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1 IntrodutionNumerial simulations of inompressible ows in network of pipes almost in-variably require to bound the domain of interest with arti�ial boundaries thatinterfaes it with the entire network (see Fig. 1). Unfortunately, no physial
Physical Boundary (wall)

Artificial Boundary (inflow/outflow)

Figure 1: Example of trunated omputational domainarguments an be invoked for the presription of onditions on these bound-aries. Data an be presribed from available measures. In some appliationsthese measures are not enough for the well-posedness of the uid problem. Atypial example of interest in the present work is when ow rate in a pipe is mea-sured, whih is quite typial in haemodynamis. Flow rate is the average valueof the normal veloity (multiplied by the uid density) through the arti�ial se-tion. Mathematial problem would require instead a pointwise data set for theveloity (Dirihlet onditions). Pratial approahes for overoming the under-determination are based on the seletion of a realisti veloity shape �tting themeasured ow rate. Despite of its simpliity, this approah introdues a strongbias in the numerial simulation. In [13℄ the problem of arti�ial boundariesand ow rate problems has been investigated with a more mathematially soundapproah, resorting to the seletion of a suitable variational formulation of theproblem at hand. Homogeneous onditions natural for the seleted variationalformulation omplete the defetive data. For the ow rate problem, however,this approah requires the introdution of non-standard funtional spaes, notstraightforwardly prone to numerial disretization. Alternative approahes havebeen proposed in the last years, see [10, 18, 19, 12℄. A omplete introdutionto these topis an be found in [11℄, Chap. 11, in the ontext of geometrialmultisale models for the irulation. Computational haemodynamis is the ap-pliation that has mainly (even if not exlusively) driven the present researh.In this ontext, a omplete desription of the problem inludes the omplianeof the walls (Fluid Struture Interation - FSI - problems). Arti�ial boundaries2



should be onsidered not only for the uid but also for the struture problem.Spei� mathematial and numerial appropriate tehniques should be devisedfor the reliable solution to uid-struture interation problems with defetiveboundary data both for the uid and the struture problems (see [11℄). This pa-per is a �rst step in this diretion. More preisely, we onsider the uid problemwith ow rate onditions. We assume here that the struture problem featuresa omplete set of boundary onditions. In a forthoming paper we will onsiderthe ase where both uid and struture have defetive boundary data on thearti�ial setions.The purpose of this paper is to devise and ompare possible strategies byextending the di�erent methods proposed for the rigid ase. It is worth men-tioning that some preliminary results have been proposed in [16℄ limitedly to onepartiular strategy and to the ase of a membrane struture (i.e. a 2D strutureoupled to a 3D uid domain). Here we onsider spei�ally methods workingfor thik 3D strutures.The outline of the paper is as follows. In Set. 2 we introdue the mathemat-ial formulation of the ow rate problem in ompliant domains. In view of themethods introdued later on, we address a formulation where veloity mathingondition between uid and strutures is fored in a weak sense. We analyze thewell posedness of this formulation. In Set. 3 we present a �rst lass of possiblemethods, stemming from segregated proedures for the uid-struture intera-tion solution. Atually in partitioning uid and struture omputations, at eahstep uid is solved in a "frozen" domain, so that methods for the presription ofthe ow rate proposed for the rigid ase an be straightforwardly applied. How-ever, both segregated methods and tehniques for defetive ow rate problemsare based on iterative proedures, so a diret implementation of this approahleads to nested iterative methods, typially having high omputational osts.Most spei� tehniques for the ompliant ase are introdued in Set. 4 and 5.More preisely, in Set. 4 we introdue a method based on the extension of theaugmented formulation introdued in [10, 18℄ to the whole ow-rate/FSI prob-lem. In partiular, we onsider an algorithm based on an algebrai splitting ofthe augmented problem (see [18℄), whih has the pratial feature of resorting tothe solution of standard FSI problems, a�ordable, for example, by a ommerialpakage even when used as blak-box solvers. In Set. 5, we reast the problemin terms of the minimization of an appropriate funtional measuring the dis-tane between the omputed and the presribed ow rates with the onstraintof the uid-struture interation problem, extending the strategy proposed forthe rigid ase in [12℄. In partiular, we use the normal stress on the arti�ialboundaries as ontrol variable for driving the minimization of the onstrainedfuntional. We present di�erent methods for the solution of the minimizationproblem, with the aim of reduing the omputational osts mainly by avoidingnested iterations. Set. 6 is devoted to the numerial results. We present severaltest ases, omparing numerial eÆieny of the proposed methods. Finally, inSet. 7 we draw some onlusions. 3



