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Abstract

We consider the numerical solution of second order Partial Di erential
Equations (PDEs) on lower dimensional manifolds, speci cally on suréces
in three dimensional spaces. For the spatial approximation, we conside
Isogeometric Analysis which facilitates the encapsulation of the exact
geometrical description of the manifold in the analysis when this is rpre-
sented by B{splines or NURBS. Our analysis addresses linear, nonlinear
time dependent, and eigenvalues problems involving the Laplace{Betami
operator on surfaces. Moreover, we propose a priori error estimates
under h{re nement in the general case of second order PDEs on the
lower dimensional manifolds. We highlight the accuracy and e ciency of
Isogeometric Analysis with respect to the exactness of the geometrical
representations of the surfaces.

Key words. Second order Partial Di erential Equations; Manifolds; Sur-
faces; Laplace{Beltrami operator; Isogeometric Analysis; A priori error
estimation.

Corresponding author. E-mail: luca.dede@ep .ch, Phone: +41 21 6930318, Fax: +41 21 6935510.



2 L. Dedk, A. Quarteroni

1 Introduction

In several instances, Partial Dierential Equations (PDEs) are set up on on lower dimensional
manifolds with respect to the hosting physical space, namely on suates in three dimensions or
curves in two or three{dimensions ([1]). Applications include problems in Fluid Dynamics, Biology,
Electromagnetism, and image processing as reported for example in [8, 32, 28, 45]. In addition,
PDEs on lower dimensional manifolds could be obtained as reduced matheatical formulations of
PDEs de ned in thin geometries, e.g. for plates and shells structues [50].

The numerical approximation of these PDEs generally requires the gesration of an approxi-
mated geometry compatible with the analysis, as it is the case for the Fiite Element method (see
e.g. [15, 33, 42]). In particular, the approximation of the curvature of surfa@s may signi cantly
a ect the total error associated to the numerical approximation. Typic ally, schemes based on the
Finite Element method have been used for the approximation of PDEson surfaces with partic-
ular emphasis in controlling and limiting the propagation of the errors as®ciated to the discrete
geometrical representation. With this aim, surface Finite Element methods [22, 24] and geomet-
rically consistent Finite Element mesh adaptations [9, 38] have beenansidered. As alternatives,
approaches based on the implicit or immersed surfaces have been propds hamely based on level
set formulations [5, 23] or di use interfaces strategies [43]. Still, for abroad range of geometries
(surfaces) of practical interest, the above mentioned approaches areoherror free in the geometrical
representation.

As alternative to these approaches, in this paper we propose numerical gpoximation of PDEs
on lower dimensional manifolds by means of Isogeometric Analysis. Our appach is motivated by
the fact that a broad range of geometries of practical interest are exactly rpresented by B{splines
or NURBS ([40]).

Isogeometric Analysis is an approximation method for PDEs based on the is@yametric concept
for which the same basis functions used for the geometrical represeation are then also used for
the numerical approximations of the PDEs [18, 34]. Typically, B{splines or NURBS geometrical
representations are considered for Isogeometric Analysis, even if, mmmrecently, T{splines ([47])
have been successfully utilized. Since NURBS are the golden stanahin Computer Aided Design
(CAD) technology, the use of Isogeometric Analysis facilitates the encapsdation of the exact geo-
metrical representation in the analysis and simpli es the establiqbiment of direct communications
between design and numerical approximation of the PDEs. Moreover, NURB{based Isogeometric
Analysis possesses several advantages besides the geometrical conatiters, especially in terms
of smoothness of the basis functions and accuracy properties [2, 4, 28]. Novead, Isogeometric
Analysis have been successfully used in a broad range of applications @@mputational mechanics
and optimization, see e.g. [3, 18, 20, 31, 37]. In particular, Isogeometric Analysisave been con-
sidered for solving shell problems, as e.g. in [6], and, more recentlisogeometric Analysis in the
framework of the Boundary Element method ([52]) has been used to take adntage of the exact
geometrical representation of surfaces [46].

In this work we provide for the rst time a general formulation of the nu merical approximation
of second order PDEs de ned on lower dimensional manifolds describeddy NURBS, speci cally
surfaces, by means of Isogeometric Analysis. We discuss the repretsion of the manifolds in a
general framework by means of geometrical mappings from the parameter space the physical
domain; consequently, in view of the use of Isogeometric Analysis based dhe Galerkin method
([42]), we recast the weak forms of the problems and the spatial di erenal operators in the param-
eter space. We provide a priori error estimates undeh{re nement for the numerical approximation
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by means of Isogeometric Analysis, thus extending the results of [2] anfdl] to the case of the second
order PDEs on lower dimensional manifolds; with this aim, an interpolation error estimate for the
NURBS space on the manifold is proposed. We show the accuracy and e ciencyf the method
by solving several PDEs endowed with the Laplace{Beltrami spatial opeator on surfaces. In par-
ticular, as few remarkable instances, we address the numerical solon of the Laplace{Beltrami
problem, the eigenvalue problem, a time dependent linear advectidli usion equation, and the
Cahn{Allen phase transition equation ([11, 29]). For both the Laplace{Beltrami and the eigen-
value problems we compare the convergence rates of the errors obtained hyeans of Isogeometric
Analysis with those expected from the a priori error estimates and we tghlight the advantages of
exactly representing the geometries at the coarsest level of disdigation.

This work is organized as follows. In Sec. 2 we discuss the represatibn of lower dimensional
manifolds by NURBS and the role of the parametrization in the de nition of geometrical map-
pings. In Sec. 3 we consider the PDEs on the manifolds for problems ioWwing the second order
Laplace{Beltrami spatial operator. In Sec. 4 we discuss the numerical apmximation schemes,
speci cally Isogeometric Analysis for the spatial approximation; for the time dependent problems,
the generalized{ method ([14]) is considered and a SUPG stabilization scheme ([10]) is psented
because of its suitability to treat advection dominated problems. In Sc. 5 we provide the inter-
polation error and a priori error estimates for h{re ned NURBS \meshes". In Sec. 6 we report
and discuss the numerical results for PDEs on surfaces. Final consdations are reported in the
Conclusions.

2 Manifolds represented by NURBS

In this section we introduce in an abstract setting lower dimensonal manifolds in the physical space,
e.g. curves and surfaces, represented by suitable geometrical mapgs. We recall the de nition

of generic functions and their derivatives on the manifold and we exprss them in terms of the
parametric coordinates upon which the geometrical mapping is built. Fnally, we speci cally select
manifolds de ned by B{splines and NURBS and we brie y recall the basics of these geometrical
representations.

