
MOX-Report No. 06/2024

lymph: discontinuous poLYtopal methods for Multi-PHysics

differential problems

Antonietti, P.F., Bonetti, S., Botti, M., Corti, M., Fumagalli, I., Mazzieri, I.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it https://mox.polimi.it

lymph: discontinuous poLYtopal methods for Multi-PHysics differential

problems

Paola F. Antonietti1, Stefano Bonetti1, Michele Botti1, Mattia Corti1, Ivan Fumagalli1, and Ilario
Mazzieri1

1MOX-Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan,
20133, Italy

January 24, 2024

Abstract

We present the library lymph for the finite element numerical discretization of coupled multi-physics
problems. lymph is a Matlab library for the discretization of partial differential equations based on high-
order discontinuous Galerkin methods on polytopal grids (PolyDG) for spatial discretization coupled
with suitable finite-difference time marching schemes. The objective of the paper is to introduce the
library by describing it in terms of installation, input/output data, and code structure, highlighting –
when necessary – key implementation aspects related to the method. A user guide, proceeding step-
by-step in the implementation and solution of a Poisson problem, is also provided. In the last part of
the paper, we show the results obtained for several differential problems, namely the Poisson problem,
the heat equation, and the elastodynamics system. Through these examples, we show the convergence
properties and highlight some of the main features of the proposed method, i.e. geometric flexibility,
high-order accuracy, and robustness with respect to heterogeneous physical parameters.

Keywords: polygonal mesh, discontinuous Galerkin method, high-order methods, multi-physics prob-
lems, numerical simulations, open-source software

1 Introduction

The numerical solution of coupled multi-physics problems is of crucial importance nowadays, spanning
different computational areas and applications. We find coupled problems in several engineering fields, e.g.
in the context of life sciences for the modeling of soft tissues such as the heart or the brain, or in computa-
tional geosciences for studying seismicity, greenhouse gas sequestration, or geothermal energy production.
The numerical simulation of these problems is challenging due to their complex nature: phenomena with
different spatial and/or temporal scales, the interaction of several physical laws, and (possibly moving)
objects with different materials and properties. Along with their intrinsic complexity, the accurate ap-
proximation of such problems through numerical methods often requires different constraints on geometric
details, scale resolution, or local refinement of the computational mesh.

Over the past few years, polytopal meshes have become increasingly popular as a solution for these
numerical challenges due to their flexibility in representing intricate geometries, interfaces, and heteroge-
neous media. Thus, a particular interest has been devoted to the development of numerical methods that
can handle general grids, such as Discontinuous Galerkin (see e.g., [1, 2, 3, 4, 5]), Virtual Element Method
(see e.g.,[6, 7, 8, 9, 10, 11]), Hybrid High-Order (see e.g.,[12, 13, 14]), Hybridizable Discontinuous Galerkin
(see e.g.,[15, 16, 17]), and, more recently, Staggered Discontinuous Galerkin (see e.g.,[18, 19, 20]). An
important aspect of the development of polygonal methods is mesh generation. In the following, we report

1

some works in the processing of 2D and 3D polygonal/polytopal meshes [21, 22, 23, 24, 25]. In addition,
we highlight that there are some recent works in which Machine Learning techniques are exploited for
mesh refinement and coarsening [26, 27].

In this work, we focus on the high-order discontinuous Galerkin finite element method on polytopal
grids (PolyDG [1, 2, 3, 5]). The use of the PolyDG method offers numerous benefits when dealing with
coupled problems: (i) accurate representation of complex geometries, (ii) flexibility in refinement and
agglomeration strategies, (iii) ability to cope with non-conforming interfaces, (iv) robustness concerning
heterogeneities of physical properties, (v) arbitrary-order accuracy. Related to the geometrical flexibility,
another attractive aspect concerns the treatment of transmission conditions; indeed, these conditions are
usually localized on sub-regions of the computational domain and must be accurately represented without
compromising efficiency. The PolyDG method possesses some distinguishing features, that make it very
appealing for multi-physics differential problems. First, the PolyDG scheme can be easily combined with
agglomeration strategies for adaptivity which usually leads to many small faces per element. Indeed, the
dimension of local approximation space does not depend on the number of faces. Concerning refinement
procedures, its hierarchical basis structure can be exploited. Second, PolyDG methods ensure very good
performance in terms of parallelization and scalability – especially for high polynomial degrees and higher
dimensions. Another advantage of PolyDG is that it is dimension-independent; this is particularly useful
when moving from 2D problems to 3D ones. Examples of PolyDG schemes can be found in [2, 1] for elliptic
problems, in [28] for advection-diffusion-reaction problems, in [29] for parabolic problems, in [30, 31, 32] for
poroelasticity, in [33] for Stokes problem, and in [34, 35] for wave propagation problems. In the following
works, you can find the PolyDG discretization of the coupled problem we mentioned at the beginning of
the introduction: brain modeling [36, 37, 38], seismicity [39, 40], and computational geosciences [41, 42].

This paper aims to introduce lymph (discontinuous poLYthopal methods for Multi-PHysics), an open-
source MATLAB library for the PolyDG approximation of multi-physics problems. There is already some
software on the market for the numerical approximation of multi-physics problems (e.g. Basix [43], FEniCS
[44], lifex [45, 46, 47], MFEM [48], MOOSE [49]) and very few for the solution of problems on polytopal
meshes (e.g. MRST [50]). However, lymph presents several features that, to the best of the authors’
knowledge, make it unique by coupling all the advantages that come from the use of polytopal meshes
and, more specifically, by discretizing the problem via PolyDG schemes. Moreover, the library is very
flexible in terms of coupling different existing physics and implementation of new ones. The semidiscrete
formulation is then suitably coupled with finite-difference time integration schemes (Crank-Nicolson for
first-order differential systems, Newmark-β for second-order ones).

The rest of the article is structured as follows: in Section 2 we provide a brief introduction to the
PolyDG method, concerning its assumptions and basic elements. In Section 3, Section 4 we describe the
library in terms of installation, input/output data, and code structure. Then, in Section 5 we provide
a user guide, proceeding step-by-step in the solution of a Poisson problem and we show some results
regarding time-dependent problems, in which the main features of the PolyDG method (e.g. geometric
flexibility, high-order accuracy, and robustness concerning heterogeneous media) are exploited.

2 Main ingredients of high-order Polytopal discontinuous Galerkin
methods

The purpose of this section is to present the mesh assumptions, the discrete spaces, and some technical
results for the design of PolyDG schemes.

