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École des Hautes Études en Sciences Sociales,
190-198 Avenue de France, 75244 Paris CEDEX 13, France

simona.perotto@polimi.it,azilio@ehess.fr

Keywords: model reduction, validation and verification, a posteriori mod-
eling error analysis, mesh adaptivity, space-time finite elements, modal ex-
pansion

AMS Subject Classification: 78M34, 65M15, 65T40, 65M60

Abstract

We formalize the pointwise HiMod approach in an unsteady setting,
by resorting to a model discontinuous in time, continuous and hierar-
chically reduced in space (c[M(M)G(s)]-dG(q) approximation). The
selection of the modal distribution and of the space-time discretization
is automatically performed via an a posteriori analysis of the global
error. The results of the numerical verification confirm the robustness
of the proposed adaptive procedure in terms of accuracy as well as of
sensitivity with respect to the goal quantity. The validation results in
the groundwater experimental setting are actually more than satisfy-
ing, with an improvement in the concentration predictions by means
of the adaptive HiMod approximation.

1 Background

The extensive use of scientific computing in many fields of science and engi-
neering requires more and more frequently to reach a compromise between
modeling reliability and computational efficiency [1]. This goal is currently
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pursued in the literature via the set up of two complementary methodolo-
gies, i.e., surrogate solutions and surrogate models. Surrogate solutions are
generally formalized with a reduction of the size of the finite dimensional
solution, as in the Reduced Basis approach [2], or in the Proper Orthogonal
Decomposition (POD) [3] and Proper Generalized Decomposition (PGD)
methods [4].

Surrogate models directly replace the reference model via a simplified for-
mulation as with a geometric multiscale modeling [5, 6] or with compressed
sensing [7]. This is usually accomplished by taking advantage of specific fea-
tures of the problem at hand, such as a prevalent direction in the involved
dynamics rather than in the geometry of the computational domain. This
is exactly the criterion exploited to settle the Hierarchical Model (HiMod)
reduction proposed in [8, 9]. The HiMod technique derives enriched 1D sur-
rogate models to describe phenomena characterized by a leading dynamics
albeit in the presence of locally significant transverse features. In particu-
lar, the description properties of purely 1D models are enhanced by keeping
track of the transverse dynamics in the reduced model. This is achieved
by enriching a finite element discretization of the mainstream with a modal
representation of the secondary dynamics. This strategy leads to a 1D finite
element model with ad-hoc coefficients that implicitly include the generally
non-constant description of the transverse dynamics. The possibility of lo-
cally tuning the modal expansion to match spatial heterogeneities represents
one of the main strengths of the HiMod approach [10].

In this paper, we focus on the pointwise HiMod reduction strategy pro-
posed in [11], where the modal tuning is performed on the finite element
nodes. For this reason, the pointwise approach turns out to be the most
flexible one among the available HiMod procedures [12], being suited to
model both localized and widespread dynamics. In particular, with a view
to practical applications, we extend the pointwise HiMod formulation to an
unsteady setting by resorting to a discretization discontinuous in time. We
generalize the cG(s)-dG(q) formulation in [13, 14, 15] to the HiMod setting,
by defining a reduced solution that we denote by c[M(M)G(s)]-dG(q) ap-
proximation. Essentially, we replace the full model with a solution that is
continuous in space and discontinuous in time. It is obtained via a Galerkin
approximation that combines finite elements of degree s with the modal ex-
pansion identified by the index M to discretize the space, and discontinuous
piecewise polynomials of degree q for the time discretization.

The selection of the modal distribution as well as of the space-time dis-
cretization represents a crucial step of the HiMod reduction. To overcome
this issue, we devise a procedure able to automatically predict the HiMod so-
lution, for fixed values of s and q. By replicating the offline/online paradigm
adopted in [16], we distinguish an offline phase, the computationally most
expensive one, from an online phase which is computationally very cheap.
The offline phase yields the so-called HiMod lookup diagram, i.e., a table
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that sets the time partition and then, for each time interval, selects the cor-
responding 1D finite element mesh together with the associated modal dis-
tribution. The lookup diagram is the final outcome of an adaptive procedure
based on an a posteriori analysis of the global (modeling plus space-time
discretization) error. We rely upon a goal-oriented setting [17, 18, 19], so
that the prediction of the c[M(M)G(s)]-dG(q) model is driven by a physical
quantity of reference.
The estimator for the global error consists of a modeling and of a discretiza-
tion contribution, which are distinct [20, 16, 21, 10]. This represents a crucial
property with a view to a global adaptation algorithm. In particular, the
modeling estimator is a generalization of the goal-oriented hierarchical a
posteriori error estimator derived in [10] to a time dependent setting, while
including the temporal discontinuities of the c[M(M)G(s)]-dG(q) scheme.
The estimator for the discretization error, in turn, keeps separate the tem-
poral from the spatial contribution [22, 23, 24, 25] and it is obtained by
modifying the standard goal-oriented analysis to include the intrinsic di-
mensionally hybrid nature of a HiMod approximation [10].
The task of the online phase simply consists in computing the pointwise
HiMod solution associated with the HiMod lookup diagram.

A first validation of the HiMod reduction procedure is also provided in
this paper, by dealing with an experimental and modeling study of solute
transport in porous media [26].

2 The full setting

We introduce the parabolic model we aim at reducing via an adaptive space-
time model reduction procedure. A standard notation is adopted for the
Sobolev spaces associated with the spatial independent variable only, as well
as for the space of the functions bounded almost everywhere [27]. Concern-
ing a space-time dependence, we introduce the spaces L2(0, T ; W ) =

{
v :

(0, T ) → W :
∫ T
0 ‖v(t)‖2

W dt < +∞
}
, H1(0, T ; W ) =

{
v, ∂v

∂t ∈ L2(0, T ; W )
}
,

C0([0, T ];W ) =
{
v : [0, T ] → W continuous : ∀t ∈ [0, T ], ‖v(t)‖W < +∞

}
,

where W denotes a generic Hilbert space, with ‖ · ‖W the associated norm
[28].

2.1 The problem

We select as model to be reduced the unsteady problem





∂u

∂t
(z, t) + Lu(z, t) = f(z, t) (z, t) ∈ Q = Ω × I,

u(z, t) = 0 (z, t) ∈ ∂QD = ΓD × I,
D∇u(z, t) · n = g(z, t) (z, t) ∈ ∂QN = ΓN × I,
u(z, 0) = u0(z) z ∈ Ω,

(1)
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where Ω ⊂ R
d (d = 2, 3) is the computational domain, ΓD and ΓN constitute

a measurable non overlapping partition of ∂Ω such that ∂Ω = ΓD ∪ ΓN

and
◦

ΓD ∩
◦

ΓN= ∅, I = (0, T ) is the time window of interest, and L is a
generic second-order elliptic operator with diffusive contribution given by
−∇ · (D∇u) so that D∇u ·n ≡ ∂νu is the conormal derivative of u, n being
the unit outward normal vector to ∂Ω. Concerning the data, we choose the
source f ∈ L2(0, T ; L2(Ω)), the diffusivity tensor D = [dij ] ∈ [L∞(Ω)]d×d

such that the uniform ellipticity condition holds, the initial datum u0 ∈
L2(Ω), and the Neumann datum g ∈ L2(0, T ; L2(ΓN )). In the next section,
further requirements are added on the computational domain as well as on
the boundary conditions in view of the HiMod procedure.

The weak formulation associated with (1) is given by: find u ∈ V =
L2(0, T ; H1

ΓD
(Ω)) ∩ H1(0, T ; (H1

ΓD
(Ω))′), with (H1

ΓD
(Ω))′ the dual space of

H1
ΓD

(Ω), such that

∫

Q

∂u

∂t
v dΩ dt +

∫

I
a
(
u, v

)
dt =

∫

Q
fv dΩ dt +

∫

∂QN

gv ds dt ∀v ∈ V, (2)

with u(x, 0) = u0(x) and where a(·, ·) : H1
ΓD

(Ω)×H1
ΓD

(Ω) → R is the bilinear
form associated with operator L, here assumed continuous and coercive.
Problem (2) represents the full problem, with u the full solution.
The continuous embedding V →֒ C0([0, T ];L2(Ω)) ensures the temporal
continuity to the weak solution u in (2).

2.2 The computational domain

Problems suited to a HiMod reduction are usually defined on domains char-
acterized by a prevalent dimension and the leading dynamics are aligned
with such a dimension.

Thus, we assume Ω to coincide with the d-dimensional fiber bundle Ω =⋃
x∈Ω1D

{x} × γx, where Ω1D is the supporting 1D fiber described by the
independent variable x and aligned with the dominant dynamics, while γx ⊂
R

d−1 denotes the transverse fiber that is, in general, a function of x and
parallel to the transverse dynamics. For the sake of simplicity, we assume
Ω1D ≡]x0, x1[ to be rectilinear and we refer to [29] for the more general case
of a curved supporting fiber. We partition the boundary ∂Ω of Ω into three
disjoint sets, Γ0 = {x0} × γx0

, Γ1 = {x1} × γx1
and Γ∗ =

⋃
x∈Ω1D

∂γx, such
that ∂Ω = Γ0 ∪ Γ1 ∪ Γ∗ (see Remark 3.1 for further details).

Now, we map the domain Ω into a reference bundle Ω̂, where the com-
putations are easier, free from undetermined constants, and are carried
out once and for all. To this aim, for any x ∈ Ω1D, we introduce the
map ψx : γx → γ̂d−1 between the generic fiber γx and the reference fiber
γ̂d−1 ⊂ R

d−1. Maps ψx are instrumental to define the global map Ψ : Ω → Ω̂,
where Ω̂ =

⋃
x∈Ω1D

{x} × γ̂d−1 denotes the reference computational domain
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Figure 1: Map Ψ between a 2D sinusoidal domain Ω and the rectangular
reference domain Ω̂.

(see Figure 1 for an example of map Ψ). Regularity assumptions are in-
troduced on the maps ψx and Ψ. In particular, we assume ψx to be a
C1−diffeomorphism, for all x ∈ Ω1D, and Ψ to be differentiable with re-
spect to z (essentially to exclude any kinks along Γ∗).
We also demand that the supporting fiber Ω1D is preserved by map Ψ, so
that the generic point z = (x,y) ∈ Ω is mapped into ẑ = Ψ(z) = (x̂, ŷ),
with x̂ ≡ x and ŷ = ψx(y). Finally, without reducing the generality, we
assume Ω1D to be the subset of Ω with y = 0, i.e., Ω1D exactly coincides
with the centerline of Ω.

Remark 2.1. In a 2D setting, we may always select ψx as a linear transfor-
mation, so that ŷ = ψx(y) = y/L(x), with L(x) = meas(γx). In 3D a similar
choice is possible only for specific configurations, for instance when Ω is a
cylindrical domain. In this case L(x) coincides with area of the diameter of
the pipe along the centerline.

