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Abstract

T cell therapy has become a new therapeutic opportunity against solid can-

cers. Predicting T cell behaviour and efficacy would help therapy optimization and

clinical implementation. In this work, we model responsiveness of mouse prostate

adenocarcinoma to T cell-based therapies. The mathematical model is based on a

Cahn-Hilliard diffuse interface description of the tumour, coupled with Keller-Segel

type equations describing immune components dynamics. The model is fed by pre-

clinical magnetic resonance imaging data describing anatomical features of prostate

adenocarcinoma developed in the context of the Transgenic Adenocarcinoma of the

Mouse Prostate model. We perform computational simulations based on the finite

element method to describe tumor growth dynamics in relation to local T cells con-

centrations. We report that when we include in the model the possibility to activate

tumor-associated vessels and by that increase the number of T cells within the tu-

mor mass, the model predicts higher therapeutic effects (tumor regression) shortly

after therapy administration. The simulated results are found in agreement with

reported experimental data. Thus, this diffuse-interface mathematical model well

predicts T cell behavior in vivo and represents a proof-of-concept for the role such

predictive strategies may play in optimization of immunotherapy against cancer.

Keywords: T cell therapy, vessel activation, Cahn-Hilliard, Keller-Segel, prostate cancer,

TRAMP model, MRI.

1 Introduction

Latest developments in immuno-oncology have rejuvenated the interest in active and

adoptive immunotherapy. Adoptive immunotherapy with tumor-specific T cells, in par-

ticular, has become a clinical reality thanks to the possibility to deliver tumor-specific T
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cells, either expanded from tumor lesions or genetically engineered with TCR or CAR spe-

cific for tumor antigens starting from the patient’s peripheral blood lymphocytes. While

clinical responses are now consistently observed in the case of hematologic cancers, solid

tumors lag behind due to the presence of specific challenges, such as poor lymphocyte

intratumoral infiltration, local immuno-suppressive mechanisms and tumor heterogeneity.

In addition, difficulties in predicting on target and off target off tumor toxicity delay

wider clinical use of this potent strategy. One of the most important events linked to

therapeutic efficacy is T cell seeding within the tumor mass. To date, T cell fate upon

in vivo infusion is mainly performed via ex-vivo blood analysis. Quantitative analysis of

T cell intratumoral infiltration might instead help define efficacy of the strategy at an

early stage. To this aim, non invasive imaging strategies based on magnetic resonance

imaging (MRI) have been under growing consideration. Such data have the potential to

inform biomathematical models of T cell responses, and offer predictive tools to evaluate

patient-specific responses and inform personalized approaches.

In the last decades, much effort has been devoted to model cancer-immune system

interactions at the molecular, cellular and tissue scales [1, 2]. A key contribution was ini-

tially given by Kirschner and Panetta [3], who described the temporal dynamics between

tumor cells, immune-effector cells and cytokines, explaining both the short-term oscilla-

tions in tumor sizes and the long-term tumor response. Similarly, Nani and Freedman [4]

derived generalized criteria for determining the efficacy of adoptive cell immunotherapy.

Further approaches based on the population dynamics theory have been proposed in [5–

7] based on a limited number of ordinary differential equations (ODEs). In particular,

Jafarnejad et al. [8] proposed an extended system of ODE to integrate the antibody

pharmaco-kinetics and immune checkpoint dynamics to mimic patients specific response

to immunotherapy. A further step was taken by Lai and Friedman [9] and by Butner et
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al. [10], who included in the model the spatial dynamics through the use of partial differ-

ential equations (PDE). The stochastic interactions between tumour cells and stroma was

then further taken into account by using agent-based models [11]. Anti-tumour efficacy

of therapies combination was also modeled using the evolutionary game theory [12]. More

recently, hybrid mathematical models were found to perform well in describing putative

therapies outcomes [13–15], although not taking into account relevant patient-specific fea-

tures, such as anatomical tumor localization, degree of perfusion and spatial constraints

on drug accessibility.