We introduce a polygonal subdivision Th of the computational domain Ω ⊂ R2. Next, we define the
internal edges as the intersection of any two neighboring elements of Th. We define FI to be the set
of all internal edges. The boundary edges are collected in the set FB which yields a subdivision of ∂Ω.
Accordingly, the set of all the edges is given by Fh = FB ∪ FI . In what follows, we introduce the main
assumptions on the mesh Th (cf. [3, 5, 51]).

2

Definition 2.1 (Polytopic-regular mesh) A mesh Th is polytopic-regular if for any κ ∈ Th, there exist
a set of non-overlapping simplices contained in κ, denoted by {SF

κ }F⊂∂κ, such that, for any face F ⊂ ∂κ,
the following condition holds: hκ ≲ d |SF

κ | |F |−1, with hκ denoting the diameter of the element κ and
with | · | denoting the Hausdorff measure.

In the above definition and the following, the symbol ≲ is used to denote the inequality x ≤ Cy for a pos-
itive constant C that might be different at different occurrences but does not depend on the discretization
parameters (the mesh size and the polynomial approximation order). As a basis for the construction of
the PolyDG approximation, we define fully discontinuous polynomial spaces on the mesh Th. Given an
element-wise constant polynomial degree ℓ : Th → N>0 which determines the order of the approximation,
the discrete spaces are defined such as

V ℓ
h =

{
vh ∈ L2(Ω) : vh|κ ∈ Pℓκ(κ) ∀κ ∈ Th

}
, Vℓ

h =
[
V ℓ
h

]d
,

where, for each κ ∈ Th, the space Pℓκ(κ) is spanned by polynomials of maximum degree ℓκ = ℓ|κ. We
consider a mesh sequence {Th}h→0 satisfying the following properties:

Assumption 2.1 The mesh sequence {Th}h→0 and the polynomial degree ℓ are such that

A.1 {Th}h→0 is uniformly polytopic-regular;

A.2 For each Th ∈ {Th}h→0 and for any pair of neighbouring elements κ+, κ− ∈ Th, the following hp-local
bounded variation properties hold: hκ+ ≲ hκ− ≲ hκ+ and ℓκ+ ≲ ℓκ− ≲ ℓκ+.

Finally, we also need to introduce the average and jump operators. We start by defining them on each
interior edge F ∈ FI shared by the elements κ± as in [52]:

[[a]] = a+n+ + a−n−, [[a]] = a+ ⊗ n+ + a− ⊗ n−, [[a]]n = a+ · n+ + a− · n−,

{{a}} =
a+ + a−

2
, {{a}} =

a+ + a−

2
, {{A}} =

A+ +A−

2
,

where a ⊗ n = anT , and a, a, A are (regular enough) scalar-, vector-, and tensor-valued functions,
respectively. The notation (·)± is used to denote the trace on F taken within the interior of κ± and n±

is the outer unit normal vector to ∂κ±. Accordingly, on boundary faces F ∈ FB, we set

[[a]] = an, {{a}} = a, [[a]] = a⊗ n, {{a}} = a, [[a]]n = a · n, {{A}} = A.

The ingredients presented above are crucial for deriving the PolyDG semi-discrete formulation of a
given partial differential problem. To obtain the fully-discrete formulation of time-dependent problems,
the PolyDG discretization in space is coupled with a suitable time-integration scheme (e.g. Crank-Nicolson
for first-order problems, Newmark-β for second-order problems).

3 The lymph library

This section introduces the main structure and the components of lymph library. We start by giving a
high-level overview of the library, describing its main functionalities as well as its folder structure. Next,
we present a flowchart illustrating the overall workflow of the code, as well as code snippets and possible
configuration and customization of lymph for specific needs. We postpone a more procedural user guide in
Section 5, going along the numerical approximation and implementation of a specific differential problem.

3

Overview

lymph is designed to solve either single or multi-physics differential problems employing the high-order
PolyDG method, as explained in Section 2. The library is organized into different folders: Core which con-
tains the main routines such as the mesh generation, the polynomial space construction, and quadrature
formulas; Physics, which contains specific routines for particular problems, organized in subfolders. In
the current release, Physics contains solvers for Poisson problem (Laplacian), time-dependent diffusion-
reaction equations (Heat), and elastodynamics system (Elastodynamics).

Installation

lymph has been developed in Matlab version R2022b, but its functionalities have been successfully tested
in all versions from R2020b to R2023b, which include the Mapping Toolbox. The installation of lymph
simply consists of downloading the software from the repository https://bitbucket.org/lymph/lymph

into a directory that is accessible to Matlab. The repository contains also Polymesher v1.1 [22], on
which lymph relies for the generation of 2D polygonal grids of arbitrary shape. The addition of lymph’s
paths and subpaths to the working environment is directly accounted for by the main file, as explained
in the following paragraphs.

Core folder

The Core folder contains special functions that are the building blocks of the PolyDG discretization. In
particular, we have split these routines into the following directories:

• MeshGeneration: routines for the polygonal mesh generation, cf. Section 4.1,

• FEspace: finite element definition, computation of the basis functions and their derivatives, cf.
Section 4.2,

• Quadrature: quadrature formulas used to compute the elemental and boundary integrals, cf. Sec-
tion 4.3,

• PostProcessing: functions to export the solution and mesh in Matlab and Paraview formats,

• Utilities: additional routines.

Physics folders

Inside each physics folder, one can find the following directories:

• MainFunctions: main routine containing (i) the mesh reading, (ii) the finite element space con-
struction, (iii) the assembly of the linear system (ode system for time-dependent problems), (iv)
algebraic solvers, (v) post-processing of the solutions, and (vi) error computation (if needed),

• InputData: input data files,

• Assembly: routines for the assembly of the linear system and of the right-hand side,

• TimeIntegration (time-dependent physics only): time-advancing schemes;

• PostProcessing: routines integrating Core/PostProcessing for a specific physics,

• Error: routines for the errors computation,

and functions:

4

Figure 1: lymph code structure and logo (top right).

• ImportLymphPath.m: to set up the path of the linked folders,

• RunSetup.m: setup of the simulation, selection of output formats and output folders, visualization
of the solution, and the polygonal mesh,

• RunMainPHYS.m: script used to run the specific simulation,

• RunhConvergencePHYS: script used for verification purposes (h-convergence),

• RunpConvergencePHYS: script used for verification purposes (p-convergence).

Here, the suffix PHYS stands for the given physics name, e.g. Laplacian, Heat, Elastodynamics.

Dependencies and External Libraries

To solve specific problems each Physics folder, containing functions to discretize a differential prob-
lem through the PolyDG method, must be linked to the lymph library as it will be explained in the
Section 5. The lymph library makes use of the Polymesher software [22] that is provided within the
Core/MeshGeneration/PolyMesh directory or alternatively can be downloaded from
http://paulino.princeton.edu/software.html.

