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Abstract

We introduce a diffuse interface box method (DIBM) for the numerical approximation on com-
plex geometries of elliptic problems with Dirichlet boundary conditions. We derive a priori H1

and L2 error estimates highlighting the rôle of the mesh discretization parameter and of the diffuse
interface width. Finally, we present a numerical result assessing the theoretical findings.
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1 Introduction

The finite volume method (FVM) is a popular numerical strategy for solving partial differential equa-
tions modelling real life problems. One crucial and attractive property of FVM is that, by construction,
many physical conservation laws possessed in a given application are naturally preserved. Besides,
similar to the finite element method, the FVM can be used to deal with domains with complex ge-
ometries. In this respect, one crucial issue is the construction of the computational grid. To face
this problem, one can basically resort to two different types of approaches. In the first approach, a
mesh is constructed on a sufficiently accurate approximation of the exact physical domain (see, e.g.,
isoparametric finite elements [9], isogeometric analysis [10], or Arbitrary Lagrangian-Eulerian formula-
tion [11,16,17]), while in the second approach (see, e.g., Immersed Boundary methods [19], the Penalty
Methods [2], the Fictitious Domain/Embedding Domain Methods [4–6], the cut element method [7,8]
and the Diffuse Interface Method [18]) one embeds the physical domain into a simpler computational
mesh whose elements can intersect the boundary of the given domain. Clearly, the mesh generation
process is extremely simplified in the second approach, while the imposition of boundary conditions
requires extra work. Among the methods sharing the second approach, in this paper we focus on the
diffuse interface approach developed in [20]. In parallel, we consider, for its simplicity, the piecewise
linear FVM, or box method, that has been the object of an intense study in the literature (see, e.g.,
the pioneering works [3, 15] and the more recent [12,21]).

The goal of this paper is to propose and analyse a diffuse interface variant of the box method, in
the sequel named DIBM (diffuse interface box method), obtaining a priori H1 and L2 error estimates
depending both on the discretization parameter h (dictating the accuracy of the approximation of the
PDE) and the width ε of the diffuse interface (dictating the accuracy of the domain approximation).
Up to our knowledge, this is new in the literature. Besides, the study of DIBM for elliptic problems,
despite its simplicity, opens the door to the study of more complicated differential problems and to
the analysis of diffuse interface variants of more sophisticated finite volume schemes.

The outline of the paper is as follows. In section 2 we briefly recall the box method, while in
section 3, we present the diffuse interface box method (DIBM) along with a priori error estimates.
Finally in section 4 we will provide a numerical test to validate the theoretical results. The numerical
results have been obtained using the open-source library OpenFOAM®.
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2 The box method

In this section, we recall (see [3, 15, 21]) the box method for the solution of an elliptic problem. Let
D ⊂ R2 be a polygonal bounded domain (in the following section this hypothesis will be relaxed). We
consider the following problem: {

−∆u = f, in D

u = g, on Γ = ∂D,
(2.1)

where f ∈ L2(Ω) and g ∈ H1/2(Γ).
Let Th = {ti} be a conforming and shape regular triangulation of D. We denote by ht the diameter

of t ∈ Th and we introduce the set Vh = {vi} of vertices of Th with Vh = V∂h∪Voh, the set Voh containing
the interior vertices of Th. We denote by wv the set of triangles sharing the vertex v. On Th we define
the space of linear finite elements

Vh,gh =
{
vh ∈ C0(D̄) : vh|t ∈ P1(t) ∀t ∈ Th and vh = gh on ∂D

}
,

where gh is a suitable piecewise linear approximation of g on ∂D.
Let Bh = {bv}v∈Voh be the “box mesh” (or dual mesh) associated to Th. Each box bv is a polygon

with a boundary consisting of two straight lines in each related triangle t ∈ wv. These lines are defined
by the mid-points of the edges and the barycentres of the triangles in wv.

On Bh we introduce the space of piecewise constant functions,

Wh =
{
wh ∈ L2(D) : wh ∈ P0(bv) ∀bv ∈ Bh

}
.