3 HiMod reduction

The HiMod technique has been proposed in [8, 9] with the idea of exploiting
the fiber structure demanded on Ω, or, likewise, the preferential dynamics
in the phenomenon at hand. Currently, three versions of HiMod reduction
have been investigated, from both a theoretical and a numerical viewpoint
(see [12] for a survey on the different approaches). Independently of the
selected technique, the idea is to manage in a different way the dependence
of the solution on the leading and on the transverse dynamics. In particular,
since HiMod aims at providing enriched 1D models to be associated with the
dominant direction, only the dominant dynamic is discretized via a standard
finite element scheme, while getting information on the transverse dynamics
via a modal expansion.

In this section, we consider two of the available HiMod formulations.
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3.1 Uniform HiMod reduction

The distinguishing feature of a uniform HiMod formulation is the adoption
of a unique level of detail (i.e., the same number of modal functions) in
modeling the transverse dynamics. For the sake of simplicity, we start from
a steady setting. The function space associated with a uniform HiMod
approach is

Vm =

{
vm(x,y) =

m∑

j=1

ṽj(x)ϕj(ψx(y)), with ṽj ∈ V1D

}
, (3)

where m ∈ N
+ is a given integer, V1D ⊆ H1(Ω1D), and B = {ϕj}j∈N

+ is

a modal basis of functions in H1(γ̂d−1), orthonormal with respect to the
L2(γ̂d−1)-scalar product. The boundary conditions assigned on Γ0 and Γ1

are taken into account by the space V1D, while the boundary data on Γ∗ are
included in B. Space Vm represents the hierarchy of models. We complete
definition (3) by adding a conformity (Vm ⊂ V ) and a spectral approxima-
bility (limm→+∞ infvm∈Vm

‖v − vm‖V = 0, for any v ∈ V ) hypothesis on Vm

[8, 9].
With a view to unsteady problems, we introduce a time partition of the

time window I into N subintervals In = (tn−1, tn] of width kn = tn − tn−1,
for n = 1, . . . , N , with k = maxn kn, t0 ≡ 0 and tN ≡ T . This partition
induces a subdivision of the cylinder Q into N space-time slabs Sn = Ω× In

with n = 1, . . . , N . Notice that partition {ti}N
i=0 is not necessarily uniform,

to match the possible time heterogeneities of the problem at hand.
Now, we look for an approximate solution to (2) coinciding, on each

space-time slab Sn, with a polynomial of degree at most q in time, with
q ∈ N

+, and with an element of Vm in space, i.e., a function of the reduced
space

V N
m =

{
vm : (0, T ] → H1

ΓD
(Ω) : ∀n = 1, . . . , N

vm(x,y, t)
∣∣
In

=

q∑

r=0

m∑

j=1

tr ṽ n
j,r(x)ϕj,r(ψx(y)), with ṽ n

j,r ∈ V1D

}
.

(4)
The boundary conditions in (2) identifies V1D with H1

γD
(Ω1D), where γD

is a subset of {0, 1} according to the definition of ΓD, while functions ϕj,r

belong to the modal basis B. Moreover, since 0 6∈ I1, the value vm(x,y, 0)
has to be specified separately.

Remark 3.1. The analysis below is completely general with respect to the
boundary data. So far the robustness of the HiMod reduction has been veri-
fied when either homogeneous Dirichlet or homogeneous Neumann boundary
conditions are assigned on Γ0, Γ1, Γ∗, or when non-homogeneous Dirich-
let data are enforced on Γ0 and Γ1. In general, the critical point is the
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Figure 2: Example of modal distribution and finite element discretization
associated with a slabwise uniform HiMod reduction.

identification of a basis B matching Robin boundary conditions or non ho-
mogeneous data on Γ∗. A new strategy with respect to this issue is currently
under investigation in [30].

A priori functions in V N
m may exhibit a discontinuity at each time level,

with continuity from the left. As a consequence, a different number of modal
functions can be selected on each time interval In (see Figure 2). This
choice leads to replace in (4) the modal index m with the index mn ∈ N

+

with n = 1, . . . , N . In such a case we adopt the term space-time slabwise
uniform HiMod reduction and we change the notation in (4) into V N

m , where

m = [m1, . . . , mN ]′ ∈
[
N

+
]N

is the vector that collects the number of modes
used on each interval In, with vm the generic function in V N

m .
The possible time discontinuity in V N

m leads us to distinguish between
the values vn,+

m = limt→0+ vm(x,y, tn+t) and vn,−
m = limt→0+ vm(x,y, tn−t),

and to define the temporal jump [vm]n = vn,+
m − vn,−

m at the generic time
tn, for n = 0, . . . , N − 1. Notice that this jump is identically equal to zero
for functions in V . This remark allows us to provide a weak formulation for
problem (1) equivalent to (2): find u ∈ V such that

AcGdG(u, v) = FcGdG(v) ∀v ∈ V, (5)

where, for any w, ζ ∈ V ,
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AcGdG(w, ζ) =
N∑

n=1

{ ∫

Sn

∂w

∂t
ζ dΩ dt +

∫

In

a
(
w, ζ

)
dt

}

+
N−1∑

i=1

∫

Ω
[w]i ζi,+ dΩ +

∫

Ω
w0,+ ζ0,+ dΩ (6)

FcGdG(ζ) =

∫

Ω
w0,− ζ0,+ dΩ +

N∑

n=1

{ ∫

Sn

fζ dΩ dt +

∫

∂Qn
N

gζ ds dt

}
,(7)

with u0,+ = u0,− = u0(x,y) and ∂Qn
N = ΓN × In for n = 1, . . . , N .

The space-time slabwise uniform HiMod formulation can thus be stated:
find um ∈ V N

m such that, for any vm ∈ V N
m ,

AcGdG(um, vm) = FcGdG(vm). (8)

The jump terms in (6) provide now an actual contribution, and we distin-
guish between the HiMod approximation u0,−

m ∈ V N
m |I1 of the initial datum

u0 and u0,+
m that is unknown.

The conformity and the spectral approximability hypotheses are now
added slabwise to guarantee the well-posedness of formulation (8). Indeed,
due to the discontinuity in time, we can only expect that V N

m

∣∣
Sn

⊂ V
∣∣
Sn

,

while V N
m 6⊂ V .

Concerning the spatial discretization, following [8, 9], we consider a fi-
nite element discretization of the function dependence on x by introduc-
ing a subdivision, not necessarily uniform, of the supporting fiber into
subintervals. The time discontinuity admits the adoption of different par-
titions on each space-time slab (see Figure 2). In particular, we denote by
Thn

= {Kn
l }Mn

l=1 the spatial partition associated with Sn for n = 1, . . . , N ,
with Kn

l = (xn
l−1, x

n
l ) the generic subinterval of width hn

l = xn
l − xn

l−1 for
l = 1, . . . ,Mn, with hn = maxl h

n
l and xn

0 ≡ x0, xn
Mn

≡ x1. Then, we

furnish each Sn with the space X1D,s
hn

of the conforming finite elements of

degree s associated with Thn
, and with dim(X1D,s

hn
) = Nhn

< +∞. A stan-
dard density hypothesis in V1D is advanced on each finite element space.

Thus, the discrete counterpart of formulation (8) is: find uh
m ∈ V N

m,h

such that, for any vh
m ∈ V N

m,h,

AcGdG(uh
m, vh

m) = FcGdG(vh
m), (9)

where

V N
m,h =

{
vh
m : (0, T ] → H1

ΓD
(Ω) : ∀n = 1, . . . , N (10)

vh
m(x,y, t)

∣∣
In

=

q∑

r=0

mn∑

j=1

tr ṽ n,h
j,r (x)ϕj,r(ψx(y)), with ṽ n,h

j,r ∈ X1D,s
hn

∩ V1D

}
,
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uh,0,−
m ∈ V N

m,h|I1 is a discrete HiMod approximation of u0, and uh,0,+
m is an

unknown1. It follows V N
m,h ⊂ V N

m , i.e., also the discrete HiMod space V N
m,h

consists of functions continuous in space but discontinuous in time. Notice
that, although V N

m,h 6⊂ V , in (9) we can extend definitions (6) and (7) to

V N
m,h taking advantage of the slabwise splitting.

By generalizing the notation used in [13, 14, 15] to denote finite elements
that are continuous in space and discontinuous in time, we refer to V N

m,h

as to the HiMod c[M(m)G(s)]-dG(q) space (and, analogously, to (9) as to
the c[M(m)G(s)]-dG(q) HiMod formulation). We mean that, on each Sn,
the full solution is replaced by a reduced solution continuous in space and
discontinuous in time, obtained via a Galerkin approximation based on finite
elements of degree s combined with the modal expansion associated with the
multi-index m to discretize the space, and piecewise polynomials of degree
q for the time discretization.

The finite element discretization along Ω1D allows us to further expand

the Fourier coefficient ṽ n,h
j,r in (10) in terms of the finite element basis {ϑl}Nhn

l=1

associated with space X1D,s
hn

, so that any function vh
m ∈ V N

m,h can be repre-
sented on the generic time interval In as

vh
m(x,y, t)

∣∣
In

=

q∑

r=0

mn∑

j=1

Nhn∑

l=1

tr ṽ n,h
j,r,l ϑl(x)ϕj,r(ψx(y)) (11)

with n = 1, . . . , N . The coefficients ũn,h
j,r,l of uh

m become the actual unknowns
of the c[M(m)G(s)]-dG(q) HiMod formulation (9).

3.2 Pointwise HiMod reduction

A fixed number of modal functions on the whole Ω may become too restric-
tive in the presence of spatial heterogeneities. This justifies the formalization
of HiMod strategies alternative to the uniform approach, where a different
number of modes is adopted in different subdomains of Ω (via a piecewise
HiMod reduction, [9, 10]), rather than in correspondence with each finite
element node (via a pointwise HiMod reduction, [11]). We focus on the last
approach. The numerical verification in [11] identifies the pointwise method
as the best-performing one in the presence of either widespread or localized
transverse dynamics.

The idea exploited in a pointwise HiMod expansion consists in rewriting
(11) by emphasizing the sum on the finite element nodes, i.e., as

vh
m(x,y, t)

∣∣
In

=

Nhn∑

l=1

ϑl(x)

[ q∑

r=0

mn∑

j=1

tr ṽ n,h
j,r,l ϕj,r(ψx(y))

]
,

1To simplify notations, with the super-index h we understand both the space and time

discretizations
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Figure 3: Wavy channel test case: full solution (left); uniform HiMod solu-
tion for m = 11 (center) and m = 21 (right).

and then in making the modal index mn dependent on the nodal index l.
Space V N

m,h is thus replaced by the new space

V N
M,h =

{
vh
M

: (0, T ] → H1
ΓD

(Ω) : ∀n = 1, . . . , N (12)

vh
M

(x,y, t)
∣∣
In

= vh
Mn

(x,y, t) =

Nhn∑

l=1

ϑl(x)

[ q∑

r=0

mn,l∑

j=1

tr ṽ n,h
j,r,l ϕj,r(ψx(y))

]}
,

where Mn = [mn,1, . . . , mn,Nhn
]′ ∈

[
N

+
]Nhn is the modal nodewise vector

collecting the number of modes used at each finite element node of the slab
Sn for n = 1, . . . , N , whereas M is just the subindex used to denote a
pointwise HiMod approximation. The nodewise tuning of the number of
modes leads to an algebraic system sharing the same sparsity pattern as for
the uniform case, but with a smaller dimension [11].