This work proposes a diffuse-interface mathematical model to simulate pre-clinical

data of immunotherapy in solid tumours. We have taken advantage of knowledge based on

the Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model [16–18], which

is largely used to study the underlying disease mechanisms and to test new therapies

against prostate cancer [19, 20]. Recent studies have found that TRAMP mice with

established adenocarcinoma can be cured by allogeneic hematopoietic cell transplantation

or by autologous T cells redirected to the tumor by the genetic engineering with T cells

against tumor antigens [18, 21–23]. These strategies are based on the combination of

lymphodepleting strategies (that create space for infused T cells), and the transfer of

fully functional tumor-specific lymphocytes (from now on referred to as T cell therapy),

able to infiltrate the tumor in response to chemokine gradients. Our modeling approach

thus exploits MRI images of the diseased prostate, and available knowledge on the events

that regulate T cell bio-distribution in vivo. Our work is of timely interest as it will assist

the optimization of immunotherapeutic strategies and their translation to clinical grade

protocol and also help to reduce excessive use of animal tests.

The article is organized as follows. In Section 2, we describe the acquisition of MRI

imaging data of the prostate of TRAMP mice needed to build the computational mesh.
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In Section 3 we derive the multi-physics model and its numerical implementation from

thermodynamic arguments. In Section 4, we present the main results of numerical simu-

lations, that are finally discussed in Section 5, together with a few concluding remarks.

2 Materials and Methods

2.1 Transgenic of the prostate mouse (TRAMP) model

The Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model [24] allows to

define therapy efficacy over the course of autochthonous tumor growth. TRAMP mice

express the SV40 early genes (small and large T antigens; Tag) under the control of

the androgen-driven rat probasin regulatory element [25]. As a result, at puberty male

mice invariably develop spontaneous prostate intraepithelial neoplasia (mPIN; week 6-

12), adenocarcinoma (week 12-18), with lymph node and visceral metastasis (week 18-

30), closely mimicking the human pathology [26]. Because of thymic Tag expression,

high affinity Tag-specific thymocytes in TRAMP mice are deleted [27]. After puberty,

overexpression of Tag within prostate epithelial cells, quantitatively similarly to other

prostate-associated antigens, e.g. [28, 29], also causes the loss of responsiveness of low

avidity Tag-specific T cells [30]. Thus in TRAMP mice, prostate cancer (PC) development

and Tag-specific immune responses well recapitulate the tolerant status found in patients

with advanced PC [31]. Heterozygous CD45.2+ C57BL/6 TRAMP mice used for this work

were housed, bred and genotyped in a specific pathogen-free animal facility in accordance

with the EU guidelines, and with the approval of the Institutional Ethical Committee

(IACUC).
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2.2 In vivo Imaging

In vivo MRI data were acquired using a 7-Tesla scanner (Biospec, Bruker BioSpin MRI

GmbH). Mice were anesthetized with isoflurane mixed with oxygen and then placed on

a warmed bed inside the volumic radiofrequency coil. Following initial scans for general

anatomical localization, T2 weighted images were acquired in coronal with a fast-spin

echo sequence with suitable parameters to delineate the prostate (TR/TE= 3500/40 ms,

matrix = 128 x 128, FOV = 30x20 mm and thickness = 1 mm). Diffusion weighted images

(DWI) were then acquired to identify prostate tumor areas, according to an echo planar

image sequence with the following parameters: TR/TE = 3000/23.3 ms, 4 averages,

matrix = 128x128, b values = 0, 400, 600, 800, 1000 ms). The map of the apparent

diffusion coefficient (ADC) was automatically calculated from the DWI data set using the

scanner software (Paravision 6, Bruker BioSpin MRI GmbH).

Figure 1: Example of MRI data of a TRAMP prostate. From the T2 weighted MR image
(left) the whole prostate could be delimited. From the diffusion weighted images (DWI),
and the corresponding map of the ADC, apparent diffusion coefficient (right), allowed
the detection of the tumor area (delineated in red) in the left dorsal prostate lobe with a
reduced ADC compared to healthy prostate.
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3 Mathematical Model

The response to immunotherapy, in the form of T cell therapy, is modeled in the TRAMP

mouse by adopting a diffuse-interface mathematical model. We first derive the system

of partial differential equations governing tumor evolution under therapy. Secondly, we

describe the biological parameters and the numerical scheme adopted for the in silico

simulations.

3.1 Diffuse interface approach

The prostate is modeled as an incompressible biphasic mixture, made by the tumor, i.e.

a cellular phase with volume fraction φc = φc(x, t), and the healthy host tissue, i.e. a

liquid phase with volume fraction φl = φl(x, t).

