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Abstract

We provide a generalization of Hotelling’s Theorem that enables inference (i)
for the mean vector of a multivariate normal population and (ii) for the comparison
of the mean vectors of two multivariate normal populations, when the number p
of components is larger than the number n of sample units and the (common) co-
variance matrix is unknown. We find suitable test statistics and their p-asymptotic
distributions that allow the inferential analysis of large p small n data.

1 Introduction

The advent and development of high precision data acquisition technologies in active
fields of research (e.g., medicine, engineering, climatology, economics), that are able
to capture real-time and/or spatially-referenced measures, have provided the scientific
community with large amount of data that challenge the classical approach to data anal-
ysis.

Data sets are indeed increasingly becoming characterized by a number of random
variables that is much larger than the number of sample units (large p small n data sets)
in contrast to the “familiar” data sets where the number of sample units is often much
larger than the number of random variables (small p large n data sets). This makes many
classical inferential tools (e.g. Hotelling’s Theorem) almost useless in many fields at
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the forefront of scientific research and raises the demand for new inferential tools able
to efficiently deal with this new kind of data.

The work of Srivastava Srivastava (2007) is pioneering in this direction. In it, a
generalization of the Hotelling’s Theorem is proposed: a generalized T 2 test statistic is
found and its distribution law is computed for p≥ n under the assumptions of normality
and proportionality of the covariance matrix to the identity matrix (with the proportion-
ality constant unknown); this assumption implies the independence among components
(and among univariate test statistics as well), enabling classical inference procedures.
We shall show that our results, which do not rely on the latter assumption, generalize
this work in a much less stringent framework. In Srivastava Srivastava (2007), some
inferential results non depending on strong assumptions on the covariance structure are
presented as well, but, being asymptotic in both p and n, they are not suitable to perform
inferential statistical analysis of large p small n data.

Other methods to deal with the analysis of large p small n data are objects of sta-
tistical investigation. Approaches based on the joint use of univariate test statistics for
each component to build multivariate inference procedures have already appeared in
the literature also under the assumption of dependence among components and thus
among univariate test statistics as well. These approaches rely on the correction of each
univariate significance (or confidence) levels such that the global significance (or con-
fidence) level approximates a desired value. In particular, we can distinguish between
a priori corrections, based on widely valid theoretical results (e.g., Bonferroni correc-
tion), and a posteriori corrections, based on the empirical distribution of the univariate
p-values (e.g., Benjamini and Yekutieli Benjamini and Yekutieli (2001), Storey Storey
(2003)).

Permutation tests provide a further alternative approach to the inference for large
p small n data. According to this approach, a label based on an appropriate ranking
among sample unit observations is associated to each observation; then, this label se-
quence is compared with all other possible non ranking-based label sequences and its
extremity is actually tested. Permutation tests provide inferential procedures that are
conditional (the focus is on the sample rather than on the population), and distribution-
free (no strong assumption about the population distribution law is necessary). Pe-
sarin and Salmaso Pesarin and Salmaso (2010, 2009) and Hall and Keilegorn Hall and
Keilegorn (2007) recently proposed the use of permutation tests in the framework of
multivariate and functional data analysis (an extreme case of large p small n data).

Functional Data Analysis (FDA) is indeed an active area of statistical research mov-
ing in this direction. In FDA, each sample unit is represented by means of a function
(e.g., Ramsay and Silverman Ramsay and Silverman (2005), Ferraty and Vieu Ferraty
and Vieu (2006)). The typical inferential approach of FDA is the projection of the
n functions under investigation - virtually belonging to an ∞-dimensional functional
space - onto a suitable finite p-dimensional functional subspace with p smaller than n
where a classical inferential approach can still be used. Roughly speaking, the original
FDA is replaced by a classical multivariate analysis that is expected to well approxi-
mate the former one. The choice for the finite p-dimensional functional subspace is
often made a priori introducing arbitrariness in the outcome of the analysis; sometimes
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this choice is instead data driven (e.g., functional principal component analysis) but still
used as if it was an a priori choice causing a systematic under estimate of the variability
associated to the reduced representations of the data.

Finally, Bayesian statistics provides another natural framework where the analysis
of large p small n data sets does not present - at least theoretically - any difficulty. In-
deed, once chosen the conditional model for the data and the prior distribution for the
unknown parameters, one observation (i.e., n= 1) is enough to obtain a likelihood func-
tion and thus a posterior distribution to make inference about the unknown parameters
(e.g., the mean vector). On the other hand, from a computational point of view, a large
number p of components can strongly affect the efficiency of the MCMC simulations
often needed to come up with a usable posterior distribution. Moreover, from a practi-
cal point of view, a small sample size introduces a strong dependence of the posterior
distribution on the prior making the Bayesian information updating quite ineffective.

Similarly to Srivastava Srivastava (2007) and differently from the other works pre-
sented above, our proposal is Hotelling-inspired. In particular, to overcome the impos-
sibility of treating large p small n data by means of a classical model-based approach,
our strategy focuses on the random “variability space explored by the data”, i.e., the
space generated by the first n−1 principal components. In this reduced space, the pro-
posed analysis is almost classical with the important distinction that the randomness
of this data-dependent reduced space is fully taken into account. A pairwise compar-
ison between our new inferential procedure and the other approaches presented above
is of sure interest. However, a comparison with the Bayesian perspective would be of
uncertain interest since it would strongly depend on the subjective choice for the prior
distribution. Thus, in the present work, just the theoretical and empirical comparison
with the inferential approach proposed in Srivastava Srivastava (2007) and with the
one proposed in Pesarin and Salmaso Pesarin and Salmaso (2010, 2009) is carried out.
These are two approaches to the same problem that are very close and far from ours,
respectively.

The paper is outlined as follows: in Section 2, after the introduction of the proba-
bilistic framework, a generalized version of the Hotelling’s Theorem for p→ ∞ is pro-
posed; part of its proof is reported in Appendix A. In Section 3, the previous generalized
version of the Hotelling’s Theorem is used for the inference for the mean vector of a
p-variate normal population (and for the difference of the mean vectors of two p-variate
normal populations) when the number p of components is far larger than the number n
of sample units; a theoretical comparison with the classical Hotelling’s Theorem is here
undertaken. In Section 4, by means of MC simulations, our new inferential procedure
is compared with the ones presented in Srivastava Srivastava (2007) and in Pesarin and
Salmaso Pesarin and Salmaso (2010, 2009). In the final Section, some hints for possi-
ble future investigations are reported; in particular, a conjecture supported either by the
results of MC simulations and by its theoretical consistency with our generalization of
the Hotelling’s Theorem and with the results presented in Srivastava Srivastava (2007)
is proposed.
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2 Generalized Hotelling’s Theorem

The classical approach to inference for the mean µp of a p-variate normal random vec-
tor with unknown full rank covariance matrix Σp relies on a famous corollary of the
Hotelling’s Theorem that holds when the number n of sample units is larger than the
number p of random vector components.

Theorem 1 (Hotelling’s Theorem). For m≥ 1 and p≥ 1, assume that:

(i) X∼ Np(µp,Σp);

(ii) W ∼Wishartp(Σp,m);

(iii) X and W are independent.

Then, for m≥ p:

m− p+1
p

(X−µp)
′W−1(X−µp)∼ F(p,m− p+1) .

