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Abstract

In the context of structural health monitoring (SHM), the selection and extraction of damage-sensitive
features from raw sensor recordings represent a critical step towards solving the inverse problem underlying
the structural health identification. This work introduces a new way to enhance stochastic approaches
to SHM through the use of deep neural networks. A learnable feature extractor and a feature-oriented
surrogate model are synergistically exploited to evaluate a likelihood function within a Markov chain Monte
Carlo sampling algorithm. The feature extractor undergoes a supervised pairwise training to map sensor
recordings onto a low-dimensional metric space, which encapsulates the sensitivity to structural health
parameters. The surrogate model maps the structural health parameters onto their feature description.
The procedure enables the updating of beliefs about structural health parameters, effectively replacing the
need for a computationally expensive numerical (finite element) model. A preliminary offline phase involves
the generation of a labeled dataset to train both the feature extractor and the surrogate model. Within a
simulation-based SHM framework, training vibration responses are cost-effectively generated by means of
a multi-fidelity surrogate modeling strategy to approximate sensor recordings under varying damage and
operational conditions. The multi-fidelity surrogate exploits model order reduction and artificial neural
networks to speed up the data generation phase while ensuring the damage-sensitivity of the approximated
signals. The proposed strategy is assessed through three synthetic case studies, demonstrating remarkable
results in terms of accuracy of the estimated quantities and computational efficiency.

1. Introduction

The safety of civil structural systems is a key challenge of our society. This is daily threatened by material
deterioration, cyclic and extraordinary loading conditions, and more and more by effects triggered by the
climate change, such as anomalous heat waves and destructive storms [1]. Since the lifecycle (economic, social
and safety) costs entailed by such structural systems may be extremely high, enabling a condition-based
maintenance approach in place of time-based ones is nowadays critical [2, 3]. To this aim, non-destructive
tests and in situ inspections are not suitable to implement a continuous and automated global monitoring; on
the other hand, by assimilating vibration response data acquired with permanently installed data collecting
systems [4, 5], vibration-based structural health monitoring (SHM) techniques allow for damage identification
and evolution tracking.

Data-driven approaches to SHM [6, 7, 8] rely on a pattern recognition paradigm [9] involving the following
steps: (i) operational evaluation; (ii) data acquisition; (iii) feature selection and extraction; (iv) statistical
modeling to unveil the relationship between the selected features and sought damage patterns [10, 11]. In this
process, the selection of synthetic and informative features is the most critical step, as it requires problem-
specific knowledge subject to the available expertise. To this aim, deep learning (DL) represents a promising
solution to automatize the selection and extraction of features optimized for the task at hand.

Within a different strategy, Bayesian model-based approaches to SHM [12, 13, 14, 15] assess damage from
a parameter estimation perspective, through a model updating strategy. Such a probabilistic framework has
the advantage of naturally dealing with the ill-posedness of the SHM problem, and allows to account for
and quantify uncertainty due to, e.g., measurement noise, modeling assumptions, and environmental and
operational variability.



In this paper, we propose a hybrid approach to SHM leveraging on the strengths of both data-driven and
model-based approaches. Learnable features, optimized for the structure to be monitored, are automatically
selected and extracted by a DL-based feature extractor. The feature extractor maps the input vibration
recordings onto their feature representation in a low-dimensional space, and relies on an autoencoder archi-
tecture useful to perform a dimensionality reduction of the input data. During training, the autoencoder
is equipped with a Siamese appendix [16] of the encoder, optimized through a pairwise contrastive learning
strategy [17, 18]. Such a deep metric learning [19, 20] strategy enables learning a distance function that
conforms to a task-specific definition of similarity, so that the neighbors of a data point are mapped closer
than non-neighbors in the learned metric space [21]. The resulting mapping encodes the sensitivity to the
sought parameters according to the chosen metric, thereby enabling a manifold to suitably describe the para-
metric space underlying the processed measurements. The extracted features are exploited within a Markov
chain Monte Carlo (MCMC) algorithm [22, 23, 24], to address the estimation of parameters describing the
variability of the structural system. The likelihood function underlying the MCMC sampler is evaluated
by means of a feature-oriented surrogate model, to map the parameters that need to be updated onto the
corresponding feature representation.

The proposed strategy takes advantage of a preliminary offline learning phase. The training of the
feature extractor and the feature-oriented surrogate model is carried out in a supervised fashion. Labeled
data pertaining to specific damage conditions are generated in an inexpensive way through a multi-fidelity
(MF) surrogate modeling strategy. In this work, such a MF surrogate modeling is chosen as an effective
strategy to reduce the computational cost, while ensuring the accuracy of the approximated signals in terms
of damage-sensitivity. The vibration response data required to fit the MF surrogate are generated by physics-
based numerical simulations, so that the effect of damage on the structural response can be systematically
reproduced.

A graphical abstraction of the proposed framework is reported in Fig. 1. Vibration responses of different
fidelity levels are simulated offline using physics-based full/reduced-order numerical models, similarly to [25,
26]. These data are then exploited to train a MF surrogate model, following the strategy proposed in [27].
Once trained, the MF surrogate model is employed to provide an arbitrarily large training dataset. This
dataset is used to train the deep-metric-learning-based feature extractor, following a strategy similar to
that proposed in [6], and the surrogate model, employed to approximate the functional link between the
parameters to be updated and the low-dimensional feature space. During the online monitoring phase, the
trained feature extractor and the surrogate model are eventually exploited by an MCMC sampling algorithm
to update the prior belief about the structural state.

The elements of novelty that characterize this work are the following. First, the assimilation of data
related to vibration responses is carried out by exploiting DL models, which allow the automatic selection
and extraction of optimized features from raw vibration recordings. Second, the employed low-dimensional
feature space benefits from a geometrical structure, which encodes the sensitivity to the parameters to
be updated. The resulting MCMC framework enjoys: a competitive computational cost due to the low
dimensionality of the involved features; fast convergence due to the geometrical structure characterizing the
feature space; accurate estimates due to the informativeness of the extracted features.

The remainder of the paper is organized as follows. In Sec. 2, we review the MF surrogate modeling
strategy that we employ for dataset population purposes. In Sec. 3, we describe the proposed parameter
estimation framework. In Sec. 4, the computational procedure is assessed on three test cases, respectively
related to a cantilever beam, a portal frame, and a railway bridge. Conclusions and future developments are
finally drawn in Sec. 5.

2. Population of training datasets

In this section, we describe how the population of training datasets is performed with reference to
the simulation-based paradigm of SHM. The composition of the handled vibration responses is specified
in Sec. 2.1. The numerical models underlying the generation of labeled data pertaining to specific damage
conditions are described in Sec. 2.2. The MF surrogate modeling strategy employed to populate large training
datasets is reviewed in Sec. 2.3.
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Figure 1. Graphical abstraction of the proposed methodology.

2.1. Data specification

The monitoring of structural systems relies on the assimilation of vibration recordings shaped as multi-
variate time series UEXP(θ) = [uEXP

1 (θ), . . . ,uEXP
Nu

(θ)] ∈ RL×Nu , consisting of Nu series, each one consisting
of L measurements equally spaced in time. For instance, measurements can be provided as accelerations
or displacements at structural nodes. The vector θ ∈ RNpar comprises Npar parameters, representing the
variability of the monitored system in terms of structural health and, possibly, operational conditions, for
which we seek to update the relative belief. Each recording refers to a time interval (0, T ), within which
measurements are recorded with a sampling rate fs.

For the problem setting we consider herewith, the time interval (0, T ) is assumed short enough for the
operational, environmental, and damage conditions to be considered time-invariant, yet long enough to not
compromise the identification of the structural behavior.

2.2. Low/high fidelity physics-based models

The labeled dataset required to train the feature extractor and the feature-oriented surrogate model is
populated by exploiting the MF surrogate modeling strategy proposed in [27]. The resulting surrogate model
relies on a composition of deep neural network (DNN) models and is therefore termed MF-DNN. The MF
surrogate model is trained on synthetic data, generated by means of physics-based models. In this section,
we describe the models employed to systematically reproduce the effect of damage on the structural response,
while the MF-DNN surrogate model is reviewed in Sec. 2.3.

The chosen physics-based numerical models are: a low-fidelity (LF) reduced-order model (ROM), obtained
by relying on a proper orthogonal decomposition (POD)-Galerkin reduced basis method for parametrized
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finite element models [28, 29, 25, 26]; and a high-fidelity (HF) finite element model. The two models are
employed to simulate the structural responses under varying operational conditions, respectively in the
absence or in the presence of a structural damage. In particular, LF data are generated by always referring
to a baseline condition, while HF data have to account for potential degradation processes. Thanks to
this modeling choice, it is never necessary to update the LF component, and whenever a deterioration of
the structural health is detected, the MF surrogate can be updated by adjusting only its HF component.
Without loss of generality, in the following we will refer to the initial monitoring phase of an undamaged
reference condition, see also [4].