2 The Fluid-Struture Interation problem2.1 General setting and weak formulationLet us onsider a trunated omputational domain 
t � Rd (d=2, 3, being thespae dimension), with r arti�ial setions. This domain is divided into a sub-domain 
ts oupied by an elasti struture and its omplement 
tf oupied bythe uid. The uid-struture interfae �t is the ommon boundary between 
tsand 
tf (see Fig. 2), whilst with �ti and �ti;s we denote the uid and struturearti�ial setions. Furthermore, n is the outward normal on �
tf . The initialon�guration 
0 at t = 0 is onsidered as the referene one.
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,Figure 2: Example of trunated omputational uid domain 
tf (left) and soliddomain 
ts (right). In this piture r = 3.We adopt a purely Lagrangian approah to desribe the struture kinematisand then we refer always to the referene domain 
s := 
0s. Hereafter, b� denotesthe displaement of the solid medium with respet to this on�guration. Forany funtion bg de�ned in the referene solid on�guration, we denote by g itsounterpart in the urrent domain. The solid is assumed to be a linear elastimaterial, haraterized by the Cauhy stress tensorT s(�) = �(r � �)I + (r� + (r�)T )where � and  are the Lam�e onstants and I is the identity tensor.On the other hand, the uid problem is stated in an Arbitrary Lagrangian-Eulerian (ALE) framework (see, e.g., [15, 8℄). The ALE mapping is de�ned by anappropriate lifting of the struture displaement. A lassial hoie is to onsidera harmoni extension operator in the referene domain. In order to write theuid problem aording to the ALE formulation, we reall the de�nition of ALEtime derivative of the veloity u:DAuDt = �u�t +w � ru;where �u=�t is the Eulerian derivative and w is the veloity of the points of theuid domain de�ned by the ALE map. The uid is assumed to be homogeneous,4



Newtonian and inompressible, with Cauhy stress tensor given byT f (u; p) = �pI + �(ru+ (ru)T );where p is the pressure and � the dynami visosity. Moreover, we ollet theuid arti�al setions in three distint subregions, namely �tF := Smi=1 �ti;m �r; �tD and �tN , and the struture ones in two subregions, namely �0D;s and �0N;s.Then, the omplete problem in strong form reads:1. Flow-rate/Fluid-struture problem. Find the uid veloity u, pressure pand the struture displaement b� suh that8>>>>>>>><>>>>>>>>:
�f DAuDt + �f ((u�w) � r)u�r � T f = ff in 
tf � (0; T );r � u = 0 in 
tf � (0; T );�s �2b��t2 �r � bT s = bfs in 
0s � (0; T );u = ���t on �t � (0; T );T sn� T f n = 0 on �t � (0; T );R�ti u � n d = Fi; i = 1; : : : ;m t 2 (0; T ): (1)

2. Geometry problem. Given the interfae struture displaement �j�t , �nda map A : 
0f ! 
tf through an harmoni extension Ext of this boundaryvalue and �nd aordingly the new uid domain 
tf by moving the pointx0 of the referene domain 
0f :At(x0) = x0 + Ext(b�j�0); w = �tAt Æ (At)�1; 
tf = At(
0f ):Here, �s is the struture density, Fi; i = 1; : : : ;m; are given funtions of timeand ff and bf s the foring terms. System (1) has to be endowed with suitableDirihlet boundary onditions on �D and �D;s and Neumann boundary ondi-tions �N and �N;s. The partition between Dirihlet and Neumann boundariesan be di�erent for the normal and the tangential diretion of u and �. Twotransmission onditions are enfored at the interfae: the ontinuity of uid andstruture veloities (1)4 and the ontinuity of stresses (1)5. The uid and stru-ture are also oupled by the geometry problem, leading to a highly nonlinearsystem of partial di�erential equations. Finally, system (1) has to be endowedwith suitable initial onditions.2.2 Time disretization, weak formulation and treatment of theinterfae positionLet us now onsider the time disretization and the weak formulation of system(1). Let �t be the time step size and tn = n�t for n = 0; : : : ; N . We denoteby zn the approximation of a time dependent funtion z at time level tn. We5



onsider a bakward Euler sheme for the time disretization of the uid problemand an impliit seond order BDF sheme for the struture problem. Observe,however, that all the arguments detailed in this work an be extended to othertime disretization shemes.For the moment being, we onsider the ase �tF = ;, that is no ow rateonditions are presribed. Extension to the ase of suh onditions is presentedlater on.In order to treat the nonlinearity given by the onvetive term and by theuid domain, we onsider the semi-impliit treatment (see e.g. [9, 4, 3℄). Denoteby 
�f ; u� and w� appropriate extrapolations of the uid domain, uid veloityand uid domain veloity, respetively. The simplest hoie is given by the�rst order extrapolations 
�f = 
nf ; u� = un and w� = wn. More aurateextrapolations an be onsidered as well.Let us introdue the following spaes:V � = fv 2H1(
�f ) : vj��D = 0g;Q� = L2(
�f );W = fb 2H1(
0s) : b �0D;s = 0gZ� = n(v; b ) 2 V � �W : vj�� =  j���t o :Moreover, setA(u;�;v; )� := �f�t (u;v)�f + (T f ;rv)�f + �f (((u� �w�) � r)u;v)�f++�s b��t2 ; b �t!s +�bT s; 1�trb �sand B(q;v; )� = �(q;r � v)�fwhere (v;w)�f := R
�f v � w dx and ( ;�)s := R
0s  � � dx. Then, the weakformulation for the disretized-in time problem with a semi-impliit treatmentreads as follows.For eah n we perform the following steps1. Compute suitable extrapolations 
�f ; u� and w� of 
n+1f ; un+1 and wn+1,respetively.2. Given fn+1f 2 L2(
�f ) and bfn+1s 2 L2(
0s), �nd (un+1; b�n+1) 2 Z� andpn+1 2 Q� suh that( A(un+1;�n+1;v; )� +B(pn+1;v; )� = F �f (v) + bFs �  �t�B(q;un+1;�n+1)� = 0 (2)for all (v; b ) 2 Z� and q 2 Q�. 6