Corollary 2 (Hotelling’s T 2 Distribution Law). For n≥ 2 and p≥ 1, assume that:

(i’) {Xi}i=1,...,n ∼ iid Np(µp,Σp).

Then, for n > p:

(n− p)n
(n−1)p

(X−µp)
′S−1(X−µp)∼ F(p,n− p) ,

with X and S being the sample mean and the sample covariance matrix, respectively.

The quantity n(X−µp)
′S−1(X−µp) is known as Hotelling’s T 2 due to its analogy

with the squared of the univariate Student’s t test statistic. Corollary 2 makes possible
the development of inferential tools for the mean value of a p-variate normal random
vector (e.g. confidence ellipsoidal regions or hypothesis testing) when the number n of
sample units is larger than the number p of random vector components; there are no
assumptions on the covariance matrix Σp that is only required to be positive definite.
Proofs of Theorem 1 and Corollary 2 can be found, for instance, in Anderson Anderson
(2003).

Theorem 1 and Corollary 2 become useless in applications where the covariance
matrix is unknown and the number p of random vector components is larger than the
number n−1, with n being the number of sample units. Indeed, in these cases, T 2 is not
defined since S is not invertible because rank(S) = min(n−1, p) a.s. . Analogously to
Srivastava Srivastava (2007), we decide to suitably generalize the inverse of S in order to
obtain a suitable generalization of T 2. We considered the Moore-Penrose Generalized
Inverse (Rao and Mitra Rao and Mitra (1971)) of a rectangular matrix, whose general
definition can be found in Appendix A, since it always exists, it is unique, and it is equal
to the inverse matrix when the latter is squared and invertible. Moreover, in the special
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case of a squared real positive semi-definite matrix A, the Moore-Penrose generalized
inverse A+ can be proved (see Appendix A) to be equal to:

A+ = ∑
i:λi 6=0

1
λi

eie′i ,

with {λi}i=1,...,p and {ei}i=1,...,p being the eigenvalues and eigenvectors of A, respec-
tively.

We now present a generalization of Hotelling’s Theorem that can be used to make
inference for the mean of a multivariate normal random vector when the sample size
n is finite, the number of components p goes to infinity, and the covariance matrix is
unknown.

Theorem 3 (Generalized Hotelling’s Theorem). For m≥ 1 and p≥ 1, assume that:

(i) X∼ Np(µp,Σp);

(ii) W ∼Wishartp(Σp,m) ;

(iii) X and W are independent;

(iv) 0 < σ = limp→∞

tr(Σp)
p <+∞ and 0 < σ2 = limp→∞

tr(Σ2
p)

p <+∞.

Then, for p→ ∞:
σ

2

σ2
p(X−µp)

′W+(X−µp)
D−→ χ

2(m) .

The proof of Theorem 3 is based on the p-asymptotic distribution of three auxiliary
random matrices Y , L, H that provide alternative useful representation of the random
matrix W appearing in (ii). In particular, Y is a p×m random matrix whose m columns
are independent Np(0,Σp), i.e. we may represent W = YY ′ since the two random ma-
trices have the same law; L is a random diagonal matrix whose diagonal elements are
the m non-zero ordered eigenvalues of W ; and H is a m× p random matrix whose
rows are the corresponding m eigenvectors (i.e. W = H ′LH with HH ′ = Im). Random
matrices Y , L, and H exist almost surely since W is a Wishart random matrix with
m degrees of freedom. Also the diagonal matrix Λp = diag(λ1(Σp), . . . ,λp(Σp)) with
λ1(Σp)≥ ·· · ≥ λp(Σp)> 0 being the ordered eigenvalues of Σp always exists thanks to
the positive definiteness of Σp.

To prove Theorem 3 we need the following

Lemma 4. Under the assumptions (ii) and (iv) of Theorem 3:

Y ′Y
p

P−−−→
p→∞

σ Im ,

L
p

P−−−→
p→∞

σ Im ,

HΛpH ′ D−−−→
p→∞

σ2

σ
Im .
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The proof of Lemma 4 relies on Chebyshev’s Inequality, Prokhorov’s Theorem,
Slutsky’s Theorem, and on algebraic relations supported by the properties of Moore-
Penrose general inverses. Because of its length it is reported in Appendix B.

Proof of Theorem 3. Let us define two auxiliary matrices A = (HΛpH ′)−1/2 and Z =
AH(X−µp). The conditional distribution of Z given H is

Z|H ∼ Nm(0m,AHΛpH ′A) = Nm(0m, Im) ,

since X is distributed as Np(µp,Λp). The conditional distribution of Z given H does not
depend on H: therefore, Z and H are independent and

Z∼ Nm(0m, Im) while Z′Z∼ χ
2(m) .

Thanks to Proposition 10 in Appendix A, the following equalities in distribution
hold:

p(X−µp)
′W+(X−µp) = p(X−µp)

′H ′L−1H(X−µp)

= pZ′(ALA)−1Z

=

[
Z′
(
HΛpH ′

)1/2
(

L
p

)−1/2
][(

L
p

)−1/2 (
HΛpH ′

)1/2 Z

]
.

Because of Lemma 4 and the continuity of the maps B 7→ B−1/2 and B 7→ B1/2 over
the set of positive definite matrices, we have that:(

L
p

)−1/2 P−−−→
p→∞

(σ)−1/2 Im ,

(HΛpH ′)1/2 D−−−→
p→∞

(
σ2

σ

)1/2
Im .

Thus, Slutsky’s Theorem (e.g., Serfling Serfling (2002)) implies that:

(
L
p

)−1/2 (
HΛpH ′

)1/2 Z D−−−→
p→∞

(
σ2

σ
2

)1/2

Z .

Finally, since the Euclidean squared norm function on Rm is continuous,

p(X−µp)
′W+(X−µp)

D−−−→
p→∞

σ2

σ
2 Z′Z ,

and thus
σ

2

σ2
p(X−µp)

′W+(X−µp)
D−−−→

p→∞
χ

2(m) .
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Remarks about Theorem 3

1. Note that in Theorem 3 the practical importance of “p→∞” (i.e. p-asymptoticity)
is very general. For instance we might be considering the situation where we
add extra components to a random normal vector X and infinite extra rows and
columns to a random Wishart matrix W ; this is for instance the case of discrete-
time series when the time goes to infinity, or micro-array expressions when the
number of genes goes to infinity. But “p→∞” can also be relevant in more com-
plex situations where a sequence of random vectors X and of random matrices
W of increasing dimensionality is investigated without any “nesting” property as
p increases. This is for instance the case of subsequent finite-dimensional rep-
resentations of functional data by means of subsequent non-necessarily nested
basis (e.g. B-splines) whose dimension goes to infinity.

2. It is easy to prove that if the eigenvalues of Σp are uniformly bounded away from
0 and +∞, i.e.:

(iv′) ∃ λ ,λ : ∀p,0 < λ ≤ λ1(Σp)≤ ·· · ≤ λp(Σp)≤ λ <+∞,

and at least one of the limits limp→∞

tr(Σp)
p or limp→∞

tr(Σ2
p)

p exists, assumption
(iv) of Theorem 3 is satisfied.

3 Inference for the Mean of Large p Small n Data

Provided that one can evaluate the ratio σ
2/σ2 (this issue is tackled in subsection 3.3),

Theorem 3 can be straightforwardly used to make inference for the mean of multivariate
normal distribution when the number p of components is larger than the number n of
sample units. Indeed, its natural consequence is the following.