Additional Folder Structure

As described above, the main folder structure of the code is divided into two parts: the Core and
the Physics folders. Data files for specific runs must be included in the Physics/InputData folder.
Additionally, mesh files (in .mat format) can be stored in the Physics/InputMesh directory for further
runs. Output results are saved in directories specified in the InputData files. A flowchart illustrating the
code structure and workflow is given in Fig. 1.

5

Configuration, Customization and Documentation

The user can configure or customize the code for their specific needs by using the Physics/RunSetup.m

script. The use of this script, the full documentation of the code, as well as simple tutorials to get practice
with the lymph library (see also Section 5), are available at https://lymph.bitbucket.io/. For each
physics under examination, step-by-step practical examples are given in the Tutorial section of the user
guide. Here, for the sake of presentation, we report a summary.

4 Common aspects of PolyDG discretization: the Core of lymph

In this section, we describe the core functionalities of the lymph library, namely, the routines contained
in the Core folder that are proper of a PolyDG discretization.

4.1 Mesh Generation

We use the Polymesher software [22], embedded in the lymph library. It is important to note that it is
possible to use within lymph meshes generated by external software whose output format is compatible
with that of PolyMesher. Specifically, agglomerated grids can also be imported and managed.

4.2 Finite Element Spaces

The construction of an algebraic formulation for the discrete problem requires the construction of a basis
for the PolyDG space V ℓ

h . In the general formulation, the basis is (φj)
N
j=1, where N = dim{V ℓ

h} =

|Th|dim{P ℓ(k)} is the number of degrees of freedom in femregion.ndof with |Th| is the number of
elements of the partition femregion.nel and dim{P ℓ(k)} = 1

2(ℓ+ 1)(ℓ+ 2) femregion.nbases.
In the lymph library, the basis functions for each physical element κ are constructed starting from

the Legendre polynomials of order ℓ [53] in one dimension Li = Li(x) with i = 0, ..., ℓ. Then, by using a
tensor product of basis functions in the two directions, we obtain that:

φi(x, y) = Lj(x)Lk(y), i = 1, ...,
1

2
(ℓ+ 1)(ℓ+ 2), and j, k = 1, ..., ℓ, and j + k ≤ ℓ.

The reference Legendre polynomials L̂ are constructed initially on the square [−1, 1]× [1, 1]; then the final
solution is reported on each polygon using an affine transformation to the bounding box of the element,
stored in the matrix femregion.bbox [5].

By construction, the basis of the PolyDG space is modal. Therefore, we cannot associate the coeffi-
cients of the linear combination expansion to a physical value at a point in the space. For this, reason
the final solution will be reconstructed in the quadrature nodes for visualization purposes.

4.3 Evaluation of integrals and use of quadrature formulas

Any dG discretization consists of the computation of volume and boundary integrals. As a general
example, we consider the following integrals and explain how they are computed in lymph . We start by
considering the general volume terms:

Mprj loc(i, j) = (φj , φi)κ and A loc(i, j) = (µ∇φj ,∇φi)κ, for i, j = 1, ...,
1

2
(ℓ+ 1)(ℓ+ 2),

where µ is a given constant function, κ ∈ Th is a generic mesh element and (·, ·)κ denotes the L2(κ) inner
product over κ ∈ Th. We consider a sub-tesselation of κ made of triangles Tria, and on each triangle,
we compute the quantities of interest through a quadrature rule with femregion.nqn = (2ℓ+ 1)2 points
ref qNodes 2D and weights w 2D which is exact for the quantities of interest. We point out that there
exist more efficient quadrature rules for the numerical approximation of integrals of polynomial functions

6

over general polygonal/polyhedral elements that do not require explicit construction of a sub-tessellation
into triangular/tetrahedral elements, e.g. the quadrature free-method of [54, 55]. Here the main idea
is based on successive application of Stokes’ theorem; thereby, the underlying integral may be evaluated
using only the values of the integrand at the vertices of the polytopic domain, and hence leads to an
exact quadrature rule whose quadrature points are the vertices of the polytopal element. For the sake of
simplicity in this first release of the lymph library we rely on the sub-tessellation quadrature approach,
soon we plan to include in lymph the possibility of choosing between different quadrature approaches,
including also the quadrature-free approach.

1 %% Laplacian/Assembly/MatrixLaplacian.m

2 %% Quadrature values

3 [ref_qNodes_1D , w_1D , ref_qNodes_2D , w_2D] = Quadrature(femregion.nqn);

4 ...

5 for ie = 1: femregion.nel %Loop over the elements

6 ...

7 % Creation of the subtriangulation of the element

8 ...

9 for iTria = 1:size(Tria ,1) % Loop over the subtriangulation

10 % Construction of Jacobian and quadrature nodes

11 [BJ, qNodes_2D] = GetJacobianPhysicalPoints (.,.); xq =

qNodes_2D (:,1); yq = qNodes_2D (:,2);

12 dx = det(BJ) * w_2D; % Scaled weights

13 mu = Data.mu{1}(xq ,yq);% Evaluation of physical parameters

14 ...

15 %% Matrix assembling

16 Mprj_loc = Mprj_loc + (dx.*phiq) '*phiq;
17 A_loc = A_loc + (dx .* (mu .* gradqx))' * gradqx + (dx .* (mu .*

gradqy))' * gradqy;

18 end

19 ...

Next, denoting by (·, ·)e the L2 inner product over e ∈ FI
h , we consider the following surface integrals

({{µ∇φj}}, [[φi]])e and (αe[[φj]], [[φi]])e over an edge e shared by two neighboring elements κ+ and κ− in
Th. Using the definitions of {{·}} and [[·]] operators, for i, j = 1, ..., 12(ℓ+ 1)(ℓ+ 2) we get:

• ({{µ∇φj}}, [[φi]])e =
1
2((µ

+∇φ+
j − µ−∇φ−

j) · n+, φ+
i)e +

1
2((µ

−∇φ−
j − µ+∇φ+

j) · n+, φ−
i)e,

• (αe[[φj]], [[φi]])e = (αe(φ
+
j − φ−

j), φ
+
i)e + (αe(φ

−
j − φ+

j), φ
+
i)e.

When the current element is κ+ only the following integrals are computed:

IA loc(i, j) =
1

2
(µ+∇φ+

j · n+, φ+
i)e and IAN loc(i, j) = −(

1

2
µ−∇φ−

j · n+, φ+
i)e,

and
SA loc(i, j) = αe(φ

+
j , φ

+
i)e and SAN loc(i, j) = −αe(φ

−
j , φ

+
i)e,

for i, j = 1, ..., 12(ℓ+ 1)(ℓ+ 2). Their computation is achieved in the function
Laplacian/Assembly/MatrixLaplacian.m

1 %% Laplacian/Assembly/MatrixLaplacian.m

2 ...