3. Update the uid domain obtaining 
n+1f .The funtionals F �f and Fs aount for foring terms, boundary data and termsoming from the time disretization. We point out that, thanks to the ouplingondition (1)5 and the partiular hoie of the uid-struture test funtionsin Z�, the two interfae terms oming from the integration by parts, namelyR�� T n+1f n � v d and R�� T n+1s n �  �t d, anel out.A seond possibility is to treat the uid domain and the onvetive termimpliitely and to embed the uid-struture problem into a �xed-point loopover the position of the FS interfae ��. However, for the sake of exposition welimit our attention to the semi-impliit ase, disussing whenever appropriatethe feasibility of the proposed approahes to impliit algorithms.2.3 Weak formulation of the ontinuity veloityIn view of the numerial treatment of the ow rate problem based on the ontroltheory introdued in Set. 5, we introdue here a di�erent formulation when theinterfae ontinuity onditions on the veloity are fored weakly. In this way, testfuntions on the uid problem do not neessary math at the FS interfae withthe strutures ones. LetD� be the spaeH�1=2(��). At time step tn+1, we on-sider the following \augmented" variational formulation of the semi-disretizedproblem.Given fn+1f 2 L2(
�f ) and bfn+1s 2 L2(
0s), �nd un+1 2 V �; pn+1 2 Q�; b�n+1 2W and �n+1 2D� suh that,8><>: A(un+1;�n+1;v; )� +B(pn+1;v; )� + C(�n+1;v; )� = F �f (v) + bFs �  �t�B(q;un+1;�n+1)� = 0C(�;un+1;�n+1)� = R�� � � �n�td (3)for all v 2 V �; q 2 Q�; b 2W and � 2D� and whereC(�;v; )� := �Z�� � � �v �  �t� d:From now on, we drop the index n+1 for the sake of simpliity. Moreover, letus introdue the following normskvkV � := �kvk2f + krvk2f�1=2 ;k kW := �k k2s + kr k2s�1=2 ;being k � kf and k � ks the L2(
�f ) and L2(
0s)� norms. We have the followingProposition 2.1 If � is big enough, problem (2) admits a unique solution[�u; �p; ��℄. Problem (3) admits a unique solution too, namely [�u; �p; ��;�℄, with� = �T fnj�� := T f (�u; �p)nj��. 7



Proof . Let us introdue the following normk (v; ) k2 := kvk2V � +  �t2W :From the Korn's inequality, there exist two onstants Kf and Ks suh that (see,e.g, [5℄) (rv + (rv)T ;v)� � KfkvkV � ;(bT s(b ); 1�trb ) � Ks�t kb kW :Then, if the visosity � is big enough, we haveA(v; ;v; ) � �f�tkvk2f + �Kfkrvk2f++�f (((v� �w�) � r)v;v)�f + �s 1�t3 k k2s + Ks�tkb kW � k (v; ) k2;where  = minf�f=�t; �Kf ; Ks=�tg. From lassial arguments (see, e.g., [7,6℄), the uid problem is well-posed, then 8q 2 Q� there exists ev 2 V � suh that�(q;r � ev) � �kqkf kevkV � ;for a suitable � > 0. By hoosing e = 0 we obtainB(q; ev; e ) � �kqkf k(ev; e )k8q 2 Q�, so that the uid-struture problem (2) is proved to be well-posed aswell.Let us now show that the bilinear form C satis�es an inf-sup ondition andtherefore that problem (3) admits a unique solution (see [7℄). More preisely, wewill show that 8� 2D�, there exists a ouple (ev; e ) 2 Z� suh thatC(�; ev; e )� � �2k�kDk(ev; e )k; (4)for a suitable �2 > 0, wherek�kD := k�kH�1=2(��) = supkwk1=2=1 R�� � �w dand kwk1=2 := kwkH1=2(��) = inf z2V�zj��=w kzkV :Given � 2 D�, let us hoose e 2 W suh that  e �t1=2 = 1 and suh thatR�� � � e �td � 12k�kD. We point out that this hoie is always possible thanksto the de�nition of k � kD. Moreover, we hoose ev 2 V � suh that kevk1=2 = 1=4.We obtainC(�; ev; e )� = �Z�� ��ev d+Z�� �� e �t d � �k�kDk kevk1=2+12k�kD = 14k�kD:8



Sine k(ev; e )k =p1 + 1=16, we obtainC(�; ev; e )� � 14r1617k�kDk(ev; e )k;and therefore ondition (4) is satis�ed with �2 = 1p17 .It is now easy to show that the solutions of problem (2) and (3) oinide andthat � = �T fnj�� (see [1℄). Let [�u; �p; ��℄ be the solution of problem (2). We havefor all v 2 V �; q 2 Q�; b 2W :A(�u; ��;v; )�+B(�p;v; ) = Z�� �T f n�v d�Z�� �T sn�  �t d+F �f (v)+ bFs�  �t� ;where the two terms at the FS interfae ome from the integration by partsof the uid and struture equations in strong form. Then, by notiing thatC( �T fn;v; )� + R�� �T f n � �v �  �t� d = 0, we obtainA(�u; ��;v; )�+B(�p;v; )+C( �T fn;v; )� = Z�� �T f n�v d�Z�� �T sn�  �t d++F �f (v) + bFs�  �t�� Z�� �T f n ��v �  �t� d:Finally, owing to (1)5, we obtainA(�u; ��;v; )� +B(�p;v; ) + C( �T fn;v; )� = F �f (v) + bFs�  �t� ;that is (3)1 is satis�ed with � = �T fnj�� . Moreover, from (1)4 we haveB(�; �u; ��)� = �Z�� � ���u� ���t� d = �Z�� � � ��n�tdand then also (3)2 is ful�lled. Therefore, the Lagrange multiplier � has thephysial meaning of normal stress at the FS interfae.On the other hand, if [�u; �p; ��; ��℄ is solution of (3), then by exploiting theproperty of the test funtions in Z�, it follows that [�u; �p; ��℄ is solution of (2).In the next three Setions we introdue three di�erent formulations of theFlow rate/FSI problem. For this reason, from now on we set �tF 6= ;.3 Partitioned methods for the Flow-rate/FSI prob-lemsAn immediate lass of methods for the Flow-rate/FSI problems stems by thestaggered or partitioned approahes for solving uid-struture interation (see9