Corollary 5 (Generalized Hotelling’s T 2 p-asymptotic distribution law). For n≥ 2 and
p≥ 1, assume that:

(i’) {Xi}i=1,...,n ∼ iid Np(µp,Σp);

(iv) 0 < σ = limp→∞

tr(Σp)
p <+∞ and 0 < σ2 = limp→∞

tr(Σ2
p)

p <+∞.

Then, for p→ ∞:

σ
2

σ2

np
n−1

(X−µp)
′S+(X−µp)

D−→ χ
2(n−1) ,

where X and S are the sample mean and the sample covariance matrix, respectively.

Proof. It is a direct application of Theorem 3 since
√

n(X̄− µp) ∼ Np(0p,Σp), (n−
1)S∼Wishartp(Σp,n−1), and they are independent.

7



The random quantity

T 2 = n(X−µp)
′S+(X−µp) (1)

can be naturally denoted as Generalized Hotelling’s T 2 since it is defined for any n and
p such that n ≥ 2 and p ≥ 1 and coincides with the classical Hotelling’s T 2 = n(X−
µp)
′S−1(X− µp) when p < n. Despite the simplicity of this generalization, important

differences occur between the new framework p≥ n and the classical framework p < n.
These differences involve:

• the connection between T 2 and the univariate Student’s t test statistic (subsection
3.1);

• the invariance properties of T 2 (subsection 3.2);

• the distribution law of T 2 (subsection 3.3);

• the geometrical characteristics of the confidence regions and of the critical re-
gions for the mean that can be derived from Corollaries 2 and 5 (subsection 3.4).

Remarks about Corollary 5

1. The p-asymptotic distribution law of T 2 strongly depends on assumptions (i′) and
(iv) involving the normal distribution of the observations and the p-asymptotic
behavior of the covariance matrix, respectively. In particular, while the latter
assumption could be probably relaxed (this issue is still under investigations by
the authors), the former assumption cannot be weakened since there is no central
limit theorem for p→∞ providing that

√
n(X̄−µp) is approximately normal and

(n−1)S is approximately a Wishart.

2. Even if our result covers a wide variety of real applications such as genomic data,
micro arrays, functional data, and large p small n data in general, it does not
cover the analysis of small p small n data with p > n.

3.1 Connections between the Generalized Hotelling’s T 2 and the Student’s
t test Statistic

Student’s t statistic comes natural in multivariate statistics if the Rp-representations of
the n sample units are projected along a certain direction a ∈ Rp \ {0p}. Along this
direction, the usual Student’s t statistic can be computed:

ta =
√

n
a′(X̄−µp)√

a′Sa
∼ t(n−1) ,

and univariate inference can be carried on along that direction.
Note that for all a ∈Rp \{0p}, ta is almost surely defined. Indeed, since ker(S) has

null Lebesgue measure on Rp and since Xi with i = 1, . . . ,n are absolutely continuous
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random variables with respect to the same measure, the probability that ker(S) 3 a is
equal to zero.

Maximization lemma of quadratic forms points out a strong relation between T 2

defined in (1) and the univariate ta. Indeed, one can show that

T 2 = max
a∈Im(S)\{0p}

t2
a .

This means that making multivariate inference using T 2 at a certain confidence (signif-
icance) level is formally the same as making simultaneous univariate inference along
any direction belonging to the “variability space explored by the data” (i.e. any di-
rection a ∈ Im(S) \ {0p}), while controlling the overall joint confidence (significance)
level, ignoring all orthogonal directions (i.e. any direction a ∈ ker(S)\{0p}).

Note that Rp = Im(S)⊕ker(S) for n≥ 2 and p≥ 1, with Im(S) = Rp and ker(S) =
{0p} almost surely if and only if n > p. Thus, when n > p, T 2 can be more simply
defined as maxa∈Rp\{0p} t2

a ; this is actually the most common way through which T 2 is
introduced in the classical framework n > p. Unfortunately, in the general framework
the latter definition does not hold since t2

a is not uniformly bounded in Rp \{0p} when
n≤ p.

3.2 Invariance Properties of the Generalized Hotelling’s T 2

Generalized Hotelling’s T 2 is invariant under similarity transformations of the compo-
nents (affine transformation preserving angles), i.e. affine transformation A •+b such
that A ∈ Rp×p with A = aO, where a ∈ R+

0 and O is an orthogonal matrix, and b ∈ Rp.
Under these assumptions we have that:

n((AX+b)− (Aµp +b))′(ASA′)+((AX+b)− (Aµp +b)) = n(X−µp)
′S+(X−µp) .

The previous result relies on the fact, proven in Appendix A, that (ASA′)+=(A′)−1S+A−1

only for A = aO, where a ∈ R+
0 and O is an orthogonal matrix.

Similarity transformations are also those transformations that do not affect assump-
tion (iv) of Theorem 3 nor the value of the constant σ

2/σ2.
It is easy to show that for n > p, T 2 is invariant under the wider class of affine

transformations of the components, i.e. transformations A•+b with A∈Rp×p invertible
and b ∈ Rp. This is due to the fact that (ASA′)−1 = (A′)−1S−1A−1 for any invertible A.

3.3 On the p-asymptotic Law of the Generalized Hotelling’s T 2

For n > p the law of T 2 is independent from Σp (see Corollary 2); the p-asymptotic
distribution law of T 2 depends instead on Σp through the constant ratio σ

2/σ2. For
Corollary 5 to have some impact for inferential purposes, the constant σ

2/σ2 needs to
be known or at least efficiently estimated. Two cases may occur in practical situations
when Σp is not known:

(a) the constant σ
2/σ2 is known even if Σp is not completely known. This case may

occur when partial knowledge of Σp is available;
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(b) the constant σ
2/σ2 is not known and thus it needs to be estimated.

Case (a) covers a large variety of practical situations. For instance:

• For any p > n, the covariance matrix Σp is known up to an unknown multiplying
factor: Σp = γVp with Vp being a known Rp×p positive definite matrix satisfying
(iv) and γ an unknown positive constant. In this case, Σp implicitly satisfies (iv)

and σ
2/σ2 = σv

2/σ2
v where σv = limp→∞

tr(Vp)
p and σ2

v = limp→∞

tr(V 2
p )

p . This sit-
uation includes the interesting case of independent homoscedastic components;
in this case indeed, Vp = Ip, σv

2 = 1 and σ2
v = 1 and thus σ

2/σ2 = 1. This lat-
ter case has already been extensively considered in Srivastava Srivastava (2007);
in particular in that work, the distribution of the random quantity n(p−n+2)

n−1 (X−
µp)
′S+(X−µp) is computed for any p > n under the assumption Σp = γIp. The

results presented in Srivastava Srivastava (2007) are consistent with Corollary
5. Indeed, when Σp = γIp, the quantity n(p−n+2)

n−1 (X− µp)
′S+(X− µp) and the

quantity σ
2

σ2
np

n−1(X− µp)
′S+(X− µp) are p-asymptotically equivalent since their

values converge to the same limit; moreover, as expected by Corollary 5, their
limit distribution is a χ2(n−1).