3 for ie = 1: femregion.nel %loop over the elements

4 ...

7

5 [penalty_geom] = PenaltyCoefficient (.,.,.);

6 for iedg = 1 : neighbor.nedges(ie) % Loop over faces

7 ...

8 % Construction of quadrature nodes on the face

9 [qNodes_1D] = GetPhysicalPointsFaces (.,.,.);

10 xq = qNodes_1D (:,1); yq = qNodes_1D (:,2);

11 ds = meshsize(iedg) * w_1D; % Scaled weights

12 ...

13 % Construction of the basis functions

14 [phiedgeq , gradedgeqx , gradedgeqy] = Evalshape2D (.,.,);

15 %Element itself

16 IA_loc = IA_loc + 0.5 * (ds .* mu .* (nx * gradedgeqx + ny *

gradedgeqy))' * phiedgeq;

17 SA_loc = SA_loc + (ds .* (mu * penalty_geom(iedg)) .* phiedgeq)'
* phiedgeq;

18 % Construction of the basis functions for the neighbor

19 phiedgeqneigh = Evalshape2D (.,.,.);

20 % Neighboring element

21 IAN_loc (:,:,iedg) = IAN_loc (:,:,iedg) - 0.5 * (ds .* (mu .* (nx

* gradedgeqx + ny * gradedgeqy)))' * phiedgeqneigh;

22 SAN_loc (:,:,iedg) = SAN_loc (:,:,iedg) - (ds .* (mu *

penalty_geom(iedg)) .* phiedgeq)' * phiedgeqneigh;

23 end

24 ...

5 Examples

In the following, we show how to solve differential problems, with lymph .

The Poisson problem

We start, by considering the following problem in a polygonal domain Ω ⊂ R2:{
−∇ · (µ∇u)(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω,

where µ, f and g are given regular functions. We reformulate it using the PolyDG discretization described
in Section 2 obtaining: find uh ∈ V ℓ

h s.t.

adG(uh, vh) = F (vh) ∀ vh ∈ V ℓ
h ,

where

adG(u, v) =
∑
κ∈Th

(µ∇u,∇v)κ −
∑
e∈Fh

(
({{µ∇u}}, [[v]])e + ([[u]], {{µ∇v}})e − (αe[[u]], [[v]])e

)
∀u, v ∈ V ℓ

h ,

with the penalization parameter α : F → R+ defined as [5]:

αe(x) =

Cαmaxκ∈{κ+,κ−}

(
µκ

ℓ2κ
hκ

)
, x ∈ e, e ∈ FI , e ⊂ ∂κ+ ∩ ∂κ−,

Cαµκ
ℓ2κ
hκ

, x ∈ e, e ∈ FB, e ⊂ ∂κ+ ∩ ∂Ω,

8

Figure 2: Left: computed PolyDG solution uh using a polygonal mesh with Nel = 30 elements, and
polynomial degree ℓ = 3. Center: analytical solution uex. Right: the difference between numerical and
analytical solutions.

being Cα > 0 the penalty coefficient to be properly set, and

F (v) =
∑
κ∈Th

(f, v)κ −
∑
e∈FB

(
(g, µ∇v)e − (αeg, v)e

)
∀v ∈ V ℓ

h .

By introducing a set of basis functions {φj}Nh
j=1 for the space V

ℓ
h we can write (5) as the following algebraic

problem: find Uh ∈ RNh s.t.
AdGUh = F ,

with AdG ∈ RNh × RNh defined for any i, j = 1, ..., Nh as

(AdG)ij =
∑
κ∈Th

(µ∇φj ,∇φi)κ −
∑
e∈Fh

(
({{µ∇φj}}, [[φi]])e + ([[φj]], {{µ∇φi}})e − (αe[[φj]], [[φi]])e

)

while F ∈ RNh is given by Fi =
∑

κ∈Th(f, φi)κ−
∑

e∈FB

(
(g, µ∇φi)e−(αeg, φi)e

)
for all i = 1, ..., Nh. The

entries of the matrix AdG as well as the right-hand side F in (5) are computed as explained in Section 4.
For the sake of completeness, we introduce the dG-norm as ∥u∥2dG = ∥√µ∇u∥2L2(Ω) + ∥√αe[[u]]∥2L2(F) for

any u ∈ V ℓ
h , and we recall a well-known convergence result of the PolyDG discretization, [5, 56, Theorem

36] from which we have the following convergence rates:

|||u− uh|||2dG ≲
∑
κ∈Th

h
2(sκ−1)
κ

ℓ
2(mκ−1)
κ

∥u∥2Hmk (κ), ∥u− uh∥2L2(Ω) ≲
∑
κ∈Th

h2sκκ

ℓ2mκ
κ

∥u∥2Hmk (κ),

with sκ = min(ℓκ + 1,mκ) for all κ ∈ Th and hκ denoting the element diameter.

Verification test

We consider problem (5) in Ω = (0, 1)2 with the following data: µ(x) = 1, f(x) = 8π2 sin(2πx) cos(2πy),
and g(x) = sin(2πx) cos(2πy), whose exact solution is u(x) = sin(2πx) cos(2πy). To solve this prob-
lem we use the functions contained in Laplacian. We set up these data in InputData/DataTestLap.m,
and fix the number of the element mesh Nel = 30, the polynomial approximation degree ℓκ = 3 for
any κ ∈ Th, and the penalty constant Cα = 10 in (5). Next, we run the simulation using the script
RunMainLaplacian.m, which calls the main algorithm MainFunctions/MainLaplacian.m. As the output
of the run we obtain the plots in Figure 2 showing the computed solution uh (left), the analytical solu-
tion uex (center), and the arithmetic difference between the two (right). Moreover, the output structure
Error contains the following fields: Nel = 30 (number of mesh elements), h = 0.3235 (mesh size), p
= 3 (polynomial approximation degree), L2 = 0.0027 (L2-norm of the error), dG = 0.3349 (dG-norm

9

Figure 3: Left: computed errors ∥u− uh∥dG and ∥u− uh∥L2(Ω) as a function of the mesh size h by fixing
the polynomial degree ℓ = 4. Right: computed errors ∥u− uh∥dG and ∥u− uh∥L2(Ω) as a function of the
polynomial degree ℓ = 4 by fixing the number of mesh element Nel = 100.

of the error). To verify the convergence rates of the PolyDG solution uh in (5) we use two different
scripts: RunhConvergenceLaplacian.m and RunpConvergenceLaplacian.m accounting for the h- con-
vergence (mesh size) and the ℓ-convergence (polynomial degree) respectively. This time, we set up the
data in the external script InputData/DataConvTestLap.m. Concerning the previous one, four mesh
with decreasing granularity h are provided in input within the field Data.meshfileseq. As the output
of the aforementioned scripts we obtain the plot in Figure 3. In particular, on the left, we can observe
the convergence of the PolyDG solution obtained with ℓκ = 4 for any κ ∈ Th for the L2- and dG-norms,
confirming the theoretical results in (5). On the right, the exponential convergence with respect to the
polynomial degree ℓ is also shown, cf. (5), by fixing Nel = 100.