The HF model describes the dynamic response of the monitored structure to the applied loadings, under
the assumption of a linearized kinematics. By modeling the structure as a linear-elastic continuum, and by
discretizing it in space through finite elements, the HF model consists of the following semi-discretized form: MHFd̈HF(t) + CHF(xHF)ḋHF(t) + KHF(xHF)dHF(t) = fHF(t,xHF) , t ∈ (0, T )

dHF(0) = dHF
0

ḋHF(0) = ḋHF
0 ,

(1)

which is referred to as the HF full-order model (FOM). In problem (1): t ∈ (0, T ) denotes time; dHF(t),
ḋHF(t), d̈HF(t) ∈ RNFE are the vectors of nodal displacements, velocities and accelerations, respectively; NFE

is the number of degrees of freedom (dofs); MHF ∈ RNFE×NFE is the mass matrix; CHF(xHF) ∈ RNFE×NFE

is the damping matrix, assembled according to the Rayleigh’s model; KHF(xHF) ∈ RNFE×NFE is the stiffness

matrix; fHF(t,xHF) ∈ RNFE is the vector of nodal forces induced by the external loadings; xHF ∈ RN
HF
par is a

vector ofNHF
par input parameters ruling the operational, damage and (possibly) environmental conditions, such

that θ ⊆ xHF; dHF
0 and ḋHF

0 are the initial conditions at t = 0, respectively in terms of nodal displacements
and velocities. The solution of problem (1) is advanced in time using an implicit Newmark integration
scheme (constant average acceleration method).

With reference to civil structures, we focus on the early detection of damage patterns characterized by
a small evolution rate, whose prompt identification can reduce lifecycle costs and increase the safety and
availability of the structure. In this context, structural damage is often modeled as a localized reduction of
the material stiffness [30, 31, 32], that is here obtained by means of a suitable parametrization of the stiffness
matrix. In practical terms, we parametrize a damage condition through its position y ∈ R3 and magnitude
δ ∈ R, both included in the parameter vector xHF.

The POD-based LF model approximates the solution to problem (1) through dLF(t,xLF) ≈Wr(t,xLF),
where W = [w1, . . . ,wNRB

] ∈ RNFE×NRB is a basis matrix featuring NRB � NFE POD basis functions as
columns, and r(t,xLF) ∈ RNRB is the vector of unknown POD coefficients. The approximation is provided for

a given vector of LF parameters xLF ∈ RN
LF
par , collecting NLF

par parameters that rule the operational conditions

undergone by the structure, with NLF
par < NHF

par . By enforcing the orthogonality between the residual and the
subspace spanned by the firstNRB POD modes through a Galerkin projection, the followingNRB-dimensional
semi-discretized form is obtained:

Mr r̈(t) + Cr ṙ(t) + Krr(t) = fr(t,x
LF) , t ∈ (0, T )

r(0) = W>dLF
0

ṙ(0) = W>ḋLF
0 .

(2)

The solution of this low-dimensional dynamical system is advanced in time using the same strategy employed
for the HF model, and then projected onto the original LF-FOM space as dLF(t,xLF) ≈Wr(t,xLF). Here,
the reduced-order matrices Mr, Cr, and Kr, and vector fr play the same role of their HF counterparts, yet
with dimension NRB ×NRB instead of NFE ×NFE, and read:

Mr ≡W>MHFW , Cr ≡W>CHFW ,
Kr ≡W>KLFW , fr(t,x

LF) ≡W>fHF(t,xLF) .
(3)

The matrix W is obtained by exploiting the so-called method of snapshots as follows [33, 34, 35]. First, a
LF-FOM, resembling that defined by problem (1) but not accounting for the presence of damage, is employed
to assemble a snapshot matrix S = [dLF

1 , . . . ,dLF
NS

] ∈ RNFE×NS from NS solution snapshots, computed by

integrating in time the LF-FOM for different values of parameters xLF. The computation of an optimal
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reduced basis is then carried out by factorizing S through a singular value decomposition. We use a standard
energy-based criterion to set the order NRB of the approximation; for further details, see [25, 26, 27, 6].

To populate the LF and HF datasets, respectively denoted as DLF and DHF, the parametric spaces of
vectors xLF and xHF are taken as uniformly distributed, and then sampled via the latin hypercube rule.
Although this is not a restrictive choice, the number of samples is equal to the number ILF and IHF, with
ILF > IHF, of instances collected in DLF and DHF, respectively, as:

DLF = {(xLF
i ,ULF

i )}ILF
i=1 , DHF = {(xHF

j ,UHF
j )}IHF

j=1 , (4)

where the LF and HF vibration recordings ULF
i (xLF

i ) = [uLF
1 (xLF), . . . ,uLF

Nu
(xLF)]i ∈ RL×Nu and UHF

j (xHF
j ) =

[uHF
1 (xHF), . . . ,uHF

Nu
(xHF)]j ∈ RL×Nu , are labeled by the corresponding i-th sampling of xLF and j-th sam-

pling of xHF, respectively, and are obtained as detailed in the following. By dropping indices i and j for
ease of notation and with reference to displacement recordings, nodal values in (0, T ) are first collected
as VLF = [Wr1, . . . ,WrL] ∈ RNFE×L and VHF = [dHF

1 , . . . ,dHF
L ] ∈ RNFE×L, by solving problem (2) and

problem (1), respectively. The relevant vibration recordings ULF and UHF are then obtained as:

ULF = (TVLF)> , UHF = (TVHF)> , (5)

where T ∈ BNu×NFE is a Boolean matrix whose (n,m)-th entry is equal to 1 only if the n-th sensor output
coincides with the m-th dof. For the problem setting we consider, the sampling frequency fs, and the number
Nu and location of the monitored dofs are supposed to be the same for both fidelity levels. However, there
are no restrictions in this regard, and LF and HF data with different dimensions can be equally considered.
Moreover, we note that the matrix product TW ∈ RNu×NRB can be computed, once and for all, to extract
ULF for any given set of LF input parameters xLF.

2.3. Multi-fidelity surrogate modeling for structural health monitoring

We review now the MF-DNN surrogate modeling strategy proposed in [27], which is here employed to
generate data pertaining to specific damage conditions in an inexpensive way. The generated data will serve
to carry out the foreseen training of the feature extractor and of the feature-oriented surrogate. The employed
surrogate modeling strategy falls into the wider framework of MF methods, see for instance [36, 37, 38]. These
methods are characterized by the use of multiple models with varying accuracy and computational cost. By
blending LF and HF models, MF methods allow for improved approximation accuracy compared to the LF
solution, while carrying a lower computational burden than the HF solver. Indeed, LF samples often supply
useful information on the major trends of the problem, allowing the MF setting to outperform single-fidelity
methods in terms of prediction accuracy and computational efficiency. In addition, MF surrogate models
based on DNNs enjoy several appealing features: they are suitable for high-dimensional problems and benefit
from large LF training datasets, provide real-time predictions, can deal with linear and nonlinear correlations
in an adaptive fashion without requiring prior information, and can handle the approximation of strongly
discontinuous trajectories.

Our MF-DNN surrogate model is devised to map damage and operational parameters onto sensor record-
ings. It leverages on an LF part and an HF part, sequentially trained, and respectively denoted by NNLF

and NNHF. The resulting surrogate model reads as:

NNMF(xHF,xLF) = NNHF(xHF) ◦NNLF(xLF) , (6)

where ◦ stands for function composition, see Fig. 2.

xLF NNLF ÛLFÛLF

xHF

NNHF ÛHF

Figure 2. Scheme of the MF-DNN surrogate model: red nodes denote the input/output quantities, while blue nodes refer to
the learnable components of the surrogate model; hat variables denote quantities obtained from neural network approximations.
Figure adapted from [27].
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NNLF is set as a fully-connected DL model, exploited to approximate the LF vibration recordings for
any given set of LF input parameters xLF. In particular, NNLF provides an approximation to a set of POD
coefficients encoding ULF, allowing the number of trainable parameters of NNLF to be largely reduced.