We assume that the mixture is saturated, i.e. φc + φl = 1, and that the two phases

have approximately the same density as the one of water, that is denoted by γ. Then, we

enforce the following mass balance equation for each phase:

∂φi
∂t

+∇ · (φiv i) =
Γi
γ
, i = {c, l} (1)

where vc and vl refer to the convective velocity of the cellular and the liquid phase

respectively. Moreover, we prescribe Γc = −Γl. Accordingly, the mixture is closed and

summing the two equations (1) we obtain:

∇ · (φcv c + φlv l) = ∇ · v = 0, (2)

which corresponds to an incompressibility constraint for the mixture velocity, that is de-

fined as v = φcv c + φlv l.
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If we now define φ as the difference between the two volume fractions of the mixture,

φ = φc − φl, we can deduce the equation for the new phase field variable subtracting the

two equations (1):

∂(φc − φl)
∂t

+∇ · (φcv c − φlv l) =
Γc − Γl
γ

. (3)

Then, introducing the mass fluxes of the two phases with respect to a reference system

moving with the mixture velocity v [32]:

J c = γφc(v c − v),

J l = γφl(v l − v),

(4)

and defining the total mass flux related to cell interactions

J =
1

γ
(J c − J l), (5)

we obtain the following identity:

φcv c − φlv l = φv + J , (6)

which allows to rewrite equation (3) as:

∂φ

∂t
+∇ · (φv) +∇ · J =

Γ

γ
, (7)

where Γ = Γc − Γl = 2Γc is assumed to depend on the local concentration of oxygen.

Considering then the mixture as highly viscous and in absence of external forces, we
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adopt a diffuse interface approach to find a thermodynamically consistent expression for

the mass flux. First, we choose the following Helmholtz free energy for the binary mixture:

F (φ) =

∫
Ω

(
κΨ(φ) +

ε2

2
|∇φ|2

)
dΩ, (8)

where Ω represents the volume occupied by the whole organ. The energy density in

the integral accounts for cell-to-cell local interactions within each individual pure phase

(healthy or diseased tissue), κΨ(φ), and the cell interactions between the two phases,

through the gradient contribution representing the tension at the interface between the

two phases (|∇φ|), [33, 34]. The parameter κ instead denotes the Young modulus of the

prostate, while ε is a parameter proportional to the thickness of the interface separating

the two pure phases. To unequivocally define the free-energy, we chose a double-well

form for the cell-cell interaction potential and set Ψ(φ) = 1
4
(1− φ2)2, so that Ψ’s minima

φ = {−1} and φ = {1} correspond to the two pure phases, healthy and tumor respectively.

Motivated by the Fick’s law, we now assume J to be proportional to the gradient of a

chemical potential

µ =
δF (φ)

δφ
,

where δ indicates the Gateaux functional derivative, such that:

J = − 1

M0

∇µ,

where M0 is a friction coefficient.

To close the model, we prescribe the functional dependence of the source term Γ
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appearing in (7) on the local oxygen concentration by setting

Γ = Γ(φ, n) = νγ
( n
ns
− δ
)
h(φ)− I(φ, t),

where ν is the tumor cells proliferation rate, n is the variable describing the concentration

of the oxygen, ns is a physiological value for oxygen concentration in the capillaries, δ

is the hypoxia threshold and h(φ) = 1
2
(1 + φ) the indicator function of the tumor set.

The I(φ, t) loss term in the expression for Γ, whose shape will be detailed in Section 3.2,

physically represents the tumor cell death provoked by immunotherapy. Finally, we add

a reaction-diffusion equation describing the spatial availability of oxygen concentration.

This, for sake of simplicity, will be represented thereafter by a non-dimensional variable

n̂ = n/ns.