The heat equation

Let us consider a polygonal domain Ω ⊂ R2, we denote by Γ = ∂Ω its boundary with outward normal
unit vector n. On the boundary, we assume to impose Dirichlet boundary conditions (u = g). Given
sufficiently regular external load f and initial data u0, the heat equation with reaction term in Ω× (0, T]
is given by

∂u

∂t
−∇ · (µ∇u) + σu = f, in Ω× (0, T],

with initial condition u = u0, in Ω×{0}. The PolyDG formulation [29] reads: for any time t ∈ (0, T] find
uh = uh(t) ∈ V ℓ

h such that∑
κ∈Th

(u̇h, vh)κ + adG(uh, vh) +
∑
κ∈Th

(σuh, vh)κ =
∑
κ∈Th

(f, vh)κ ∀vh ∈ V ℓ
h ,

with initial conditions uh = u0h, being u0,h the L2-projection of the initial data on V ℓ
h . In (5) the bilinear

form adG(·, ·) is defined as in the previous section. Now, by introducing a set of basis functions {φj}Nh
j=1

for V ℓ
h we can easily get the following system of first-order differential equations:{

U̇h(t) +AUh(t) +MUh(t) = F (t) t ∈ (0, T],

Uh(0) = U0h,

To integrate system (5) in time we apply the θ−method scheme. The numerical simulation is performed
by using the Crank-Nicolson scheme (θ = 1/2).

10

Figure 4: Example heat equation. Polygonal mesh of the two circles (left) and computed PolyDG solution
at time t = 1.0.

Test case with discontinuous boundary conditions

As an application of the presented PolyDG method, we solve with lymph the heat equation problem
presented in [57]. It considers the parabolic problem with µ = 0.1, σ = 0, and homogeneous forcing term
f = 0. The domain Ω is composed of two overlapping circles of radius 0.5 and center (−0.5, 0) and (0.5, 0)
respectively. For the numerical discretization of this problem, we construct a polygonal mesh through the
PolyMesher software [22] (see Figure 4 left). The mesh we adopt in the simulation is composed of 250
elements.

We consider discontinuous Dirichlet boundary conditions on the top of the model such that u(x) = 0
for x ≤ 0 and u(x) = 1 for x > 0, where x = (x, y). As shown in the test case reference [57], we
obtain that the solution at time t = 1 is smoothed inside the computational domain, due to the diffusion
process. The discretization in space is performed employing polynomials of degree ℓ = 5, while the time
discretization uses a timestep ∆t = 0.025, and a final time T = 1. In Figure 4 we report the snapshot of
the solution at the final time T = 1. The solution is coherent to what is expected from the literature [57].

The elastodynamics system

We consider a bounded convex polygonal domain Ω ⊂ R2, we denote by Γ = ∂Ω its boundary with
outward normal unit vector n. The boundary is assumed to be composed of two disjoint portions ΓD

and ΓN , where Dirichlet (u = 0), and Neumann (σ(u)n = 0), conditions are imposed, respectively, cf.
[58]. Given sufficiently regular external loads f and g and initial data u0 and v0, cf. [59], the equations
of (linear) elastodynamics in Ω× (0, T] are given by

ρ
∂2u

∂t2
−∇ · σ(u) = f , in Ω× (0, T],

with initial conditions (u, ∂u∂t)(0) = (u0,v0), in Ω. We denote by u : Ω × [0, T] → R2 the displacement
vector and by σ : Ω×[0, T] → S the stress tensor where S is the space of symmetric, 2×2, real-valued tensor
fields. We assume the generalized Hooke’s law σ(u) = 2µϵ(u) + λtr(ϵ(u))I, being ϵ(u) the symmetric

11

Figure 5: Example elastodynamics system. Unstructured polygonal grid with mesh spacing of about
h ≈ 160 m for material 1 to h ≈ 1500 m for material 7; cf. Table 1. Mesh file is available in
Elastodynamics/InputMeshPhysics/MeshEmilia.mat.

Materials 1 2 3 4 5 6 7

ρ [kg/m3] 1800 1800 2050 2050 2050 2400 2450

cS [m/s] 294 450 600 600 600 1515 1600

cP [m/s] 1321 2024 1920 1920 1920 3030 3200

Table 1: Example elastodynamics system. Material properties used for the computational domain in
Figure 5, cf. also Elastodynamics/InputData/Elastic/DataTestPhysicsEla.m

gradient of u, I the identity tensor, tr(·) the trace operator, and λ, µ ∈ L∞(Ω) are the Lamé’s parameters.
The compressional (P) and shear (S) wave velocities of the medium are obtained through the relations
cP =

√
(λ+ 2µ)/ρ and cS =

√
µ/ρ, respectively. By following [59], we obtain the PolyDG formulation:

for any time t ∈ (0, T] find uh = uh(t) ∈ V ℓ
h such that∑

κ∈Th

(ρu,v)κ + aedG(u,v) =
∑
κ∈Th

(f ,v)κ ∀v ∈ V ℓ
h ,

with initial conditions (uh,
∂uh
∂t) = (u0h,v0h), being u0,h and v0,h the L2-projection of the initial data on

V ℓ
h . In (5) the bilinear forms aedG(·, ·) is defined as

aedG(u,v) =
∑
κ∈Th

(σ(u), ϵ(v))κ−
∑

e∈Fh\ΓN

(
({{σ(u)}}, [[v]])e+({{σ(v)}}, [[u]])e−(ηe[[(u)]], [[v]])e

)
∀u,v ∈ V ℓ

h ,

with ηe as in [59, eq. (9)]. Now, by introducing a set of basis functions {φ1
j ,φ

2
j}

Nh
j=1 for V ℓ

h we can easily
get the following system of second order differential equations:{

MÜh(t) +AUh(t) = F (t) t ∈ (0, T],

(U̇h(0),Uh(0)) = (V0h,U0h),

To integrate system (5) in time we apply the Newmark β-scheme, with β = 1
4 and γ = 1

2 .

Wave propagation in a layered media

As an application of the presented PolyDG method, we solve with lymph the wave propagation problem
presented in [51, Section 5.4.3.2]. It considers the elastic wave propagation Ω = (0, 38.4) km ×(0, 10) km
representing an idealized bidimensional Earth’s cross-section, see Figure 5.