NNHF is a DNN built upon the long short-term memory (LSTM) model, useful to exploit the time
correlation between the two fidelity levels. Indeed, an LSTM model for NNHF can exploit the temporal
structure of the LF signals ÛLF provided through NNLF. At each time step, NNHF takes the HF input
parameters xHF, the current time instant t, and the corresponding LF approximation ÛLF

t , to enrich the

latter with the effects of damage and provide the HF approximation ÛHF(t).
The main steps involved in our MF-DNN surrogate modeling strategy are outlined in Fig. 3 and consist

of: the definition of a parametric LF-FOM; the construction of a parametric LF-ROM by means of POD; the
population of DLF with LF vibration recordings at sensor locations via LF-ROM simulations; the training
and validation of the LF component NNLF, employed to approximate ULF for any given xLF; the testing
of the generalization capabilities of NNLF on LF-FOM data; the definition of a parametric HF structural
model accounting for the effects of damage; the population of DHF via HF-FOM simulations; the training
and validation of the HF component NNHF, employed to enrich the ÛLF approximation with the effects of
damage for any given xHF; the testing of the generalization capabilities of NNMF. For the interested reader,
the detailed steps of our MF-DNN surrogate modeling strategy are reported in [27].

Parametrize
operational and

damage conditions

Build
LF-FOM

Derive
LF-ROM

LF testing data

Generate LF
dataset DLF

Train NNLF

Validate NNLF

Test NNLF

Build
HF-FOM

Generate HF
dataset DHF

HF testing data

Train NNHF

Validate NNHF

Test NNHF

1st

2nd

Figure 3. Flowchart of the MF-DNN surrogate modeling strategy. Figure adapted from [27].

The key feature of NNMF is that the effect of damage on the structural response is reproduced with the HF
model only, which is considered to be the most accurate description enabling to account for unexperienced
damage scenarios. The NNMF training is carried out offline once and for all, and is characterized by a limited
number of evaluations of the HF finite element solver. At the same time, the computational time required
to evaluate NNMF for new input parameters is negligible. This latter aspect enables to greatly speed up the
generation of a large number of training instances, compared to what would be required by relying solely on
the HF finite element solver. Finally, it is worth noting that the MF-DNN surrogate modeling paradigm can
be easily adapted to application domains other than SHM, even in the case of a different number of fidelity
levels, and potentially extended to handle full-field approximation or feature-based data.

The trained MF-DNN surrogate model is eventually exploited to populate a large labeled dataset Dtrain,
according to:

Dtrain = {(xHF
k , ÛHF

k = NNMF(xHF
k ,xLF

k ))}Itrain

k=1 , (7)

where Itrain is the number of instances collected in Dtrain. These instances are provided through NNMF

for varying input parameters xHF (with xLF being a subset of them) sampled via the latin hypercube
rule. In order to mimic measurement noise, each vibration recording in Dtrain is then corrupted by adding
an independent, identically distributed Gaussian noise, whose statistical properties depend on the target
accuracy of the sensors.

3. Deep learning-enhanced Bayesian model updating

In this section, we describe the proposed methodology to enhance an MCMC algorithm for model updating
purposes through learnable mappings. The key components are a learnable feature extractor, which extracts
informative features from the sensed structural response, and a feature-oriented surrogate model, which
maps the θ parameters to be updated onto the low-dimensional feature space. Both the feature extractor
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and the feature-oriented surrogate model rely on DL models. These models are trained by exploiting the
Dtrain dataset, populated through the MF-DNN surrogate model described above. The architectures of the
two models and the technical aspects related to their training and evaluation are discussed in Sec. 3.1. In
Sec. 3.2, we explain how the feature extractor and the feature-oriented surrogate model are employed to
sample the posterior distribution of θ conditioned on observational data.

3.1. Feature extractor and feature-oriented surrogate: models specification and training

In what follows, we describe the models and the relevant training process underlying the feature extractor
and the feature-oriented surrogate. Before training, the synthetic data generated through the MF-DNN
surrogate model and collected in Dtrain are preprocessed to be transformed into images as described below.
We remark that this is not a restrictive choice; indeed, the proposed methodology is general and can be
easily adapted to deal with data of different nature.

The recent developments in computer vision suggest the possibility of transforming time series onto
images for SHM purposes, see for instance [39, 40, 41]. Imaging time series is reported to help highlighting
local patterns that might otherwise be spread over or laying outside the time domain. In particular, the
Markov transition field (MTF) technique [42] is here employed to preprocess the multivariate time histories
collected in Dtrain. The MTF technique is chosen over other conversion methods, such as the Gramian
angular fields [42], the recurrence plots [43] and the grey-scale encoding [44], as it has been reported to
offer better performance for SHM purposes [40, 41]. However, the MTF is a signal processing algorithm
not employed in the practice as frequently as those based on spectral analysis, such as the spectrogram or
scalogram representations. The MTF technique is reviewed in Appendix A.

Each instance ÛHF
k , with k = 1, . . . , Itrain, is transformed into a grey-scale mosaic ℐk ∈ Rhℐ×wℐ , with

hℐ and wℐ respectively being the height and the width of the mosaic. Each mosaic is composed of the
juxtaposition of Nu MTF representations, or tesserae, obtained via MTF encoding of the Nu time series
collected in ÛHF

k . Accordingly, Dtrain is reassembled as:

Dℐ
train = {(xHF

k ,ℐk)}Itrain

k=1 . (8)

The feature extractor and the feature-oriented surrogate model are learned through a sequential training
process involving two learning steps. (see Fig. 4). A first learning step involves training the feature extractor
to map structural response data onto their feature representation in a low-dimensional space. A second
learning step involves training the surrogate model to map the parametric space that needs be updated
onto the low-dimensional feature space. Once trained, the two components are exploited within an MCMC
algorithm to sample the posterior distribution of θ conditioned on observational data, as detailed next.

The feature extractor is built upon an autoencoder equipped with a Siamese appendix [16] of the encoder
branch (refer to “Training 1” in Fig. 4). This model enhances the dimensionality reduction capabilities
provided by the unsupervised training of an autoencoder, by enabling a distance function for the relative
latent space through pairwise contrastive learning [18]. Within the resulting latent space, features extracted
from similar data points are pushed to be as close as possible, while those provided for dissimilar data
points are kept away. The concept of similarity refers to a task-specific distance measure, in terms of the θ
parameters describing the variability of the monitored system.

The learnable components involved in the training of the feature extractor are the encoder NNENC and
decoder NNDEC branches of an autoencoder. NNENC provides the feature representation h ∈ RDh of the
input mosaic ℐ in a low-dimensional space of size Dh, while NNDEC takes h and provides the reconstructed
mosaic ℐ̂ , as follows:

h(ℐ ) = NNENC(ℐ (xHF)) , (9)

ℐ̂ (h) = NNDEC(h(ℐ )) . (10)

The key component that links NNENC and NNDEC is the bottleneck layer characterized by the low-dimensional
feature size Dh. Dh is much smaller than the dimension of the input and output layers of the autoencoder,
thus forcing the data through a compressed representation while attempting to recreate the input as closely
as possible at the output. The unsupervised training of an autoencoder is a well-known procedure in the
literature, see for instance [45]. On the other hand, the Siamese appendix of the encoder branch affects the
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Figure 4. Learnable feature extractor and feature-oriented surrogate: flowchart of the sequential training process. Red nodes
refer to the input/output quantities, while blue nodes denote the relevant computational blocks. NNENC is the feature extractor,

NNDEC is the decoder branch, and NNSUR is the feature-oriented surrogate model. ℐ (xHF) denotes an input mosaic, ℐ̂ (h)
denotes a reconstructed mosaic, and θ is the vector of parameters for which we seek to update the relative belief. h(ℐ ) is the

low-dimensional feature representation of ℐ (xHF) provided by NNENC, and ĥ(θ) is the corresponding approximation provided
by NNSUR.

training process through a contrastive loss function linking two twins NNENC. Data points are thus processed
in pairs, yielding two outputs h1 = NNENC(ℐ1(xHF

1 )) and h2 = NNENC(ℐ2(xHF
2 )). The required data pairing

process is carried out as follows. First, a threshold distance Eθ is fixed to characterize the similarity for the
parametric space of θ. The mosaics dataset Dℐ

train is then augmented by assembling ζ+ positive pairs for
each instance, characterized by ‖θ1 − θ2‖2 ≤ Eθ, and ζ− negative pairs, characterized by ‖θ1 − θ2‖2 > Eθ,
according to:

Dℐ
P = {(xHF

1 ,ℐ1,x
HF
2 ,ℐ2)ι}

IP
train
ι=1 , (11)

with IP
train = Itrain(ζ+ + ζ−) being the total number of pairs.