Thus, the system of equations describing the cancer growth in the model is:

∂φ

∂t
= ∇ ·

(
1

M0

∇µ
)

+ νγ
(
n̂− δ

)
h(φ)− I(φ, t), (9)

µ = κΨ′(φ)− ε2∆φ, (10)

∂n̂

∂t
= ∇ · (Dn∇n̂) + Sn(1− n̂)

1

3
(2− φ)− δnn̂h(φ). (11)

on the domain Ω × [0, T ] with T > 0. With Equation (11) we model the evolution of

the local nutrient concentration. In particular, assuming that the vasculature within the

tissue is homogeneous, we take into account the oxygen release and uptake by means of

the blood vessels to the organ. We assume this process to occur at a constant rate Sn,

and to be reduced in the tumor region due to proliferating tumor cells damaging the

capillaries [34]. We also assume that once the oxygen is released, it diffuses in the organ
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with diffusivity Dn and it is consumed by the cancer cells at rate δn. In addition, we

assume oxygen uptake and consumption to be in equilibrium in the healthy tissue due to

preserved vasculature [34]. It is worth mentioning that Equation (9) is a Cahn-Hilliard

type equation with constant motility equal to the inverse of a friction parameter M0,

double-well potential and source terms. Finally, we enforce the no-flux conditions for all

the three variables involved in the model, assuming that the tumor cannot grow beyond

the prostate outline and oxygen can only be delivered by capillaries. The physical values

of the model parameters along with the initial conditions will be discussed in Section 3

and Section 4, respectively.

3.2 Immunotherapy model

We now discuss the functional expression of the immunotherapy term I(φ, t) in Equation

(9). As mentioned in Section 1, we target the proposed model to TRAMP mice subjected

to T cell therapy comprised of autologous TCR engineered T-lymphocytes transferred

by tail vein injection. Our purpose is to model the spatio-temporal dynamics of the

distribution of injected T cells in the target organ and their interaction with cancer cells.

Driven by biological considerations, we assume that lymphocytes extravasate in the

prostate, in response to tissue inflammation - proportional to the concentration of chemokines

α - typically higher than the physiological level αi in the vascular system, to then return

to the blood once the chemokine gradients drops, reaching Lr concentration. We also

assume that T cell extravasation into tissues and also their release is influenced by blood

vessels permeability, and we defined this recruitment/retention rate as SL [35, 36]. Once

in the tissue, T lymphocytes could redistribute according to chemokine gradients, also

freely diffuse. This is taken into consideration with the diffusivity coefficient DL. Given
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that T cells could proliferate to variable extents at the tumor site, we decided to neglect

T cell division. Thus, we consider the T-lymphocytes concentration L to be dependent

on chemokine dynamics and fully described by the following Keller-Segel type system:

∂L

∂t
= DL∆L−∇ ·

(
χL

(β + α)2
∇α

)
+ SL

α− αi
α

[L− Lr]+, (12)

∂α

∂t
= Dα∆α + kαLh(φ)− dαα, (13)

where [ ]+ denotes the positive part of its argument. It is important to remark that the

inflammation-sensitive form of the chemotactic coefficient χL
(β+α)2

in Equation (12) mod-

els the interaction between the chemokines and their receptors on the T lymphocytes.

The term is non-linear as we meant to model the influence of chemokines concentration

on cell migration [37]: data indicate that in the presence of high chemokines concentra-

tions, T cells no longer respond to chemokine gradients because of receptor desensitization

[38]. Equation (13) governs the spatio-temporal evolution of the chemokines concentra-

tion. It should be considered that tumor-specific engineered T-lymphocytes promote local

chemokine upregulation by the secretion of inflammatory cytokines [39]. Here Dα is the

chemokines diffusivity coefficient, while kα and dα are their production and decay rate,

respectively. No-flux conditions for the chemokines and lymphocytes concentration are

enforced at the domain boundary.

Since tumor mass reduction is an index of T cell therapy efficacy, following [40–42] we

model the contribution of immunotherapy with the following loss term in Equation (9):

I(φ, t) = kf (t)h(φ) = d
L̂λ

sV̂ + L̂λ
h(φ), (14)

where kf (t) takes into account tumor rejection (physical elimination of the tumor cells).
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Here, L̂ = L/Li where Li is the critical T-lymphocytes concentration associated to optimal

anti-tumor responses. The term sV̂ = sV/V0, on the other hand, accounts for the tumor

dimension and depends linearly on the actual tumor volume V = V (t) =
∫

Ω
h(φ(x, t)) dV

and initial tumor volume V0, through a steepness coefficient s. The latter refers to the

intrinsic ability of lymphocytes to react to tumors, which is influenced by tumor size

and geometry: the smaller is the value of s, the more effective is the therapy outcome. In

addition, d and λ are morphology-dependent parameters describing the velocity of the lysis

process. Thus s, d and λ jointly influence the tumor behavior at given cell concentration

and tumor volume.