The formulation related to space V N
M,h coincides with a space-time point-

wise HiMod reduction and will be denoted by c[M(M)G(s)]-dG(q) form. It
reads exactly as (9), simply by replacing space V N

m,h with V N
M,h. Notice that,

since definition (12) strictly depends on the finite element discretization,
there does not exist a weak counterpart of the pointwise formulation.

3.2.1 Uniform versus pointwise HiMod reduction: an example

We compare the uniform and the pointwise HiMod approaches on the steady
test case 4 in [9], where the transport of oxygen in a wavy channel, represent-
ing a Bellhouse oxygenator for extra-corporeal circulation [31], is modeled.
This problem is characterized by a widespread dynamics, that is suited to
be reduced via both these techniques.

Figure 3, left shows the full solution u computed on an unstructured
uniform mesh of about 15000 elements and via 2D affine finite elements.
The irregular shape of the domain strongly affects the main stream of the
flow on the whole domain as highlighted by the bent contour lines.

As far the HiMod reduction, we discretize the dependence of u on x via
affine finite elements after introducing a partition of uniform step h = 0.1
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Figure 4: Wavy channel test case: nodewise HiMod solution (left) with
corresponding modal distribution (center) and sparsity pattern (right).

on Ω1D. The transverse dynamics are described with a basis B of sinusoidal
functions. To evaluate the integrals of the modal functions, we resort to
Gaussian quadrature formulas based on four quadrature nodes per wave-
length, at least. No stabilization scheme is used.

We first apply the uniform HiMod approach by resorting to 11 and 21
modal functions. As shown in [9], at least 11 modes are required to obtain a
sufficiently reliable HiMod approximation. Figure 3, center and right shows
the contour plots of the discrete HiMod solutions uh

11 and uh
21, respectively.

The two reduced solutions are very similar. In particular, the innermost
contour lines associated with uh

21 are more accurate.
As second assessment, we build the pointwise HiMod approximation uh

M

associated with the modal distribution M in Figure 4, center. As shown
in Figure 4, left it is fully comparable with the uniform approximation uh

21,
despite the overall smaller number of modes (the maximum number of modes
equal to 17 is used only in correspondence with three finite element nodes).
This leads to a considerable saving in terms of computational cost. Indeed,
instead of the 176400 (420 × 420) system associated with uh

21, we solve a
system of dimension 28282, whose sparsity pattern is shown in Figure 4,
right.

In accordance with [11], results in Figures 3-4 show the improved mod-
eling capabilities of the pointwise HiMod method vs the uniform approach,
for a fixed computational effort. Clearly, the main issue related to a point-
wise formulation is the choice of the nodewise modal distribution. This
corroborates the need for an automatic modal selection.

4 Adaptive HiMod reduction

In this section we deal with both the offline and the online phases of the
adaptive HiMod procedure. At this stage, we use a uniform and sufficiently

fine discretization
{(

xn
l , tn

)Mn

l=1

}N

n=1
on Ω1D × I.

Due to its significant impact on practical applications, we consider a
goal-oriented framework (see, e.g., [17, 18, 19]), so that the reduced model
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predicted by the offline phase fits a goal functional that represents a physical
quantity of interest (e.g., mean or pointwise values, fluxes across sections or
regions, the energy of the system at hand, the vorticity of a turbulent flow).
We denote by J the selected functional and we assume it is linear. We aim
at approximating, within a prescribed tolerance TOL, the value J(u), with
u solution to the full problem (2), via J(uh

M
), where uh

M
is the reduced

solution associated with the HiMod diagram yielded by the offline phase.
The computation of the value J(uh

M
) represents the goal of the online phase.

4.1 The a posteriori modeling error analysis

We generalize the error analysis in [10] to an unsteady setting, thus deriving
the theoretical tool used to set up the HiMod lookup diagram, i.e., a table
that furnishes the number of modes to be switched on at each finite element
node xn

l and at each time tn of the space-time partition (see Figure 7, left
for an example). The a posteriori analysis is carried out starting from the
slabwise uniform HiMod formulation (8), while the pointwise approximation
uh
M

will constitute the output of the adaptive procedure in the next section.
According to a goal-oriented approach, we introduce the dual problem

associated with (8) given by: find zm ∈ V N
m such that, for any vm ∈ V N

m ,

AcGdG(vm, zm) = JcGdG(vm), (13)

where, for any ζ ∈ V ∪ V N
m ,

JcGdG(ζ) =

∫

Ω

zN,+
m ζN,− dΩ +

N∑

n=1

∫

Sn

j̃ ζ dΩ dt, (14)

where j̃ is the density function associated with the goal functional J . Notice
that, since V N

m 6⊂ V , J has to be defined on V ∪ V N
m and analogously for

JcGdG. A null final condition, zN,+
m = 0, allows to get rid of the first integral

in (14), whereas boundary contributions may characterize the definition of
JcGdG when functional J involves a control on the boundary. The assignment
of boundary conditions to the dual problem is a crucial issue that is usually
tackled via the Lagrange identity.

Remark 4.1. The bilinear form AcGdG(w, ζ) in (6) can be alternatively
rewritten integrating by parts the time derivative, and after recombining the
jump terms. We have

N∑

n=1

{
−

∫

Sn

∂ζ

∂t
w dΩ dt +

∫

In

a
(
w, ζ

)
dt

}
−

N−1∑

i=1

∫

Ω
[ζ]i wi,−

m dΩ +

∫

Ω
ζN,− wN,− dΩ,

for any w, ζ ∈ V ∪ V N
m . This form better fits the dual setting due to the

reverse time scale.
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To derive the a posteriori modeling error estimator, we introduce also
the enriched primal and dual slabwise uniform HiMod problems,

find u+
m ∈ V N

m+ s.t. AcGdG(um+ , vm+) = FcGdG(vm+) ∀vm+ ∈ V N
m+ , (15)

find z+
m ∈ V N

m+ s.t. AcGdG(vm+ , zm+) = JcGdG(vm+) ∀vm+ ∈ V N
m+ , (16)

with m+ > m (i.e., m+
i > mi for i = 1, . . . , N). The inclusion V N

m ⊂ V N
m+

guarantees the orthogonality relations

AcGdG(um+ − um, vm) = 0, AcGdG(vm, zm+ − zm) = 0 ∀vm ∈ V N
m .

The analysis derived in [10] can be applied to the slabwise HiMod formula-
tion with due changes, to state the following

Proposition 1. Let em = u−um ∈ V ∪V N
m and em+ = u−um+ ∈ V ∪V N

m+

be the modeling error associated with the reduced formulation (8) and (15),

respectively for m,m+ ∈
[
N

+
]N

and with m+ > m. Let us assume that both

the final dual data zN,+
m and zN,+

m+ are identically equal to zero. Then, if there

exists a positive constant σm < 1 and a modal multi-index M0 ∈
[
N

+
]N

such
that, for m+ > m ≥ M0,

|J(em+)| ≤ σm |J(em)|, (17)

the following two-sided inequality holds

|J(δumm+)|
1 + σm

≤ |J(em)| ≤ |J(δumm+)|
1 − σm

, (18)

with δumm+ = um+ − um.

The proof of estimate (18) exactly coincides with the one of Proposition 2
in [10]. In particular, the requirement on the dual final data identifies JcGdG

with functional J . Provided the saturation assumption (17) to hold, result
(18) identifies the modeling error estimator ηmm+ for the error J(em) with
the value |J(δumm+)|, while guaranteeing the efficiency and the reliability
of ηmm+ via the lower and upper bound in (18), respectively. Following [10],
to evaluate estimator ηmm+ , we can adopt three equivalent formulas, given
by

ηmm+ = AcGdG(δumm+ , δzmm+) = ρp(um)(zm+) = ρd(zm)(um+) (19)

with δzmm+ = zm+ − zm, and where ρp(um)(·) = FcGdG(·) −AcGdG(um, ·),
and ρd(zm)(·) = JcGdG(·) − AcGdG(·, zm) denote the weak primal and dual
residuals associated with the HiMod formulations (8) and (13), respectively.
Moreover, to make computable ηmm+ , we replace the reduced primal and
dual solutions with corresponding discrete approximations.

Estimator ηmm+ exhibits the structure typical of a hierarchical error
estimator, yet in a goal-oriented framework. We refer to [10] for more com-
putational remarks and for some considerations on requirement (17) that
represents a generalization of the standard saturation assumption [32, 33, 34]
to a goal-oriented setting.
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4.2 Construction of the HiMod lookup diagram

Estimator ηmm+ is now used to select the pointwise HiMod approximation
uh
M

for problem (2) able to guarantee the desired accuracy TOL on the func-
tional error J(u − uh

M
).

To start the adaptive procedure, we assign two initial (and possibly small)
values to the uniform modal indices m and m+. Then, the adopted algo-
rithm consists of the following five stages:

S1) we compute the discrete uniform reduced primal and dual solutions,
uh

m, uh
m+ , zm, zh

m+ , on the whole space-time cylinder Q;

S2) we evaluate the modeling estimator ηn
mm+ = ηmm+

∣∣
Sn

localized to each
space-time slab Sn;

S3) we apply the adaptive procedure outlined in Figure 5 to predict the
nodewise modal distribution Mn associated with each slab Sn, i.e., the
HiMod lookup diagram (see below for all the details);

S4) we compute the discrete pointwise reduced primal and dual solutions,
uh
M

, uh
M+ , zM, zh

M+ , associated with the HiMod diagram yielded at
stage S3);

S5) we evaluate the modeling error estimator η
MM

+ on the pointwise so-
lutions identified at stage S4). Then, if the global tolerance is met,
i.e., η

MM
+ ≤TOL, the procedure stops, providing the HiMod lookup

diagram in S3) as final outcome. Vice versa, if η
MM

+ >TOL, we come
back to S2).

Before detailing the adaptive procedure at stage S3), some remarks are
in order.

The computational effort associated with stage S1) takes advantage of
the time discontinuity of the c[M(M)G(s)]-dG(q) scheme. More sophisti-
cated approaches such as checkpointing [35] may be clearly adopted to fur-
ther reduce the computational costs. The modeling estimator can obviously
be evaluated in correspondence with any HiMod approximation (uniform as
in S2), slabwise uniform as in (19), pointwise as in S5)). Indeed, via the
first definition in (19), it suffices to evaluate the bilinear form (6) on the Hi-
Mod solutions at hand, by exploiting the slabwise definition of AcGdG(·, ·).
Concerning the localization of the estimator to slab Sn at stage S2), by
exploiting again the first definition in (19), we have

ηn
mm+ = AcGdG(δumm+ , δzmm+)

∣∣
Sn

= (20)
∫

Sn

∂δumm+

∂t
δzmm+ dΩ dt +

∫

In

a
(
δumm+ , δzmm+

)
dt +

∫

Ω

[δumm+ ]n−1 δzn−1,+
mm+ dΩ.
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Finally, the HiMod pointwise approximations uh
M

, zh
M

and uh
M+ , zh

M+ at
stage S4) are the solutions to problems (5), (13) and (15), (16) settled in
the space V N

M,h and V N
M+,h, respectively. In particular, we assume that V N

M,h

and V N
M+,h share the same spatial partitions Thn

for n = 1, . . . , N , so that

M+ identifies reduced solutions with a pointwise larger number of modes
with respect to uh

M
and zh

M
.