The set of weights and biases parametrizing the autoencoder is denoted as ΩAE. During “Training 1”,
this is optimized by minimizing the following loss function over Dℐ

P :

LAE(ΩAE,D
ℐ
P ) =

1

IP
train

IP
train∑
ι=1

{
‖ℐ1(xHF

1 )−NNDEC(NNENC(ℐ1(xHF
1 )))‖22+

[1− γ
2

(Eh)2 +
γ

2
[max (0, ψ − Eh)]

2
]}

ι

+ λAE‖ΩAE‖22 ,

(12)

where: the first term is the reconstruction loss function, typically employed to train autoencoders; the second
term is the pairwise contrastive loss function, useful to induce a geometrical structure in the feature space;
and the last term is an L2 regularization of rate λAE applied over the model parameters ΩAE. In Eq. (12):
γ = {0, 1}, if θ1 and θ2 identify either a positive or a negative pair, respectively; ψ > 0 is a margin beyond
which negative pairs do not contribute to LAE; Eh = ‖h1 − h2‖2 is the Euclidean distance between any pair
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of mappings h1 = NNENC(ℐ1(xHF
1 )) and h2 = NNENC(ℐ2(xHF

2 )). Minimizing the contrastive loss function is
equivalent to learning a distance function Eh that approximates, at least semantically, the Euclidean distance
‖θ1 − θ2‖2 between the target labels θ1 and θ2 of the processed pair of data points. The labels information
is thus exploited to guide the dimensionality reduction, so that the sensitivity to damage and (possibly)
operational conditions described via θ is encoded in the low-dimensional feature space.

After the first learning step, NNDEC, the Siamese appendix, and Dℐ
train are discarded, and only NNENC

and Dℐ
train are retained to train the feature-oriented surrogate NNSUR (refer to “Training 2” in Fig. 4).

NNSUR is set as a fully-connected DL model, and it approximates the functional link between the parametric
space of θ and the low-dimensional feature space described by NNENC as follows:

ĥ = NNSUR(θ) , (13)

where ĥ denotes the NNSUR approximation to the low-dimensional features provided through NNENC.
The dataset dedicated to the training of NNSUR is derived from the mosaics dataset Dℐ

train in Eq. (8) by
mapping the mosaics in Dℐ

train onto the feature space, once and for all, to provide:

Dh
train = {(θk,hk)}Itrain

k=1 , (14)

collecting the feature representations h of the training data and the relative labels, in terms of the sought
parameters θ. The set of weights and biases ΩSUR parametrizing NNSUR is then learned through the
minimization of the following loss function:

LSUR(ΩSUR,D
h
train) =

1

Itrain

Itrain∑
k=1

‖hk(ℐk)−NNSUR(θk)‖22 + λSUR‖ΩSUR‖22 . (15)

Eq. (15) provides a measure of the distance between the target low-dimensional features vector h(ℐ ), ob-

tained through the feature extractor NNENC, and its approximated counterpart ĥ = NNSUR(θ), provided
through the feature-oriented surrogate model.

The implementation details of the DL models are reported in Appendix B. It is worth noting that
the modeling choices for the feature extractor and the feature-oriented surrogate are suited to the specific
characteristics of the observational data considered in this paper. However, the overall framework presented
is rather general, admitting different modeling choices, tailored to the data and the characteristics of the
problem at hand. In this specific case, the vibration data of interest are encoded into images via MTF
preprocessing to highlight structures and patterns in the data. While we thus show how to extract informative
features in a low-dimensional metric space in the case of image data, data of different nature can be addressed
in a similar way through an appropriate choice of the architectures of the DL models. For instance, one-
dimensional convolutional layers could be exploited in place of two-dimensional ones to deal with time series
data. Moreover, there may be cases where the decoding branch NNDEC should be discarded. The reason why
NNDEC should be kept is that the reconstruction term in Eq. (12) regularizes the overall learning process.
As a by-product, the trained NNDEC and NNSUR models can also serve as a surrogate model of the type
NNDEC(NNSUR(θ)), following an approach similar to [46], to approximate the observational data for any
given parameters vector θ. In our case, the contrastive term in Eq. (12) is minimized by exploiting the
label information that completely describe the parametrization underlying the physics-based modeling of
the problem. However, when the number NHF

par of parameters in xHF becomes large, the paring process
underlying the minimization of the contrastive loss function becomes computationally demanding. Although
this issue does not show up in this work, it would be possible to address it by including in θ only a subset
of xHF, limited to the parameters for which we seek to update the relative belief. In this eventuality, the
decoding branch NNDEC should be discarded to avoid a latent space showing dependence on parameters not
included in θ, which could not be captured by NNSUR. The same consideration also applies to systems subject
to unknown stochastic inputs. In this eventuality, the dependency of the features vector h on parameters
describing stochastic inputs can not be uniquely defined and could not be modeled correctly by NNSUR. This
is, for instance, the case of seismic or wind loads acting on civil structures.

3.2. Feature-based MCMC sampling algorithm

The feature extractor NNENC and the feature-oriented surrogate model NNSUR, trained as described in
the previous section, are exploited in the online monitoring phase to enhance an MCMC sampler for model
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updating purposes. The MCMC algorithm is here employed to update the prior probability density function
(pdf) p(θ) of the parameters vector θ, to provide a posterior pdf p(θ|UEXP

1,...,Nobs
), conditioned on a batch of

gathered sensor recordings UEXP
1,...,Nobs

. Here, Nobs represents the batch size of processed observations, each
consisting of Nu series of L measurements over time.

By exploiting the Metropolis-Hastings sampler [47], the updating procedure is carried out by iteratively
generating a chain of samples {θ1, . . . ,θLchain

} from a proposal distribution, and then deciding whether to
accept or reject each sample, on the basis of the likelihood of the current θ sample to represent UEXP

1,...,Nobs
.

To this aim, NNENC and NNSUR are synergistically exploited to provide informative features hEXP
1,...,Nobs

via
assimilation of the observational data, and to surrogate the functional link between the parametric space to
be updated and the feature space, respectively, as sketched in Fig. 5. The resulting parameter estimation
framework enjoys a greatly reduced computational cost due to the low dimensionality of the involved features,
an improved convergence rate due to the geometrical structure characterizing the feature space, and more
accurate estimates due to the informativeness of the extracted features.

Prior θĥ(θ)NNSURTrial θSampler

UEXP
1,...,Nobs

NNENC hEXP
1,...,Nobs

Likelihood
function

Acceptance
rule

Figure 5. Scheme of the MCMC procedure to update the probability distribution of the structural state. Red nodes refer to
the input/output quantities, while blue nodes denote the relevant computational blocks.

According to the Bayes’ rule, the posterior pdf p(θ|UEXP
1,...,Nobs

) is given as:

p(θ|UEXP
1,...,Nobs

) =
p(UEXP

1,...,Nobs
|θ)p(θ)∫

p(UEXP
1,...,Nobs

|θ)p(θ) dθ
, (16)

where: p(UEXP
1,...,Nobs

|θ) is the likelihood function that provides the mechanism informing the posterior about
the observations; the denominator is a normalizing factor, that is typically analytically intractable. To
address this challenge, p(θ|UEXP

1,...,Nobs
) is approximated through an MCMC sampling algorithm. By assuming

an additive Gaussian noise to represent the uncertainty due to modeling inaccuracies and measurement noise,
the likelihood function is assumed to be Gaussian too and to read:

p(UEXP
1,...,Nobs

|θ) =

Nobs∏
n=1

c−1exp

(
− (hEXP

n − ĥ(θ))>(hEXP
n − ĥ(θ))

2σ2

)
. (17)

In Eq. (17), the term c =
√

2πσ2 is a normalization constant, with σ ∈ R being the root mean square of the
prediction error at each MCMC iteration, which serves as the standard deviation of the uncertainty under
the zero-mean assumption. Due to its dependence on θ, σ must be computed at each MCMC iteration;
however, this does not affect the computational cost of the methodology due to the low dimensionality of
the feature vectors.

The proposal pdf is taken as Gaussian. The covariance matrix is initialized as diagonal, with entries small
enough so that the sampler gets moving, and then tuned as the sampling evolves by exploiting the adaptive
Metropolis algorithm [48]. It is worth noting that the proposed procedure is a general one, admitting different
choices for the sampling algorithm. The procedure can be similarly exploited with more advanced samplers,
such as the transitional MCMC or Hybrid Monte Carlo algorithms and their recently proposed extensions,
see for instance [49, 50]. Moreover, the entire methodology can be easily adapted to solve inverse problems
in application domains other than SHM, even when dealing with data other than vibration recordings.