3.3 Biological parameters

The choice and the calibration of equations parameters is of utmost importance for both

having realistic simulations and translating the outcomes into clinical settings. In the

present work all the parameters are either taken from available pertinent literature or

estimated through physical relations wherever possible. In this section, we report the

range values for each parameter in the model subdivided according to their biological

significance. The values related to tumor free-growth, local immune-system dynamics

and tumor elimination are reported in Table 1, Table 2 and Table 3, respectively. Where

the value/range could not be derived from pertinent literature or inferred, it was set in

order to fit the experimental outcomes.

It should be noted that Li represents the threshold value for T-lymphocytes counts

needed for tumor regression, indicative of therapy efficacy, and it was estimated by divid-

ing the two-dimensional cell density reported in [18] by the cell diameter, i.e. 10-15 µm

[43].
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Parameter description Value Ref or formula

ν Tumor cells proliferation rate 0.17 - 0.25 day−1 [44]
M0 Tumor inter-phase friction 1.37 - 3.99 (kPa·day)/mm2 [45]
r Tumor cell radius 0.01 mm [46]
χ Tumor interstitial fluid pressure 1553.2 Pa [47]

ε Diffuse interface thickness 0.79 mm·
√

Pa 2r
√
χ

κ Prostate Young modulus 6.227 · 104 Pa [48]

δ Hypoxia threshold 0.15 [49]
Dn Oxygen diffusion coefficient 155.52 mm2/day [49]
ln Oxygen penetration distance 0.1 mm [50]
δn Oxygen consumption rate 15552 day−1 Dn/l

2
n

ns Oxygen concentration in vessels 0.07 mM [51]
Sn Oxygen supply rate 104 day−1 [52]

Table 1: Values or ranges of values for the physical parameters in the tumor model.

Parameter description Value Ref

DL Lymphocytes diffusion coefficient 7 · 10−3 mm2/day [53]
χ Lymphocytes chemotactic coefficient 2 · 101

molecules/(mm·day)
[ - ]

β Sensitivity function parameter 103 molecules/mm3 [ - ]
SL Lymphocytes release/uptake rate 0.08 - 0.45 day−1 [ - ]
αi Inflammation threshold 6.022 · 102

molecules/mm3
[ - ]

Lr Lymphocytes reference value 5 · 102 cells/mm3 [ - ]
Dα Chemokines diffusion coefficient 0.01 - 1 mm2/day [53]
kα Chemokines production rate 2.88 · 104 - 4.32 · 106

molecules/(cells·day)
[53]

dα Chemokines consumption rate 1.155 · 10−2 day−1 [53]

Table 2: Values or ranges of values related to the local immune-system dynamics.

Parameter description Value Ref

d Saturation level of fractional tumor cell kill 1.43 - 7.9 day−1 [40–42]
λ Exponent of fractional tumor cell kill 0.12 - 0.9 [40–42]
s Steepness coefficient of fractional tumor cell kill 0.14 - 5.07 [40–42]
Li Critical T cell concentration 4 · 104 − 6 · 104 cells/mm3 [18]

Table 3: Ranges of values referred to the tumor lysis process by means of the therapy.
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Figure 2: (Left) External prostate surface mesh extracted form MRI. (Right) Axial inner
slice of the mesh with the refinement in the tumor region.

3.4 Numerical framework

Numerical simulations are obtained by the library FEniCS for solving partial differential

equations using finite element methods [54, 55]. The mesh of the prostate is generated by

processing pre-clinical MRI data acquired according to the protocol detailed in Section 2.

From the T2 MRI sequence we obtained a segmented map of the organ and we gen-

erated a computational mesh reproducing the mouse prostate by applying smoothing fil-

ters[56, 57]. Then, we identified the tumor position from the diffusion-weighted sequences

and we refined the mesh in the surrounding area assuming the tumor to be spherical for

sake of simplicity. The obtained unstructured mesh contains about 105 tetrahedra and it

is illustrated in Figure 2.