• For any p > n, the covariance matrix Σp is equal to Σp = Σ̃p + γVp, with Σ̃p a
positive definite (or even semi-definite) matrix such that limp→∞ tr(Σ̃p)<+∞, γ

an unknown positive constant, and Vp a known positive definite matrix satisfying
(iv′). Indeed, also in this case it can be proven that σ

2/σ2 = σv
2/σ2

v ; the proof
comes straightforward once it is noticed that, without loss of generality, Vp can
be assumed to be diagonal. A covariance matrix of this form occurs for instance
in all application where the observed p-variate random vectors are assumed to be
generated by the sum of two independent terms: a structural term whose variabil-
ity is concentrated on a finite number of components (or even infinite but with
finite total variance) and a zero-mean nuisance term (due to background noise or
measurement errors) satisfying (iv) acting on all components. If the covariance
matrix of the nuisance term is assumed to be proportional to the identity matrix
(as it often happens), also in this case we have σ

2/σ2 = 1. This assumption
may hold for instance in genetics, where long array of genes are observed on a
small number of patients, the variability of the array can indeed be assumed to
be generated by two independent terms, an informative variability concentrated
on a reduced number of positive/negative correlated genes and a nuisance ho-
moscedastic error variability acting independently on each gene. Spectral data
presents another situation where the latter assumption may hold; indeed, spectral
data are characterized by the presence of nuisance background variability along
the entire set of observed frequencies plus a series of independent sources of
variability at some specific frequencies (bands) associated to the spectral firms of
different molecules.

Case (b) is the case where the information about the covariance structure is suffi-
cient to know that Σp satisfies (iv), but not sufficient to know the value of the constant
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σ
2/σ2. For instance, referring to the previous examples, we might know that Vp has a

block structure with blocks `× ` all equal to an unknown positive definite matrix B. In
this case we know that σ and σ2 are for sure positive and finite without knowing their
actual values σ = tr(B)/` and σ2 = tr(B2)/`.

In this second case having a good estimate of the constant σ
2/σ2 becomes of pri-

mary importance. Once it is noticed that tr(Σp)
p = ∑

p
i=1 λi

p and tr(Σ2
p)

p = ∑
p
i=1 λ 2

i
p , Jensen’s

inequality provides an upper bound to the constant. Indeed, for any Σp satisfying (iv)
we have that:

0 < σ
2/σ2 ≤ 1 ,

with equality holding when the p eigenvalues λi are all identical (this is the case Σp =
γIp). If the eigenvalues of Σp are uniformly bounded away from 0 and +∞ by the
constant λ and λ , respectively (i.e. assumption (iv′) in page 7), the constant σ

2/σ2 can
be further bounded:

λ
2/λ

2 ≤ σ
2/σ2 ≤ 1 .

A more strict lower bound (useful for values of the ratio λ/λ relatively close to 1) can
be found by means of simple algebraic computations:

1−
(

λ/λ −1
)2
≤ σ

2/σ2 ≤ 1. (2)

This quadratic control may result very effective, for instance, if it is known that the
maximum eigenvalue cannot exceed the minimum eigenvalue for more than the 10%
(i.e. λ/λ −1≤ 0.10), the unknown constant is guaranteed not to be lower than 0.99.

Replacing σ
2/σ2 with 1 takes to non-conservative inferential procedures, while

replacing σ
2/σ2 with a lower bound takes to conservative inferential procedures. Note

that the lower/upper bound in (2) for σ
2/σ2, provides also an outer/inner bound of

the confidence regions that can be obtained by Corollary 5 (see Sections 3.4 and 3.5),
and an upper/lower bound to the p-value associated to the hypothesis tests that can be
obtained by Corollary 5 (see Sections 3.4 and 3.5).

A better estimate of σ
2/σ2 can be obtained by using some estimates for tr(Σp)

p and
tr(Σ2

p)

p . Indeed for p→ ∞ these quantities converge by definition to σ and σ2, and thus

any unbiased estimator for tr(Σp)
p (or tr(Σ2

p)

p ) for a given p is also a p-asymptotic unbiased

estimator for σ (or σ2). The following estimators, defined for all n≥ 3 and p≥ 1, can
be proven to satisfy this property:

σ̂ p := trS
p , and

σ̂2
p := (n−1)2

(n−2)(n+1)

[
trS2

p −
1

n−1
(trS)2

p

]
.

(3)

Their properties are presented in Appendix C.
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Figure 1: Examples of confidence regions for the mean vector when p = 3 and n =
2,3,4, respectively. Data points in black, sample mean in red, confidence regions in
red, Im(S) in gray.
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3.4 p-asymptotic Confidence Region and Hypothesis Test for the Mean of
a Normal Population when p� n

Corollary 5 turns out to be a useful tool for the construction of confidence regions and
hypothesis tests for the mean in all practical situations where the number p of random
vector components is far larger than the number n of sample units (e.g. genetics, spectral
data) or even virtually infinite (e.g. functional data).

A p-asymptotic Confidence Region for the mean µp can be defined as follows:

CR1−α(µp) :=
{

mp ∈ Rp :
σ

2

σ2

np
n−1

(mp−X)′S+(mp−X)≤ χ
2
α(n−1)

}
, (4)

with χ2
α(n− 1) being the upper α-quantile of a χ2(n− 1) random variable and 1−α

being the p-asymptotic confidence level.

Equivalently, a p-asymptotic Hypothesis Test for H0 : µp = µ0p versus H1 : µp 6=
µ0p with p-asymptotic significance level α has the following rejection region:

Reject H0 in favor of H1 if:

σ
2

σ2

np
n−1

(X−µ0p)
′S+(X−µ0p)> χ

2
α(n−1) . (5)

Confidence region CR1−α(µp) is not of practical use for graphical purposes since
a clear visual representation of it is not straightforward due to the large value of p.
Similarly to the traditional multivariate framework, univariate projections of the con-
fidence region along some directions (i.e. T 2-simultaneous confidence intervals) can
give a rough idea about the location and shape of the confidence region, providing - in
the case of rejection of H0 - also some help in detecting the directions that have taken
to the rejection of H0. Since, by definition, we have that for p→ ∞

P

a′µp ∈

a′X̄±
√

a′Sa
n

√
σ2

σ
2

n−1
p

χ2
α(n−1)

 ,∀a ∈ Im(S)

→ 1−α ,

given a direction a ∈ Im(S) \ {0}, the corresponding T 2-simultaneous confidence in-
terval with p-asymptotic family-wise confidence 1−α can be defined as follows:

a′µp ∈

a′X̄±
√

a′Sa
n

√
σ2

σ
2

n−1
p

χ2
α(n−1)

 .

If a /∈ ImS \ {0}, then the corresponding T 2-simultaneous confidence interval is not
bounded, i.e, equal to [−∞,+∞].

Confidence region (4) and rejection region of test (5) present some peculiar features
that are worth a little discussion.
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Because S+ is positive semi-definite, the confidence region CR1−α(µp) - which for
n > p is an ellipsoid subset of Rp - turns out to be a cylinder in Rp generated by the
orthogonal extension in ker(S) of an n− 1-dimensional ellipsoid contained in Im(S).
As illustrative examples, three confidence regions for the mean vector when p = 3 and
n = 2,3,4, respectively, are reported in Figure 1. In particular, as shown by the ana-
lytic expressions of the generalized T 2-simultaneous confidence intervals, CR1−α(µp)
is bounded in all directions belonging to the random space Im(S). These directions
are easily identifiable since the first n− 1 sample principal components provide an or-
thonormal basis for Im(S).