In order to check the quality of the estimates and stop the MCMC simulation, the estimated potential
scale reduction (EPSR) metric [51] is employed to monitor the converge to a steady distribution. Since
it is not possible to monitor the convergence of an MCMC simulation from a single chain, the EPSR test
exploits multiple chains from parallel runs. Only when all the chains converge to the (same) stationary
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distribution, the convergence criterion is considered satisfied. The EPSR metric ℰ̂ tests the convergence of
a multivariate chain by measuring the ratio between the estimate of the between-chain variance of samples
and the average within-chain variance of samples. In this work, each MCMC simulation is carried out by
randomly initializing five Markov chains, that are simultaneously evolved to meet the EPSR convergence
criterion set to ℰ̂ ≤ 1.01, ℰ̂ = 1.1 being a safe tolerance value [51]. The first half of each chain is then
removed to get rid of the initialization effect, and 3 out of 4 samples are discarded to reduce the within chain
autocorrelation of samples.

4. Numerical results

This section aims at demonstrating the capability and performance of the proposed strategy in cases of
simulated monitoring of three structural systems of increasing structural complexity: an L-shaped cantilever
beam, a portal frame and a railway bridge.

The FOM and ROM have been solved in the Matlab environment, using the redbKIT library [52]. All
computations have been carried out on a PC featuring an AMD RyzenTM 9 5950X CPU @ 3.4 GHz and 128
GB RAM. The DL models have been implemented through the Tensorflow-based Keras API [53], and
trained on a single Nvidia GeForce RTXTM 3080 GPU card.

4.1. L-shaped cantilever beam

The first test case involves the L-shaped cantilever beam depicted in Fig. 6. The structure is made
of two arms, each one having a length of 4 m, a width of 0.3 m and a height of 0.4 m. The assumed
mechanical properties are those of concrete: Young’s modulus E = 30 GPa, Poisson’s ratio ν = 0.2, density
ρ = 2500 kg/m

3
. The structure is excited by a distributed vertical load q(t), acting on an area of (0.3×0.3) m2

close to its tip. The load varies in time according to q(t) = Q sin (2πft), with Q ∈ [1, 5] kPa and f ∈
[10, 60] Hz respectively being the load amplitude and frequency. Following the setup described in Sec. 2, Q
and f have a uniform distribution within their reported ranges.

Figure 6. L-shaped cantilever beam: details of synthetic recordings related to displacements u1(t), . . . , u8(t), loading condition
and damageable region Ωy.

Synthetic displacement time histories are gathered in relation to Nu = 8 dofs along the bottom surface
of the structure, to mimic a monitoring system arranged as depicted in Fig. 6. Each recording is provided
for a time interval (0, T = 1 s) with an acquisition frequency fs = 200 Hz. Recordings are corrupted with
an additive Gaussian noise yielding a signal-to-noise ratio of 100.

The HF numerical model is obtained with a finite element discretization using linear tetrahedral elements
and resulting in NFE = 4659 dofs. The structural dissipation is modeled by means of a Rayleigh’s damping
matrix, assembled to account for a 5% damping ratio on the first four structural modes. Damage is simulated
by reducing the material stiffness within a subdomain Ωy of size 0.3 × 0.3 × 0.4 m3. The position of Ωy is
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parametrized by the coordinates of its center of mass y = (xΩ, yΩ)>, with either xΩ or yΩ varying in the
range [0.15, 3.85] m. The magnitude of the stiffness reduction is set to δ = 25% and held constant within
the considered time interval. Accordingly, the vector of HF input parameters is xHF = (Q, f, xΩ, yΩ)>.

The basis matrix W ruling the LF-ROM is obtained from a snapshot matrix S, assembled through 200
evaluations of the LF-FOM, at varying values of the LF parameters xLF = (Q, f)> sampled via the latin
hypercube rule. By prescribing a tolerance ε = 10−3 on the fraction of energy content to be disregarded in
the approximation, the order of the LF-ROM approximation turns out to be NRB = 14.

The dataset DLF is built with ILF = 10, 000 LF data instances collected using the LF-ROM. The dataset
DHF is instead built with only IHF = 1000 additional HF data instances. The two datasets are exploited to
train the MF-DNN surrogate model, with DLF employed to learn NNLF and DHF employed to learn NNHF.
The trained MF-DNN surrogate model is then exploited to populate Dtrain with Itrain = 20, 000 instances,
generated for varying values of the HF input parameters xHF.

To train the feature extractor and the feature-oriented surrogate, the vibration recordings in Dtrain are
transformed into images via MTF encoding. Each Mosaic ℐk in Dℐ

train, with k = 1, . . . , Itrain, is obtained by
disposing the Nu = 8 MTF tesserae into a 2 × 4 grid, with each MTF tessera being a 40 × 40 pixel image
(see Fig. 7). The size of the MTF tesserae depends on the length of the time series and on the width of the
blurring kernel. For the detailed steps of the mosaics generation via MTF encoding, see Appendix A. In this
case, the length L of the vibration recordings in Dtrain is reduced by removing the initial 20% of each time
history, to get rid of potential inaccuracies induced by the NNHF LSTM model, and the chosen width of the
blurring kernel is equal to 4. Moreover, each vibration recording in Dtrain is normalized to follow a standard
Gaussian distribution, thus allowing the dependence on the load amplitude Q to be neglected thanks to the
linear-elastic modeling behind DHF. The mosaics dataset Dℐ

train is eventually exploited to minimize the loss
functions in Eq. (12) and in Eq. (15), as described in Sec. 3.1 and according to the implementation details
reported in Appendix B.

0 20 40 60 80 100 120 140 160
0

20

40

60

80

Figure 7. L-shaped cantilever beam - Exemplary MTF mosaic.

A compact representation of the low-dimensional features provided through NNENC for the validation
set of Dℐ

train is reported in Fig. 8. The scatter plots report a downsized version of the extracted features,
obtained by means of the metric multidimensional scaling (MDS) implemented in scikit-learn [54]. The
three-dimensional (3D) MDS representations are reported with a color channel referring to the target values
of the load frequency and of the damage position along the x and y directions. Note how the resulting
manifold suitably encodes the sensitivity of the processed measurements on the parameters employed to
describe the variability of the system. This visual check provides a first qualitative indication about the
positive impact of adopting the feature space described by NNENC, to address the foreseen Bayesian model
updating task.

In the absence of experimental data, the MCMC simulations are carried out considering batches of
Nobs = 8 HF noisy observations. Each observation batch is relative to the same θΩ, where θΩ ∈ [0.15, 7.55] m
is an abscissa running along the axis of the structure and encoding the position of Ωy in place of xΩ and yΩ.
Each data instance in the observation batch is generated by sampling parameters Q and f from a Gaussian
pdf centered at the ground truth values of the parameters, and featuring a standard deviation equal to 0.25%
of their respective ranges.
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Figure 8. L-shaped cantilever beam - 3D multidimensional scaling representations of the low-dimensional features obtained
for the validation data, against the target values of (left) load frequency, and damage position along (center) the x-direction
and (right) the y-direction.

In the following, results are reported for six MCMC analyses, carried out under different operational
conditions while moving the damage position from the clamp to the free-end. Tab. 1 reports the outcome of
the identification of the damage position, in terms of target value, posterior mean, posterior mode, standard
deviation and chain length. The quality of the estimates is highlighted by the small discrepancy between
the target and the posterior mean values, which is only a few centimeters (less than 3% of the admissible
support length). Also note the relatively low values of standard deviation, which however increase as the
damage position gets far from the clamped side of the structure. This is a quite expected outcome, and is
due to a smaller sensitivity of sensor recordings to damage when the damage is located near the free-end of
the beam. The only case characterized by a large discrepancy between the target and the posterior mean
values, as well as by a larger uncertainty, is in fact the last one, featuring a damage position close to the
free-end of the beam. For instance, in case 4, the discrepancy between the target and the posterior mean
values is only 0.044 m over an admissible support of 7.4 m, while it reaches 0.845 m in case 6. Despite
the larger discrepancy between the target and the posterior mean, the target value falls within the 95%
confidence interval, as in the other cases, demonstrating the reliability of the estimates provided.

Table 1. L-shaped cantilever beam - Damage localization results for different operational and damage conditions, in terms of:
target value; posterior mean; posterior mode; standard deviation; chain length.

Case Target(θΩ) Mean(θΩ) Mode(θΩ) Stdv(θΩ) Lchain

1 0.564 m 0.580 m 0.600 m 0.043 m 2200
2 2.200 m 2.195 m 2.225 m 0.110 m 2000
3 2.888 m 2.830 m 2.887 m 0.137 m 2000
4 4.435 m 4.391 m 4.362 m 0.077 m 2000
5 5.204 m 5.403 m 5.412 m 0.315 m 2150
6 7.380 m 6.535 m 6.200 m 0.511 m 2250

An exemplary MCMC simulation outcome is reported in Fig. 9 for case 3. The graphs show the sampled
Markov chain alongside the estimated posterior mean and credibility intervals, for both θΩ and f . Note that
the chains are plotted over a relatively small range of values for the sake of visualization. Thanks to the low-
dimensionality of the involved features, the procedure also enjoys a considerable computational efficiency.
The computing time for the parameter estimation is only about 5 s; this is a remarkable result, highlighting
the real-time damage identification capabilities of the proposed strategy, all with quantified uncertainty.