The box method for the approximation of (2.1) reads as follows: find uB,h ∈ Vh,gh such that

aTh(uB,h, wh) = (f, wh)D ∀wh ∈ Wh, (2.2)

where

aTh(uB,h, wh) = −
∑
v∈Voh

∫
∂bv

∂vh
∂nb

whds, (2.3)

being nb the outer normal to bv and (·, ·)D is the usual L2 scalar product on D.
Note that there holds (see [3, 15] for the two dimensional case and [21] for the extension to any

dimension) ∫
∂bv

∂φv′

∂nb
whds =

∫
D
∇φv · ∇φv′dx, ∀v ∈ Voh, ∀v′ ∈ Vh, (2.4)

where φv is the usual hat basis function with support equal to wv.
The relation (2.4) is crucial to show the following perturbation results (see [15,21]):

‖∇(uB,h − uG,h)‖L2(D) ≤ Ch ‖f‖L2(D) ,

‖uB,h − uG,h‖L2(D) ≤ Ch
2 ‖f‖L2(D) ,

(2.5)

where h = maxt∈Th ht and uG,h ∈ Vh,gh is the linear finite element approximation to the solution of
problem (2.1).

3 The box method with diffuse interface (DIBM)

The aim of this section is to introduce a variant of the box method for the approximate solution of
problem (2.1) in case of a general (non-polygonal) domain D ⊂ R2, where in the spirit of [20] the
Dirichlet boundary condition is treated with a diffuse interface approach. To this aim we introduce an
hold-all domain Ω such that D ⊂ Ω. In the sequel we will work under the hypothesis Γ = ∂D ∈ C1,1.
With a slight abuse of notation we denote by Th a shape regular triangulation of Ω. It is worth noting
that Th is not conforming with D. Following [20] we first select a tubular neighbourhood Sε of Γ,
where ε denotes the width of Sε (see Figure 1). Then we introduce the set Sεh which contain s all the
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Figure 1: Diffuse interface representation: D is a surrogate domain of Ω; Γ is the Dirichlet boundary
and Sε is its tubular neighbour.

triangles of Th having non-empty intersection with Sε. Note that the width of the discrete tubular
neighbourhood Sεh is δ + ε where δ is the maximum diameter of triangles crossed by ∂Sε.

To proceed, we assume that there exists an extension g̃ ∈ H2(Ω) of the boundary data g.
We set Dε

h = D\Sεh and introduce the function uε,h ∈ H1(Dε
h) such that uε,h = g on ∂Dε

h, which
solves the following continuos problem:∫

Dεh

∇uε,h · ∇v =

∫
Dεh

fv ∀v ∈ H1
0 (Dε

h). (3.1)

The solution uε,h is then extended to Sεh by setting uε,h = g̃ in Sεh.
The following results have been proved in [20, Thm 1.2]:

1

ε+ δ

∥∥∥u− uε,h∥∥∥
L2(D)

+
1√
ε+ δ

∥∥∥∇u−∇uε,h∥∥∥
L2(D)

≤ C
(
‖f‖L2(D) + ‖g‖H2(D)

)
. (3.2)

Let Vεh,g̃h =
{
vh|Dεh : vh ∈ P1(t)∀t ∈ Th and vh = g̃h on ∂Dε

h

}
, with g̃h the Lagrangian piecewise

linear interpolant of g̃.
It has been proved (cf. [20, Thms 5.1 and 5.3]) that the linear finite element approximation uεG,h ∈

Vεh,g̃h of uε,h satisfies the following estimates:∥∥∥∇(uε,h − uεG,h)
∥∥∥
L2(D)

≤ C(
√
δ + κ

2
3 + h)

(
‖f‖L2(D) + ‖g̃‖H2(D)

)
,∥∥∥uε,h − uεG,h∥∥∥

L2(D)
≤ C(δ + κ

4
3 + h2)

(
‖f‖L2(D) + ‖g̃‖H2(D)

)
,

(3.3)

where κ is the maximum diameter of the triangles intersection ∂Sε+h and uεG,h has been extended to
Dε
h by setting uεG,h = g̃h on Sεh.

Let us now introduce the box method with diffuse interface (DIBM). We denote by uεB,h ∈ Vεh,g̃h ,
the approximation obtained from applying the box method to (3.1) (cf. (2.2)). The solution uεB,h is
then extended to D by setting uεB,h = g̃h in Sεh. Then employing the triangle inequality in combination
with (3.2), (3.3) and (2.5) we get the following estimates for DIBM:∥∥∇(u− uεB,h)

∥∥
L2(D)

.
√
ε+ δ +

√
δ + k

2
3 + h,∥∥u− uεB,h∥∥L2(D)

. ε+ δ + k
4
3 + h2.