Let us focus now on the adaptive procedure devised to commute the
local evaluations of ηmm+ into the lookup diagram predicted at stage S3).
To this aim, we consider the generic space-time slab Sn and we focus on the
case of linear finite elements. We proceed in the following way:

S3 1) we assign a number of modes equal to m to each node and to each
subinterval of partition Thn

;

S3 2) we evaluate the estimator ηn,l
mm+ = ηn

mm+

∣∣
Kn

l

localized to each inter-

val Kn
l of Thn

, for l = 1, . . . ,Mn, simply by exploiting the additive
property of the integrals involved in the definition of ηmm+ ;

S3 3) we invoke an equidistribution criterion of the modeling error on the

slab Sn as well as on the subintervals Kn
l . If ηn,l

mm+ >TOL δ1M/(NMn),
we increase by one the modal index associated with Kn

l (model refine-

ment); if ηn,l
mm+ <TOL δ2M/(NMn), we decrease by one such an index

(model coarsening); otherwise, we preserve the current modal index;

S3 4) we update the number of modes associated with each finite element
node by assigning to the generic node xn

l , for l = 1, . . . ,Mn − 1, a
number of modes equal to mn,l = min(mKn

l
, mKn

l+1
), with mKn

l
the

number of modes assigned on the interval Kn
l . In particular, to avoid

an abrupt variation of modes on consecutive nodes, the actual value
m∗

n,l associated with xn
l coincides with max(0.5 mn,l−1 + 0.5 mn,l+1 −

3, mn,l). The endpoints of Ω1D are updated separately as mn,0 = mKn
1

and mn,Mn
= mKn

Mn
if Dirichlet boundary conditions are not imposed

on Γ0 and on Γ1, respectively. The assignment of the modal indices
mn,l predicts the modal multi-index Mn = [mn,1, . . . , mn,Nhn

]′ for the
slab Sn.

The procedure in S3) is exemplified in Figure 5 for a partition Thn
of

Ω1D consisting only of three subintervals Kn
l (l = 1, 2, 3) and when linear

finite elements are considered.
Of course, steps S3 1)-S3 4) are applied to the enriched modal index m+ as
well, with a view to the evaluation of the modeling error estimator at stage
S5).

The adaptive modal algorithm includes both model refinement and coars-
ening. A minimum number of modes constrains the modal coarsening, while
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a maximum number of adaptive iterations is fixed to avoid too restrictive de-
mands on TOL. The tuning parameters δ1M and δ2M at stage S3 3) make the
adaptive algorithm more robust, while increasing the corresponding compu-
tational efficiency. We set δ1M = 0.5, δ2M = 1.5.

Finally, the modal update at step S3 4) plays a crucial role in making
effective the final outcome of the adaptive procedure since it explains how
to build a pointwise approximation uh

M
starting from any HiMod lookup

diagram.

Figure 5: Example of the modal adaptive procedure at stage S3).

4.3 Numerical verification of the HiMod lookup diagram

The numerical verification of the paper is carried out in a 2D setting. More-
over, to select the discrete HiMod space, we choose q = 0 and s = 1, i.e.,
we use linear finite elements to discretize the leading dynamics and func-
tions piecewise constant in time. It can be checked that the adopted time
discretization is equivalent to a modified backward Euler scheme [14].

We validate the reliability of the adaptive HiMod reduction procedure
by approximating problem (1) on the rectangular domain Ω = (0, 3)× (0, 1)
for t ∈ I = (0, 1), and by choosing Lu = −∆u + c · ∇u with c = [10, 0]′.
Besides the directionality induced by the advective field, we introduce a
local heterogeneity via the source term f ≡ 10χD, with χD the characteristic
function associated with the elliptic region D = {(x, y) : (x− 1.5)2 + 4(y −
0.25)2 ≤ 0.01}. Concerning the boundary conditions, homogeneous Dirichlet
data are assigned on ∂Ω\ΓN , with ΓN = {(3, y) : 0 ≤ y ≤ 1}, where a
homogeneous Neumann datum is enforced. Finally, a null initial datum u0 is
chosen. In Figure 6, left we show at five different times, the contour plots of
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the full solution u approximated via a standard 2D cG(1)-dG(0) scheme on a
uniform unstructured mesh of 10252 triangles. As expected, the convective
field acts on the purely diffusive phenomenon by horizontally bending the
contour lines.

From a modeling viewpoint, we are simulating the process of convection
and diffusion of a certain pollutant emitted, for instance, by a chimney lo-
calized at D, in the presence of a moderate horizontal wind. In this context,
the full solution u represents the pollutant concentration in the domain Ω
at a certain time t ∈ I
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Figure 6: Convection-diffusion of a pollutant, control of Jmean,T , modal
adaptation: full solution (left) and HiMod approximation uh

M
(right), for

t = 0.1, 0.2, 0.5, 0.8, 1 (top-bottom).

The offline phase is set up to control the mean value of the full solution
on the whole Ω but only at the final time T = 1. This is equivalent to select
the goal functional J as Jmean,T (ζ) =

[
meas(Ω)

]−1 ∫
Ω ζ(x, y, 1) dΩ. The

choice of a localized (in time) functional is a challenging choice with a view
to the modeling adaptive procedure. The dual problem is characterized by
the differential operator L∗z = −∆z− c ·∇z, with source term given by the
density function j̃(x, y, t) =

[
meas(Ω)

]−1
δT associated with Jmean,T , where

δT denotes the Dirac distribution associated with the final time. On ΓN a
homogeneous Robin boundary condition is imposed, while a homogeneous
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Dirichlet datum is assigned on ∂Ω\ΓN . A null final value zN,+
m is selected.

Both the primal and dual problems involved in the evaluation of the
error estimator ηmm+ are computed by discretizing the supporting fiber
(0, 3) × {0.5} via a uniform partition of size h = 0.15 and the time window
with a constant step k = 0.1. The modal basis B consists of sinusoidal
functions.
Finally, the modeling tolerance TOL is set to 10−2, while the uniform modal
indices m and m+ are set to 1 and 3, respectively.
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Figure 7: Convection-diffusion of a pollutant, control of Jmean,T , modal
adaptation: HiMod lookup diagram (left); modal distribution at x=1.5 as a
function of time (center); space-time distribution of η

MM
+ (right).

The adaptive algorithm converges after 21 iterations. Figure 7, left de-
picts the output of the offline phase, i.e., the HiMod lookup diagram that
predicts how many modes (colormap) have to be used at each finite element
node (horizontal side) and for each time (vertical side) to guarantee that
|Jmean,T (u) − Jmean,T (uh

M
)| <TOL.

The diagram coincides with the space-time rectangle Ω1D×I, where Ω1D and
I exhibit the corresponding partition of uniform size h and k, respectively.
A certain number of modal functions is associated with each cell Kn

l × k for
l = 1, . . . ,Mn and n = 1, . . . , N . Thus, by resorting to the procedure in
Figure 5, S3 4) it is possible to build the HiMod pointwise approximation
uh
Mn

for each n = 1, . . . , N , i.e., the reduced solution uh
M

.
The HiMod diagram in Figure 7, left shows that few modes are demanded on
the whole space-time domain, except for the two last time intervals, where a
larger number of modes is switched on in correspondence with the localized
source and the downstream region. More quantitative information are pro-
vided by the plot in Figure 7, center of the number of modes associated with
node x = 1.5 as a function of time. Only 3 modes are used on the whole
time interval except for the subintervals IN−1 and IN when 5 and 13 sine
functions are required, respectively. The modal distribution predicted by
the lookup diagram is completely coherent with a goal-oriented approach.
Since we are interested in the mean value of the solution only at the final
time, it is reasonable to expect a reliable approximation of the full solution
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Figure 8: Convection-diffusion of a pollutant, control of J left
mean,T , modal

adaptation: HiMod lookup diagram (top-left); space-time distribution of
η
MM

+ (top-right); HiMod approximation uh
M

(bottom) at t = 0.2 (left) and
t = T (right).

only in correspondence with the last time intervals. This trend is confirmed
by the online phase that provides a pointwise HiMod approximation which
is more similar to the full one in Figure 6, left during the last times of the
simulation (see Figure 6, right).

In Figure 7, right we show the value of η
MM

+ on the same space-time
structure of the HiMod diagram. The boxes associated with the largest
values of the estimator identify a pattern similar to the one in Figure 7, left.

To check the sensitivity of the adaptive HiMod procedure with respect to
the selected goal functional, we run the offline phase by preserving all the in-
put parameters, with J = J left

mean,T (ζ) =
[
meas(Ωleft)

]−1 ∫
Ωleft ζ(x, y, 1) dΩleft,

with Ωleft = (0, 1.2)×(0, 1). We deal now with a functional localized both in
time and space. The adaptive procedure stops after only three iterations by
providing the HiMod lookup diagram in Figure 8, top-left. A single mode
is adopted on the whole time window in Ωleft where the solution is flat.
The modeling error estimator identifies the portion of the domain around
D as the most problematic one, to be refined in terms of modal expansion
(see Figure 8, top-right). As highlighted in the HiMod diagram, to ensure
tolerance TOL, three sinusoidal functions are used in the two consecutive
subintervals just before x = 1.5 for almost the whole time window. On the
contrary, during the last time interval, a single mode is active on the whole
Ω. The c[M(M)G(1)]-dG(0) HiMod approximation at two different times
is shown in Figure 8, bottom. In agreement with a goal-oriented approach,
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the reduced solution is far from the full one in Figure 6, left especially at T .
The mean value is controlled in an area where the full solution is extremely
smooth so that a single mode suffices to describe a so regular trend.

5 Combined HiMod reduction and space-time adap-

tation

Goal of this section is to enrich the information provided by the HiMod
lookup diagram to predict also the space-time partition on Ω1D and I. This
leads us to remove any assumption on the finite element discretization as
well as on the time partition {In}. In practice, we expect to replace the
diagram in Figure 7, left with a new diagram characterized by a non uniform
horizontal (spatial) and vertical (temporal) spacing.

5.1 The a posteriori estimator for the global error

With a view to a global adaptation, following, e.g., [20, 16, 21, 10], we
derive an a posteriori estimator for the global error Eh

m = em + eh
m, where

the contributions of the modeling (em = u − um) and of the discretization
(eh

m = um−uh
m) errors remain distinct. In particular, since we are interested

also in an adaptive selection of the space and time step size, we expect that
the estimator for the discretization error consists of a spatial contribution
separate from the temporal one [22, 23, 24, 25].