To quantify the impact of using the learnable features, additional results relevant to the identification of
the damage location are reported in Tab. 2, as obtained in [27]. In this latter, p(θ|UEXP

1,...,Nobs
) was sampled

without employing the feature extractor and the feature-oriented surrogate, but directly using the MF-
DNN surrogate model. The comparison with Tab. 1 shows that NNENC and NNSUR allow the parameter
identification outcomes to be improved in all the considered performance indicators. In case 4, for instance,
the discrepancy between the target and the posterior mean values, and the standard deviation value, are
shown in Tab. 2 to increase by 7 and 10 times, respectively.
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Figure 9. L-shaped cantilever beam - Exemplary MCMC result (case 3): Markov chain, target value, posterior mean, posterior
mode and credibility intervals relative to the estimation of a damage position θΩ and b load frequency f ; c histogram of the
approximated, unnormalized posterior pdf p(θΩ|UEXP

1,...,Nobs
) over the admissible support.

Table 2. L-shaped cantilever beam - Damage localization results for different operational and damage conditions, without
leveraging the feature extractor and the feature-oriented surrogate model. Table adapted from [27].

Case Target(θΩ) Mean(θΩ) Mode(θΩ) Stdv(θΩ) Lchain

1 0.564 m 0.631 m 0.587 m 0.170 m 2000
2 2.200 m 2.474 m 2.414 m 0.511 m 2000
3 2.888 m 3.088 m 2.844 m 0.710 m 3400
4 4.435 m 4.834 m 4.198 m 0.969 m 2000
5 5.204 m 5.759 m 5.397 m 0.962 m 3000
6 7.380 m 6.080 m 7.136 m 0.866 m 4000

4.2. Portal frame

The second test case involves the two-story portal frame depicted in Fig. 10. The columns have a width
of 0.3 m, the beams have a height of 0.3 m, the inter-story height is 2.7 m, the span of the beams is 3.4 m, and
the out of plane thickness is 0.45 m. The assumed mechanical properties are: Young’s modulus E = 34 GPa,
Poisson’s ratio ν = 0.2, density ρ = 2500 kg/m

3
.

The structure is excited by three distributed loads q1(t), q2(t), q3(t), respectively applied on top of the
left column and on the bottom surface of the two horizontal beams, as shown in Fig. 10a. The three loads
vary in time according to:

q1,2,3(t) =

{
Q t
Tq
, if t ≤ Tq,

0, if t > Tq,
(18)

with Q = 10 kPa and Tq = 0.08 s. This fast-linear-ramp actuation may be connected to smart instrumented
structures, equipped with an excitation system designed for forced vibration tests.

Displacement time histories are obtained in relation to Nu = 20 dofs, mimicking a monitoring system
deployed as depicted in Fig. 10b. The recordings are provided for a time interval (0, T = 1.12 s) with an
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(a) (b)

Figure 10. Portal frame: details of (a) loading condition, damageable region Ωy, and (b) synthetic recordings related to
displacements u1(t), . . . , u20(t).

acquisition frequency fs = 125 Hz, and corrupted with an additive Gaussian noise yielding a signal to noise
ratio of 150.

The HF numerical model features NFE = 4827 dofs. The Rayleigh’s damping matrix is assembled to
account for a 2.5% damping ratio on the first two structural modes. In this case, damage is simulated
by means of a localized stiffness reduction that can take place anywhere in the frame, within subdomains
Ωy featuring a different layout for the columns and for the beams (see Fig. 10a). The position of Ωy is
parameterized by the coordinates of its center of mass y = (xΩ, zΩ)>, with xΩ and zΩ varying in the
ranges [0.15, 3.85] m and [0.4, 5.85] m, respectively. The magnitude of the stiffness reduction can range in
δ ∈ [40%, 80%], and remains constant during an excitation event.

In the present case, the LF structural response is not parametrized. The LF dataset DLF consists of a
single instance underlying the structural response in the absence of damage. This is thus employed in place
of NNLF in the MF-DNN surrogate. The HF component NNHF is trained on IHF = 1000 HF data instances,
to enrich the LF instance with the effects of damage for any given xHF = (xΩ, zΩ, δ)

>. The trained MF-DNN
surrogate is then employed to populate Dtrain with Itrain = 20, 000 instances, generated for varying values
of the xHF input parameters.

The mosaics dataset Dℐ
train is obtained by encoding each training instance in Dtrain into a 4 × 5 MTF

mosaic, with each MTF tessera being a 32 × 32 pixel image. Before undergoing the MTF encoding, the
vibration recordings in Dtrain are normalized to follow a Gaussian distribution with zero mean and unit
standard deviation, and the initial 8% of each time history is removed to get rid of potential inaccuracies
induced by NNHF. In the present case, the width of the blurring kernel is set equal to 4.

The MDS representation of the features provided through NNENC for the validation set of Dℐ
train is

reported in Fig. 11. In this case, the color channels correspond to xΩ, zΩ, and δ. The three plots qualitatively
demonstrate also in this case the presence of an underlying manifold, which encodes the sensitivity of the
structural response to the health parameters.

The learned feature space is employed to update the prior belief of θ = (xΩ, zΩ, δ)
> under varying

damage conditions via MCMC simulations. The MCMC algorithm is fed with batches of Nobs = 8 noisy
observations, all related to the same damage location and magnitude. In the following, we provide an analysis
of the results obtained from the six MCMC simulations summarized in Tab. 3. In general, both the damage
location and the damage magnitude are identified with very high accuracy and relatively low uncertainty.
There are no cases characterized by a significant discrepancy between the target and the posterior mean
values. As expected, the standard deviation of either xΩ or zΩ is larger along the axis in which Ωy can move.
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Figure 11. Portal frame - 3D multidimensional scaling representations of the low-dimensional features obtained for the
validation data, against the target values of damage position along (left) the x-direction and (center) the z-direction, and
(right) damage magnitude.

Additionally, the uncertainty in δ increases as Ωy gets far from the clamped sides, due to a smaller sensitivity
of sensor recordings to damage in such cases. For visualization purposes, an exemplary MCMC-recovered
posterior is reported in Fig. 12 for case 3.

Table 3. Portal frame - Damage localization and quantification results for different operational and damage conditions, in
terms of: target value; posterior mean; posterior mode; standard deviation; chain length.

Case Target(xΩ; zΩ; δ) Mean(xΩ; zΩ; δ) Mode(xΩ; zΩ; δ) Stdv(xΩ; zΩ; δ) Lchain

1 0.15 m; 0.58 m; 74.32% 0.21 m; 0.66 m; 74.54% 0.15 m; 0.40 m; 76.00% 0.06 m; 0.22 m; 2.21% 4550
2 0.15 m; 3.68 m; 77.69% 0.21 m; 3.47 m; 74.92% 0.15 m; 3.67 m; 76.00% 0.06 m; 0.16 m; 3.29% 3350
3 3.85 m; 2.65 m; 67.58% 3.76 m; 2.61 m; 68.63% 3.85 m; 2.58 m; 68.00% 0.07 m; 0.19 m; 2.65% 4050
4 3.85 m; 4.94 m; 53.30% 3.76 m; 5.04 m; 53.13% 3.85 m; 5.30 m; 52.00% 0.07 m; 0.19 m; 4.02% 5850
5 1.94 m; 2.85 m; 56.64% 1.85 m; 2.84 m; 56.37% 1.63 m; 3.58 m; 56.00% 0.26 m; 0.23 m; 2.99% 3850
6 1.70 m; 5.85 m; 63.70% 1.90 m; 5.70 m; 69.06% 2.00 m; 5.85 m; 68.00% 0.29 m; 0.16 m; 3.35% 2950

4.3. Hörnefors railway bridge

This third test case aims to assess the performance of the proposed strategy in a more complex situation,
involving the railway bridge depicted in Fig. 13. It is an integral concrete portal frame bridge located along
the Bothnia line in Hörnefors, Sweden. It features a span of 15.7 m, a free height of 4.7 m and a width
of 5.9 m (edge beams excluded). The thickness of the structural elements is 0.5 m for the deck, 0.7 m
for the frame walls, and 0.8 m for the wing walls. The bridge is founded on two plates connected by stay
beams and supported by pile groups. The concrete is of class C35/45, whose mechanical properties are:

E = 34 GPa, ν = 0.2, ρ = 2500 kg/m
3
. The superstructure consists of a single track with sleepers spaced

0.65 m apart, resting on a ballast layer 0.6 m deep, 4.3 m wide and featuring a density of ρB = 1800 kg/m
3
.