Besides the domain partition in tetrahedral elements, which we later refer to as Th, we

introduce the partition of the time interval [0,T] in N discrete sub-intervals ∆t = T/N ,

thus defining the n-th simulation time-point tn = n∆t with n = 0, .., N . Within this

framework, we introduce the following finite element space:

Vh = {χ ∈ C0(Ω̄) : χ|Kj
∈ P1(Kj) ∀Kj ∈ Th} ⊂ H1(Ω),
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where P1(Kj) denotes the space of polynomials of order one on the tetrahedron Kj and

H1(Ω) is an Hilbert space containing L2(Ω) functions whose weak derivatives of order up

to 1 belong to L2(Ω).

Thus, starting from a set of initial data (φ0
h, n

0
h, L

0
h, α

0
h) ∈ Vh × Vh × Vh × Vh the fully

discrete problem reads as follows:

for n = 1,...,N

find (φn+1
h , n̂n+1

h , Ln+1
h , αn+1

h ) ∈ Vh × Vh × Vh × Vh

such that ∀(ϕh, qh, ph, rh) ∈ Vh × Vh × Vh × Vh:

(αn+1
h − αnh

∆t
, ph

)
= −Dα(∇αn+1

h ,∇ph) + kα(Lnhh(φnh), ph)− dα(αn+1
h , ph) (15)

(Ln+1
h − Lnh

∆t
, rh

)
=−DL(∇Ln+1

h ,∇rh) + χ

(
Ln+1
h

(β + αn+1
h )2

∇αn+1
h ,∇rh

)

+ SL

(
αn+1
h − αi
αn+1
h

[Lnh − Lr]+, rh

)
.

(16)

(φn+1
h − φnh

∆t
, ϕh

)
=− 1

M0

(∇µn+1
h ,∇ϕh) + ν((n̂n+1

h − δ)h(φnh), ϕh)

− d
( (Ln+1

h /Li)
λ

sV n/V 0 + (Ln+1
h /Li)λ

h(φnh), ϕh

)
,

(17)

(µn+1
h , vh) = ε2(∇φn+1

h ,∇vh) + κ(Ψ′c(φ
n+1
h ), vh) + κ(Ψ′e(φ

n
h), vh), (18)( n̂n+1

h − n̂nh
∆t

, qh

)
=−Dn(∇n̂n+1

h ,∇qh) + Sn

(
(1− n̂n+1

h )
1

3
(2− φnh), qh

)
− δn(n̂n+1

h h(φnh), qh),

(19)

where (·, ·) denotes the standard L2 inner product over Ω and we prescribe the following

splitting for the Cahn-Hilliard potential:

Ψc(φ
n+1
h ) =

(φn+1
h )4 + 1

4
, Ψe(φ

n
h) = −(φnh)2

2
,

16



to ensure the gradient stability of the scheme [58]. It should be noted that the Keller-

Segel-type system, representing the coupled evolution of lymphocytes and chemokines,

is subject to a pathological unbounded aggregation process, which leads to a blow-up of

the solution. This problem is partially overcome by properly choosing the chemotactic

sensitivity function in Equation (12). Nonetheless, this correction alone cannot avoid the

occurrence of negative values for lymphocyte/chemokine concentrations in some regions of

the domain. Thus, following [59–62], we also adopt a positivity-preserving finite element

scheme to avoid non-physical numerical oscillations.

4 Results

In this Section, we present the results obtained by the numerical simulations of the math-

ematical model introduced in Section 3. We first discuss the initial data given as input

to the model and we later evaluate responses to different immunotherapy scenarios.

4.1 Initial data

We assume that the tumor can be roughly approximated by a spherical shape and we

extract from the DWI sequences the coordinates xc of the tumor center and the approxi-

mate radius rc. We define T0 = {x : (x−xc)
2 < r2

c} as the tumor region at the initial time

and we set φ0(x) = φ(x, t = 0) = 1 ∀x ∈ T0 and φ0(x) = φ(x, t = 0) = −1 ∀x ∈ Ω \ {T0}.

Hence, we model a virtual adenocarcinoma of 0.1 mm3 located in the left dorsal lobe of the

mouse prostate. The initial oxygen distribution n̂0(x) = n̂(x, t = 0) is obtained by solving

the steady-state version of the Equation (11), thus following the spatial distribution of

φ0, as depicted in Figure 3.

Furthermore, for the sake of simplifying the biological reality, we define a gaussian
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Figure 3: Axial slices of the phase field φ0 (left) and nutrient n0 (right) at the initial time
step.