2.1 Manifolds and geometrical mapping

Let us consider a generic (Riemannian) manifold, say RY with d 1, de ned in the physical
spaceRY [1]. Let us assume that the manifold is obtained by means of a geometrical majapy from

a parameter space, sajR , into the physical spaceRY, with d 1. If d> the manifold is
lower dimensional with respect to the physical space. More precdy, given a parameter domain,
say b R, anda vector{valued independent variable =( 1;:::; )2 R, the manifold RY
is de ned by means of the geometrical mapping:

x : b1 R% Lox(): (2.1)
For example, ifd =3 and = 1, the manifold represents a curve in R3, while if =2, isa

surface inR3. Speci cally, we consider compact, connected, and oriented manifoll de ned from
parameter domainsbof nite, positive measure with respect to the topology of R (0 < jbj < +1).
For the mapping (2.1), we de ne its Jacobian:

p: by RI ; ! b( )i bi; ()= gi() i=1;:::;d; =1;:::; (2.2)

3
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We also introduce the rst fundamental form of the mapping:
T
6:b1 R L 8(); 8()= B() B) (2.3)

and nally its determinant:
r

b: bl R 1 g();  b( )= det B(): (2.4)

We observe that in the case for which = d, then B( ) 2 R “and () det P( ) (when

positive). We assume that the geometrical mapping (2.1) is \su ciently " smooth, e.g. Cl(l?, and
invertible a:e:in P Notice that we allow the mapping to be locally not invertible in sub domains
Q of with zero measure in the topology of R ; speci cally, we require that §( ) > 0 aze:in b
with g( )=0for 2 ® DPonlyifmeas ® 0, where® is the subdomain of Pmapping the
subdomain Q of .

Finally, in view of the derivation of the a priori error estimate in Sec. 5, we introduce, following
Egs. (2.2), (2.3), and (2.4), the Jacobian, the rst fundamental form of the mapping, and its
determinant in the manifold as, respectively:

F: o RY ;  x! Fx);  Fx)=PB() x %), (2.5)
G: !' R ; x! G(X):; G(X:=86() x ); (2.6)
g: ! R x! gx); gx)=08) x () (2.7)

where we used the geometrical mapping (2.1).

2.2 Functions and di erential operators on manifolds

Let assume that a \su ciently" regular function is de ned on the manifol d , e.g. 2 C°() for
all x 2 ; then, since we consider invertible geometrical mappings, we can wite:

(x)=0C) x () (2.8)

where b( ) :=  (x()). Moreover, we de ne the gradient on the manifold of the function
2 CY(), say r 2 RY, as the projection of the gradient operator associated to the physical

space onto the manifold. With this aim, we introduce the smooth prolorgation of the function

(x) from binto a tubular region in RY containing b[9, 21], say €(x), and the projector tensor
P(x) 2 RY ¢

PxX):=1 n (x) n (x) forx 2 ; (2.9)
with the unit vector n (x) normal to the manifold in RY and I the identity tensor in RY ¢: in
this manner, we have: h i

r (x):= PX)r &Xx) forx 2 (2.10)
For example, for a curve inRY we haver (x) = r €x) t (x) t (x), wheret (x) is the

unit tangent vector to the curve, while for a surface in RY, we obtain that r  (x) = r €(x)
r €x) n (x) n (x)!. Finally, we introduce the Laplace{Beltrami operator associated to the

o

b ;1( ) ;2( )
kB 1()

Notice that for a surface in R® the unit normal vector n (x) is obtained by mapping b ( ) := Ok
12

L2

with B, ()= @@( yfor =1;2.
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manifold for a function 2 C?() as:

x)y=r (r (x); (2.11)
where the divergence operator  is de ned asr v(x) = trace[r v(x)]forall v2 C) d
By using the notation of Eg. (2.10), we obtain for the Laplace{Beltrami operator:

h i
(x) =trace P(x)r 2€(x)P(x) forx 2 (2.12)
e
wherer 2 indicates the Hessian operator such that r 2€(x) = @@@ (x) fori;j =1;:::;d.
i i K

By using the geometrical mapping (2.1), the gradient on the manifold (2.10) an be rewritten
as: i

h
roo(x)= k()8 ()bb )I x 10); (2.13)

wherePb : b1 R isthe gradient operator in the parameter space. Similarly, for the Laplacé
Beltrami operator of Eq. (2.11), we have ([1]):

1
)= =P )& (I)PB) x () (2.14)
()
Finally, in view of the de nitions of integrals in the weak form of the PD Es, the di erential dx (or
d) can be writtenas dx = pb( )d (ord = B( )dl?.

2.3 Geometrical mapping by NURBS

We assume that the geometrical mapping introduced in Eg. (2.1) de nesa manifold represented
by either B{splines or NURBS; for a detailed description we refer thereader to [40]. We observe
that in the framework of Isogeometric Analysis, the choice of T{splines [47]represents a valid
alternative and generalization.

The geometrical mapping (2.1) represented in terms of NURBS reads:

Rbf
x()=  R()P; (2.15)

i=1

where I*?i( ) are the NURBS basis functions de ned in the parameter domain band P; 2 RY are

de ned from B{splines basis functions N;( ) and weights w; 2 R as:

Ii?i():z L@i() for i =21;:::;Np; (2.16)
Lot
wio Nojo( )

i0=1

we observe that B{splines geometries inRY can be seen as a particular case of NURBS with
weights equal to the unity?. The (multivariate) B{splines basis functions I@i( ) are obtained by
tensor product rule of univariate B{splines basis functions, sayl‘@ i ( )fori=1;:::;np , where

2NURBS are obtained by projective transformations of B{splines de ned in the physical space R
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Figure 1: Univariate, globally CP Y{continuous, B{splines basis functions I@i( ) . of order
1=
. 12 4 .
p = 1;2, and 3 obtained by the knot vectors =  fog"*! ;g;g;g;g;flg'o+1 , respectively;
b= (0 :1).
=1;:::; indicates the parametric direction in R with =( 1;:::; )andnp = 1 Nps .
The univariate B{splines basis functions I@;i () are recursively built by using the Cox{de Boor
recursion formula starting from a knot vector = f gjnzbfi P with i 2 R which, together

with the polynomial order p , completely characterizes the properties of the basis functions. &
indicate the minimum polynomial order of the basis functions asp ;= [nlin p ;in several instances,

p =pforall =21::::: .
For example, in Fig. 1 we report open{knot, univariate B{splines basis functions of order p =

.. ; — +1.1.2.3.4.

1; 2; 3 obtained by the knot vectors =  f0gP EE

the basis functions are globallyCP %{continuous in b= (0 ;1) for this specic choice of the knot
vector.

We observe that the parameter domainbis obtained by the knot vectors for =1;:::; as

b= (11 nppo+pa+t) ( ;1) ny +p +1), Which de nes a NURBS patch; by convention, we

consider the case for whichP= (0 ;1) ,ie. ;1=0and . +p+1 =1foral =1;:::; . The

tensor product of the knots also de nes a partition of the parameter doman binto subdomains b,

flgerl , respectively; we remark that

number; the set of these elements, i.e. the \mesh" of the parametedomain, is denoted asfl,. The
geometrical mapping (2.15) of the elementd, into the physical space de nes the elements , for

zero measure in the topology ofR ([2]); the mapping of the support extension in the parameter

domain Se into the physical space is denoted by€.. We schematically depict these concepts in
Fig. 2. Finally, we indicate with Henthe characterigtic size (diameter) of the elementP, and with

B the global \mesh" size B := max R : P.2 B, ; correspondingly, we de ne the characteristic
size (diameter) of the element . in the physical domain from Sec. 2.2 as:

he := kiPk, , b,y Re 8e=1;:::;ng (2.17)

6
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Figure 2: lllustration of a geometrical mapping x( ) from the parameter domain Binto the manifold

(physical domain), a \mesh" element b, and its support extension Se in the parameter domain,
and the corresponding \mesh" element ¢ and support extension €. into the physical space; the
example refers to a B-splines or NURBS surface obtained with a basis of der p = 2 without
internally repeated knots yielding ne; = 49 \mesh" elements.