As for the adaptive HiMod reduction, we carry out the a posteriori anal-
ysis in a slabwise uniform HiMod setting. The pointwise HiMod approxi-
mation predicted by the offline phase will be generated during the online
phase.

The following statement plays a crucial role in the definition of the global
error estimator.

Proposition 2. We assume that saturation assumption (17) holds, and we

choose zN,+
m = zN,+

m+ = 0. Then, for any m, m+ ∈
[
N

+
]N

, with m+ > m ≥
M0 and M0 defined as in Proposition 1, it turns out that

|J(Eh
m)| ≤ 1

1 − σm

(
|J(δumm+)| + |J(eh

m)|
)
. (21)

Moreover, if there exists a constant λ with 0 < λ < 1, such that

|J(eh
m)| ≤ λ|J(em)|, (22)

it additionally holds that

|J(Eh
m)| ≥ 1 − λ

3 + σm − λ

(
|J(δumm+)| + |J(eh

m)|
)
. (23)

20



Proof. Estimates (21) and (23) follow from Proposition 3 and 4 in [10],
respectively.

Starting from Proposition 2, we adopt the quantity

ηh
mm+ = |J(δumm+)| + |J(eh

m)| (24)

as the a posteriori error estimator for the global error Eh
m. As a consequence,

inequalities (21) and (23) state the reliability and the efficiency of such an
estimator. The first term of ηh

mm+ exactly coincides with the modeling error
estimator in (19), while the second contribution takes into account the error
associated with both the spatial and the temporal discretizations. The main
effort of this section will be to explicitly estimate this term, with the addi-
tional requirement of distinguishing the space from the time contribution.
As in [10], we have to properly modify the standard goal-oriented analy-
sis to tackle the intrinsic dimensionally hybrid nature of a HiMod reduced
formulation.

Concerning hypothesis (22), it essentially coincides with a sufficient grid
resolution requirement since establishing a ratio between the modeling and
the discretization errors.

With a view to estimate |J(eh
m)|, we preliminarily prove the following

Galerkin orthogonality property for the discretization error eh
m.

Lemma 3. For any vh
m ∈ V N

m,h, the following relation holds

N∑

n=1

{ ∫

Sn

∂eh
m

∂t
vh
m dΩ dt +

∫

In

a
(
eh
m, vh

m

)
dt +

∫

Ω
[eh

m]n−1 vh,n−1,+
m dΩ

}
= 0. (25)

Proof. We consider the HiMod formulation (8) and the corresponding dis-
crete counterpart (9). The time discontinuity characterizing spaces V N

m and
V N
m,h allows us to select the values of vm and vh

m independently on each

In for n = 1, . . . , N . Thus, we pick both vm and vh
m to vanish outside In

so that formulations (8) and (9) reduce to a unique equation on In: find
um ∈ V N

m

∣∣
Sn

such that, for any vm ∈ V N
m

∣∣
Sn

,

AcGdG(um, vm)
∣∣
Sn

= FcGdG(vm)
∣∣
Sn

, (26)

and, likewise, find uh
m ∈ V N

m,h

∣∣
Sn

such that, for any vh
m ∈ V N

m,h

∣∣
Sn

,

AcGdG(uh
m, vh

m)
∣∣
Sn

= FcGdG(vh
m)

∣∣
Sn

, (27)

with AcGdG(w, ζ)
∣∣
Sn

defined as in (20) and

FcGdG(ζ)
∣∣
Sn

=

∫

Sn

fζ dΩ dt +

∫

∂Qn
N

gζ ds dt,
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with w, ζ ∈ V ∪ V h
m. Now, since V N

m,h

∣∣
Sn

⊂ V N
m

∣∣
Sn

, we subtract (27) from

(26) after identifying vm with vh
m, to get the orthogonality relation

AcGdG(eh
m, vh

m)
∣∣
Sn

= 0, (28)

for any n = 1, . . . , N . Identity (28) can now be generalized to an arbitrary
function vh

m ∈ V N
m,h by suitably summing through the slabs. This yields

identity (25).

Some notations are now instrumental. Let Rn
l be the region of Ω defined

by
⋃

x∈Kn
l
{x}× γx, with Kn

l the generic subinterval of Thn
, while we denote

the interface between Rn
τ and Rn

τ+1 by ζn
τ , for τ = 1, . . . ,Mn − 1 and n =

1, . . . , N , and with ζn
0 ≡ Γ0 and ζn

Mn
≡ Γ1. Finally, SRn

l
= Rn

l × In denotes
the space-time prism associated with Rn

l , while LRn
l

= ∂Rn
l × In identifies

the corresponding lateral surface.
We introduce now the spatial and temporal local residuals. For a fixed

time interval In and for any Rn
l , we consider the internal residual

rRn
l

=
(
f − ∂uh

m

∂t
− Ln

l uh
m

)∣∣∣
SRn

l

(29)

and the boundary residual

jRn
l

=





0 on (∂Rn
l ∩ ΓD) × In

2(g − ∂νu
h
m)|SRn

l

on (∂Rn
l ∩ ΓN ) × In

−[∂νu
h
m] on (∂Rn

l ∩ En
h ) × In

associated with the discrete HiMod solution uh
m, with l = 1, . . . ,Mn and

n = 1, . . . , N , where Ln
l is the restriction of the elliptic operator L in (1)

to the prism SRn
l

and [∂νu
h
m] is the jump of the conormal derivative of

uh
m across an edge of the skeleton En

h = {ζn
τ }Mn−1

τ=1 . We consider now the
temporal residual associated with uh

m and with the time level tn

Jn = [−uh
m]n = (−uh,n,+

m + uh,n,−
m ), (30)

together with the initial error

eh,0,−
m = u0,−

m − uh,0,−
m . (31)

Finally, we introduce a spatial and a temporal operator. In particular, we
consider the time projection operator Tn : V N

m

∣∣
Sn

→ H1
ΓD

(Ω), for n =
1, . . . , N , such that

Tnv =
1

kn

∫

In

v dt ∀v ∈ V N
m

∣∣
Sn

,
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and the one-dimensional Clément quasi-interpolant I1 : L2(Ω1D) → R [36].
By definition, the projection error v − Tnv is orthogonal to any function c
constant in time, so that

∫

In

(v − Tnv)c dt = 0 ∀v ∈ V N
m

∣∣
Sn

, (32)

whereas the estimate

‖v − Tnv‖L2(In) ≤ kn

∥∥∥
∂v

∂t

∥∥∥
L2(In)

∀v ∈ V N
m

∣∣
Sn

(33)

can be proved [15]. Notice that no constant is involved in this result.
Concerning the Clément quasi-interpolant, the estimates

‖v − I1(v)‖L2(K) ≤ C1hK |v|
H1( eK)

(34)

‖v − I1(v)‖L2(∂K) ≤ C2h
1/2
K ‖v‖

H1( eK)
(35)

hold, for any v ∈ H1(Ω1D), where K denotes a generic interval of Ω1D, K̃ is
the associated patch of elements, and with C1 and C2 constants depending
on the relative size of the elements constituting K̃ [36].

We are now ready to prove the following result:

Proposition 4. Let Ω ⊂ R
2. Let us assume that the approximation uh,0,−

m of
the initial datum coincide with the L2-projection PI1(u

0,−
m ) of u0,−

m onto the
space V N

m,h

∣∣
I1

. Moreover, we choose zN,+
m = 0. Then, the following estimate

for the functional error |J(eh
m)| holds

|J(eh
m)| ≤ C

N∑

n=1

Mn∑

l=1

[
ρS

Rn
l
(uh

m)ωS
Rn

l
(zm − zh

m)+

2∑

i=1

ρT i
Rn

l
(uh

m)ωT i
Rn

l
(zm − zh

m)

]
,

(36)
with C a constant depending on the interpolation constants in (34)-(35), on
q and on maxn mn, where the residuals are defined by

ρS
Rn

l
(uh

m) = hn
l ‖rRn

l
‖L2(SRn

l
) +

1

2
(hn

l )
1

2 ‖jRn
l
‖L2(LRn

l
),

+
hn

l

k
1

2
n

(
‖Jn−1‖L2(Rn

l
) + ‖eh,0,−

m ‖L2(Rn
l
)δ1,n

)
,

ρT1

Rn
l
(uh

m) = kn‖rRn
l
− rRn

l
‖L2(SRn

l
) + k

1

2
n

(
‖Jn−1‖L2(Rn

l
) + ‖eh,0,−

m ‖L2(Rn
l
)δ1,n

)
,

ρT2

Rn
l
(uh

m) =
kn

2
‖jRn

l
− jRn

l
‖L2(LRn

l
),

with rRn
l

= TnrRn
l
, jRn

l
= TnjRn

l
, hn

l and kn the length of the generic subin-
terval Kn

l and In, respectively for l = 1, . . . ,Mn and n = 1, . . . , N , and with

23



δ1,n the Kronecker symbol associated with the first slab S1, while the weights
are given by

ωS
Rn

l
(zm − zh

m) =
(

max
x∈Kn

l

L(x)
) 1

2

q∑

r=0

mn∑

j=1

‖z̃ n
j,r − z̃ n,h

j,r ‖
H1( eKn

l
)
‖tr‖L2(In)

ωT1

Rn
l
(zm − zh

m) =
∥∥∥
∂(zm − zh

m)

∂t

∥∥∥
L2(SRn

l
)
, ωT2

Rn
l
(zm − zh

m) =
∥∥∥
∂(zm − zh

m)

∂t

∥∥∥
L2(LRn

l
)
,

with

K̃n
l =





Kn
1 ∪ Kn

2 , for l = 1,
Kn

l−1 ∪ Kn
l ∪ Kn

l+1 for l = 2, . . . ,Mn − 1
Kn

Mn−1 ∪ Kn
Mn

for l = Mn,
(37)

the patch associated with the subinterval Kn
l , L(x) = meas(γx), z̃ n

j,r and

z̃ n,h
j,r the modal coefficients associated with the dual solution zm and with the

corresponding discretization zh
m, respectively.

Proof. We start from the dual problem (13) by choosing vm = eh
m and we

apply the orthogonality relation (25). It follows that, for any vh
m ∈ V N

m,h,

∣∣J(eh
m)

∣∣ =
∣∣AcGdG(eh

m, zm)
∣∣

=
∣∣∣

N∑

n=1

{∫

Sn

∂eh
m

∂t
(zm − vh

m) dΩdt +

∫

In

a(eh
m, zm − vh

m) dt

−
∫

Ω
[eh

m]n−1v h,n−1,+
m dΩ

}
+

N−1∑

i=1

∫

Ω
[eh

m]izi,+
m dΩ +

∫

Ω
eh,0,+
m z0,+

m dΩ
∣∣∣.