e.g. [11℄, Chap. 9). When uid and struture are solved separately, at eah stepwe resort to a rigid uid problem in a "frozen" domain. Numerial methods forthe ow rate problems in rigid domains an be therefore applied at eah iterativestep.Let us onsider the time disretization of system (1), where a ow rate on-dition is presribed on the arti�ial setions ��j , namelyZ��j un+1 � n d = F n+1j ; j = 1; : : : ;m; (5)where F n+1j = Fj(tn+1) are given funtions of time. We point out the semi-impliit treatment of the interfae position.For the sake of generality, we refer to the lass of partitioned proeduresintrodued in [3℄ as Robin-Robin shemes. For the ease of notation let us dropthe index n+1 of the urrent time step. We have the followingAlgorithm 1Given two parameters �f 6= �s; the quantities at the previous timestep, �n, �n�1 and un, and the value of the struture displaement atthe urrent iteration �k, find the value of the solution at the nextiteration �k+1; uk+1 and pk+1 by solving the following steps1. Flow rate/fluid problem (Robin boundary ondition)8>>>><>>>>: �f uk+1�un�t + �f (u� �w�) � ruk+1 �r � T k+1f = ff in 
�f ;r � uk+1 = 0 in 
�f ;R��j �f un+1 � n d = F n+1j ; j = 1; : : : ;m�fuk+1 + T k+1f n = �f �k��n�t + T ksn on ��: (6)2. Struture problem (Robin boundary ondition)( �s b�k+1�2b�n+b�n�1�t2 �r � bT k+1s = bf s in 
s0;�s�t�k+1 + T k+1s n = �s�t�n + �suk+1 + T k+1f n on ��:For a desription of optimal hoies of parameters �f and �s, we refer the readerto [3℄. The previous algorithm de�nes a lass of shemes. For example, if �f !1 and �s = 0 we reover the well-known Dirihlet-Neumann (DN) sheme. In[3℄ it has been shown that among all the possible shemes of this lass, theRobin-Neumann (RN) (�s = 0) is the one with the best onvergene properties.For this reason, we onsider this sheme in the numerial simulations reportedin Set. 6.Algorithm 1 splits the solution of the uid and the struture problems inan iterative framework and ontains a ow rate problem at eah iteration. The10



latter an be solved by onsidering one of the strategies proposed for the solutionof a ow-rate problem in the rigid ase (see [14, 10, 18, 19, 12℄). Indeed, at eahtime step, the uid problem (6) is solved in a �xed domain 
�f .Remark 1 Due to the mass onservation, in the rigid ase it is not possibleto presribe an arbitrary ow rate on all the arti�ial setions �ti; i = 1; : : : ;m,if �tN = ;. In the ompliant ase this ompatibility ondition does not holdanymore. Nevertheless, as pointed out in [16, 2℄, if we use a partitioned proedurein whih the struture presribes a Dirihlet ondition at the interfae to the uid(as, e.g., in the Dirihlet-Neumann algorithm) an inompatibility might arisebetween the ow rates Fi; i = 1; : : : ;m;, the veloity on �tD and the veloity atthe interfae, and then the mass onservationZ�t ���t � n d = Z�tD u � n d + mXi=1 Fi(t) (7)is not in general satis�ed. However, when adopting Robin-Robin shemes, on�t we presribe a Robin ondition in plae of a Dirihlet one, so that massonservation (7) is still ful�lled, for all the hoies of Fi; i = 1; : : : ;m and of theDirihlet datum on �tD.We point out that the previous algorithm extends easily to the impliit treat-ment of the FS interfae, simply by onsidering it in a �xed-point loop.4 Augmented formulation of the Flow-rate/FSI prob-lemWe extend here to the FSI ase the augmented formulation proposed in [10℄ forthe ow rate problem in the rigid ase. In Set. 4.1 we introdue the ontinuousformulation and in Set. 4.2 we introdue the related algebrai problem. We alsodetail the GMRes+Shur omplement (GSC) sheme for its numerial solution.4.1 The augmented variational formualationLet us onsider the ow rate onditions (5) as onstraints to be fored to thevariational formulation of the FSI problem (2), by the introdution of a Lagrangemultiplier �j, one for eah ow-rate ondition. Here we fore the ontinuity ofthe veloity in an essential way. Then the augmented formulation for the ow-rate/FSI problem reads:Given fn+1f 2 L2(
�f ) and bfn+1s 2 L2(
0s), �nd (un+1; b�n+1) 2 Z�; pn+1 2 Q�
11