-1 -1

Figure 3: NURBS surfaces in R3: cylindrical shell of radius 1 and height 4 (left) and spherical
shell of radius 1 (right). The \mesh" elements are highlighted in blak, the control net and control
points fP;g2 , in red.

and the global \mesh" sizeh :=max fhe : ¢ 2 Trg. We observe that the de nition of he coincides
with the one given in [2] for = d.

In Fig. 3 we report two examples of surfaces irR® obtained by NURBS, a cylindrical and a
spherical shell (we refer the reader to e.g. [18] and [40] for the constttion of these geometries).
We observe that both the geometries are exactly represented by NURBS athie coarsest level of
discretization (neg) = 4 and 8 \mesh" elements and nys = 18 and 45 basis functions for the cylinder
and the sphere, respectively).
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In several circumstances, more complicated geometries can be genertgy combining multiple
NURBS patches.

3 PDEs on the manifold

With the aim of generality, we introduce a nonlinear parabolic PDE with second order spatial
derivatives corresponding to the Laplace{Beltrami operator. Then, as paticular cases of such
general PDE, we present the equations we will address in this work, amely: an elliptic PDE, an
eigenvalue problem, a time dependent advection{di usion equation andthe Cahn{Allen equation
de ned on the manifold. Then, in view of the numerical approximation, we rewrite the weak form
of the equations in the parametric space by means of the geometrical mappinintroduced in Sec. 2.

3.1 A nonlinear parabolic PDE with Laplace{Beltrami operator

Let us denote with = @ the boundary of the manifold . We say that possesses a boundary
if meas() 6 0 in the topology of R 1; for example, by referring to Fig. 3 (left), the cylindrical
shell has aboundary = x =(x;y;z)2 R® : x?+y?=1and z= f0;4g , while the sphere does

not posses a boundary (meas() = 0). If meas() 6 0, then we can partition it into two non

overlapping subdomains, say p and p, suchthat p[ and p\ n=;.

For the sake of simplicity and unless when necessary for clarity, we ¥/ omit from here on the
explicit dependence of the functions de ned in the physical spae RY on the spatial variable x and,
similarly, for the functions in the parameter spaceR , the explicit dependence on the independent
variable

By recalling the de nition of the Laplace{Beltrami operator (2.11), we assume the following
expression for the time dependent nonlinear parabolic PDE, wherei(t) represents its solution:

g‘t(t) uty+ vV or ou®+ @Ey=f in ©T);

u(t) = on p (0;T); (3.1)
r ut) n =0 on n (O;T);

u(0) = ujn in f Og;

where T > 0 is the nal time and n is the unit vector normal to the boundary (note that
n n =0forall x 2 ). For simplicity, the coe cients O0and > 0 are assumed as constants
in R, the advection eld V 2 [L! ()] YissuchthatV n =0,r V 2L%)and r V =0 ae.
for x 2 , and the source term f 2 L?(); the reaction term is assumed \su ciently" regular,
ie.as 2L (  (0;T)). Moreover, 2 H™¥2( p), and the initial condition uj, 2 L?(); for the
sake of simplicity, we assumed an homogeneous Neumann condition oR,. We observe that, if the
manifold does not possesses a boundary (meas () = 0), the boundary condiions in Eqg. (3.1)
become meaningless and they should be replaced by other conditions oretisolution u(t) depending
on the choice of the data (see Sec. 3.2).

In view of the weak form of the problem (3.1), we introduce the a ne manifold V and the
function spaceV as:

V= v2HY() : vj_, = V= v2HY) : vj

D

=0 : (3.2)

D
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Moreover, we introduce thze following forms and functionals:

a(v;w) := r-vr wd; b(v;w) = vV r wd ;
z z
c(w)(v) = v (wd ; m(v;w) := vwd ; (3.3)
z
qlv) = vid ;

and the weak residual:
Res(w(t))(v) = a(v) a(v(t);w(t)) b(v;w(t))

(v m vl (3.4)

foranyv2V,w() 2V , forallt2 (0;T). Then, the weak form of problem (3.1) reads, for all
t2(0;T):
nd u(t) 2V : Res(u(t))(v)=0 8v2V,;
(3.5)
with u(0) = uj,:
We shall assume that the above problem is well{posed; for example, we obwve that for =1,
V = 0,and (u(t))= ou(t) for some o> 0, under the regularity hypothesis on the other data,
we have a unique solutionu 2 L?((0;T);V )\ C° (0;T);L%() by using similar arguments of
[42]. For further details see e.g. [17, 25, 26, 27].
With the aim of writing problem (3.5) in the parameter space, we recall the mapping of the
data based on Egs. (2.1) and (2.8). In particular, we have:‘@( ) = V(x()), 1b( ) = f(x()),

b():= x()),and bin( ) := uin (x( )); we notice that b() (). Moreover, we introduce the
ane manifold ¥ and the function space¥ as:
n ) n 0
V= w2HY: b, =b; V= w2H'DB: B =0 ; (3.6)

n o]
where, if meas() 60, bp = 2@: x()2 p andPy = @nbp. Also, we introduce the
following forms gnd functionals from Egs. (2.8), (2.13) and (§.3):

a(l; W) = 5 Pb & 'Pw pdb; B(i; W) := zb\b P& bw pdb;
b(W)(12) := bbb(\lv)gdb; i (1; ) := bbwgdb; (3.7)
ob) := waog do;
and the weak residual:
Hes(Ww(t) (1) := o)) B(bb(t) Bbb(t) blb(t)(B) M b;%’t(t) ; (3.8)

forany b 2 v, (t) 2 ¥, and forallt 2 (0; T). Finally, the weak form of the problem (3.5) in the
parameter space reads, for alt 2 (0; T):
nd b(t)2 ¥ : Res(b(t))(b)=0 8w2VY;
(3.9)
with b(0) = bin;
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we observe that, from Eq. (2.8), we haveu(x;t) = b( ;t) x () and b( :t) = u(x( );t) for all
t2 (0;T).
3.2 The Laplace{Beltrami equation

By referring to Eg. (3.1) and assuming the data and solutionu as time independent, =0, V = 0,
and =0, we obtain the Laplace{Beltrami problem:

nd u2V : a(v;u)= q(v) 8vayv, (3.10)

for some > 0. We observe that, if the manifold is not endowed with a boundary, then the
Laplace{Beltrami problem (3.10) is il{posed. For this,reason, if meas() = 0, t he solution space
V is replaced e.g. by the spac&p:= v2 H() : vd =0 (see e.g. [39)]).