We consider homogeneous Neumann conditions on the top of the model (σn = 0) whereas homo-
geneous Dirichlet conditions (u = 0) are set on the remaining boundaries. The bottom and the lat-
eral boundaries are set far enough from the point source to prevent any reflections from the bound-
aries of the waves of interest. We simulate a double-couple moment source load of the form f(x, t) =

12

Figure 6: Example 5. Snapshots of the computed vertical velocity (ut)y at different times t = 0.75
(top-left), t = 1.25 (top-right), t = 2.25 (bottom-left), t = 2.75 (bottom-right). Due to the material
heterogeneities, high oscillations and perturbations of the wavefront can be observed, as well as the effect
of the free surface on top.

dofs Assembly of matrices Assembly of RHS Single time step Single file saving

409.080 2056 s 13 s ≈ 300 s 250 s

Table 2: Example elastodynamics system. Computational time considering ≈ 400.000 degrees of freedom
(dofs).

−I · ∇δ(x − xs)S(t), being, δ(x − xs) is the Dirac delta distribution centered in xs = (19432, 7800) m
and S(t) = (1 − 8π2(t − 0.5)2)e−4π2(t−0.5)2 is the source time function. We assign constant material
properties within each region as described in Table 1. The computational domain is discretized using an
unstructured grid consisting of 4870 (agglomerated) polygonal elements, with a mesh size varying from
h ≈ 160 m for material 1 to h ≈ 1500 m for material 7; cf. Table 1. We consider also a polynomial
degree ℓ = 5, ∆t = 0.01 s, and a final time T = 4 s. In Figure 6 we report a set of snapshots of the com-
puted vertical velocity field (ut)y. The discontinuities between the mechanical properties of the materials
produce oscillations and perturbations on the wavefront; surface waves are visible. Finally, we report in
Table 2 the computational cost of the presented test. The numerical simulation was performed using the
Cerbero cluster (6 cores I7-3930K @3.20GHz + 20 cores Intel Xeon E5-2640v4 @ 2.40GHz, GPU NVidia
GT520, 128GB RAM, O.S. CentOS 7 – Resource for sequential applications) at MOX, Department of
Mathematics, Politecnico di Milano.

6 Conclusions

This paper presents lymph, a general-purpose Matlab library for the approximate solution of multi-physics
differential problems. For the spatial discretization of the underlying differential systems, lymph library
is based on high-order discontinuous Galerkin methods on polytopal grids, making its use attractive for
several areas of engineering and applied sciences applications. The target of this paper is to introduce
the library step-by-step and to show the potential of the software, starting from the solution of classical
differential problems. As lymph is a user-friendly, general-purpose library, the authors think that its use
can be widely extended to other engineering applications. Interesting future developments of this work
include the design of more robust and flexible (agglomeration-driven) mesh generation algorithms and
the introduction of hp-refinement approaches, the use of quadrature-free formulas, and the extension to
three-dimensional settings.

13

7 Acknowledgements

IF, IM, and PFA have been partially supported by ICSC–Centro Nazionale di Ricerca in High Performance
Computing, Big Data, and Quantum Computing funded by European Union–NextGenerationEU. PFA
and MC are partially funded by the European Union (ERC SyG, NEMESIS, project number 101115663).
Views and opinions expressed are however those of the authors only and do not necessarily reflect those
of the European Union or the European Research Council Executive Agency. Neither the European
Union nor the granting authority can be held responsible for them. SB, IF, and PFA have been partially
funded by MUR for the PRIN 2020 research grant n. 20204LN5N5. All the authors are members
of INdAM-GNCS. The work of IM has been partially supported by the INdAM-GNCS project CUP
E53C22001930001.

References

[1] F. Bassi, L. Botti, A. Colombo, D. Di Pietro, and P. Tesini, “On the flexibility of agglomeration based
physical space discontinuous Galerkin discretizations,” Journal of Computational Physics, vol. 231,
no. 1, pp. 45–65, 2012.

[2] P. F. Antonietti, S. Giani, and P. Houston, “hp-version composite discontinuous Galerkin methods
for elliptic problems on complicated domains,” SIAM Journal on Scientific Computing, vol. 35, no. 3,
pp. A1417–A1439, 2013.

[3] A. Cangiani, E. H. Georgoulis, and P. Houston, “hp-version discontinuous Galerkin methods on
polygonal and polyhedral meshes,” Mathematical Models and Methods in Applied Sciences, vol. 24,
no. 10, pp. 2009–2041, 2014.

[4] A. Cangiani, Z. Dong, E. H. Georgoulis, and P. Houston, “hp-version discontinuous Galerkin methods
for advection-diffusion-reaction problems on polytopic meshes,” ESAIM: Mathematical Modelling and
Numerical Analysis, vol. 50, no. 3, pp. 699–725, 2016.

[5] A. Cangiani, Z. Dong, E. H. Georgoulis, and P. Houston, hp-version discontinuous Galerkin methods
on polytopic meshes. SpringerBriefs in Mathematics, Cham: Springer International Publishing, 2017.

[6] L. Beirão Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo, “Basic principles
of virtual element methods,” Mathematical Models and Methods in Applied Sciences, vol. 23, no. 01,
pp. 199–214, 2013.

[7] L. Beirão da Veiga, F. Brezzi, and L. D. Marini, “Virtual elements for linear elasticity problems,”
SIAM J. Numer. Anal., vol. 51, no. 2, pp. 794–812, 2013.

[8] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo, “The hitchhiker’s guide to the virtual
element method,” Math. Models Methods Appl. Sci., vol. 24, no. 8, pp. 1541–1573, 2014.

[9] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo, “Virtual element method for general
second-order elliptic problems on polygonal meshes,” Math. Models Methods Appl. Sci., vol. 26,
no. 4, pp. 729–750, 2016.

[10] L. Beirão da Veiga, F. Brezzi, F. Dassi, L. D. Marini, and A. Russo, “A family of three-dimensional
virtual elements with applications to magnetostatics,” SIAM Journal on Numerical Analysis, vol. 56,
no. 5, pp. 2940–2962, 2018.

[11] L. Beirão da Veiga, A. Russo, and G. Vacca, “The virtual element method with curved edges,”
ESAIM: Mathematical Modelling and Numerical Analysis, vol. 53, no. 2, pp. 375–404, 2019.

14

[12] D. A. Di Pietro, A. Ern, and S. Lemaire, “An arbitrary-order and compact-stencil discretization
of diffusion on general meshes based on local reconstruction operators,” Computational Methods in
Applied Mathematics, vol. 14, no. 4, pp. 461–472, 2014.