and �n+1 2 R suh that,8><>: A(un+1;�n+1;v; )� +B(pn+1;v; )� +D(�n+1;v; )� = F �f (v) + bFs �  �t�B(q;un+1;�n+1)� = 0D(�;un+1;�n+1)� =Pmi=1 �iF n+1i (8)for all (v; ) 2 Z�; q 2 Q� and � 2 Rm and whereD(�;v; )� := mXj=1 �j Z��j v � n d:Remark 2 As proven in [18℄, the bilinear form D(�; �; �) satis�es an inf-supondition. Therefore, the augmented/FSI problem well-posedness is inherited bywell-posedness results of the non augmented FSI problem.4.2 The algebrai problem and the GSC algorithmWe disretize in time with the shemes illustrated in Set. 2 and in spae withLagrangian �nite elements. To this aim, we introdue a triangulation of uidand struture domains and we assume that the meshes are onformal at theinterfae ��. At eah time step tn+1, we obtain the following linear system" A� (e��)Te�� 0 #� Xn+1�n+1 � = � bn+1F n+1; � : (9)where
A� = 266664 C�ff G�f C�f� 0 0D�f 0 D�� 0 00 0 M�� �M�=�t 0C��f G�� C��� S�� S�s0 0 0 Ss� Sss

377775 ; Xn+1 = 266664 Un+1fP n+1Un+1�Dn+1�Dn+1s
377775 ;

bn+1 = 266664 bn+1f0�M�=�tDn�bn+1�bn+1s
377775 ; e�n+1 = � �n+1 0 � :We have set ��ij = R��i lj � n d, where the li's are the Lagrange basis funtionsrelated to the uid veloity. M� is the mass matrix at the interfae �� andthe size of the zero-matries is understood. Moreover Un+1f is the vetor ofnodal values of the uid veloity at the interior nodes, Un+1� that at the FSinterfae, Pn+1 is the vetor of (interior and interfae) nodal values for the12



pressure. Dn+1s and Dn+1� ontain the struture degrees of freedom related tointerior and interfae nodes, respetively. Finally, �n+1 is the vetor of Lagrangemultipliers. The right hand side bn+1 aounts for external fores, boundarydata and other terms related to the time disretization sheme, whilst F n+1 isthe vetor whose omponent are the data F n+1j . The �rst two rows of (9) arethe fully disrete versions of the ow-rate/momentum and mass onservationequations for the uid. The third equation states the ontinuity of veloities onthe interfae and is the algebrai ounterpart of (1)4. The fourth row enforesontinuity of the normal stresses at the interfae in weak form and the �fthrow is the struture problem for the internal nodes. Finally, the last row is thealgebrai ounterpart of the ow-rate onditions (5).Following [10, 18℄, we an formally eliminate the unknown Xn+1 from the�rst equation of system (9). Dropping for the sake of simpliity the index n+1,we obtain an equation for the unknown � solely, namelye�(A�)�1e�T� = e�(A�)�1b� F ; (10)whih is a linear system of dimension m. We point out that with (A�)�1 weindiate formally the solution of a FSI problem with Neumann onditions at thearti�ial setions.Sine the bilinear form D(�; �; �) satis�es an inf-sup ondition, it follows thatker(e�)T = ;. Then, if the algebrai-FSI problem admits a unique solution (thatis if A� is invertible), e�(A�)�1e�T is formally invertible and a unique solution� does exist. Therefore, we an formally apply an iterative methods, suh asGMRes, to system (10) (as done in [18℄). In partiular, we haveAlgorithm 2 : GMRes + Shur ComplementFor eah n solve:�0 = (�01; : : : ; �0m) is givena) A�X1 = b� (e��)T�0r0 = e��X1 � Fv1 = r0kr0kfor j = 1; : : : ;m�j = (e��)Tvjb) A�Y j = �jwj = e��Y jfor l = 1; : : : ; jhlj = (wj;vl)wj = wj � hljvl 13



endhj+1;j = kwjkif hj+1;j = 0n = j go to (+)else vj+1 = wjhj+1;jendend(+) z = minkkr0ke1 �Hnzk; Hm 2 Rm+1 � Rm : H = [hij ℄� = �0 + V z; V = [v1 : : : vm℄X =X1 � Y z; Y = [y1 : : : ym℄ �This algorithm is quite expensive, sine at eah time step it requires to solvem+1 FSI problems, indiated at points a) and b) in the algorithm. However, thealgorithm allows to ompute the unknownX at the last step without solving anyadditional linear system. Obviously, eah of FSI problems an be solved withany of the strategies proposed in the literature (partitioned, monolithial, et.),sine all of them are equipped with standard Neumann boundary onditions ateah of the arti�ial setions. Despite its ost, this algorithm is of pratial usewhen one have at disposal a blak-box FSI solver, without the possibility totreating the uid and the struture subproblems separately.We point out that the previous algorithm extends easily to the impliit ase,simply by onsidering it in the �xed-point loop for the impliit treatement ofthe interfae position.5 Control theory-based approahIn this setion we extend to the ompliant ow rate problem the strategy in-trodued for the rigid ase in [12℄. In partiular, we seek for onstant in spaeNeumann data at the arti�ial setions whih enfore in some sense the owrate onditions. We limit our attention only to the semi-impliit treatment ofthe interfae position. Indeed, the impliit treatment would require to onsideralso the shape derivatives, that is the derivatives of the uid domain (whih isunknown in this ase) with respet to the other unknowns of the problem. Thisase will be onsidered in a forthoming study.5.1 Reformulation of the problemLet us de�ne the state problem by onsidering problem (3) equipped with Neu-mann boundary onditions at the arti�ial setions, given, at eah tn+1, byT f n = �kn+1j n; on ��j ; j = 1; : : : ;m; (11)14