By recasting problem (3.10) in the parameter space, we obtain:
nd b29% : b(;b)= ) 82V, (3.11)

where we have used the notation introduced in Sec. 3.1.

3.3 The Laplace{Beltrami eigenvalue problem

From Eg. (3.1), by assuming that the data and solution u are time independent, and setting =0,
V =0,and (u)= u, assuming the parameter as unknown, we obtain the Laplace{Beltrami
eigenvalue problent:

nd u2Vand 2R : a(v;u)= m (v;u) 8vav, (3.12)
speci cally, we set = 1. We observe that, since the problem is symmetric, the eigenvalug are
real valued, i.e. 2 R, with 0.

In the parameter space, Eq. (3.12) reads:

nd b2%and 2R : B(;b)= m(;b) 82 VY: (3.13)

3.4 A time dependent linear advection{di usion equation

By using the notation of Sec. 3.1, we introduce the parabolic linear adva®on{di usion equation in
the following weak form, for allt 2 (0; T):

nd uit)2v. : m v; gltzt) + a(v; u(t)) + b(v;u(t)) = q(v) 8v2V;

(3.14)
with u(0) = ujn;
where we set (u(t)) =0 and = 1. In view of the numerical approximation, we introduce the
following operators, sayL () and L aqv( ), as:
L (w(t)) := @@\1\&) wt)+ Vo w(t); (3.15)

®For (u)= u, the form c¢( )( ) in Eqg. (3.3) reads c(w)(v) = m (v;u) for any v(x), w(t) 2V.

10
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Lagv(W(t)) := V1 w(t); (3.16)

and the strong residualR () in as:
R(w(t):=f L (w(t)); (3.17)

for all w(t) 2 H2() forany t2 (0;T).
In the parameter space, Eq. (3.14) reads, for alt 2 (0; T):

nd ()29 : i b; g’t(t) + b(l; b(t) + B(;b() = ) 8b2 ¥

(3.18)
with b(0) = by, ;
while the operators and the residual in Egs. (3.15), (3.16), and (3.17) are:
B(t)) = @@ht(t) ;Ib g€ Pwt) + P PE Pw) ; (3.19)
b)) =P P8 1bw() ; (3.20)
R (w(t)) = ©  Paw(t)); (3.21)

for all W(t) 2 H2(9 for any t2 (0;T).

3.5 The Cahn{Allen equation

By denoting with u(t) the concentration of a component of a binary isothermal mixture, we desribe
its evolution in time by means of the Cahn{Allen equation, a nonlinear, time dependent PDE. For
further details on the topic we refer the reader e.g. to [11, 12, 13, 29]. The @&n{Allen equation
in weak form reads, for allt 2 (0;T):

nd ut) 2V : m v; ggt) +a(v;u(t)) + c(u(t))(v)=0  8v2V; (3.22)

with u(0) = ujn;
where, with reference to Eq. (3.1), we choose (u(t)) =  cu(u(t)) = 2u(t) (u(t) 1)(2u(t) 1)
(for which we have that c(u(t))(v) = V cu(u(t)d), V=0, =1, and f =0. Moreover, if

meas () 6 0, we set with  p = ;. The Cahn{Allen equation (3.22) represents the gradient
ow in the L2() norm of the following energy functional (total free energy) for isoth ermal binary
mixtures on surfaces:

Z

¢0=(u®):= c(u(t))"'% irou®iz d; (3.23)

where () is the chemical energy, which, in this specic case, we have clusen as (u(t)) =
(u(t))? (u(t) 1)2; the functional ¢.u() = () represents the chemical potential and is obtained
as the Frectet derivative of () with respect to the variable u(t). The free energy € t) represents

e
a Liapunov functional since (jj—t(t) Oforallt2 (0;T], beingr u(t) b =0on .

11
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In the parameter space, the Cahn{Allen equation reads, for allt 2 (0; T):

nd b(t) 29 : @ %t(t) + b(l; b(t)) + blb(t))() =0  8w2 VY;

(3.24)
with b(0) = bin;
with the free energy:
Z
¢t)= R uw):= o clb)+ % Pot) 6 Pbt) bdb; (3.25)

being Pe() ().

4  Numerical approximation

In this section we describe the numerical approximation of the PDEsintroduced in Sec. 3.1 and
represented in compact form in Eq. (3.5). We discuss the approximatin in a general setting, rstly
for the spatial approximation by means of Isogeometric Analysis and then, fotime discretization,
the generalized{ method.

4.1 The spatial approximation: Isogeometric Analysis

For the spatial approximation of the general problem (3.5) we consider Isogeogtric Analysis. In
this section we brie y recall the basic notions of the approximation in the framework of the Galerkin
method. For further details we refer the reader to [18, 34].

Isogeometric Analysis is a method for the spatial approximation of PDEs, lased on the isopara-
metric concept for which the same basis used to represent the knawgeometry are then used to
approximate the unknown solution of the PDEs. NURBS or B{splines geometies (computational
domains) are represented by geometrical mappings in the form (2.15) from agvameter space to
the physical space. By using the isogeometric paradigm, we can de ne fictions in the parameter
space in the form:

Rbf
br( ;)= Ri( ) Ui(D); (4.1)

i=1
where Ii?i( ) are the NURBS (or B{splines) basis functions (see Eqg. (2.16)) andU;(t) 2 R are

of basis functions; for time dependent problems, the control variable U;(t) are time dependent.
Since the geometrical mapping (2.15) is invertible (as discussed ine8s. 2.1 and 2.3)), we can
indi erently refer to functions in the parameter space or in the physical one; from Eqg. (2.8) we
haveun(x;t) = bn( ;t) x (). Forthis reason, unless than necessary for clarity, we will hencefth
consider formulations in the parameter space.

From Eq. (4.1) we de ne the NURBS space on the parameter domainb(a single patch):

n On,f
Ny, o= span Ii?i( ) - (4.2)

and, in virtue of the geometrical mapping (2.15), the corresponding NURBS pace on the physical

domain (the manifold) : n 0
npf
Nh:=span Ri() x () i_bl : (4.3)

12



Isogeometric Analysis of PDEs on surfaces 13

Then, we introduce the nite dimensional function spaces®, := ¥ \ N, and ¥, := ¥\ ¥, from
Egs. (3.6) and (4.1); for simplicity, we assume that the datab belongs to the NURBS spacel‘@h.
Similarly, by referring to the physical domain , we introduce th e function spacesV., = V \N
and Vj, ;== VAN 4.