Due to the non-null dimension of the random space ker(S) and to the orthogonality
between ker(S) and Im(S), we have that the statistic σ

2

σ2
np

n−1(X− µ0p)
′S+(X− µ0p) in

the hypothesis test (5) does not change if µ0p is replaced by µ0p +mker(S) with mker(S)
being any vector belonging to ker(S). This implies that H0 might not be rejected even
for values of the sample mean X that are “really very far” from µ0p in some direction
within ker(S). This is not surprising, because the use of S+ implies an exclusive focus
on the space Im(S) (the variability space explored by the data), neglecting all p−n+1
directions associated to ker(S) (the space orthogonal to the variability space explored
by the data).

3.5 p-asymptotic Pooled Confidence Region and Hypothesis Test for Com-
paring the Means of Two Normal Populations when p� n

Theorem 3 can also be used to tackle the problem of comparing the means of two
normal populations when the number p of components is larger than the number n of
sample units. Indeed, under the same assumptions of the classical multivariate analysis
of variance, we have that:

Corollary 6 (Generalized Pooled Hotelling’s T 2
pooled p-asymptotic distribution law).

For na ≥ 1, nb ≥ 1, and p≥ 1, assume that:

(i”) {Xai}i=1,...,na ∼ iid Np(µpa,Σp), {Xbi}i=1,...,nb ∼ iid Np(µpb,Σp) and the two finite
sequences are independent;

(iv) 0 < σ = limp→∞

tr(Σp)
p <+∞ and 0 < σ2 = limp→∞

tr(Σ2
p)

p <+∞.

Then, for na +nb ≥ 3 and p→ ∞:

σ
2

σ2

p
na +nb−2

(
1
na

+
1
nb

)−1

·

·
(
(Xa−Xb)− (µpa−µpb)

)′ S+pooled

(
(Xa−Xb)− (µpa−µpb)

) D−→ χ
2(na +nb−2) ,

where Xa and Xb are the two sample means, and Spooled is the pooled sample covari-
ance matrix.
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Proof. It is another direct application of Theorem 3, since
(

1
na
+ 1

nb

)−1/2 (
(Xa−Xb)− (µpa−µpb)

)
∼

Np(0p,Σp), (na+nb−2)Spooled = (na−1)Sa+(nb−1)Sb ∼Wishartp(Σp,na+nb−2),
and they are independent.

It is natural to denote the following quantity as Generalized Pooled Hotelling’s:

T 2
pooled =

(
1
na

+
1
nb

)−1 (
(Xa−Xb)− (µpa−µpb)

)′ S+pooled

(
(Xa−Xb)− (µpa−µpb)

)
.

(6)
Indeed, it is defined for any na, nb, and p such that na + nb ≥ 3, na ≥ 1, nb ≥ 1 and
p≥ 1 and coincides with the classical definition of Pooled Hotelling’s T 2

pooled when p≤
na+nb−2. The similarities and the differences between the framework p > na+nb−2
and the classical framework p ≤ na + nb− 2 are analogous to the ones presented in
Section 3 for the Generalized Hotelling’s T 2.

In particular, also in the two-population framework we obtain a confidence region
for estimating the difference of the two means and rejection region for testing the dif-
ference of the two means.

A p-asymptotic Confidence Region for difference of the means µpa− µpb can be
defined as follows:

CR1−α(µpa−µpb) =

{
∆mp ∈ Rp :

σ
2

σ2

p
na +nb−2

(
1
na

+
1
nb

)−1

· (7)

·
(
Xa−Xb−∆mp

)′ S+pooled

(
Xa−Xb−∆mp

)
≤ χ

2
α(na +nb−2)

}
,

with 1−α being the p-asymptotic confidence level.

Equivalently, a p-asymptotic Hypothesis Test for H0 : µpa−µpb =∆µ0p versus H1 :
µpa− µpb 6= ∆µ0p with p-asymptotic significance level α has the following rejection
region:

Reject H0 in favor of H1 if:

σ
2

σ2

p
na +nb−2

(
1
na

+
1
nb

)−1

· (8)

·
(
Xa−Xb−∆µ0p

)′ S+pooled

(
Xa−Xb−∆µ0p)

)
> χ

2
α(na +nb−2).

Also the analytical expression of the T 2
pooled-simultaneous confidence intervals for

the difference of the means comes naturally.
Given a direction a ∈ Im(Spooled) \ {0}, the corresponding T 2

pooled-simultaneous
confidence interval with p-asymptotic family-wise confidence 1−α can be defined as
follows:

a′(µpa−µpb)∈

a′(Xa−Xb)±

√(
1
na

+
1
nb

)
a′Sa

√
σ2

σ
2

na +nb−2
p

χ2
α(na +nb−2)

 .
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If a /∈ Im(Spooled)\{0}, then the corresponding T 2
pooled-simultaneous confidence inter-

val is not bounded, i.e, equal to [−∞,+∞].
Recently, Srivastava and Yanagihara Srivastava and Yanagihara (2010) proposed a

test for testing the equality of two covariance matrices of two normal distribution in the
large p small n data framework, enabling to check for the homoscedasticity assumption
which the previous results rely on.

4 Simulation Results

In this section, we estimate, by means of MC simulations, the power and the actual
level of significance of the new test, presented in (8); in this section we will refer to it
as the Generalized Hotelling’s test. In particular, we estimate the probability of rejecting
the null hypothesis H0 : µa = µb in favor of the alternative hypothesis H1 : µa 6= µb in
eight different cases and for increasing values of the number p of components ranging
between 20 and 210 (i.e., 1 and 1024):

I0 : µa = 0, µb = 0, Σ = I, na = 10, nb = 10;
D0 : µa = 0, µb = 0, Σ = D, na = 10, nb = 10;
R0 : µa = 0, µb = 0, Σ = R, na = 10, nb = 10;
S0 : µa = 0, µb = 0, Σ = S, na = 10, nb = 10;
I1 : µa = 0, µb = 0.4 ·1, Σ = I, na = 10, nb = 10;

D1 : µa = 0, µb = 0.4 ·1, Σ = D, na = 10, nb = 10;
R1 : µa = 0, µb = 0.4 ·1, Σ = R, na = 10, nb = 10;
S1 : µa = 0, µb = 0.4 ·1, Σ = S, na = 10, nb = 10;

where I is the identity matrix; D is a diagonal matrix whose diagonal alternatively as-
sumes the values 0.5 and 1.5; R is a block matrix whose blocks are equal to the matrix(

1 0.5
0.5 1

)
; S is a block matrix whose blocks are equal to the matrix

( 1 −0.5
−0.5 1

)
. Co-

variance matrices R and S can be simply obtained by D by means of an orthogonal
transformation: 45◦ anticlockwise pairwise rotations and 45◦ clockwise pairwise rota-
tions, respectively. The values for µa, µb, na, and nb are the same used in the simulation
study presented in Pesarin and Salmaso Pesarin and Salmaso (2010, 2009); the value
for Σ used in cases I0 and I1 are once again the same used in Pesarin and Salmaso Pe-
sarin and Salmaso (2010, 2009), while the value used in cases D0, D1, R0, R1, S0, and
S1 are meant to provide less trivial situation where assumption (iv) still holds. Note that
in the former two cases the constant σ

2/σ2 = 1 while in the latter six σ
2/σ2 = 4/5.