where the k0js are the ontrol variables and we have set kn+1j = kj(tn+1). There-fore, the weak formulation of the state problem with a weak presription of theinterfae veloities (see Setion 2.3) reads8>>><>>>: A(un+1;�n+1;v; )� +B(pn+1;v; )� + C(�n+1;v; )�++Pmj=1 kn+1j R��j v � n d = F �f (v) + bFs �  �t�B(q;un+1;�n+1)� = 0C(�;un+1;�n+1)� = R�� � � �n�td (12)for all v 2 V �; q 2 Q�; b 2W and � 2D�.We introdue at eah time step tl the following funtional (see [12℄)JF (z) = 12 mXj=1 �Z��j z � n d � F lj�2 ; (13)whih is learly minimal (and equal to zero) if onditions (5) are satis�ed andz = ul.The Lagrangian funtional related to (13) onstrained with the state problem(12), given un; �n and �n�1, readsL(U ; P;H ;B;�U ; �P ;�H ; �B ;K) = JF (U)+A(U ;H ;�U ;�H)�+B(P ;�U ;�H)�++C(B;�U ;�H)� +B(�p;U ;H)� + C(�B;U ;H)� + mXj=1 Z��j Kj�u � n d+�Z�� �B � �n�td � F �f (�U )� bFs b�H�t! : (14)Here, the quantities �U ; �P ; �H and �B are the adjoint variables assoiatedto the state variables U ; P; H and B, respetively. From now on, for thesake of simpliity we drop the temporal index n+1. In order to �nd the or-responding Euler equations, we impose that in orrespondane of the solution[u; p;�;�;�u; �p;��;��;k℄ the Gateaux di�erentials of L evaluated for any testfuntion vanish. Let us introdue the following notation. Given N Hilbertspaes Z1; : : : ; ZN , let Z = Z1 � Z2 � : : : � ZN and M : Z ! R, be suh that(y1; : : : ; yN ) 2 Z !M(y1; : : : ; yN ) 2 R, and let < �; � > be the duality pairingbetween Z 0 and Z. We indiate with< dMyj [z1; : : : ; zN ℄; g >== lim"!0�M(y1; : : : ; yj + "g; : : : ; yN )�M(y1; : : : ; yj ; : : : ; yN )" ����y=zthe Gateaux di�erential ofM with respet of yj, omputed at z = (z1; : : : ; zN ) 2Z and ating along the diretion g 2 Zj . For the sake of notation, we will set< dMzj ; g >=< dMyj [z1; : : : ; zN ℄; g >.15



Then, the solution whih minimizes funtional J(�) under the onstraint isa stationary point of the Lagrangian funtional and therefore an be omputedby imposing that the gradient of L vanishes. In partiular, by setting to zerothe Gateaux derivatives of the Lagrangian funtional with respet to the statevariables we obtain the adjoint problem, namely8<: < dLu;v > + < dL�;  �t >= 0< dLp; q >= 0< dL�;� >= 0;for all v 2 V �; q 2 Q�; b 2W and � 2D�. Optimality onditions are obtainedby vanishing derivatives with respet to the ontrol variables< dLkj ; � >= 0; j = 1; : : : ;m;for all � 2 R. These two problems together with the state problem8<: < dL�u ;v > + < dL�� ;  �t >= 0< dL�p ; q >= 0< dL�� ;� >= 0;for all v 2 V �; q 2 Q�; b 2W and � 2D�, yield the following oupled system.Given F 2 Rm , ff 2 L2(
�f ) and f s 2 L2(
0s) �nd k 2 Rm ; u 2 V �; p 2Q�;� 2W ;� 2D�;�u 2 V �; �p 2 Q�; �� 2W and �� 2D�, suh thatState problem8>>><>>>: A(u;�;v; )� +B(p;v; )� + C(�;v; )�++Pmj=1 kj R��j v � n d = F �f (v) + bFs �  �t�B(q;u;�)� = 0C(�;u;�)� = R�� � � �n�td (15a)Adjoint problem8>>><>>>: A(v; ;�u;��)� +B(�p;v; )� + C(��;v; )�++Pmj=1 �R��j u � n d � Fj� R��j v � n d = 0B(q;�u;��)� = 0C(�;�u;��)� = 0 (15b)Optimality onditionsZ��j ��u � n d = 0; j = 1; : : : ;m (15)for all v 2 V �; q 2 Q�;  2W ; � 2D� and � 2 R.We point out that system (15) ouples two linearized uid-struture intera-tion problems and m salar equations. For its numerial solution, we an resortto iterative tehniques. As already done for the rigid ase (see [12℄), it is worth16