The weak form of problem (3.9) approximated by Isogeometric Analysis readsor all t 2 (0; T):

nd ba(t) 2 ¥ : Res(bn(t) () =0 8ty 2 Vp; )
with br(0) = Binn ; '

where by, is the L?() projection of by, onto V.. The spatial approximation of the problems
described in Secs. 3.2, 3.4, and 3.5 t the general formulation of Eq. (4.4), hile the eigenvalue
problem (3.13) reads:

nd bp2¥,and 2R : B(iy;bn) = (i bn) 8y 2 O (4.5)

We remark that the function spacesV;h and ¥, can be \enriched" by means ofh{ or p{
re nement of the geometric representation while identically presrving the geometrical mappind'.
The re nements allow the improvement of the accuracy of the approxmate solution, while still rep-
resenting exactly the NURBS geometries de ning the computational domain. A type of re nement
called k{re nement and speci c for NURBS basis functions can be eventually usel to e ciently
improve the accuracy by increasing the orderm of the basis functions and their global continuity,
say k, across the elementd. in bwhile containing the number of basis functions ny;. For further
details we refer the reader to [2, 4, 18, 19, 34]. Specically, in Sec. 5 werqvide a priori error
estimates for PDEs on manifolds forh{re ned \meshes".

We remark that numerical integration is performed by means of a quadratue formula with
(p+1) quadrature points in each element; a direct method ([41]) is consided for the solution of
the linear system associated to Eq. (4.4).

4.2 The time discretization scheme

For the approximation of time dependent problems, we consider the gesralized{ method, a
predictor{multicorrector numerical scheme, which we brie y recall in this section; for further details
see also e.g. [14, 36].

Let start by introducing a partition of the time interval (O ; T) into time steps fthg,%,, Where
to=0andty, =T rywth t|81e steps tp = th+1  tn I1‘]or n=0;:::; tntsol Also, we de ne U (t) :=
fU(t)ge, W(t) = W(t)  ,Res W(t);U(t) := Fies(bh(t)) R ™ from Eq. (3.8), Uy =

i=1
U (tn), and U, = W(ty). By introducing the parameters ,, f, and 2 R, the generalized{
method consists in solving the following problem at the time stept,+1 given U, and U:

nd Wnep;Unpst;Wne ;Uns , @ Res Wpy ;Ups , = 0;

with: Upsr = Un+ th (I )Un+ UWper (4.6)
U‘n+ m:(l m)U-n+ mU-n+1; Un+ f :(1 f)Un+ fUn+1I

“The h{ or p{re nements correspond to the mesh re nement and order elevation procedures of the Finite Element
or Spectral methods.

13



14 L. Dedk, A. Quarteroni

y J max
(with jmax > 1). In particular, at the predictor stage (j = 0), we set:
1
Uni1y0) = Un; Un+1:0) = Un: (4.7)
At the multicorrector stage, we repeat forj =1;:::;jmax the following steps:

1. evaluate the variables:
Une ni) =@ m)Unt mUniayg o Une ) =@ )Un* 1 Unityg 10 (48)
2. assemble the residual vector and tangent matrix:
Resniiyj) = Res Uns nigyiUns (i)

@es U, mii) Une 150) .\ @es Uy, mii) Une 156)

@-n+ m f tn @Jn+ f ,
(4.9)

Rpeig) = m

kl:qeer_l () k

3. if, for a prescribed tolerancetolg > 0, the criterion tolg is ful lled, set

kﬁesnﬂ :(0) k
Un+1 = Wpsryg 1 @ndUneg = Upyg g 1) @nd terminate the procedure, otherwise continue;

4. solve the linear system:
Rierg)y W)= Resniayg); (4.10)

5. update the variables:
Unetsg) = Unesig p* Unaasg)s Uneag) = Uneg 9t I Unaggys (411
and return to step 1.

A family of second{order time accurate and unconditionally stable generalted{ methods for linear

problems is obtained by choosing , = 13 , f= = , Where 1 2 [0; 1] governs
2 1+ 4 1+ 1
high frequencies dissipation [33] a typical choice is ; = 0:5, see e.g. [20, 31, 37].
The time step t, can be either xed ( t, = tp) or determined by an adaptive algorithm. In

the latter case, we select an adaptive scheme based on the number ofriiions of the multicorrector
stage of the generalizgd{ method (see e.g. [31, 51]); in particular, based on numerical experieac

jJ+j forn=1;:::;ty 1 and an initial time step to, where =1:2,
ref 0

jret =2, and jo =0:8. As tolerance for the stopping criterion of the multicorrector stage we slect
tolg =10 “.

®The parameter 1 represents the spectral radius of the ampli cation matrix of the s ystem for t, !1

14
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4.3 SUPG stabilization for the advection{di usion PDEs

Since we are interested in solving time dependent advection{di sion equations in the transport
dominated regime, we consider the numerical stabilization of the PDESn lower dimensional mani-
folds. In particular, we consider a SUPG stabilization technique sinilar to the one proposed in [39]
for PDEs on surfaces approximated by means of the Finite Element methd.

The time dependent linear advection{di usion problem (3.18) with SUPG stabilization ([10])
reads, for allt 2 (0; T):

nd br(t)2 95 : i bh;%’“t(t) + Bt b (1)) + Bt b (1)

+ & (ln; bn(t)) &) =0 8y 2 Bi; (4.12)
with br(0) = binh ;

where the form (H},( ; ) represents the SUPG stabilization term. By recalling the de nitions (3.20)
and (3.21), we de ne:

Xel z
&, (1 b (1)) := ) e Pagy (o) R (Wb (1)) b db; (4.13)

e=1 e

is assumed as piecewise constant over the elemer®s®. We introduce the characteristic velocity
Ve = k¥ K 1 (be) the constant ¢, depending on the orderp of the polynomial approximation’, and

Ve h .
the local Reclet number Pe, := ——<. Following [30, 35, 48], we choose:
n !# 1=2
1 1 Ve ? o 2
=2 T4 14 P : 4.14
€2 2 he Pee ’ (4.14)

where hg is the characteristic size (diameter) of the element ¢ (2.17) and t is the time step
for the time approximation; we will assume ¢, = p?. This choice of . is obtained by locally
approximating the operator o (), by assuming the use of second order time schemes (as the
generalized{ method), and by considering geometrical mappings of the elements, from parents
domains ( 1;1) ; the parameter o assumes the same form in the parameter and physical spaces.

5 A priori error estimation on lower dimensional manifolds

We provide the a priori error estimates underh{re nement for the Laplace{Beltrami equation (3.10)
and the Laplace{Beltrami eigenvalue problem (3.12) thus extending the rsults of [2] (and [4]) to
the case of second order PDEs de ned on lower dimensional manifolds. Wi this aim, we propose

®We notice that in the physical space we have, from Egs. (3.16) and (3.17), dn(Vh;Wh(t) =
Rel
eLadv (Vn) R(wn(t)) d forall vy and wy(t) 2 H2( e), With e=1;:::;n¢g,and t 2 (0;T).
e=1 e

. . . e
"The constant ¢, stems from an inverse inequality of the type k vy KLz( o) h—p kr vnk_2( y forall va 2 Vp
e

15
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some preliminary estimates for the change of variables between the paragter and the physical
domains and the interpolation error estimate for the NURBS space on the phyisal domain (the
lower dimensional manifold); for simplicity, we limit to consider estimates up to the H! norm. We
remark that, for the derivation of the error estimate, we follow the procedure and recall the results
presented in [2].