In details, for each case and for each value of the number p of components, 1000
synthetic data sets have been randomly generated according to the corresponding model
and, for each one of these, the Generalized Hotelling’s test has been performed at a
nominal level of significance α = 0.05. The relative number of times the null hypothesis
has been rejected provides the estimate of either the actual level of significance of the
Generalized Hotelling’s test (cases I0, D0, R0, and S0) or its power (cases I1, D1, R1,
and S1). The same data sets have been also used to perform two other tests recently
appeared in the literature (Srivastava Srivastava (2007), Pesarin and Salmaso Pesarin
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and Salmaso (2010, 2009)) both suitable for dealing with large p small n data sets (in
this section we will refer to them as the Srivastava’s test and Pesarin-Salmaso’s test,
respectively).

Analogously to the Generalized Hotelling’s test, also the Srivastava’s test is based
on the generalized T 2

pooled , but while the Generalized Hotelling’s test uses a rejection
region built from its p-asymptotic distribution under the assumption (iv), the Srivas-
tava’s test uses a rejection region built from its exact distribution under the assumption
of independent and homoscedastic components.

The Pesarin-Salmaso’s test is not a model-based test but a permutation test; the
implementation used here is the same used in the simulation study presented in Pe-
sarin and Salmaso Pesarin and Salmaso (2010, 2009), i.e., the statistic used is actu-
ally a random weighted sum of the p univariate Student’s t2

pooled that can be written as(
Xa−Xb−∆µ0

)′ S−1
diag

(
Xa−Xb−∆µ0

)
, and its conditional distribution over the val-

ues observed within each data set is estimated by sampling 1000 random permutations
of the na + nb = 20 p-dimensional vectors making each data set. Sdiag is the diago-
nal matrix whose diagonal elements are the p (non-pooled) sample variances of the p
components.

The results of the simulation study are summarized in Figure 2. For completeness,
in the cases in which p≤ na+nb−2, a traditional Hotelling’s test has been implemented
in place of both the Generalized Hotelling’s test and Srivastava’s test.

In subsections 4.1 and 4.2, the Generalized Hotelling’s test is compared with the
Srivastava’s test and the Pesarin-Salmaso’s test, respectively.

4.1 Comparison between the Generalized Hotelling’s test and the Srivas-
tava’s test

In case I0, where H0 is true and the hypotheses supporting the Srivastava’s test hold, the
observed rate of rejection of the Srivastava’s test clearly matches its nominal level of
significance 5%; on the contrary, in cases D0, R0, and S0, where H0 is still true but the
hypotheses supporting the Srivastava’s test do not hold, the observed rate of rejection
of the Srivastava’s test significantly exceeds its nominal level of significance providing
a strongly non conservative test.

The assumptions which the Generalized Hotelling’s test is based on, hold instead for
all cases, indeed for p “large enough” (in these cases 1024 seems to be a large enough
value for p) the observed rate of rejection matches the nominal level of significance 5%.
The almost identical patterns shown for cases D0, R0, and S0 confirm the invariance of
the Generalized Hotelling’s test under orthogonal transformations of the components.
Further simulations, not reported here, for different values of na and nb show a quicker
(slower) convergence to the nominal level of significance for smaller (larger) values of
na and nb. For instance, for na = nb = 2 (i.e. the smallest sample size we tested), the
nominal value is already reached for p = 64. Mind the fact that, though small sample
sizes increase the reliability of the Generalized Hotelling’s test, they of course also
reduce the power of the same test, as expected.
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Figure 2: MC-estimates of the probability of rejecting H0 : µa = µb for different values
of the number p of components. Each plot is associated to a different model (title) and
each line to a different test (legend).
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Fortunately, the same simulations also show that the convergence rate is indepen-
dent from the value of the constant σ

2/σ2. This fact enables an a-priori empirical
measure, for a given sample size, of the minimal number p of random vector compo-
nents (or given p, of the maximal sample size) that is necessary to make the Generalized
Hotelling’s test reliable.

Talking about the power under the alternative hypothesis ∆µ = 0.4 · 1, in case I1
the superiority of the Generalized Hotelling’s test is just apparent and due to the mis-
match between its actual and its nominal level of significance for too small values of
p. For large value of p (i.e. values for which the actual level of significance reaches
its nominal value), the powers of the two tests appear almost identical confirming the
p-asymptotical inferential equivalence of the two under the more stringent hypotheses
of the Srivastava’s test.

In cases D1, R1, and S1, the mismatch between the actual and the nominal level
of significance completely affects the Srivastava’s test providing meaningless power
curves for this test. The only value of interest in these plots are the estimated powers of
the Generalized Hotelling’s test for p = 1024, that is the only case in which the nominal
level of significance equals the actual one. Different values of that power are achieved
in the three cases. In particular, a comparison of the Generalized Hotelling’s test and the
Hotelling’s test across these tree cases points out an opposite behavior of the two: the
power of the Generalized Hotelling’s test is higher when the power of the Hotelling’s
test is lower and viceversa. More in detail, the power of the Generalized Hotelling’s test
is enhanced (reduced) and the power of the Hotelling’s test reduced (enhanced) for al-
ternative hypotheses providing a difference of the means with large (small) components
in the directions of important (in terms of eigenvalues) principal components and small
(large) components in the directions of minor (in terms of eigenvalues) principal com-
ponents. Indeed, Hotelling’s test is based on the Mahalanobis distance (induced by the
inverse of the sample covariance matrix) between the sample difference of the means
and the H0 difference of the means; thus, in the Hotelling’s test, the effect of differences
occurring in the direction of the minor sample principal components is enlarged with
respect to similar differences occurring in the direction of the important sample princi-
pal components. On the contrary, in the framework of the Generalized Hotelling’s test
the directions associated to the minor principal components are expected to be close
to the directions detected by ker(S) and thus any difference in these directions have
a high probability to be annihilated by the Mahalanobis semi-distance induced by the
generalized inverse of the sample covariance matrix used.

4.2 Comparison between the Generalized Hotelling’s test and the Pesarin-
Salmaso’s test

The Generalized Hotelling’s test has been also compared with the Pesarin-Salmaso’s
test (Pesarin and Salmaso Pesarin and Salmaso (2010, 2009)) by means of MC sim-
ulations. Aim of this comparison is to see to what extent the model-based approach,
pioneered by Srivastava Srivastava (2007) and further developed in this work, can com-
pete with another promising and less traditional approach to the analysis of large p
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small n data: multivariate permutation test (Pesarin and Salmaso Pesarin and Salmaso
(2010, 2009)).

The Pesarin-Salmaso’s test presents some very interesting features (proven in Pe-
sarin and Salmaso Pesarin and Salmaso (2010, 2009)): first of all it does not require the
normality of data (test for multivariate normality is still an open problem); secondly,
its actual level of significance resembles the nominal level in all simulated scenarios
(cases I0, D0, R0, and S0) and for any value of p (i.e., it is not p-asymptotic); finally,
under the alternative hypothesis µa = 0 and µb = 0.4 · 1, its power is non-decreasing
in p and has limit 1 for p→ ∞ (cases I1, D1, R1, and S1). The Pesarin-Salmaso’s
test also presents a couple of drawbacks due to the discrete nature of the permutational
distribution and to the factorial growth of the number of permutation with respect to
the sample size. Indeed, given sample sizes na and nb, we have in general (na + nb)!
possible permutations of data associated to (na+nb)!

na! nb! possible different values of the test
statistic.