The identification of JcGdG(eh
m) with J(eh

m) follows from the requirement

on the dual final datum. We add and subtract the value
∫
Ω eh,0,−

m

(
zm −

vh
m

)0,+
dΩ, by exploiting in (31) the choice uh,0,−

m = PI1(u
0,−
m ) for the primal

initial datum. A manipulation of the jump contributions combined with the
definition of projection operator yields

∣∣J(eh
m)

∣∣ =
∣∣∣

N∑

n=1

{∫

Sn

∂eh
m

∂t
(zm − vh

m) dΩdt +

∫

In

a(eh
m, zm − vh

m) dt

+

∫

Ω
[eh

m]n−1(zm − vh
m)n−1,+ dΩ

}
+

∫

Ω
eh,0,−
m

(
zm − vh

m

)0,+
dΩ

∣∣∣.

After exploiting relation (26) with vm = zm − vh
m, we integrate by parts on
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the regions Rn
l :

∣∣J(eh
m)

∣∣ =
∣∣∣

N∑

n=1

Mn∑

l=1

{∫

In

[ ∫

Rn
l

(
f − ∂uh

m

∂t
− Ln

l uh
m

)
(zm − vh

m) dRn
l

+

∫

∂Rn
l
∩ΓN

g(zm − vh
m) ds −

∫

∂Rn
l

∂νu
h
m(zm − vh

m) ds
]
dt

+

∫

Rn
l

[−uh
m]n−1(zm − vh

m)n−1,+ dRn
l

}
+

M1∑

el=1

∫

R1
el

eh,0,−
m

(
zm − vh

m

)0,+
dR1

el

∣∣∣.

Thanks to definitions (29)-(30), we have

∣∣J(eh
m)

∣∣ ≤
N∑

n=1

Mn∑

l=1

{ ∣∣∣
∫

SRn
l

rRn
l
(zm − vh

m) dRn
l dt

∣∣∣
︸ ︷︷ ︸

(I)

+
1

2

∣∣∣
∫

LRn
l

jRn
l
(zm − vh

m) dsdt
∣∣∣

︸ ︷︷ ︸
(II)

+
∣∣∣
∫

Rn
l

Jn−1(zm − vh
m)n−1,+ dRn

l

∣∣∣
︸ ︷︷ ︸

(III)

}

+

M1∑

el=1

∣∣∣
∫

R1
el

eh,0,−
m

(
zm − vh

m

)0,+
dR1

el

∣∣∣
︸ ︷︷ ︸

(IV)

. (38)

We consider separately the four terms (I)-(IV). In particular, we choose
vh
m coinciding with zh

m + Tn(I1(zm − zh
m)), with zh

m the discrete HiMod
approximation of the dual solution. In particular, the Clément operator
involves only the x-dependent modal coefficients since it is one-dimensional.
Notice that, since we estimate slabwise the terms (I)-(IV), all the functions
in V N

m and V N
m,h have to be meant restricted to In, for each n = 1, . . . , N .

Function vh
m is extended to zero outside In when considered as a function

of V N
m,h.

To exploit the projection and the interpolation estimates in (33)-(35), we
consider the following splitting

zm−vh
m = [(zm−zh

m)−Tn(zm−zh
m)+Tn(zm−zh

m)−Tn(I1(zm−zh
m))]. (39)

Let us focus on term (I). Using the splitting above, the definition of the
averaged residual rRn

l
and of the projection operation Tn, and by combining
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results (32)-(33) with the Cauchy-Schwarz inequality, we obtain

(I) =
∣∣∣
∫

SRn
l

(
rRn

l
− rRn

l

)[
zm − zh

m − Tn(zm − zh
m)

]
dRn

l dt

+

∫

Rn
l

[
Tn

(
zm − zh

m − I1(zm − zh
m)

) ∫

In

rRn
l

dt
]
dRn

l

∣∣∣

≤
∫

Rn
l

‖rRn
l
− rRn

l
‖L2(In)‖zm − zh

m − Tn(zm − zh
m)‖L2(In) dRn

l

+
∣∣∣
∫

SRn
l

rRn
l

(
zm − zh

m − I1(zm − zh
m)

)
dRn

l dt
∣∣∣

≤ kn‖rRn
l
− rRn

l
‖L2(SRn

l
)

∥∥∥
∂(zm − zh

m)

∂t

∥∥∥
L2(SRn

l
)

+ ‖rRn
l
‖L2(SRn

l
)‖(zm − zh

m − I1(zm − zh
m)‖L2(SRn

l
).

We now consider separately the norm associated with the interpolation error.
Let wm be a generic element in V N

m . By exploiting the modal expansion for
wm and the orthonormality of the modal basis, together with interpolation
estimate (34), we obtain

‖wm − I1(wm)‖2
L2(SRn

l
) =

∫

SRn
l

{ q∑

r=0

mn∑

j=1

trϕj,r(ψx(y))
[
w̃ n

j,r − I1(w̃ n
j,r)

]
(x)

}2
dRn

l dt

=

q∑

r=0

mn∑

j=1

∫

In

t2r

∫

Kn
l

[ ∫

bγ1

ϕ2
j,r(ŷ)

∣∣D−1(x, ψ−1
x (ŷ))

∣∣ dŷ
][

w̃ n
j,r(x) − I1(w̃ n

j,r)(x)
]2

dKn
l dt

=

q∑

r=0

mn∑

j=1

∫

In

t2r max
x∈Kn

l

L(x)‖w̃ n
j,r − I1(w̃ n

j,r)‖2
L2(Kn

l
)dt

≤ C2
1 max

x∈Kn
l

L(x) (hn
l )2

q∑

r=0

mn∑

j=1

|w̃ n
j,r|2H1( eKn

l
)
‖tr‖2

L2(In), (40)

where D(x, ψ−1
x (ŷ)) = L(x)−1 denotes the Jacobian associated with the map

ψx, and with γ̂1 the reference fiber for the two-dimensional setting. Via this
estimate, we obtain the following bound for the term (I) in (38):

(I) ≤ kn‖rRn
l
− rRn

l
‖L2(SRn

l
)

∥∥∥
∂(zm − zh

m)

∂t

∥∥∥
L2(SRn

l
)

(41)

+ C‖rRn
l
‖L2(SRn

l
)h

n
l

(
max
x∈Kn

l

L(x)
) 1

2

q∑

r=0

mn∑

j=1

|z̃ n
j,r − z̃ n,h

j,r |
H1( eKn

l
)
‖tr‖L2(In),

with C a constant depending on C1 in (34), q and mn. From now on, C
denotes a constant whose value may change from line to line. Term (II) can
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be bounded analogously to contribution (I), by restricting the computations
on the lateral surface LRn

l
of SRn

l
. This yields

(II) ≤ kn

2
‖jRn

l
− jRn

l
‖L2(LRn

l
)

∥∥∥
∂(zm − zh

m)

∂t

∥∥∥
L2(LRn

l
)

+
1

2
‖jRn

l
‖L2(LRn

l
)‖(zm − zh

m − I1(zm − zh
m)‖L2(LRn

l
). (42)

Inequality (40) is replaced by a corresponding trace estimate, obtained es-
sentially by invoking result (35) instead of (34), to have

‖wm − I1(wm)‖2
L2(LRn

l
) ≤ C2

2 max
x∈Kn

l

L(x)hn
l

q∑

r=0

mn∑

j=1

‖w̃ n
j,r‖2

H1( eKn
l

)
‖tr‖2

L2(In),(43)

for any wm ∈ V N
m . Combining this result with (42), we attain the following

control for the second term in (38):

(II) ≤ kn

2
‖jRn

l
− jRn

l
‖L2(LRn

l
)

∥∥∥
∂(zm − zh

m)

∂t

∥∥∥
L2(LRn

l
)

+
1

2
C‖jRn

l
‖L2(LRn

l
)

(
hn

l

) 1

2

(
max
x∈Kn

l

L(x)
) 1

2

q∑

r=0

mn∑

j=1

‖z̃ n
j,r − z̃ n,h

j,r ‖
H1( eKn

l
)
‖tr‖L2(In),

where constant C depends on C2 in (35), q and mn. We focus now on term
(III) and, first of all, we apply again splitting (39):

(III) ≤
∣∣∣
∫

Rn
l

Jn−1

[
zm − zh

m − Tn(zm − zh
m)

]n−1,+
dRn

l

∣∣∣

+
∣∣∣
∫

Rn
l

Jn−1

[
Tn

(
zm − zh

m − I1(zm − zh
m)

)]n−1,+
dRn

l

∣∣∣.

Now, thanks to the mean value theorem, we remark that, for any function
wm ∈ V n

m,

(
wm − Tn(wm)

)n−1,+
= wn−1,+

m − wm(t∗n) = −
∫ t∗n

tn−1

∂wm

∂t
(s) ds (44)

with t∗n ∈ (tn−1, tn), as well as equality ‖Jn−1‖L2(SRn
l
) = k

1

2
n ‖Jn−1‖L2(Rn

l
)

trivially holds. Moving from these results and by exploiting the definition
of the projection operator Tn, the Cauchy-Schwarz inequality and estimate
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(40), we derive the final bound for (III):

(III) ≤
∣∣∣
∫

SRn
l

Jn−1
∂(zm − zh

m)

∂t
dRn

l dt
∣∣∣

+
1

kn

∣∣∣
∫

SRn
l

Jn−1

(
zm − zh

m − I1(zm − zh
m)

)
dRn

l dt
∣∣∣

≤ k
1

2
n

∥∥Jn−1

∥∥
L2(Rn

l
)

∥∥∥
∂(zm − zh

m)

∂t

∥∥∥
L2(SRn

l
)

+
1

k
1

2
n

∥∥Jn−1

∥∥
L2(Rn

l
)

∥∥zm − zh
m − I1(zm − zh

m)
∥∥

L2(SRn
l
)

≤
∥∥Jn−1

∥∥
L2(Rn

l
)

{
k

1

2
n

∥∥∥
∂(zm − zh

m)

∂t

∥∥∥
L2(SRn

l
)

+
C
k

1

2
n

(
max
x∈Kn

l

L(x)
) 1

2
hn

l

q∑

r=0

mn∑

j=1

|z̃ n
j,r − z̃ n,h

j,r |
H1( eKn

l
)
‖tr‖L2(In)

}
,

with C as in (41). The last term in (38) can be controlled by repeating
the same computations adopted for (III), by replacing the temporal residual

Jn−1 with the initial error eh,0,−
m and by focusing on the first time interval.

We achieve the following estimate

(IV) ≤
∥∥eh,0,−

m

∥∥
L2(R1

el
)

{
k

1

2

1

∥∥∥
∂(zm − zh

m)

∂t

∥∥∥
L2(S

R1
el

)

+
C
k

1

2

1

(
max
x∈K1

el

L(x)
) 1

2
h1

el

q∑

r=0

mn∑

j=1

|z̃ 1
j,r − z̃ 1,h

j,r |
H1( eK1

el
)
‖tr‖L2(I1)

}
,

with C as in (43). Now, result (36) follows by properly combining the indi-
vidual estimates obtained for terms (I)-(IV).