Figure 4: Axial slices of the lymphocytes L0 (left) and chemokines α0 (right) concentration
at the initial time step.

distribution in space as the initial condition for chemokine concentrations. i.e. α0(x) =

α(x, t = 0) = a exp(b−2(x − xc)
2), with a = 6.022e + 04 molecules/mm3 and b =

√
0.09

mm. Thereby, the peak of the concentration is artificially located at the tumor center and

the gradient promoting cell recruitment in the neighboring area. At the same time, we

assume that T cells are mainly located in a thin ring surrounding the peripheral tumor

area [63]. Indeed, although they are attracted by tumor-derived inflammatory signals due

to limited infiltration, they generally react to the tumor at its boundaries, i.e. the most

peripheral ring [64]. Thus we impose L0(x) = L(x, t = 0) = c1(Tδ), where c = 1.2e + 02

cells/mm3 and Tδ = {x : ||(x− xc)
2 − r2

c || < δ} with δ � r2
c , see Figure 4.
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4.2 Simulation of responses to combined immunotherapeutic

approaches

Limited T cell infiltration into the tumor mass, especially in the case of solid tumors,

hinders therapeutic effects of current T cell-based therapies. To overcome this hurdle,

agents able to normalize the tumor associated vessel and increase vessel permeability

(vessel activation) have been used by us and others [22, 35, 65]. Data support the notion

that this strategy improves T cell representation and infiltration within the tumor mass,

correlating with superior anti-tumor therapeutic activity [18, 21–23]. Thus, in modeling

in silico putative responses, we consider three treatment modalities in Figure 5: (a) none,

or (b) T cell therapy at day 0, or (c) T cell therapy combined with an agent able to

activate tumor-associated vessel (vessel activation) at day 0. Of these strategies only the

latter has curative potential [22, 23].

Figure 5: Treatment options: a) none; b) T cell therapy; c) T cell therapy + vessel
activation.

We depict in Figure 6 (left) the curves of the tumor volume within 30 days from

therapy administration. Qualitatively different responses are found when T cell therapy
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and vessel activation are combined with respect to T cell therapy alone. Of note, in the

presence of vessel activation, the number of lymphocytes infiltrating the tumor increases

at earlier times compared to controls reaching a critical threshold correlating with tumor

shrinkage Figure 6 (right). The different scenarios are reproduced with the same set of

initial data and parameters except for the value of the lymphocytes release rate SL, which

is set in the range 0.08-0.15 day−1 in case of T cell therapy alone and in the range 0.25-0.45

day−1 in presence of vessel activation. Indeed, higher values of SL mimic the role of vessel

activation, able to promote lymphocyte extravasation into the tumor micro-environment.

The numerical simulations show that the tumor volume is slighter slower in the T cell

therapy scenario compared to the control one, although no signs of tumor disappearance

is evident. When T cell therapy and vessel activation are combined, an inversion of the

tumor growth curve is observed leading complete tumor debulking. The same trends are

visible also from the axial slice in Figure 7.

When considering the intratumoral pattern of lymphocytes and chemokines, shown in

Figure 8, it appears qualitatively similar in the case of T cell therapy without or with

vessel activation. However, the intratumoral lymphocytes concentration increases in time

most significantly in the case T cell therapy and vessel activation are combined, see Figure

9. This is also evidenced by the thickening of a peripheral ring made of infiltrating T cells

within the tumor, which is paralleled by a reduction in the tumor volume (respectively

depicted in Figure 9 and Figure 6).

Thereby, the model exhibits a threshold behavior with respect to a critical T cell

concentration: when T cells remain below a certain number therapeutic effects remain

suboptimal, instead above the defined threshold infiltrating cells correlate with tumor

eradication. From the trends reported in Figure 6 (right), the above mentioned critical

value is estimated in the range 1 · 104 − 2.5 · 104 cells/mm3, found at the time the curves
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Figure 6: Temporal evolution of the tumor volume (left) and of the associated maximum
value of lymphocytes concentration (right) for distinct therapeutic scenarios: (blue) the
free growth in absence of therapy - case a), (orange and green) T cell therapy - case
b) and (red, purple and brown) T cell therapy with vessel activation - case c), with the
corresponding values of lymphocyte release rate (SL) shown in the legend. The blue circles
indicate the curve values at the initial times (red circles) of growth inversion.

associated with beneficial therapeutic outcomes present the elbow (red and blue spots).