The discrete nature of the permutational distribution is particulary evident for small
sample sizes: in these cases, test randomization becomes mandatory in order to main-
tain a certain level of significance α; for instance, for na = nb = 2, only 24 permutations
are possible, the support of the permutational distribution is reduced to just six values,
and thus the only non-randomized bilateral tests that can be performed are the ones
carried out with level of significance α = 1/3 or α = 2/3. If the sample size grows,
this issue becomes less relevant from a practical point of view, but on the meantime
the number of possible permutations quickly increases making mandatory the use of an
approximated permutational distribution based on a randomly selected subset of per-
mutations; for instance, for na = nb = 10, the number of possible permutations already
exceeds 1018 and the support of the permutational distribution is made of more than 105

values.
On the whole, the fact that (in most cases) the statistical conclusions might change

across different runs of the same analysis and of the same data set makes the permutation-
based analysis non replicable. Though the randomness induced by the approximating
permutational distribution is just due to computational limits and it can be overcome by
increasing the size of the random subset of permutations, on the contrary, the random-
ness induced by the discrete nature of permutational distribution is not due to computa-
tional limits but is intrinsic to this approach and thus non reducible.

A comparison of the estimated power functions of the two tests (cases I1, D1,
R1, and S1) shows: a substantial equivalence of the statistical power of the Pesarin-
Salmaso’s test and of the Hotelling’s test in the univariate case (i.e., p = 1); a predomi-
nance of one of the two depending on the number p of random vector components and
on the scenario for small values of p; a neat predominance of Pesarin-Salmaso’s test
over the Generalized Hotelling’s test for larger values of p. In the setting described by
the experiment (i.e., µa = 0 and µb = 0.4), our simulations suggest the permutation-
based approach to be more suitable than a model-based approach for the analysis of
large p small n data, at least when the sample sizes are large enough to avoid the use
of a randomized permutation test. The fact that the latter conclusion would hold in a
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wider setting is still matter of investigation.

5 Discussion

In this paper we dealt with the problem of making inference for the mean vector of a
p-variate normal random vector when the sample size is too small to enable the use of
Hotelling’s Theorem. The problem of making inference for the difference of the mean
vectors of two p-variate normal random vectors when the sample sizes are too small is
discussed as well. In particular, we provided a generalization of the Hotelling’s Theo-
rem for p going to ∞ and sample size remaining finite, based on the notion of Moore-
Penrose generalized inverse of the sample covariance matrix, and that holds under weak
assumptions guaranteeing the existence and non degeneracy of the corresponding limit
statistic and distribution. Together with the theorem, we provided also explicit for-
mulas to perform hypothesis test and to build confidence regions and T 2-simultaneous
confidence intervals.

We tested our results by means of MC simulations performed for different values of
the means, of the covariance matrix, of the sample size, and of the number p of random
vector components. Simulations confirm our theoretical results and moreover enable
the estimation of the statistical power of the test and of the rate of convergence to the
p-asymptotic framework. Some interesting cases are presented in the paper and crit-
ically discussed in comparison with other two approaches presented in the literature:
the Srivastava’s test (Srivastava Srivastava (2007)) and the Pesarin-Salmaso’s test (Pe-
sarin and Salmaso Pesarin and Salmaso (2010, 2009)); further cases are available upon
request of the reader.

The p-asymptotical inferential equivalence of the Srivastava’s test and of the Gen-
eralized Hotelling’s test under the more stringent hypothesis of the Srivastava’s test,
together with the independence from the ratio σ

2/σ2 of the rate of convergence of
the Generalized Hotelling’s test to its nominal level of significance, suggest (tr(Σp)/p)2

tr(Σ2
p)/p

(i.e., the finite version of σ
2/σ2) to be the right constant to correct the Srivastava’s test

statistic making it be distributed as a F(na+nb−2, p−na−nb+3), that is the distribu-
tion that is known to follow when the covariance matrix is proportional to the identity
matrix.

If this were true (further simulations not reported here seem to confirm it), the
following conjectures - we could describe within a unique framework the classical
Hotelling’s test, the Srivastava’s test, and the p-asymptotic Generalized Hotelling’s test,
as follows:

Conjecture 7 (Generalized Hotelling’s T 2 distribution law). For n ≥ 2 and p ≥ 1,
assume that:

(i’) {Xi}i=1,...,n ∼ iid Np(µp,Σp).

Then:
tr(Cp)

2

tr(C2
p)

ν1

(n−1)pν2
T 2 ∼ F(ν1,ν2) ,
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with ν1 = |(n−1)− p|+1, ν2 = min(n−1, p), and Cp =

{
Ip for p≤ n−1
Σp for p > n−1

.

Conjecture 8 (Generalized Pooled Hotelling’s T 2
pooled distribution law). For na ≥ 1,

nb ≥ 1, na +nb ≥ 3, and p≥ 1, assume that:

(i”) {Xai}i=1,...,na ∼ iid Np(µpa,Σp), {Xbi}i=1,...,nb ∼ iid Np(µpb,Σp), and the two fi-
nite sequences are independent.

Then:
tr(Cp)

2

tr(C2
p)

ν1

(na +nb−2)pν2
T 2

pooled ∼ F(ν1,ν2) ,

with ν1 = |(na+nb−2)− p|+1, ν2 =min(na+nb−2, p), and Cp =

{
Ip for p≤ na +nb−2
Σp for p > na +nb−2

.

The previous conjectures are proven to be correct when p≤ n−1 and p≤ na+nb−
2 respectively (Hotelling’s Theorem), when Σp = Ip (Srivastava Srivastava (2007)) and
when p→+∞ (Corollaries 5 and 6). The generic Σp finite p case is at the moment just
supported by our simulations and by its consistence with the classical Hotelling’s test,
the Srivastava’s test, and the Generalized Hotelling’s test when restricted conditions are
posed. Its general proof is still under investigation.

A Some useful properties of the Moore-Penrose Generalized
Inverse

Many results presented in the paper rely on properties related to the Moore-Penrose
inverse of positive semi-definite sample covariance matrices. In this appendix, all these
properties are recalled.

Definition 1. Let A be an q× r matrix. The Moore-Penrose inverse of A, denoted by
A+, is the unique r×q matrix such that

1. AA+A = A;

2. A+AA+ = A+;

3. (A+A)? = A+A;

4. (AA+)? = AA+.

The first two properties let A+ be a generalized inverse of A. The last two properties
confer to A+ its uniqueness. The symbol “?” indicates the conjugate of a matrix. For
our purposes, all matrices will have real entries and thus, it is equivalent to the symbol
“′” indicating the transposed matrix.

The proof of the uniqueness of A+ can be found, for instance, in Rao and Mitra Rao
and Mitra (1971).
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Moreover, it can be proven, by means of simple computations, that if A is a p× p
symmetric matrix with real entries with rank m ≤ p, then A+ = ∑

m
i=1 λ

−1
i eie′i, with

λ1, . . . ,λm being the m non-zero eigenvalues of A and e1, . . . ,em the corresponding
eigenvectors. An immediate consequence of this result is that, if A is of full-rank,
then A+ = A−1.

Hereby, we report some results necessary to the proof of Theorem 3.