[13] D. A. Di Pietro and J. Droniou, “A hybrid high-order method for Leray–Lions elliptic equations on
general meshes,” Mathematics of Computation, vol. 86, no. 307, pp. 2159–2191, 2017.

[14] D. A. Di Pietro and A. Ern, “Hybrid high-order methods for variable-diffusion problems on general
meshes,” Comptes Rendus Mathematique, vol. 353, no. 1, pp. 31–34, 2015.

[15] B. Cockburn, B. Dong, and J. Guzmán, “A superconvergent LDG-hybridizable Galerkin method for
second-order elliptic problems,” Mathematics of Computation, vol. 77, no. 264, pp. 1887–1916, 2008.

[16] B. Cockburn, J. Gopalakrishnan, and R. Lazarov, “Unified hybridization of discontinuous galerkin,
mixed, and continuous galerkin methods for second order elliptic problems,” SIAM Journal on Nu-
merical Analysis, vol. 47, no. 2, pp. 1319–1365, 2009.

[17] B. Cockburn, J. Guzmán, and H. Wang, “Superconvergent discontinuous Galerkin methods for
second-order elliptic problems,” Mathematics of Computation, vol. 78, no. 265, pp. 1–24, 2009.

[18] L. Zhao and E. J. Park, “A staggered discontinuous galerkin method of minimal dimension on quadri-
lateral and polygonal meshes,” SIAM Journal on Scientific Computing, vol. 40, no. 4, pp. A2543–
A2567, 2018.

[19] L. Zhao, E. J. Park, and D. W. Shin, “A staggered dg method of minimal dimension for the stokes
equations on general meshes,” Computer Methods in Applied Mechanics and Engineering, vol. 345,
pp. 854–875, 2019.

[20] L. Zhao and E. J. Park, “A new hybrid staggered discontinuous galerkin method on general meshes,”
Journal of Scientific Computing, vol. 82, no. 1, p. 12, 2020.

[21] M. Livesu, Cinolib: A Generic Programming Header Only C++ Library for Processing Polygonal
and Polyhedral Meshes, pp. 64–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019.

[22] C. Talischi, G. H. Paulino, A. Pereira, and I. F. M. Menezes, “Polymesher: a general-purpose mesh
generator for polygonal elements written in matlab,” Structural and Multidisciplinary Optimization,
vol. 45, pp. 309–328, 2012.

[23] B. Lévy and A. Filbois, “Geogram: a library for geometric algorithms,” 2015.

[24] M. Botsch, S. Steinberg, S. Bischoff, L. Kobbelt, and R. Aachen, “Openmesh - a generic and efficient
polygon mesh data structure,” 2002.

[25] A. Vaxman et al., “libhedra: geometric processing and optimization of polygonal meshes,” 2017.

[26] P. Antonietti and E. Manuzzi, “Refinement of polygonal grids using convolutional neural networks
with applications to polygonal discontinuous galerkin and virtual element methods,” Journal of
Computational Physics, vol. 452, p. 110900, 2022.

[27] P. Antonietti, N. Farenga, E. Manuzzi, G. Martinelli, and L. Saverio, “Agglomeration of polygonal
grids using graph neural networks with applications to multigrid solvers,” Computers & Mathematics
with Applications, vol. 154, pp. 45–57, 2024.

[28] P. Houston, C. Schwab, and E. Süli, “Discontinuous hp-finite element methods for advection-diffusion-
reaction problems,” SIAM Journal on Numerical Analysis, vol. 39, no. 6, pp. 2133–2163, 2002.

15

[29] A. Cangiani, Z. Dong, and E. H. Georgoulis, “hp-version space-time discontinuous Galerkin methods
for parabolic problems on prismatic meshes,” SIAM Journal on Scientific Computing, vol. 39, no. 4,
pp. A1251–A1279, 2017.

[30] P. F. Antonietti, C. Facciolà, A. Russo, and M. Verani, “Discontinuous Galerkin approximation of
flows in fractured porous media on polytopic grids,” SIAM Journal on Scientific Computing, vol. 41,
no. 1, pp. A109–A138, 2019.

[31] M. Botti, D. A. D. Pietro, and P. Sochala, “A hybrid high-order discretization method for nonlinear
poroelasticity,” Computational Methods in Applied Mathematics, vol. 20, no. 2, pp. 227–249, 2020.

[32] L. Botti, M. Botti, and D. A. Di Pietro, “An abstract analysis framework for monolithic discretisa-
tions of poroelasticity with application to hybrid high-order methods,” Computers & Mathematics
with Applications, vol. 91, pp. 150–175, 2021. Robust and Reliable Finite Element Methods in
Poromechanics.

[33] P. F. Antonietti, L. Mascotto, M. Verani, and S. Zonca, “Stability analysis of polytopic Discontinuous
Galerkin ppproximations of the Stokes problem with applications to Fluid-Structure Interaction
Problems,” J. Sci. Comput., vol. 90, p. 23, Nov 2021.

[34] P. F. Antonietti, M. Botti, I. Mazzieri, and S. Nati Poltri, “A high-order discontinuous Galerkin
method for the poro-elasto-acoustic problem on polygonal and polyhedral grids,” SIAM Journal of
Scientific Computing, vol. 44, no. 1, pp. B1–B28, 2021.

[35] J. de la Puente, M. Dumbser, M. Käser, and H. Igel, “Discontinuous Galerkin methods for wave
propagation in poroelastic media,” Geophysics, vol. 73, pp. T77–T97, 09 2008.

[36] M. Corti, P. F. Antonietti, L. Dede’, and A. M. Quarteroni, “Numerical modeling of the brain
poromechanics by high-order discontinuous galerkin methods,” Mathematical Models and Methods in
Applied Sciences, vol. 33, no. 8, pp. 1577–1609, 2023.

[37] M. Corti, F. Bonizzoni, L. Dede’, A. M. Quarteroni, and P. F. Antonietti, “Discontinuous Galerkin
methods for Fisher–Kolmogorov equation with application to α-synuclein spreading in Parkinson’s
disease,” Computer Methods in Applied Mechanics and Engineering, vol. 417, p. 116450, 2023.

[38] I. Fumagalli, M. Corti, N. Parolini, and P. F. Antonietti, “Polytopal discontinuous galerkin dis-
cretization of brain multiphysics flow dynamics,” 2023. arXiv preprint arXiv:2310.07651.

[39] P. F. Antonietti, M. Botti, and I. Mazzieri, “On mathematical and numerical modelling of mul-
tiphysics wave propagation with polytopal discontinuous galerkin methods: a review,” Vietnam
Journal of Mathematics, vol. 50, no. 4, pp. 997–1028, 2022.