Moving from (36), we propose as error estimator for the discretization
contribution in (24) the value

ηh =

N∑

n=1

Mn∑

l=1

[
ρS

Rn
l
(uh

m)ωS
Rn

l
(zm − zh

m) +

2∑

i=1

ρT i
Rn

l
(uh

m)ωT i
Rn

l
(zm − zh

m)

]
, (45)

so that the estimator for the global functional error, |J(εh
m)|, coincides with

ηh
mm+ = ηmm+ +ηh, with ηmm+ as in (19). In particular, since it is straight-

forward to distinguish in ηh the space from the time contribution given by

ηh
S =

N∑

n=1

Mn∑

l=1

ρS
Rn

l
(uh

m)ωS
Rn

l
(zm−zh

m), ηh
T =

N∑

n=1

Mn∑

l=1

2∑

i=1

ρT i
Rn

l
(uh

m)ωT i
Rn

l
(zm−zh

m),
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respectively, it is immediate to decompose ηh
mm+ into a modeling, a space

and a time contribution, as

ηh
mm+ = ηmm+ + ηh

S + ηh
T . (46)

This splitting will be crucial with a view to the global adaptive procedure.
Both the estimators ηh

S and ηh
T share the structure characterizing a goal-

oriented analysis, i.e., they coincide with the product of a residual depending
on the primal solution and a weight related to the dual solution. In addition,
we remark that the HiMod procedure produces an evident effect in the
definition of the weights, where the contribution along the x- and y-direction
is split.

Some computational remarks on estimator ηh are now in order.
To make computable the weights, we replace the dual solution zm with a
computable discrete counterpart z∗,hm . A possibility is to resort to the dis-
crete enriched dual solution zh

m+ . Nevertheless, since the temporal weights
involve the time derivative of zm, we resort to a temporal recovery procedure
yielding an approximation z∗,hm that is at least linear in time. In particular,
we follow the approach in [24, 25].

The dependence of the weights on the dual discretization error rather
than on the dual solution is optimal in terms of convergence. Moreover, the
time averaged residuals rRn

l
and jRn

l
make the estimator more reliable since

‖w‖L2(In) ≤ ‖w‖L2(In) as well as ‖w−w‖L2(In) ≤ ‖w‖L2(In) for any function
w ∈ L2(In).
An extra care has to be devoted to the computation of the temporal residual
Jn−1 that combines solutions associated with two different meshes. We use
an interpolation operator from the degrees of freedom of Thn

onto the ones
associated with Thn+1

.
Finally, the analysis in Proposition 4 may be generalized to a 3D frame-

work provided that map ψx is properly chosen. In particular, the orthonor-
mality of basis B may be exploited to derive estimates (40) and (43) only if
D−1(x, ψ−1

x (ŷ)) does not depend on ŷ. This has to be explicitly demanded
in a 3D setting while it always holds in a 2D framework.

5.2 Building the space-time adaptive HiMod lookup diagram

The goal of this section coincides with the one pursued via model adaptation,
i.e., to keep the global functional error below a fixed tolerance TOL via an
automatic selection of the modal distribution and now also of the space-time

mesh
{(

Kn
l , In

)Mn

l=1

}N

n=1
.

Different strategies are followed in the literature to combine model with
mesh adaptation [37, 20, 16, 10]. The approach we propose iteratively alter-
nates model with space-time mesh adaptation, by advantageously exploiting
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Figure 9: Flowchart of the global adaptive procedure.

the additive structure of the global error estimator in (46). For this reason,
we distinguish a model (TOL MODEL) and a mesh (TOL MESH) tolerances, such
that TOL MODEL+TOL MESH=TOL. Then, we follow the procedure outlined
in Figure 9. We distinguish two main modules, ADMOD devoted to model
adaptation and ADMESH dealing with the space-time mesh adaptation. The
module ADMOD exactly implements the five-stage adaptive procedure previ-
ously described. Concerning the space-time mesh adaptation, the algorithm
set by ADMESH is very straightforward, due to the one-dimensional nature of
both the spatial and temporal meshes. In particular, while the space adap-
tation includes both mesh refinement (via bisection) and coarsening (gluing
two consecutive intervals where ηh

S is below tolerance), the time adaptive
algorithm deals only with mesh refinement. This suggests to start the adap-
tive procedure on a sufficiently coarse time partition. Error equidistribution
drives both the space and time adaptation. A maximum value constrains the
number of iterations as well as tuning parameters δ1H (= 0.5), δ2H (= 1.5)
limit the spatial mesh refinement and coarsening to the worst and to the
best subintervals, respectively.

As highlighted in Figure 9, after a preliminary check on the accuracy of
the global error estimator associated with the initial uniform modal distri-
bution and the initial uniform space-time grid, model adaptation takes place
till the accuracy TOL MODEL is matched by estimator η

MM
+ . Then, we check

if model adaptation suffices to provide the global tolerance TOL without any
space-time mesh adaptation. If not the module ADMESH is activated. In par-
ticular, we apply the spatial rather than temporal adaptation depending on
which of the estimators ηh

S , ηh
T is the greatest one. When ηh <TOL MESH, we
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come back to the initial check on the global accuracy.
A maximum number of iterations ensures the end of the whole adaptive

procedure. We remark that each time the space-time partition is updated,
a projection of the primal and dual solutions involved in the evaluation
of the error estimator is demanded. As for the choice of the tolerances,
we opted for a convex combination of the different tolerances, by selecting
TOL MODEL= θTOL and TOL MESH= (1 − θ)TOL, with 0 ≤ θ ≤ 1 [10]. The
parameter θ settles a relation between model and discretization error, in
accordance with requirement (22).

Finally, we refer to the outcome of the whole adaptive algorithm as to the
space-time adaptive HiMod lookup diagram. Some instances of this table
are provided in the next section.

5.3 Numerical verification of the space-time adaptive HiMod

diagram

The test case used to validate the modeling adaptive procedure for J =
Jmean,T is now tackled by activating the mesh adaptation as well. We pre-
serve the same values of the previous run for tolerance TOL, for the initial
uniform modal indices m and m+, and for the initial space-time mesh. Then,
we set θ = 0.5.

The adaptive procedure converges after 50 iterations, i.e., 23 model it-
erations followed by 9 and 8 adaptations of the spatial and of the temporal
mesh, respectively and by 10 additional model adaptations. The final out-
come of the offline phase is the HiMod lookup diagram in Figure 10, top-left.
A comparison between this table and the one in Figure 7, left shows a similar
trend for the number of modes, i.e., a gradual increment of the number of
modes as we approach the final time and in correspondence with the source
location and the downstream areas. Nevertheless, the combination of model
with mesh adaptation reduces from 3 to 1 the number of modes used in
the first phase of the test case (compare Figure 7, center with Figure 11,
left). Concerning the spatial adaptation, a coarse mesh consisting of less
than 20 subintervals and refined around x = 1.5 is predicted for the first
time intervals. Then, this number increases with an abrupt variation in the
last time interval when it reaches its maximum (see Figure 11, center). The
monotone trend characterizing the model and the spatial mesh adaptation
is qualitatively the same, exhibiting a refinement of the modes and of the
finite element partition confined to the last time intervals, in accordance
with the goal quantity.

On the contrary, the time adaptation yields a non monotone prediction
for the time step distribution, as depicted in Figure 11, right. Essentially we
recognize two phases when the initial time step is considerably reduced, the
first one around the initial time and the second one just before time T . A
strong refinement of the initial grid is recurrent in mesh adaptation and here
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Figure 10: Convection-diffusion of a pollutant, control of Jmean,T , global
adaptation: space-time adaptive HiMod lookup diagram (top-left); space-
time distribution of η

MM
+ (top-right), of ηh

S (bottom-left) and of ηh
T

(bottom-right).

it likely balances the initial rough modal and spatial discretizations. The
second refinement occurs when the control of the mean value becomes more
relevant. At time t = 0.8, both the modal discretization and the space-time
mesh are considerably refined to ensure the imposed tolerance. Probably,
a complex interplay among the three discretizations takes place during the
last time intervals, so that the severe demand on the time step is relaxed
again before reaching the final time.

Figure 10 gathers the values of the three error estimators distributed on
the space-time lookup diagram. The choice made for the tolerances leads
to values of the same order of magnitude for η

MM
+ and ηh

S , while the error
estimator associated with the time discretization assumes larger values.

As shown in Figure 12, the c[M(M)G(1)]-dG(0) HiMod solution gener-
ated by the online phase starting from the diagram in Figure 10, top-left is
qualitatively different from the one in Figure 6, right. The adoption of a
single mode till t = 0.7 identifies a reduced solution which is initially very
far from the full one. Nevertheless, the time steps predicted by the adaptive
algorithm are enough to refine, during the last time intervals, the number of
modes as well as the partition along Ω1D so that solution uh

M
becomes fully

comparable with the full one at the final time.
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Figure 11: Convection-diffusion of a pollutant, control of Jmean,T , global
adaptation: modal distribution at x=1.5 as a function of time (left); mesh
cardinality (center) and time-step (right) evolution.
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Figure 12: Convection-diffusion of a pollutant, control of Jmean,T , global
adaptation: HiMod approximation uh

M
at t = 0.1, 0.2, 0.8, 1 (top-bottom,

left-right).

5.3.1 Neumann boundary conditions

We challenge the whole adaptive procedure by modifying the boundary con-
ditions in the previous test case. We assign a homogeneous Neumann condi-
tion on the whole boundary, except for the edge ΓD = {(0, y) : 0 ≤ y ≤ 1}
where we preserve the homogeneous Dirichlet datum. The new condi-
tion along the horizontal sides leads to select a new modal basis. Af-
ter identifying the reference fiber γ̂1 with the interval [0, 1], we choose
B = {ϕj(ŷ) =

√
2 cos(πjŷ)}j∈N.

Figure 13, left shows the cG(1)-dG(0) full solution at four different times,
computed on a uniform unstructured mesh of 10252 elements. In particular,
the new flux-free configuration erases the horizontal dynamics in Figure 6,
pushing the pollutant to contaminate also the northeast and the southeast
areas. If we set the global adaptive procedure to control Jmean,T , we do not
expect much benefit from the modal basis since all the cosine functions have
a null mean except ϕ0. Figure 14, top and Figure 15, top-left collect some
results of the global adaptive procedure for TOL MODEL=TOL MESH= 5 · 10−3.
The adaptive algorithm stops after 10 iterations. No model adaptation is
performed and only function ϕ0 is switched on. On the contrary, both the
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Figure 13: Convection-diffusion of a pollutant, control of Jdown
mean,T , global

adaptation: full solution (left) and pointwise HiMod approximation uh
M

(right), at t = 0.1, 0.5, 0.8, 1 (top-bottom).

spatial and the temporal meshes are adapted via 7 and 3 iterations, respec-
tively. The cardinality of the finite element mesh reaches a minimum in the
middle of the interval I, while, after an initial refinement, the time step in-
creases to the initial value 0.1. Overall, the modal-space-time discretization
is coarse as shown by the HiMod lookup diagram. The c[M(M)G(1)]-dG(0)
HiMod solution generated in the online phase is provided in Figure 15, bot-
tom for two different times. It is not surprising that uh

M
looses the essential

features of the full solution due to the deficiency of the reduced model.
Smaller values of TOL, of course, do not modify this trend.