5.1 The interpolation error estimate

Let us recall the notation of Secs. 2.1 and 2.3 regarding the geometrical mappg by NURBS and

of Sec. 4.1 for the NU%BS spaces. Moreover, we recall the de nition of thél ! semi{norm on the
1=2

manifold j jy1(y = jir j?d from Eqg. (2.10); the de nition of high order semi{norms
z 1=2
follows consequently. Similarly, theL? norm on the manifold reads: k Kzgy = j j2d

In analogy with [2] for the case = d, we provide the following preliminary results for functions
de ned on manifolds represented by NURBS.

Proposition 5.1.  Let us consider an integerm = 0; 1, the general \mesh" element in the parameter
domain be 2 'hn and its corresponding \mesh" element on the manifold ¢ 2 T,. We obtain for
2H™( ¢) and B2 H™(by):

12X j
Pl b - i , 61
Hm™(De) 9 L1( o i=0 L1 (bgy @ H!Ce)
xXn
- 1=2 m b :
J JHm( e) Cshape kgkl_l (be) |b L1 (be) o Hi(be)’ (5-2)

where Cghape IS a positive and dimensionless constant depending on the shape tbé manifold
but not its size [2].

Proof. We start by proving the result (5.1) for m = 1, the case m = 0 following similarly. From
T
Eq. (2.13) and by observing that®P( Y= B() r (x()), we obtain (in analogy with [16]):

by B r i (5.3)

forall 2 bgwith x = X( )2 ¢ (in Euclidean norm). By elevating the terms of the inequality to
the square, integrating over the \mesh" elementPg, and recalling the de nition of H! semi{norm,

we obtain: Z
b’ ? ir j2dbe: (5.4)
H1(be) by b, e '
z z
. . 2 49— . .2 1 .
Since X jrjodPg= iro 6d e from Eq. (2.7), we obtain:
Z
2 1 2
b = ir - j2d e 5.5
H1(bg) 9 L1 L1 (by) J J e (5.5)

from which the result (5.1) follows.

16
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We proceed in a similar manner for the result (5.2). From Egs. (2.5), (26), and (2.13) we have:

it i F)G Yx) Pb() (5.6)
forall x 2 ewith = x ()2 bg (in Euclidean norm). We obtain that:
Z
. 2 2
iifiy FG'L ., PPde (5.7)
z 2 z 2 e
and, since Pb d .= . Pb~ gdb,, we have:
e e Z 2
- 2
iy Kbkap, FG L, PPodbg (5.8)
from which we deduce that:
Pnic o KBk o, FG Ll iy (5.9)

In analogy with [2] we introduce from Egs. (2.1) and (2.2) the locally rescatéd geometrical mapping:

x @ bg1 o box( ) x()=x() (5.10)

L1 (bg)’

for all be 2 B, where . belongs to the physical space; correspondingly, we de ne its Jacobian:

IQ : be! RY : ! I|9( ); Ipi;():z gi() i=1;::;d; =1;:::;; (5.11)
b _ _ 2
for all by 2 . It follows from Egs. (2.2) and (2.3) that B = P 1B by 6-8 by

T
wheree = I|9 ,lg from which we deduce that:

bo =P8 p

Lt (b : (5.12)

In analogy with Eqgs. (2.5) and (2.6), we deneF : ¢! RY with F(x):= IQ( ) x ()and
G: ¢! R with G(x) := 8( ) x (), forall x2 ; we obtain:
1

FG ! FG 1!

L1 ( e) L1 ( ) L1 (be): (513)

By setting Cshape .= F G ! and using the bound (5.13) in Eqg. (5.9), we obtain the re-

LY ( o)
sult (5.2).
The choice of the constantCshape is justi ed similarly to [2] by observing that Bis 0{homogeneous
with respect to F and that from Eg. (5.12) we have the following bound:

LG T L by

hence, the constantCspape Only depends on the shape of the manifold and is uniformly bounded with
respect to the \mesh" sizehg, since the NURBS mapping (2.1) is preserved unden{re nement. [

17
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We recall from [2] the interpolation error estimate for the NURBS space on tle parametric
domain, which is obtained by using the concept of bent Sobolev space an@mbining the Egs. (42)
and (65) reported in [2]. With this aim, we introduce from Eqg. (4.2) the projection operator

o, L2(l§ I N9, onto the NURBS space in the parameter domain (see Eq. (41) in [2]).

Proposition 5.2.  Given the indexesk and | such that0 k | p+1 andk 1, the \mesh"
element b, 2 1, its support extension B,, and the function P2 H'(By), we have:
X X
b b | K b .
Ny, Hk(by) Cshape He . Hi(bg) ) (5-15)
i=0 booH, €
bg\ Beg;

where he is the characteristic size of the \mesh" elementP, in the parameter domain and Cshape
is a positive and dimensionless constant depending on the NURBS raanetrization but not on the
size of .

Finally, we provide the interpolation error estimate for lower dimensional manifolds de ned
by NURBS by introducing from Eq. (4.3) the projection operator , : L2() ! N, onto the
NURBS space in the physical domain, i.e. the \push{forward" of the NURBS projection operator,

for which n, (X)= o, b( ) x I()forall 2 L2() (2).

Theorem 5.1. Given the indexesk and | such that0 k | p+1 andk 1, the \mesh"
element 2 Ty, its support extension €¢, and the function 2 L?() \ H'(®.), the interpolation
error estimate for the NURBS space (4.3) on the lower dimensionamanifold reads:

J Np JHk( e) Cshape he Ib L1 (B ) J JHi(ee) ; (516)
i=0 ¢

where he is the characteristic size of the \mesh" element ¢ (2.17), Se is the support extension of
the \mesh" element in the parameter domain, andCshape iS @ positive and dimensionless constant
depending on the shape of the manifold but not its size.

Proof. We start by observing that from the de nition of the NURBS projector n, and Eq. (5.2),
we have:

. : 1=2 k X b b :
J No JHK( o) Cshape kgkLl (be) L1 (by) . o, Hi(by (5.17)
By using the result (5.15) of Proposition 5.2 for the term b o, b Hi(byy’ we obtain:
|
, , 1=0 k X X
P e L b o (5.18)
(®e) 5o booh, (2
bo\ B.6:
We apply the result (5.1) of Proposition 5.2 to each of the terms b i (bo) which yields:
b = Co :
Hi(bg) CShape g L1( 9 =0 Ib L1 (bg)J JHJ( 9 (519)



Isogeometric Analysis of PDEs on surfaces 19

for all bg 2 B, where 2 is obtained from the geometrical mapping ofbg. Then, by inserting
Eqg. (5.19) into Eqg. (5.18), and merging the double summation over the indgesi and j, for which
O j iandO i I, we obtain:

J Nn JHK( o) Cshape He L1 (b) - L1 (Se)J JHi(ee) ; (5.20)
where we used the bound:
X ) 1=2 # 1=2
1 F [ 1 i
— i Juyi = i Juyi ; 5.21
pn, OUi(D L (bgy ) HIC D) g1, LU 8,y ) Ihice (5.21)
1=2 1
for all i = 0;:::;1, and the product kbk has been embedded in the constant

Ll (bE) 6 Ll
(Ce)
Cshape, Similarly to the proof of Proposition 5.1 and Theorem 31 in [2]. We recall the de nition of
characteristic \mesh" size he of the element ¢ on the manifold given in Eq. (2.17) to obtain from
Eq. (5.20):

| X i

Ly LBy e (5.22)

j Np ij( e) Cshapehlg :

|
Finally, by multiplying and dividing the right hand side of Eq. (5.22) by P g and embedding

Be)

e

the term ® lLl . b Ll b into the constant Cghape We obtain the result (5.16). O

In analogy with [2], a similar interpolation error estimation of Theorem 5.1 can be obtained
for NURBS spaces with boundary conditions. Moreover, we remark that the mterpolation error
estimate (5.16) for lower dimensional manifolds assumes the same form ofdhresult (61) of [2] in
the case = d(Theorem 3:1), where the di erences between the two estimates have been dradded
in the constant Cshape. When = d, the interpolation error estimate (5.16) fully coincides with

the estimate of Theorem 31 in [2].