noting that, if the iterative proess onverges, at the limit, i.e. when JF = 0,the ful�llment of the adjoint problem and of the optimality onditions impliesthat the adjoint solution is equal to zero. Indeed, the adjoint problem is linearwith the only foring term given by the Neumann boundary onditions at thearti�ial setions ��j whih, learly, are zero when JF = 0. The adjoint variablesare however needed to drive iterative shemes to the optimal solution.Weak imposition of the ontinuity of the veloity at the interfae has beenpreferred sine the interfae ondition for the adjoint problem in this way areeasily derived. In partiular, it is given by���t = �u on ��:The next result states the well-posedness of system (15).Proposition 5.1 If problem (2) admits a unique solution, then also system (15)admits a unique solution.Proof . The proof follows the same guidelines of Proposition 2.1 in [12℄. Forany h = [h1; : : : ; hm℄, let PS1;S2(h) be the veloity u solution of problem8><>: A(u;�;v; )� +B(p;v; )� + C(�;v; )� = �Pmj=1 hj R��j v � n d + S1(v; )B(q;u;�)� = 0C(�;u;�)� = S2(�); (16)8v 2 V �; q 2 Q�;  2W and � 2 D�, where S1(v; ) and S2(�) are a givenform and funtional, respetively. Moreover, let Av be the vetor whose j � thomponent is R�j v � n d, and BS1;S2 := APS1;S2 . Then, by settingG1(v; ) := F �f (v) + bFs � b �t�G2(�) := R�� � � �n�td;we an write system (15) in term of the only unknown k, asB0;0[BG1;G2(k)� F ℄ = 0: (17)Moreover, by setting [ui; pi;�i;�i℄ as the solution of (16) with S1 = S2 = 0and h = ej, being ej the j � th unit vetor, from (16) we have, by hoosing[uj ; pj;�j;�j℄ as test funtions and by setting h = ei; S1 = 0 and S2 = 0,A(ui;�i;uj;�j)� = �Z��i uj � n d:This implies that matrix B0;0 has omponent[B0;0℄ij = �A(ui;�i;uj ;�j)�:17



Thanks to the oerivity of A, it follows that B0;0 is negative de�nite and then(17) beomes BG1;G2(k) = F :Thanks to the linearity of BG1;G2 , system (17) e�etively redues toB0;0(k) = F � BG1;G2(0)and therefore the solution k exists unique. The orresponding [u; p;�;�℄ and[�u; �p;��; ��℄ are then de�ned uniquely by the well posedness of problem (16)As pointed out in Proposition 1, the hypothesis of Proposition 2 is satis�edfor a linear elasti struture oupled with a visous uid featuring a large enoughvisosity �.5.2 Algorithms for the numerial solutionIn this setion we detail some algorithms for the numerial solution of the ou-pled system (15). Resorting to iterative methods has the advantage of splittingthe global problem into simpler subproblems and of possibly using standard FSIsolvers. The steepest desent method applied for the loalization of a stationarypoint of the Lagrange funtional (14) an be equivalently thought as a Rihard-son method applied to equations < dLkj ; � >= 0; j = 1; : : : ;m. In this way wesolve separately the two FSI problems, namely the state and the adjoint ones,and we hek the optimality onditions until onvergene.Let us introdue two inf-sup ompatible �nite dimensional subspaes V �h �V � and Q�h � Q� and the �nite dimensional subspae W h � W . Moreover,given a quantity f , we indiate again with f its �nite element approximation.In what follows, we detail three alternative algorithms.\Exat" algorithmThe following algorithm solves the spae disretization of system (15) exatlyup to the error assoiated with the onvergene test.Algorithm 3- Temporal loop- Internal loop: given k1j ; j = 1; : : : ;m; and " > 0; set l = 1 anddo until onvergene- Solve the numerial approximation of the state problem(15a), obtaining the solution ul; pl;- Solve the numerial approximation of the adjoint FSI problem(15b), obtaining the solution �lu; �lp;18



- Convergene test: if j R��j �lu�n djj R��j �1u�n dj < "; 8j = 1; : : : ;mthen break;else kl+1j = klj + � l R��j �lu � n d; 8j = 1; : : : ;m; and setl = l + 1;end;end temporal loop.Parameter � l an be hosen following di�erent strategies. The followingexpression � l = � lN = �JF (ul)kLlkk22 ; (18)stems from the appliation of the lassial Newton method for the equationJF (k) := JF (u(k)) = 0. A further improvement an be obtained by observingthat JF is a quadrati funtional and the assoiate solution is supposed to havemultipliity 2, so that we ould selet � l = 2� lN (see [12℄).\Inexat" algorithmsSine we are not interested to the whole adjoint solution, but only in its owrates through the setions ��i ; i = 1; : : : ;m, we an onsider an inexat solutionof this problem, leading to a onsiderable saving of the omputational ost. Morepreisely, we solve, out of the temporal loop, m FSI problems in the referenedomain 
0f , with unit Neumann onditions at �0j ; j = 1; : : : ;m, that is8><>: A(v; ; e�u;j; e��;j)0 +B(e�p;j;v; )0 + C(e��;j;v; )0 = � R�0j v � n dB(q; e�u;j; e��;j)0 = 0C(�; e�u;j; e��;j)0 = 0; (19)8v 2 V 0h; b 2W h and q 2 Q0h. Then, at eah internal iteration of Algorithm 3we ombine linearly these solutions, obtaining�u = mXj=1 Z��j u � n d � Fj!�u;j; (20)where the �u;j's are obtained from e�u;j through the ALE map. This introduesan approximation error in the onstrution of the adjoint problem, sine we areombining solutions obtained in the �xed referene frame.In what follows, we detail two possible inexat algorithms. If we hoose amonolithi strategy for the treatment of interfae onditions, the only quantitiesupdated in the inner loop in Algorithms 3 are the ontrol variables kj ; j =1; : : : ;m. Otherwise, if we use a partitioned proedure we need to subiterate19



