Sangalli et al. [8].
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Figure 6: Growth curves of 93 children from Berkeley Growth Study data (left)
and corresponding growth velocities (right).

The heights (in cm) of the 93 children in the data set are measured quar-
terly from 1 to 2 years, annually from 2 to 8 years and biannually from 8 to 18
years. The growth curves are estimated by means of monotonic cubic regres-
sion splines (see Ramsay and Silverman [1]), implemented using the R function
smooth.monotone available in the fda package [29]. Figure 6 shows the esti-
mated growth curves and their derivatives, the growth velocities. Looking at the
growth velocities, it is apparent that the children follow a similar growth course,
but that each child has a personal biological clock.

Figure 7 shows 1-mean and 2-mean aligned growth curves, the corresponding
growth velocities and warping functions; Figure 8 shows the corresponding results
obtained by k-medoid alignment. Figure 9, left, displays in orange (blue), the
boxplots of the similarity indexes between the original growth curves and their
mean (medoid) curve, indicated with “orig”, and the boxplots of the similarity
indexes between the k-mean aligned (k-medoid aligned) growth curves and their
estimated templates, for k = 1, 2, 3. The right panel of Figure 9 displays the
corresponding means of similarity indexes. From inspection of the similarity
indexes, both k-mean and k-medoid alignment suggest the presence of just one
characteristic curve, since the choice of k = 2 is not payed off by a reasonable
gain in the similarities.

Since, out of the 93 children, 39 are boys and 54 are girls, we might wonder
if the analysis points out some differences among them (notice that here we
are not performing any supervised classification of boys and girls). Figure 10
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Figure 7: Results of k-mean alignment of growth curves, for k=1; 2: aligned
growth curves (with superimposed estimated templates, in black) and corre-
sponding growth velocities (with superimposed first derivatives of estimated tem-
plates, in black), together with warping functions. The colors of aligned curves
and warping functions depend on cluster assignment.
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Figure 8: Results of k-medoid alignment of growth curves, for k=1; 2: aligned
growth curves (with superimposed estimated templates, in black) and corre-
sponding growth velocities (with superimposed first derivatives of estimated tem-
plates, in black), together with warping functions. The colors of aligned curves
and warping functions depend on cluster assignment.
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Figure 9: Left: in orange (blue), boxplots of similarity indexes between the
original growth curves and their mean (medoid) curve, “orig”, and boxplots of
similarity indexes between the k-mean aligned (k-medoid aligned) growth curves
and their estimated templates, for k = 1, 2, 3. Right: corresponding means of
similarity indexes.

is obtained from Figure 8 (top panels) displaying in blue the 1-medoid aligned
growth curves of boys, and the corresponding growth velocities and warping
functions, and in pink the ones of girls. The warping functions show a pretty neat
separation of boys and girls in the phase; this highlights that the biological clocks
of boys and girls run at different speeds, and in particular that boys start to grow
later, having warping functions with smaller intercepts, and grow slowler, having
warping functions with smaller slopes. The left panel of Figure 10 also shows that,
once the biological clocks of the children have been aligned, the height of boys
stochastically dominates the one of girls for any registered biological age. Finally,
boys seem also to have a more pronounced growth, especially during puberty, as
highlighted by their more prominent growth velocity peak. All these features
are in complete agreement with the results obtained by 1-mean alignment, and
discussed in detail in [8].
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Figure 10: Figure obtained from Figure 8 (top panels) displaying in blue the
growth curves, growth velocities and warping functions of boys and in pink the
ones of girls.
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Table 2: Left: results of 2-mean bivariate clustering of slopes and intercepts of
the warping functions obtained by 1-mean alignment. Right: results of 2-medoid
bivariate clustering of slopes and intercepts of the warping functions obtained by
1-medoid alignment. Cluster assignment vs gender.

2-mean clusters
1 2

gender F 44 10
M 1 38

2-medoid clusters
1 2

gender F 43 11
M 1 38

Table 3: A comparison between cluster assignments obtained by 2-mean and
2-medoid bivariate clustering of slopes and intercepts of the warping functions
obtained by 1-mean alignment and 1-medoid alignment of growth curves.

2-medoid
1 2

2-mean 1 44 1
2 0 48
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Figure 11: Slopes and intercepts of the warping functions resulting from 1-mean
alignment (left) and 1-medoid alignment (right) of growth curves. Blue circles
correspond to boys and pink circles to girls. Red (green) circles are girls (boys)
which in both cases have been assigned to the male (female) prevalent cluster
when the corresponding bivariate clustering procedure is applied. The black
circle is the only mismatching case between the two procedures (see Table 3).
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The grouping structure of the warping functions obtained by 1-mean and
1-medoid alignment of the growth curves, can be explored by a coherent unsu-
pervised classification of their slopes and intercepts, i.e. by 2-mean and 2-medoid
bivariate clustering respectively. The results of these unsupervised classifications
are shown in Table 2. Note that both 2-mean clustering of the warping functions
obtained by 1-mean alignment of growth curves, and 2-medoid clustering of the
warping functions obtained by 1-medoid alignment of growth curves, assign 1
boy to the female prevalent cluster, and respectively 10 and 11 girls to the male
prevalent cluster. From inspection of Table 3, which compares the cluster as-
signments of the two procedures, we conclude that this boy and the 10 girls are
exactly the same. Thus, both algorithms agree that these ten girls have biologi-
cal clocks closer to those of boys, and that the boy has a biological clock closer
to those of girls. This fact is evident in Figure 11, which displays the slopes
and intercepts of the warping functions (pink for girls and blue for boys), and
highlights in red the ones of the ten girls and in green the one of the boy. Figure
11 also displays in black the only mismatch between the two algorithms, which
has in fact a biological clock borderline between the two groups.

7 Discussion

We have considered the issue of classification of functional data and, in particular,
we have dealt with the problem of curve clustering when curves are misaligned.
We have described an alternative specification of the clustering and alignment
procedure proposed in [8]. This novel version, named k-medoid alignment al-
gorithm, approximates more directly the clustering and alignment optimization
problem, and is potentially less sensitive to the presence of anomalous data.
Moreover, this alternative version has given us the possibility of testing the ro-
bustness of our alignment and clustering procedure under different algorithm
specifications.
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