(3.4)

4 Numerical experiments

In this section we numerically assess the theoretical estimates obtained in Section 3. To this aim,
we consider the test case originally introduced in [20, Section 6] that is briefly recalled in the sequel.
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Figure 2: Discrete diffuse interface representation on triangulation (left) and on box mesh (right).
Constrained cells are marked with red dots while the continuous and discrete diffuse interfaces are
coloured by darker an lighter red respectively.

Let Ω = (−1, 1)2 and let Γ be the boundary of the circle B1(0) with centre (0, 0) and unitary radius.
Thus, Γ splits the domain Ω into two subregions: D1 = B1(0) and D2 = Ω \D1. Let u be the solution
of the following problem

−∆u = f in Ω, u = g on Γ, u = 0 on ∂Ω, (4.1)

where g(x, y) = (4− x2)(4− y2) on Γ and extended to Ω as g̃(x, y) = (4− x2)(4− y2) cos(1− x2− y2).
Setting the solution equal to:

u(x, y) = (4− x2)(4− y2)
(
χD2 + exp(1− x2 − y2)χD̄1

)
, (4.2)

where χDi , i = 1, 2 are the characteristic functions of the two parts of Ω, the source term f is chosen
as:

f =

{
−∆u in Ω\Γ,
0 on Γ.

All the computations have been performed employing a Voronoi dual mesh of a Delaunay trian-
gulation (i.e., the dual mesh is obtained by connecting the barycentres of the triangles with straight
lines).

To validate the estimates (3.4) we consider in a separate way the influence of h and ε on the error.
More precisely, we first explore the convergence with respect to h and then we study the convergence
with respect to ε. In both cases we consider a uniform discretization of the domain Ω so to have
κ = δ = h.

Convergence w.r.t. h. We set ε = 2−20 � h while we let h vary as

h = 0.056, 0.028, 0.0139, 0.00694.

From Figure 3 we observe that the L2-norm of the error decreases with order 1 while the error
decreases with order 1/2 in the H1-norm. These rates of convergence are in agreement with (3.4).

Remark 4.1. If a local refinement of the diffuse interface region is performed in such a way that
δ ' κ ' h2 (Figure 5), then first and second order of convergence are recovered for H1 and L2 norms,
respectively (cf. [20, Section 6]).

Convergence w.r.t. ε. We employ a fine mesh (h = 0.00694) and let the value of ε vary as:

ε = 2i, i = −1, ...,−20.
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The results are collected in Figure 4. The theoretical rates of convergence with respect to ε (cf. (3.4))
are obtained both in the L2-norm (order 1) and in the H1- norm (order 1/2 ). It is worth noticing
that when the value of ε becomes smaller than the chosen value of h, a plateau is observed as the
(fixed) contribution from the discretization of the PDE (related to h) dominates over the contribution
from the introduction of the diffuse interface (related to ε).
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Figure 3: Error behaviour with respect to h (fixed ε = 2−20): (left) L2-norm error, (right) H1-norm
error. Dashed lines are theoretical convergence orders.
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Figure 4: Error behaviour with respect to ε (fixed h = 0.00694): (left) L2-norm error, (right) H1-norm
error. Dotted lines are theoretical convergence orders.

5 Conclusions

In this paper we introduced a diffuse interface variant of a finite volume method, namely of the the
so-called box method and obtained L2 and H1 error estimates highlighting the contributions from the
discretization parameter h associated to the polygonal computational mesh and the width ε of the
diffuse interface. Despite the simplicity of the method, the present contribution seems to be novel in
the literature. Moreover, the present work may represent the first step towards the study of the diffuse
interface variant of more sophisticated finite volume schemes (possibly for more complex differential
problems).

This work opens fictitious boundary methods analysis to the box method and finite volume frame-
work. Possible extensions of this research could be to being able to apply the plenty of penalization
methods that are mostly thought for finite element implementations such as shifted boundary, Nitsche
penalty, cut-fem or Brinkman penalization.
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Figure 5: On the left: example of a dual mesh with local mesh refinement around surrogate boundary.
On the right: error behaviour with respect to h with local mesh refinement around the interface (fixed
ε = 2−20): (left) L2-norm error, (right) H1-norm error. Dashed lines are theoretical convergence
orders.
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