The geometrical and mechanical modeling data have been adapted from former research activities [55, 56].
The bridge is subjected to the transit of trains of type Gröna T̊aget, at a speed υ ∈ [160, 215] km/h.

Only trains composed of two wagons are considered, thus characterized by 8 axles, each one carrying a mass
φ ∈ [16, 22] ton. The corresponding load model is described in [25], and consists of 25 equivalent distributed
forces transmitted by the sleepers to the deck through the ballast layer with a slope 4 : 1, according to
Eurocode 1 [57].

The monitoring system features Nu = 10 sensors and is deployed as depicted in Fig. 14. Displacement
time histories are provided for a time interval (0, T = 1.5 s), with an acquisition frequency fs = 400 Hz.

The HF numerical model features NFE = 17, 292 dofs, resulting from a finite element discretization with
an element size of 0.15 m for the deck, to enable a smooth propagation of the traveling load, and 0.80 m
elsewhere. The presence of the ballast layer is accounted for through an increased density for the deck and
for the edge beams. The embankments are accounted for through distributed springs over the surfaces facing
the ground, modeled as a Robin mixed boundary condition (with elastic coefficient kRobin = 108 N/m

3
).
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Figure 12. Portal frame - Exemplary MCMC result (case 3): Markov chain, target value, posterior mean, posterior mode and
credibility intervals relative to the estimation of (a) damage magnitude δ, (b) damage position along the x-direction, and (c)
damage position along the z-direction.

Figure 13. Hörnefors railway bridge.

The Rayleigh’s damping matrix accounts for a 5% damping ratio on the first two structural modes. In this
case, damage is simulated by means of a localized stiffness reduction that can take place anywhere over the
two lateral frame walls and the deck, within subdomains Ωy featuring a different layout in the two cases
(see Fig. 14). The position of Ωy is parametrized through y = (xΩ, zΩ)>, with xΩ and zΩ varying in the
ranges [−0.115, 16.515] m and [0.4, 6.25] m, respectively. The stiffness reduction can occur with a magnitude
δ ∈ [40%, 80%], which is kept fixed while a train travels across the bridge. To summarize, the vector of HF
input parameters is xHF = (υ, φ, xΩ, zΩ, δ)

>.
The basis matrix W is obtained from a snapshot matrix S, assembled through 200 evaluations of the

LF-FOM for different values of parameters xLF = (υ, φ)>. By setting the error tolerance to ε = 10−3,
NRB = 312 POD modes are retained in W.
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Figure 14. Railway bridge: details of synthetic recordings related to displacements u1(t), . . . , u10(t), and damageable region
Ωy.

The MF-DNN surrogate model is trained using ILF = 5000 LF data instances for NNLF, and only
IHF = 500 HF data instances for NNHF. The MF-DNN surrogate is then employed to populate Dtrain with
Itrain = 30, 000 instances, generated for varying values of the xHF input parameters.

The mosaics dataset Dℐ
train is obtained by encoding each training instance in Dtrain into a 2 × 5 MTF

mosaic, with each MTF tessera being a 64×64 pixel image. Before undergoing the MTF encoding, the initial
4% of each time history in Dtrain is removed to get rid of potential inaccuracies induced by NNHF. Moreover,
since in this case the vibration recordings are characterized by data distributions mainly spread over the
tails, each time history in Dtrain is normalized to take values between 0 and 1, and quantized through a
uniform bin assignment instead of a Gaussian one. In this case, the chosen width of the blurring kernel is
equal to 9.

The visual check on the MDS representation of the features extracted from the validation data is reported
in Fig. 15. In this case, the color channels refer to each entry of xHF. It is interesting to note how the overall
shape defined by the scatter plot resembles the structural layout of the bridge (rotated and extruded), which
is automatically retrieved from xΩ and zΩ. These plots qualitatively show a clear sensitivity of the low-
dimensional feature space to the damage location, the damage magnitude, and the train velocity. The axle
mass is instead characterized by a fuzzier representation, which does not present a manifold topology capable
of adequately capturing its influence on the processed measurements.

Results of six MCMC simulations, carried out for different operational and damage conditions, are next
considered. The MCMC algorithm is fed with batches of Nobs = 8 HF observations. Each observation batch
is relative to the same damage location θΩ ∈ [0.4, 26] m and damage magnitude δ, but each data instance
in the batch is obtained for a random value of train velocity υ and axle mass φ. The train speed and axle
mass are provided by the train on-board system; since these measurements are able to be taken accurately,
the relative posterior is deterministically set to the measured values. The results relevant to the sampling
of the posterior pdf of the damage location and magnitude are reported in Tab. 4. The damage location
is always identified with relatively low uncertainty, except in case 2. Nevertheless, the relative discrepancy
between the target and the posterior mean values is only 1.58 m over an admissible support of 25.6 m. On
the other hand, the damage magnitude always falls within the estimated 95% confidence interval. Again,
the worst outcome is obtained in case 2, which is characterized by a discrepancy between the target and the
posterior mean values of about 7.5%. An exemplary MCMC outcome is reported in Fig. 16 for case 4: note
how the recovered posterior present good post-inference diagnostic statistics, with no divergences and high
homogeneity between and within chains.
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Figure 15. Railway bridge - 3D MDS representations of the low-dimensional features obtained for the validation data, against
the target values of damage position along (top-left) the x-direction and (top-center) the z-direction, (top-right) damage
magnitude, (bottom-left) train velocity, and (bottom-right) axle mass.

Table 4. Railway bridge - Damage localization and quantification results for different operational and damage conditions, in
terms of: target value; posterior mean; posterior mode; standard deviation; chain length.

Case Target(θΩ; δ) Mean(θΩ; δ) Mode(θΩ; δ) Stdv(θΩ; δ) Lchain

1 2.31 m; 73.42% 2.15 m; 70.96% 2.00 m; 75.00% 0.81 m; 7.03% 2650
2 3.96 m; 63.75% 2.38 m; 56.28% 2.30 m; 56.50% 0.38 m; 8.43% 2000
3 6.07 m; 47.53% 5.72 m; 50.91% 5.75 m; 41.5% 0.18 m; 8.37% 2000
4 9.44 m; 51.41% 9.19 m; 49.33% 9.15 m; 50.5% 0.72 m; 5.35% 2000
5 13.37 m; 41.25% 13.06 m; 43.97% 13.40 m; 41.50% 0.84 m; 3.95% 2000
6 17.13 m; 52.07% 16.27 m; 48.02% 16.20 m; 41.50% 1.45 m; 8.31% 2150
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Figure 16. Railway bridge - Exemplary MCMC result (case 4): Markov chain, target value, posterior mean, posterior mode
and credibility intervals relative to the estimation of (a) damage magnitude δ and (b) damage position θΩ.
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5. Conclusions

In this work, we have proposed a deep learning-based strategy to enhance stochastic approaches to
structural health monitoring. The presented strategy relies upon a learnable feature-extractor and a feature-
oriented surrogate model. The two data-driven models are synergically exploited to improve the accuracy
and efficiency of the parameter estimation workflow. The feature extractor makes the selection and the
extraction of informative features from raw sensor recordings almost automated. The extracted features
allow the sensitivity of the observational data to the sought parameters to be encoded in a low-dimensional
metric space. The surrogate model approximates the functional link between the parametric input space, for
which we seek to update the relative belief, and the low-dimensional feature space. The methodology can
be easily adapted to solve inverse problems in application domains other than structural health monitoring,
such as, e.g., scattering problems, medical diagnoses, and inverse kinematics.

The computational procedure takes advantage of a preliminary offline phase that: (i) employs physics-
based numerical models and reduced-order modeling, to overcome the lack of experimental data for civil
applications under varying damage and operational conditions; (ii) exploits a multi-fidelity surrogate mod-
eling strategy to generate a large labeled dataset; (iii) trains the feature extractor and the feature-oriented
surrogate model.

The proposed strategy has been assessed on the simulated monitoring of an L-shaped cantilever beam, a
portal frame, and a railway bridge. In the absence of experimental data under the effect of varying operational
and damage conditions, the tests have been carried out by exploiting high-fidelity simulation data corrupted
with an additive Gaussian noise. The obtained results have shown that learnable features used instead of
raw vibration recordings, enables to largely improve the parameter identification outcomes. The presented
strategy also enjoys a high computational efficiency due to the low-dimensionality of the involved features.