5.2 The Laplace{Beltrami equation

By using the result of Theorem 5.1, we provide the a priori error estinates in L? and H! norms
for the Laplace{Beltrami problem of Sec. 3.2 de ned on a general lower dimesional manifold .

Following e.g. [15, 44], by recalling the notation for the NURBS spaces intrduced in Sec. 4.1
and assuming the Laplace{Beltrami problem (3.10) to be well{posed, we have

ju uthl() thizQ/f.h ju vthl(); (5.23)

where the positive constantC depends on the data of the problem, speci cally the coe cient
(C = C( )). From the result (5.16) of Theorem 5.1, by assuming quasi uniformh{re nement, the
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20 L. Dedk, A. Quarteroni

\mesh" elements of sizehe ' h for all e =1;:::;ng, and the polynomlal orders of the NURBS
basis mln p = p, we obtain the error estlmate in semi{norm H? for the caseu 2 HP** ():

ju Unjysy  Ch? (5.24)

where the positive constantC depends on , u, and the constant Cshape. Further, if we assume that
homogeneous Dirichlet boundary conditions ( =0) and u 2 HP** () \ H?() for all the data, we
obtain from standard Aubin{Niestche arguments the error estimate in norm L2 (see e.g. [49]):

err 2= ku upkzy ChP*; (5.25)

from which we deduce the error estimate in normH *:

1=2
erry1 = ku  unkyiy = errg; + ju uhjﬁl() C hP; (5.26)

Similar considerations follow in the case for which the Laplace{Beltramiproblem (3.10) is de ned on

lower dimensional manifolds not endowed with boundary; in this case, the analysis is performed
by considering the function spaceVy in place of V according to Sec. 3.2, which yields a similar
result.

5.3 The Laplace{Beltrami eigenvalue problem

We provide the a priori error estimate for the numerical approximation of the Laplace{Beltrami
eigenvalue problem of Sec. 3.3 on the lower dimensional manifold . We casider the error on
the eigenvalues of the problem, say | nhj, where n indicates the n{the eigenvalue and
corresponds to its numerical approximation forn =0;1;::: (see e.g. Eq. (4.5)); speci cally, we
consider the ordering ¢ 1 i n . by recalllng that the eigenvalues of the Laplace{
Beltrami eigenvalue problem (3.12) are real and non negative.

From [49] we have that, for the Laplace{Beltrami eigenvalue problem under onsideration:

n

: 8 0; 5.27
n:h 1 %n n ( )

where from Eq. (3.3):
%n:= mMax 2mv Gviv mv  Gwviv GV 8n O (5.28)

v2Vn

kaLz() =1

with V; V the n{dimensional subspace spanned by the eigenfunctionsiy;:::;u, and being
\E,h : V IV} the Rayleigh{Ritz projector into the NURBS space on the physical domain
(manifold) which vyields, for some 2V, a(vp; \E,h ) =0 for all v, 2 V4. Since the NURBS

spaceNy, is conforming with the function spaceV, by using the standard arguments presented in
[49] (or [7]) and the interpolation error estimate (5.16) of Theorem 5.1, we obtain

n nh n+ C( )Pt h? 8n O (5.29)

provided that the \mesh" size h is su ciently small (with he ' h for all the elements ¢ 2 Ty)
and the polynomial orders of the NURBS basis such that m|n p = p; the positive constant C

.....
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———
o
©

Un, Nel =2(1  3) Un, Nt =4(1  3) Un, Net = 8(1  3) u

Figure 4: Laplace{Beltrami problem on a cylindrical shell. h{re ned \meshes" (top), corresponding
numerical solutions up (bottom), and exact solution u (bottom{right).

depends on the data of the Laplace{Beltrami operator and the constantCspape. It follows that the
error associated to then{th eigenvalue, sayerr,, can be estimated as:

errn:= nn n C(n)Ph® 8n o (5.30)

which highlights the convergence rate P for h{re ned mesh in agreement with the error estimates
for the Finite Element method in the case = d; see e.g. [44, 49]. We remark that, when

n is \large" the error err, could be signi cantly \large" also for ne \meshes" being the error
proportional to ( ,)P*t.

6 Numerical results; PDEs on surfaces

We consider the numerical solution of the problems de ned in Sec. 3o the speci ¢ cases of surfaces
as lower dimensional manifolds.

6.1 The Laplace{Beltrami equation

We numerically solve the Laplace{Beltrami equation (3.10) on two surfaceswe evaluate the errors
between the numerical and exact solutions and we estimate the convergee orders of such errors
for the polynomial orders p =2 and 3 of the NURBS basis.

Firstly, we consider as computational domain a quarter of the cylinder represented in Fig. 3 (left)

(corresponding to the quadrant with x 0 and y  0) with unitary radius and height L. We
2 2

choose =landf(;z) = ?g;l( ) 9:.2() 02), where := atan § ,0:1() =

21
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p=2 p=3

err
err

Figure 5: Laplace{Beltrami problem on a cylindrical shell. Convergence othe errorserry: (| )
and err 2 (| ) and reference convergences ratgs (- -) and p+1 (. -) vs. the \mesh" size h for
p =2 (left) and p = 3 (right).

(I cos())(@ sin()), g.2( ):=(cos( )+sin( ) 4sin( )cos()), and g,(z) := sin %
for 2 Ngand > O0;then, we setu(x) = (x)=0on . The exact solution of the problem reads
u(; z)= g :1( )0A(z)incylindrical coordinates. Speci cally, we select =3, =1= 3=2 2,
and L = 4. We solve the problem by meas of Isogeometric Analysis with NURBS basis fuctions
of order p = 2 and p = 3 for di erent \mesh" sizes starting from a mesh with 2 elements in the cir-
cumferential direction. The exact and numerical solution and correspnding \meshes" are reported
in Fig. 4; we highlight the smoothness of the approximated solutions in tcumferential direction
even for a small number of \mesh" elements. The convergence rates of ¢herrors are reported in
Fig. 5 for the polynomial orders p = 2 and 3; in particular, we obtain the convergence ratesp + 1
and p for the norms L? and H?, respectively. The convergence rates are in agreement with the
expected theoretical ones reported in Sec. 5.2 since the exact sdl is \su ciently" regular, i.e.
u2 Ct () \ HP().