Proposition 9. Let A be a `×m matrix and B be an m×n matrix. If

• A has orthonormal columns, i.e, A′A = Im; or,

• B has orthonormal rows, i.e, BB′ = Im; or,

• A is of full column rank m and B is of full row rank m,

then, we have
(AB)+ = B+A+

The proof can be found in Rao and Mitra Rao and Mitra (1971).

Proposition 10. Let A be a `×m matrix. Two particular cases are of interest:

• if A is of full column rank m, then A′A is invertible and we get

A+ = (A′A)−1A′

• if A is of full row rank `, then AA′ is invertible and we get

A+ = A′(AA′)−1

The proof can be found in Rao and Mitra Rao and Mitra (1971).

Proposition 11. With the same notations defined in the proof of Theorem 3, we have

W+ = H ′L−1H .

Proof. We first have
V+ =

(
H ′LH

)+
=
[(

H ′L
)

H
]+

H has orthonormal rows since HH ′ = Im. Thus, Proposition 9 holds and we have

V+ = H+
(
H ′L

)+
Now, we focus on the product H ′L. H ′ has orthonormal columns since H has or-

thonormal rows. Therefore, once again, Proposition 9 holds and we obtain

V+ = H+L+(H ′)+

We now observe that
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• L is invertible⇒ L+ = L−1;

• H is of full row rank ⇒ H+ = H ′(HH ′)−1 thanks to Proposition 10 (first part);
then, since HH ′ = Im, we obtain H+ = H ′;

• H ′ is of full column rank⇒ (H ′)+ = (HH ′)−1H thanks to Proposition 10 (second
part); then, since HH ′ = Im, we obtain (H ′)+ = H.

and it ends the proof.

B Proof of Lemma 4

Notation is the same used in the proof of Theorem 3. Lemma 4 states that under the
assumptions of Theorem 3:

Y ′Y
p

P−−−→
p→∞

σ Im ,
L
p

P−−−→
p→∞

σ Im , HΛpH ′ L−−−→
p→∞

σ2

σ
Im .

Proof. Observe that, in distribution, the matrix Y ′Y is equal to the matrix U ′ΛpU , where
the columns of U are iid Np(0p, Ip).
Note that

E[u2
i j] = 1 and var[u2

i j] = 2 .

A generic element of the matrix Y ′Y is then equal in distribution to

u′iΛpu j =
p

∑
k=1

λkukiuk j .

Thus,

E [u′iΛpu j] = ∑
p
k=1 λkδi j and var [u′iΛpu j] = (1+δi j)∑

p
k=1 λ 2

k .

Under assumptions (iv) of Theorem 3, it is immediate to see that

limp→∞ E
[

u′iΛpu j
p

]
= σδi j ;

limp→∞ var
[

u′iΛpu j
p

]
= limp→ ∞

(1+δi j)
p

trΛ2
p

p = 0 ,

which proves the first and second convergence results of Lemma 4.
Now, let G = L1/2HY (Y ′Y )−1. Note that

GG′ = Im , Y = H ′L1/2G and GY ′ = L1/2H .

Thus, in distribution,

HΛpH ′ =
(

L
p

)−1/2

G
U ′Λ2

pU
p

G′
(

L
p

)−1/2

.
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We now have

limp→∞ E
[

u′iΛ2
pu j

p

]
= limp→∞

trΛ2
p

p δi j = σ2δi j ; and,

limp→∞ var
[

u′iΛ2
pu j

p

]
= limp→∞

(1+δi j)
p

trΛ4
p

p = 0 .

Thus, in probability,

lim
p→∞

U ′Λ2
pU

p
= σ2Im .

Now, the root function and the inverse root function are both continuous on R?+. Thus,
in probability,

limp→∞

(
U ′Λ2

pU
p

)1/2
=

(
σ2
)1/2

Im ;

limp→∞

(
L
p

)−1/2
= (σ)−1/2 Im .

Now, from the fact that GG′ = Im and m is finite, we know that G, as a sequence in-
dexed by p, is tight. From Prokhorov’s Theorem (e.g., Billingsley Billingsley (1968)),
we therefore know that there exists a subsequence of G which converges in distribution.
Let then without loss of generality suppose that we work from now on with this subse-
quence.
Slutsky’s Theorem (e.g., Serfling Serfling (2002)) assures that, in distribution,

lim
p→∞

(
U ′Λ2

pU
p

)1/2

G′ =
(

σ2
)1/2

G?′ ,

where G?′ is the m×m limit matrix of the sequence {G′p}p≥1. It verifies in particular
G?G?′ = Im .
Used a second time, Slutsky’s Theorem implies that, in distribution,

lim
p→∞

(
U ′Λ2

pU
p

)1/2

G′
(

L
p

)−1/2

=

(
σ2

σ

)1/2

G?′ .

The function
N : Rm×m → Rm×m

A 7→ A′A

is continuous and this proves the third convergence result of Lemma 4.

C Properties of σ̂p and σ̂2
p

The means and variances of estimators

σ̂p := trS
p , and

σ̂2
p := (n−1)2

(n−2)(n+1)

[
trS2

p −
1

n−1
(trS)2

p

]
,

(9)
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can be trivially computed once introduced a set of p independent random variables
wi ∼ Nn−1(0n−1,In−1), and noticed the following equalities in distribution (Srivastava
Srivastava (2005)):

(n−1)trS = ∑
p
i=1 λivii ,

(n−1)2(trS)2 = ∑
p
i=1 λ 2

i v2
ii +2∑

p
i< j λiλ jviiv j j ,

(n−1)2trS2 = ∑
p
i=1 λ 2

i v2
ii +2∑

p
i< j λiλ jv2

i j ,
(10)

where vi j = w′iw j .
We can thus write from (9) and (10):

σ̂p = 1
p(n−1) ∑

p
i=1 λivii ,

σ̂2
p = 1

p(n−2)(n+1)

[
n−2
n−1 ∑

p
i=1 λ 2

i v2
ii +2∑

p
i< j λiλ j(v2

i j− 1
n−1 viiv j j)

]
.

(11)

It is easy, even if quite long, to show from (11) that, for all p, σ̂p and σ̂2
p are unbiased

and consistent (for n→ ∞) estimators of tr(Σp)
p and tr(Σ2

p)

p , respectively.

Moreover, if 0 < σ = limp→∞

tr(Σp)
p <+∞, 0 < σ2 = limp→∞

tr(Σ2
p)

p <+∞, and 0 <

σ4 = limp→∞

tr(Σ4
p)

p < +∞, it can be shown that the unbiasedness and consistence hold
p-asymptotically:

E
[
limp→∞ σ̂p

]
= σ , limn→∞P

[∣∣limp→∞ σ̂p−σ
∣∣≤ ε

]
= 1 ∀ε > 0 ,

E
[
limp→∞ σ̂2

p

]
= σ2 , limn→∞P

[∣∣∣limp→∞ σ̂2
p −σ2

∣∣∣≤ ε

]
= 1 ∀ε > 0 .

Thus, for large values of p, σ̂p and σ̂2
p can be used to estimate σ and σ2, respectively.

Note that for n→ ∞, estimator σ̂2
p is inferentially equivalent to tr(S2)

p and thus also

this simpler but biased estimator results consistent. So, for large values of n and p, tr(S)
p

and tr(S2)
p can be used to estimate σ and σ2, respectively.
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