A completely different prediction is performed by changing the goal
functional J into Jdown

mean,T =
[
meas(Ωdown)

]−1 ∫
Ωdown ζ(x, y, 1) dΩdown, with

Ωdown = (0, 3) × (0, 0.5). The global tolerance TOL= 10−2 is now guaran-
teed after 30 model iterations, followed by 7 spatial and 9 temporal mesh
adaptations, plus a final model adaptation. The space-time adaptive Hi-
Mod lookup diagram yielded by the offline phase is shown in Figure 15,
top-right. The number of cosine functions is gradually increased to eight in
correspondence with D. Additional modes are now demanded also upstream
the source location in contrast to Figure 10, top-left. The modal as well as
the spatial mesh cardinality trend is very similar to the one in Figure 11,
whereas three refinements of the time step now occur (see Figure 14). The
additional refinement about in the middle of the time window corresponds
to the phase when the pointwise HiMod solution starts to become similar to
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time distribution of η
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S (center) and of ηh
T (right), for Jmean,T

(top) and Jdown
mean,T (bottom).

the full one. Indeed, as shown in Figure 13, right solution uh
M

is initially far
from the full one (and similar to the pointwise approximation in Figure 15).
Then, from t = 0.5, uh

M
becomes more and more similar to the full solution

till, at the final time, the two solutions are almost identical.
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Figure 15: Convection-diffusion of a pollutant, global adaptation: space-
time adaptive HiMod lookup diagram (top) associated with Jmean,T (left)
and Jdown

mean,T (right); pointwise HiMod approximation associated with Jmean,T

(bottom) at t = 0.2 (left) and t = 1 (right).
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Figure 16: Diagram of the experimental configuration used for the valida-
tion.

6 Validation of the HiMod reduction

This is a first attempt of validation for the HiMod reduction procedure. For
this purpose, we focus on the experimental and modeling analysis provided
in [26] dealing with a reactive transport in homogeneous porous media.

We consider the experimental setting outlined in Figure 16. It consists of
a rectangular laboratory flow cell of dimension 2.5dm×1dm×0.08dm along
the x-, y- and z-direction, respectively. The cell is filled with a porous media
with measured porosity equal to 0.375 and it is initially saturated with an
aqueous solution. Segment Γinlet = {(0, y, z) : 0.5 ≤ y ≤ 1, 0 ≤ z ≤ 0.08}
coincides with an inlet boundary, where a constant concentration, modeling
the injection of a reactive component, is assigned. Simultaneously, a flow
rate of 12ml/h is set at the outlet Γoutlet = {(2.5, y, z) : 0 ≤ y ≤ 1, 0 ≤
z ≤ 0.08}, resulting in an average water velocity of about 0.404dm/h at
the equilibrium. We remark that the set-up of the experiment is designed
to have a pseudo-1D flow, parallel to the x-axis. Finally, ten sampling
ports are located in the cell, to collect measurements of the reactive fluid
concentration. Sampling is performed four times during each experiment.
The concentration measurements represent the data we aim at matching via
a HiMod reduced modeling in the same spirit of the analysis in [26]. The
reactive transport experiment is conducted for 60 hours, though a stationary
state is reached already after 15 hours from the beginning of the experiment,
so that we restrict the time window of investigation to (0, 30).

For all the further experimental data we refer to [26] since a greater level
of detail on the experimental setting is beyond the purposes of the paper.

From a modeling viewpoint, since the setting is invariant along the z-
axis, we can simulate the experiment in an effective way as a two-dimensional
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flow. In particular, we adopt the unsteady equation





∂u

∂t
(x, y, t) − 0.00085 ∆u(x, y, t) + 0.404

∂u

∂x
(x, y, t) = 0 (x, y, t) ∈ Ω × (0, 30)

∂u

∂y
(x, 0, t) =

∂u

∂y
(x, 1, t) = 0 0 ≤ x < 2.5, t ∈ (0, 30)

u(0, y, t) = 0 0 ≤ y < 0.5, t ∈ (0, 30)
u(0, y, t) = 0.045 0.5 ≤ y < 1, t ∈ (0, 30)
∂u

∂x
(3, y, t) = 0 0 ≤ y < 1, t ∈ (0, 30)

u(x, y, 0) = 0 (x, y) ∈ Ω,

(47)
with Ω = (0, 2.5)× (0, 1), to model the process of advection and diffusion of
the reactive component. Notice that (47) represents a simplified version of
the original model in [26]. A preliminary tuning of the model parameters has
been carried out to make the solution of the two models as close as possible
in the considered experimental context. In more detail, we adopt a constant
diffusive coefficient whose value is set, via a trial and error procedure, to
replicate the action of the diffusive tensor used in [26]. Moreover, following
[26], we select the value for the flux velocity by solving an additional Darcy
problem.

Figure 17, left shows the full solution computed on a uniform unstruc-
tured mesh of 13078 triangles at t = 5h, 11h, 15h, 19h. The reactive fluid
gradually spreads into the flow cell and reaches the stationary stage.

We now test the HiMod reduction procedure. We first resort to a uni-
form HiMod approximation and we use 20 modal functions to describe the
transverse dynamics. We adopt a uniform space-time discretization along
Ω1D and (0, 30), with step h = 0.05 and k = 0.5, respectively. In Figure 17,
right we gather the HiMod solution uh

20 at t = 5h, 11h, 15h, 19h. The reli-
ability of the reduced solution is satisfactory, despite the complexity of the
phenomenon and the confined number of modal function. Now, we focus on
the actual validation phase. For this purpose, in Figure 18, we compare the
simulated (diamond symbols) with the measured (circle symbols) concentra-
tions in correspondence with eight of the ten sampling ports in Figure 16.
We refer only to one of the two sets of data available in [26]. The agreement
between simulated and measured concentrations is very good. The predic-
tion provided by the HiMod approximation is fully comparable with the one
of Figure 3 in [26]. In particular, while the results at ports A1, A2, C1, D1
are very similar, we detect an improvement in the concentrations predicted
by the HiMod reduction procedure at ports A3 and C3, probably due to the
cut-off of the high frequencies. Qualitatively, at each port, we recognize a
first phase of about 8 hours when the chemical breakthrough, characterized
by a sigmoid shape curve, occurs; successively, the steady state is reached
and each curve exhibits a plateau.

As last test, we assess the reliability of the modeling adaptive procedure
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Figure 17: Reactive transport in porous media: full solution (left) and
uniform HiMod approximation uh

20 (right) at t = 5h, 11h, 15h, 19h (top-
bottom).

in a validation context. We aim at evaluating the reactive fluid concentra-
tion at t̃ = 15h via the c[M(M)G(1)]-dG(0) HiMod solution predicted by
the modeling adaptive procedure. We consequently choose functional J as
J15(ζ) =

[
meas(Ω)

]−1 ∫
Ω ζ(x, y, 15) dΩ. The expectation is to obtain a value

for the concentration similar to the one provided by uh
20 and not so far from

the experimental data, but via a HiMod solution computationally cheaper
than uh

20. This would confirm the desired trade-off between modeling re-
liability and computational efficiency. We set the adaptive algorithm with
TOL= 10−3, m = 1, m+ = 3. Concerning the space-time discretization that
is held fixed in the simulation, we adopt a uniform space-time subdivision
of Ω1D × I with h = 0.05 and k = 0.5. Finally, we reduce the time window
to (0, 15) due to the stationary regime of the flow in the interval (15, 30).

The modeling adaptive algorithm converges after 599 iterations. It re-
turns the HiMod lookup diagram in Figure 19, left characterized by the
space-time distribution of η

MM
+ in Figure 19, right. Both the diagrams

corroborate the complexity of this experiment. In contrast to a more lo-
calized phenomenon such as the convection-diffusion of a pollutant in the
previous sections, the refinement of the number of modes now gradually
involves the whole Ω1D as we approach time t̃.
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Figure 18: Reactive fluid concentrations at the sampling ports A1, A2, A3,
A4, C1, C3, D1, D3 (top-bottom, left-right): measured (circle symbols) and
simulated concentrations via uh

20 (diamond symbols) and via uh
M

(square
symbols).
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Figure 19: Reactive transport in porous media, control of J15, modal adap-
tation: HiMod lookup diagram (left) and corresponding space-time distri-
bution of η+

MM
(right).

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

 

 

0

0.01

0.02

0.03

0.04

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

 

 

0

0.01

0.02

0.03

0.04

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

 

 

0

0.01

0.02

0.03

0.04

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

 

 

0

0.01

0.02

0.03

0.04

Figure 20: Reactive transport in porous media, control of J15, modal adapta-
tion: HiMod approximation at t = 5h, 7h, 11h, 15h (top-bottom, left-right).

The non uniform trend of the estimator highlights the demanding work
performed by the adaptive procedure to guarantee tolerance TOL. Despite
these difficulties, the maximum number of modal functions required by the
lookup diagram is 12 to be associated with the area closer to the inlet and
with the time intervals immediately preceding the steady state. The point-
wise HiMod approximation uh

M
generated by the online phase is depicted

in Figure 20, for t= 5h, 7h, 11h, 15h. The trend of the adapted solution
becomes more and more similar to the one in Figure 17, as t approaches t̃.

Finally, we examine the concentration values predicted by the adapted
HiMod solution at t̃ = 15h in correspondence with the eight ports in Fig-
ure 18 (see the square symbols). It is evident the good matching of the
simulated concentrations between uh

20 and uh
M

, with a slight different pre-
diction at ports C3 and D3. In particular, the concentration computed by
the adapted model at port D3 is closer to the experimental measurements
with respect to the value provided by uh

20.
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7 Conclusions and perspectives

We have successfully extended the pointwise HiMod approach to an unsteady
setting, by formalizing the so-called c[M(M)G(s)]-dG(q) HiMod reduction
procedure. The goal-oriented a posteriori error analysis has allowed us to
devise an automatic algorithm to select the reduced model, that guarantees
the desired accuracy on the functional of interest. The results yielded by the
global adaptive procedure are very satisfying, despite the complex interplay
among the three adaptations. This is confirmed by the HiMod lookup dia-
grams in Figure 10, top-left and Figure 15. The sensitivity of the predicted
HiMod reduced model with respect to the goal quantity has been correctly
validated as well (see, e.g., Figure 8 and Figure 15, bottom). Finally, the
preliminary validation results in the last section are absolutely promising
with a view to an effective application of HiMod to practical problems.

Prospective extensions of HiMod reduction include the approximation of
nonlinear as well as 3D problems. This will be a crucial effort with a view
to our last goal, i.e., to use HiMod reduction for the simulation of the blood
flow in the arterial system.
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