Then, we consider a Laplace{Beltrami problem with exact solution on the ghere of uni-

tary radjus reported in Fig. 3 (right); since the surface is closed ( ; ), we impose the con-
2 cos() cos( )

straint  ud = 0. We set f(; ) = sin sin ——+ 2 =L R 2 ith

G) ¢ JsinC ) sin?( ) sin( ) sin( )

= atan2 ;; , +=acos -, > 0, > 0,and = 1. The exact solution in spherical

coordinates readsu(; )=sin( ) sin( ). In particular, we choose =3 and =4. We report
in Fig. 6 the exact and numerical solutions corresponding to \meshes" mgressivelyh{re ned; we
remark the smoothness of the numerical solution along both the parametad directions even for
the coarsest \meshes". In Fig. 7 we highlight the convergence rates of therrors err 2 and err 1
which are in agreement with the theoretical ones, being the exact sotion u 2 C! () \ HP' ()
as highlighted in Sec. 5.2.
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Un, Nel =2(4  2) Un, Nel = 4(4  2) Unh, Ner =8(4  2) u(x)

Figure 6: Laplace{Beltrami problem on a sphere.h{re ned \meshes" (top), corresponding humer-
ical solutions up, (bottom), and exact solution u (bottom{right).

p=2

10" r 10" -

err
err

107+

10 10'; 10 10 10" 10

Figure 7: Laplace{Beltrami problem on a sphere. Convergence of the erromsrry: (| ) and err2
(I ) and reference convergences ratgs(- -) and p+1 (. -) vs. the \mesh" size h for p= 2 (left)
and p = 3 (right).

6.2 The Laplace{Beltrami eigenvalue problem

We consider the numerical approximation of the eigenvalue problem (3.12)associated to the
Laplace{Beltrami operator on the sphere of unitary radius of Fig. 3 (right). T he exact values
of the eigenvalues are , = n(n + 1), each with multiplicity 2 n+1, for n =0;1;:::;1 (see e.g.
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Us:1:h Usg:2:h Us;1:h U6;1:h

Figure 8: Eigenvalue problem on a sphere. Eigenfunctiongs:1:h, Us:2:h, Us:1:h, and ug:1:n (from left
to right).

p=3

10

107

err
err

10—10 L

Figure 9: Eigenvalue problem on a sphere. Convergence of the erroesr,, on the eigenvalues ,
vs. the \mesh" sizehforn=4( ),n=5( ),andn=6(] ) and reference convergences
rate 2p (- -) for p=2 (left) and p = 3 (right).

imate the problem by means of Isogeometric Analysis on a \mesh" withng = 131;072 elements
and basis functions of orderp = 2; in Fig. 8 we report for example the computed eigenfunctions
Us:1:h, Ug:2:h, Us:1:h, @nd Ug1n corresponding to the eigenvalues 4 = 20, 5 = 30, and ¢ = 42,

respectively. In Fig. 9 we report the errors on the eigenvalues4, s, and ¢ (errp, = | q nhi)s

vs. the \mesh" size h when considering basis functions of ordep = 2 and p = 3. As expected
by the theoretical result (5.30) of Sec. 5.3, the convergence rate obtainefdr the numerical results
correspond to 2.

6.3 The time dependent linear advection{di usion equation

We consider the time dependent linear advection{di usion equation onthe cylindrical shell reported
in Fig. 3 (left). By using the notation of Sec. 3.4 and using cylindrical coordinates, we se¥V (; z) =

V
pﬁ(th ab), and f (; z)= e (0?2 20%) \where := atan2 3 Vo, 3, o,andzp 2 R;
a
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t=0:75 t=2:25 t=6:75

t=7:50 t=9:00 t =10:50

Figure 10: Time dependent advection{di usion problem on a cylindrical shell. Evolution of the
solution in time.

we set homogeneous Neumann conditions on the boundary =y and uj, (X) = 0. In particular,
weset =50 104 Vo =1, a=0:2, b=100, ¢ = 7 and zp = 0:5. We numerically solve
the problem by means of Isogeometric Analysis with the SUPG stabilizationtechnique discussed
in Sec. 4.3. A NURBS representation with basis of ordemp = 2 and comprised of ng = 12;288
\mesh" elements is considered. For the time discretization, the geeralized{ method of Sec. 4.2 is
used with the xed time step to=1:5 10 2. In Fig. 10 we report the evolution of the solution in
time; we highlight its helical distribution along the surface of the cylindrical shell induced by the
advective eld.

6.4 The Cahn{Allen problem

We solve the Cahn{Allen problem de ned in Sec. 3.5 on the sphere of undry radius of Fig. 3 (right).
By using the notation of Sec. 3.5, we select =5:0 10 4 and uj, = ug+ ", where up = 0:5 and
" is a random distribution such that j*j  0:1. We numerically solve the problem by means of
Isogeometric Analysis with NURBS basis functions of orderp = 2 and a \mesh" comprised of
ng = 32;768 elements; the time approximation is based on the generalized{ method with the
adaptive time stepping scheme initialized with the time step to = 5:0 10 . In Fig. 11 we
report the evolution of the concentration u(x;t) in time. The phase transition evolves towards the
steady state to a con guration with the phases fully separated with a minimum perimeter interface.
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t =3:651 t =6:592 t=13:28 t =29:99
t =74:08 t =137:7 t =265:1 t = 606:8
t=1;421 t=6;314 t=8;298 steady

Figure 11: Cahn{Allen equation on a sphere. Evolution of the solution in time

However, due to the fact that the Cahn{Allen equation does not represeha mass conservative
system, the solution evolves to a pure phase at the steady state, whiccorresponds tou = 0 in

the case under consideration, since uj, d <ug=0:5. In Fig. 12 we report the evolution of the

e
(Liapunov) free energy functional € t) for which we observe that?j—t(t) 0.

7 Conclusions

In this work we showed the e cacy of Isogeometric Analysis for the numeical approximation
of PDEs de ned on lower dimensional manifolds, speci cally on surface. We considered di erent
linear and nonlinear, elliptic and parabolic PDEs with second order spaial operators of the Laplace{
Beltrami type; examples include the eigenvalue problem, the timedependent advection{di usion
equation, and the Cahn{Allen equation. We highlighted the capability of Isogeometric Analysis of
facilitating the encapsulation of the exact surface representationsn the analysis at their coarsest
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0.75

Y ()

0.5

0.25%

Figure 12: Cahn{Allen equation on a sphere. Evolution of the free energy§ t) in time.

level of discretization, especially for geometries as cylindrical andpherical shells represented by
NURBS. Moreover, we provided a priori error estimates underh{re nement for the numerical
approximation of second order PDEs on general lower dimensional manifolds the case of linear
and eigenvalues problems associated to the Laplace{Beltrami operator. Spkecally, the convergence
rates of the errors are numerically con rmed for benchmark tests casewhich highlight the e ect
of the accurate geometrical description on the computation of the numerial solutions.
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