We notice that the numerical range for the threshold value is coherent with that found in

treated prostate of TRAMP mice correlating with tumor rejection [18].

5 Discussion and concluding remarks

In vivo trials have shown that T cell therapy can be an effective immunotherapeutic

strategy for treating cancer. In this work we propose a new mathematical tool to predict

responses in pre-clinical T cell-based approaches. The partial differential model is derived

from thermodynamic principles within the framework of the mixture theory. It is based

on a non-degenerate Cahn-Hilliard equation with a double well potential describing the

tumor evolution coupled with a reaction diffusion equation for the oxygen concentration

and a Keller-Segel type system describing the immune-system exchanges. The interaction
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Figure 7: Axial slices representing tumor evolution in time within different scenarios:
(left) no therapy; (center) T cell therapy where SL = 0.08 day−1; (right) T cell therapy
combined with vessel activation where SL = 0.35 day−1.
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Figure 8: Lymphocytes and chemokines evolution at different time steps (SL = 0.35
day−1).

Figure 9: Lymphocytes concentration at t = 15 days (left) for the scenario of T cell
therapy where SL = 0.08 day−1, (right) for the scenario T cell therapy combined with
vessel activation where SL = 0.35 day−1.
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between the tumor cells and the T cells is modeled through a Michaelis-Menten term. In

addition, we include T cell extravasation from the blood and intratumoral infiltration to

model effects of vessel activation.

The model is numerically discretized and computationally solved by using the finite

element method on a virtual geometry of the mouse prostate reconstructed from MRI

images. Moreover, the initial geometry of the tumor is extracted from the diffusion-

weighted images with the assumption of a spherical tumor shape. Accordingly, we have

performed and discussed in silico simulations of three different scenarios: 1) tumor growth

without therapeutic intervention, 2) in the presence of T cell therapy and 3) in the presence

of T cell therapy followed by vessel activation.

The numerical simulations are qualitatively in agreement with reported experimental

results [18]. Indeed, considering a time lapse of 30 days, the tumor continues to grow in

absence of therapy, whereas it reveals sensitive to T cell therapy according to the absence

or the presence of vessel activation. In accordance with previously published data, our

model reproduces the dependence of therapy efficacy on intratumoral T cell concentration.

Indeed, as pre-clinical trials indicated that the number of lymphocytes can be modulated

by tuning blood vessel activation and permeability, also varying the lymphocytes release

rate in the numerical model resulted in higher T cell accumulation within the tumor. As a

matter of fact, if we consider an improved ability of the vessels to deliver a sufficiently high

number of T cells, model results show higher tumor rejection a few weeks from therapy

administration.

This work can be intended as a proof-of-concept for exploiting mathematical models

in support of investigations centered on T cell-based therapies. Indeed it offers a tool to

predict therapy outcome and thus optimize and speed up the development of therapeutic

protocols. Our simulation results suggest that a good modulation of the tumor micro-
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environment promotes the lymphocytes delivery within the tumor mass. Moreover, the

model highlights a threshold behavior of therapy efficacy with respect to the number of

T cells that are able to reach the target organ. The numerical threshold value found in

Section 4 is in line with that experimentally validated to result in tumor disappearance

[18]. In the next future, we aim to enrich the model by including anisotropy in tumor

expansion and in nutrient diffusion, thus taking into account diffusion tensor imaging data.

We also aim to calibrate and to validate the model results against a larger experimental

data set of pre-clinical trials on TRAMP mice.

In conclusion, this work represents a seminal step towards the creation of a compu-

tational tool, which integrates modeling, imaging and pre-clinical data, and supports the

development of more efficient immunotherapy against cancer. This tool might support

pre-clinical development of new approaches, and minimize the use of experimental ani-

mals. In addition, in association with longitudinal MRI-based patients follow up studies,

it could help clinicians to tailor T cell based approaches to single patients, also minimizing

unwanted therapy’s side effects.
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[41] A. Garćıa, J. Seoane, and M. Sanjuán. “On the fractional cell kill law governing the

lysis of solid tumors.” In: (Jan. 2016).
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