The upcoming activities will be devoted to the integration of the proposed strategy within a digital twin
concept, see for instance [58, 31]. Along this path, the assimilation of observational data to provide real-time
structural health estimates would be useful to inform an optimal planning of maintenance and management
actions, within a dynamic decision-making framework.
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Appendix A. Imaging time series via Markov transition field

In this Appendix, we review the MTF encoding [42] employed in this work to transform multivariate
time series U = [u1, . . . ,uNu

] ∈ RL×Nu into images. The technique is detailed with reference to a univariate
time series, and it is applied identically to all the Nu input channels.

The MTF encoding can be traced back to the use of recurrence networks to analyze the structural
properties of time series. As proposed in [59], the recurrence matrix of a time series can be interpreted as
the adjacency matrix of an associated complex network. In [60], the concept of building adjacency matrices
has been extended as follows, by extracting transition dynamics from first order Markov matrices. Given a
time series u = (u1, . . . , uL)>, this is first discretized into Nω quantile bins. Each entry ul, l = 1, . . . , L, is
assigned to the corresponding bin ωj, j = 1, . . . , Nω. A weighted adjacency matrix Z ∈ RNω×Nω is then
built with entries zj,k = zj,k/

∑
k zj,k, where k = 1, . . . , Nω and zj,k is the number of transitions ωj → ωk

between consecutive time steps. Z is a Markov transition matrix. From a network perspective, each bin
represents a node and each pair of nodes is connected with a weight proportional to the probability that a
data point in bin ωj is followed by a data point in bin ωk.

The MTF encoding [42] Z ∈ RL×L extends Z by measuring the probabilities of observing a change of
value between any pair of points in the time series. Similarly to Z, also Z encodes the Markovian dynamics,
but the transition probabilities in Z are represented sequentially to avoid losing the time dependence of the
conditional relationship. The MTF matrix Z reads:

Z =


zj,k|u1 ∈ ωj, u1 ∈ ωk . . . zj,k|u1 ∈ ωj, uL ∈ ωk

zj,k|u2 ∈ ωj, u1 ∈ ωk . . . zj,k|u2 ∈ ωj, uL ∈ ωk

...
. . .

...
zj,k|uL ∈ ωj, u1 ∈ ωk . . . zj,k|uL ∈ ωj, uL ∈ ωk

 , (A.1)

and measures the probability of a transition ωj → ωk for each pair of time steps, not necessarily consecutive.
This is equivalent to spread out matrix Z on the time axis by considering the temporal positions of data
points in u. By measuring the quantiles transition probability at two arbitrary time steps, matrix Z encodes
the multi-span transition probabilities of the time series.

The MTF requires the time series to be discretized on the amplitude axis into Nω quantile bins. Since
the time series discretization is a surjective transformation, this is not reversible and involves the loss of a
certain amount of information. The information content retained in the transformation is mainly controlled
by the refinement level of the discretization. With an equally spaced discretization, a large Nω might lead
to a sparse image (not suitable for highlighting structures and patterns in the data), while a small Nω might
lead to a substantial loss of information. To achieve a good trade-off between sparsity in the image and
information loss, the symbolic aggregate approximation algorithm [61] is exploited to perform a non-uniform
bin assignment. As proposed in [40], the time series is discretized in bins that roughly follow a Gaussian
distribution. This non-uniform bin assignment is suitable for handling the discretization of time histories
that follow long-tailed distributions, and makes the choice of the number of bins a less critical task. In
the present work, the number of bins has been set to Nω = 20, which provides satisfactory results without
yielding a significant computational burden. Finally, to make the image size manageable and improve the
computational efficiency of the downstream image processing, the MTF matrix Z is downsized by averaging
the pixels in each non-overlapping square patch through a blurring kernel.

Appendix B. Implementation details

In this Appendix, we discuss the implementation details of the DL models described in Sec. 3.1. The
architectures, as well as the relevant hyperparameters and training options, have been chosen through a
preliminary study, aimed at minimizing LAE and LSUR, while retaining the generalization capabilities of
NNENC, NNDEC, and NNSUR.
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NNENC and NNDEC are set as the encoder and decoder of a convolutional autoencoder, whose architecture
is described in Tab. B.5. The encoding branch consists of a stack of four two-dimensional (2D) convolutional
and max pooling layers. The output is then flattened and run through a fully-connected layer featuring
Dh = 20 neurons, which provides the low-dimensional feature space. This bottleneck layer is linked to the
decoding branch by means of a fully-connected layer, whose output is reshaped before undergoing through
a stack of four transposed 2D convolutional layers useful to reconstruct the input mosaic. All convolutional
layers feature 3 × 3 kernels and Softsign activation function, except the last one that is Sigmoid-activated,
while the two fully-connected layers are Softsign-activated.

Using Xavier’s weight initialization [62], the loss function LAE is minimized using Adam [63] for a
maximum of 100 allowed epochs. The learning rate ηAE is initially set to 0.001, and decreased for 4/5 of the
allowed training steps using a cosine decay schedule with weight decay equal to 0.05. The optimization is
carried out considering an 80 : 20 splitting ratio of the dataset for training and validation purposes. We use
an early stopping strategy to interrupt learning, whenever the loss function value attained on the validation
set does not decrease for a prescribed number of patience epochs in a row. The relevant hyperparameters
and training options are reported in Tab. B.5.

Table B.5. NNENC,NNDEC - employed architecture (left) and selected hyperparameters and training options (right).

Layer Type Output shape Activ. Input layer

0 Input (BAE, hℐ , wℐ , 1) None None
1 Conv2D (BAE, hℐ , wℐ , 4) Softsign 0
2 MaxPool2D (BAE, hℐ /2, wℐ /2, 4) None 1
3 Conv2D (BAE, hℐ /2, wℐ /2, 8) Softsign 2
4 MaxPool2D (BAE, hℐ /4, wℐ /4, 8) None 3
5 Conv2D (BAE, hℐ /4, wℐ /4, 16) Softsign 4
6 MaxPool2D (BAE, hℐ /8, wℐ /8, 16) None 5
7 Conv2D (BAE, hℐ /8, wℐ /8, 32) Softsign 6
8 MaxPool2D (BAE, hℐ /16, wℐ /16, 32) None 7
9 Flatten (BAE, hℐwℐ /8) None 8
10 Dense (BAE, Dh = 20) Softsign 9
11 Dense (BAE, hℐwℐ /8) Softsign 10
12 Reshape (BAE, hℐ /16, wℐ /16, 32) None 11

13 Conv2D> (BAE, hℐ /8, wℐ /8, 16) Softsign 12

14 Conv2D> (BAE, hℐ /4, wℐ /4, 8) Softsign 13

15 Conv2D> (BAE, hℐ /2, wℐ /2, 4) Softsign 14

16 Conv2D> (BAE, hℐ , wℐ , 1) Sigmoid 15

Convolution kernel size: 3× 3

L2 regularization rate: λAE = 10−4

Weight initializer: Xavier
Optimizer: Adam
Batch size: BAE = 128
Initial learning rate: ηAE = 0.001
Allowed epochs: 100
Learning schedule: 4

5 cosine decay
Weight decay: 0.05
Early stop patience: 15 epochs
Positive pairings: ζ+ = 2
Negative pairings: ζ− = 2
Similarity margin: ψ = 1
Train-val split: 80 : 20

NNSUR consists of four fully-connected layers featuring 10, 10, 40 and Dh = 20 neurons, respectively. The
three hidden layers are Softsign-activated, while no activation is applied to the output layer. The architecture
of NNSUR is outlined in Tab. B.6. Also in this case, the optimization is carried out using Adam together
with the Xavier’s weight initialization. The learning rate ηSUR is decreased as the training advances using a
cosine decay schedule. An early stop strategy is employed to prevent overfitting, by considering an 80 : 20
splitting ratio for training and validation purposes. The relevant hyperparameters and the training options
are summarized in Tab. B.6.

Table B.6. NNSUR - employed architecture (left) and selected hyperparameters and training options (right).

Layer Type Output shape Activ. Input layer

0 Input (BSUR, Npar) None None
1 Dense (BSUR, 10) Softsign 0
2 Dense (BSUR, 10) Softsign 1
3 Dense (BSUR, 40) Softsign 2
4 Dense (BSUR, Dh = 20) None 3

L2 regularization rate: λSUR = 10−4

Weight initializer: Xavier
Optimizer: Adam
Batch size: BSUR = 128
Initial learning rate: ηSUR = 0.001
Allowed epochs: 5000
Learning schedule: 4

5 cosine decay
Weight decay: 0.01
Early stop patience: 100 epochs
Train-val split: 80 : 20
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