[40] P. F. Antonietti, M. Botti, and I. Mazzieri, “A space-time discontinuous galerkin method for coupled
poroelasticity-elasticity problems,” 2023. arXiv preprint arXiv:2306.01140.

[41] P. F. Antonietti, S. Bonetti, and M. Botti, “Discontinuous galerkin approximation of the fully coupled
thermo-poroelastic problem,” SIAM Journal on Scientific Computing, vol. 45, no. 2, pp. A621–A645,
2023.

[42] S. Bonetti, M. Botti, I. Mazzieri, and P. F. Antonietti, “Numerical modelling of wave propagation
phenomena in thermo-poroelastic media via discontinuous galerkin methods,” Journal of Computa-
tional Physics, vol. 489, p. 112275, 2023.

[43] M. W. Scroggs, I. A. Baratta, C. N. Richardson, and G. N. Wells, “Basix: a runtime finite element
basis evaluation library,” Journal of Open Source Software, vol. 7, no. 73, p. 3982, 2022.

16

[44] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E.
Rognes, and G. N. Wells, “The fenics project version 1.5,” Archive of numerical software, vol. 3,
no. 100, pp. 9–23, 2015.

[45] P. C. Africa, “lifex: A flexible, high performance library for the numerical solution of complex finite
element problems,” SoftwareX, vol. 20, p. 101252, 2022.

[46] P. C. Africa, R. Piersanti, F. Regazzoni, M. Bucelli, M. Salvador, M. Fedele, S. Pagani, L. Dede’, and
A. Quarteroni, “lifex-ep: a robust and efficient software for cardiac electrophysiology simulations,”
BMC bioinformatics, vol. 24, no. 1, p. 389, 2023.

[47] P. C. Africa, I. Fumagalli, M. Bucelli, A. Zingaro, M. Fedele, L. Dede’, and A. Quarteroni, “lifex-
cfd: An open-source computational fluid dynamics solver for cardiovascular applications,” Computer
Physics Communications, vol. 296, p. 109039, 2024.

[48] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J. S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit,
A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina, and
S. Zampini, “Mfem: A modular finite element methods library,” Computers & Mathematics with
Applications, vol. 81, pp. 42–74, 2021.

[49] C. J. Permann, D. R. Gaston, D. Andrš, R. W. Carlsen, F. Kong, A. D. Lindsay, J. M. Miller, J. W.
Peterson, A. E. Slaughter, R. H. Stogner, and R. C. Martineau, “Moose: Enabling massively parallel
multiphysics simulation,” SoftwareX, vol. 11, p. 100430, 2020.

[50] K. A. Lie, An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for
the MATLAB Reservoir Simulation Toolbox (MRST). Cambridge: Cambridge University Press, 2019.

[51] P. F. Antonietti, C. Facciolà, P. Houston, I. Mazzieri, G. Pennesi, and M. Verani, High–order Discon-
tinuous Galerkin Methods on Polyhedral Grids for Geophysical Applications: Seismic Wave Propa-
gation and Fractured Reservoir Simulations, pp. 159–225. Cham: Springer International Publishing,
2021.

[52] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, “Unified analysis of discontinuous Galerkin
methods for elliptic problems,” SIAM Journal on Numerical Analysis, vol. 39, no. 5, pp. 1749–1779,
2002.

[53] A. D. Poularikas, Handbook of Formulas and Tables for Signal Processing. Berlin, Heidelberg:
Springer, 1 ed., 1999.

[54] P. F. Antonietti, P. Houston, and G. Pennesi, “Fast numerical integration on polytopic meshes with
applications to discontinuous Galerkin finite element methods,” J. Sci. Comput., vol. 77, no. 3,
pp. 1339–1370, 2018.

[55] S. E. Mousavi, H. Xiao, and N. Sukumar, “Generalized Gaussian quadrature rules on arbitrary
polygons,” International Journal for Numerical Methods in Engineering, vol. 82, no. 1, pp. 99–113,
2010.

[56] P. F. Antonietti, A. Cangiani, J. Collis, Z. Dong, E. H. Georgoulis, S. Giani, and P. Houston, Review
of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated
Domains, pp. 281–310. Cham: Springer International Publishing, 2016.

[57] A. Quarteroni, Numerical Models for Differential Problems. Milano: Springer, 3 ed., 2017.

[58] P. F. Antonietti, I. Mazzieri, A. Quarteroni, and F. Rapetti, “Non-conforming high order approxima-
tions of the elastodynamics equation,” Comput. Methods Appl. Mech. Engrg., vol. 209, pp. 212–238,
2012.

17

[59] P. F. Antonietti and I. Mazzieri, “High-order discontinuous Galerkin methods for the elastodynamics
equation on polygonal and polyhedral meshes,” Comput. Methods Appl. Mech. Engrg., vol. 342,
pp. 414–437, 2018.

18

MOX Technical Reports, last issues

Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

05/2024 Conti, P.; Gobat, G.; Fresca, S.; Manzoni, A.; Frangi, A.

Reduced order modeling of parametrized systems through autoencoders and SINDy approach:

continuation of periodic solutions

04/2024 Torzoni, M.; Tezzele, M.; Mariani, S.; Manzoni, A.; Willcox, K.E.

A digital twin framework for civil engineering structures

03/2024 Ciaramella, G.; Gander, M.J.; Vanzan, T.

A gentle introduction to interpolation on the Grassmann manifold

02/2024 Parolini, N.; Poiatti, A.; Vene', J.; Verani, M.

Structure-preserving neural networks in data-driven rheological models

Parolini, N.; Poiatti, A.; Vene', J.; Verani, M.

Structure-preserving neural networks in data-driven rheological models

01/2024 Criseo, M.; Fumagalli, I.; Quarteroni, A.; Marianeschi, S. M.; Vergara, C.

Computational haemodynamics for pulmonary valve replacement by means of a reduced

Fluid-Structure Interaction model

109/2023 Clementi, L.; Arnone, E.; Santambrogio, M.D.; Franceschetti, S.; Panzica, F.; Sangalli, L.M.

Anatomically compliant modes of variations: new tools for brain connectivity

106/2023 Fontana, N.; Savaré, L.; Ieva, F.

Integrating state-sequence analysis to uncover dynamic drug-utilization patterns to profile heart

failure patients

108/2023 Arnone, E.; Negri, L.; Panzica, F.; Sangalli, L.M.

Analyzing data in complicated 3D domains: smoothing, semiparametric regression and

functional principal component analysis

105/2023 Cicci, L.; Fresca, S.; Guo, M.; Manzoni, A.; Zunino, P.

Uncertainty quantification for nonlinear solid mechanics using reduced order models with

Gaussian process regression

	qmox06-copertina
	mox-202412412533
	qmox06-terza_di_copertina