also on the interfae position between the uid and the struture subproblems.In this ase, we an onsider either \nested iterations" or just \one loop". Inpartiular, we detail for the sake of exposition the ase in whih the Dirihlet-Neumann sheme is used for the treatment of the interfae onditions. However,extension to general Robin-Robin shems is straightforward.Algorithm 4 : Inexat Nested Loops- Solve for eah i = 1; : : : ;m the numerial approximations of theFSI problems (19), obtaining, in partiular, the veloities e�u;j;- Temporal loop;- ``Control variables'' loop (index l): given k1j ; j = 1; : : : ;mand "2 > 0; set l = 1 and do until onvergene- ``Interfae ondition'' loop (index p): given �lp and "1 >0; solve in sequene until onvergene� A Fluid subproblem with the following boundary onditionsulp+1 = �lp��n�t on ��T lf;p+1n = kljn on ��j ; j = 1; : : : ;m;� A Struture subproblem with the following boundary onditionT ls;p+1n = T lf;p+1n on ��;- Convergene test: ifkulp+1 � ulpkL2(��) < "1; (21)then break;- end ``interfae onditions'' loop;- Compute the approximate adjoint solution with (20);- Convergene test: ifj R��j �lu;h � n djj R��j �1u;h � n dj < "2; 8j = 1; : : : ;m (22)then break;else kl+1j;h = klj;h + � l Z��j �lu;h � n d; 8j = 1; : : : ;m; (23)and set l = l + 1; 20



- end ``ontrol variables'' loop;- end temporal loop.Algorithm 5 : Inexat One Loop- Solve for eah i = 1; : : : ;m the numerial approximations of theFSI problems (19), obtaining, in partiular, the veloities e�u;j;- Temporal loop;- ``Control variables'' and ``Interfae ondition'' loop (indexl): given k1j ; j = 1; : : : ;m and "1 > 0 and "2 > 0, set l = 1 andsolve until onvergene� A Fluid subproblem with the following boundary onditionsul = �l�1��n�t on ��T lfn = kljn on ��j ; j = 1; : : : ;m;� A Struture subproblem with the following boundary onditionT lsn = T lf n on ��;- Compute the approximate adjoint solution with (20);- Convergene test: ifkul�ul�1kL2(��) < "1 and j R��j �lu;h � n djj R��j �1u;h � n dj < "2; 8j = 1; : : : ;mthen break;else kl+1j;h = klj;h + � l Z��j �lu;h � n d; 8j = 1; : : : ;m; and set l =l + 1;- end ``ontrol variables'' and ``interfae onditions'' loop;- end temporal loop.Obviously, for Alg. 5 the onvergene is not guaranteed, sine at eah subit-eration the interfae onditions are not satis�ed exatly. However, the numerialresults presented in Set. 6, show that at least for the ases treated in this work,onvergene is always ahieved.In Fig. 3 and 4 shemes of Algorithms 4 and 5 are reported.21



Remark 3 In all the three strategies proposed in Set. 3, 4 and 5, in fat theow rate at an arti�ial setion � is presribed by foring an appropriate un-known onstant normal stress on �. As observed in [13, 17, 12℄, when the trans-pose formulation of the di�usion term is onsidered, namely �(ru + (ru)T ),the solution is a�eted by a spurious tangential veloity u�sp at �. In the rigidase, this drawbak an be overome by imposing diretly that the tangential ve-loity u� = u�sp is equal to zero (see [17℄) or by resorting to the minimization ofa suitable funtional (see [12℄). However, in the ompliant ase the tangentialveloity on � is given by two ontributions, namely u� = u�sp + u��, where thelatter term is due to the displaement of the FS interfae. Numerial strategiesfor the separation of the two ontribution in order to skip the spurious one areunder investigation. However, numerial evidenes show that, for the problemsonsidered in this work, the ontribution of u�sp is only of about 1% of the to-tal tangential veloity u� , so it is supposed to play a minor role in numerialsimulations.6 Numerial resultsIn this setion we present some numerial results with the aim of testing thealgorithms proposed in the previous setions. In all the simulations, we haveonsidered a semi-impliit treatment of the interfae position.6.1 Comparison among the various algorithmsIn the �rst set of simulations we test the performanes of Algorithms 1, 2, 3, 4 and5 in terms of number of iterations and CPU times. The numerial simulations areperformed in a retangular domain both for the uid and for the two strutures,whose size is 6�1 m and 6�0:1 m, respetively (see Fig. 5). For the struture,we onsider the following equation of linear elastiity�s�tt� � r � (r� + (r�)t)� �r � ((r � �)I) + �� = 0;where I is the identity operator,  = E=(1 + �); � = �E=((1 + �)(1 � 2�))and � = E=(1 � �2)R2, with E the Young modulus, � the Poisson ratio andR the radius of the uid domain. The reation term stands for the transversalmembrane e�ets. We presribe the ow rate F = os(2�t) at the inlet of theuid domain.We use a 2D Finite Element Code written in Matlab at MOX - Dipartimentodi Matematia - Politenio di Milano and at CMCS - EPFL - Lausanne. Weonsider P1�bubble=P1 elements for the uid and P1 element for the struture anda spae disretization step h = 0:02 m. Moreover, we set � = 0:035 m2=s and�f = 1 g=m2 and, unless otherwise spei�ed, we onsider the following referenevalues: �t = 10�2s; �s = 1:1 g=m2;  = 1:15 � 106 dyne; � = 1:7 � 106 dyne; � =6:5 � 105 dyne=m2 and the thikness of the struture Hs = 0:1 m.22



For all the algorithms a Robin-Neumann partitioned proedure is used for thesolution of the FSI problems, with a stopping riterion based on the normalizedresidual (see [3℄) and tolerane equal to 10�4. For Algorithms 3 and 4, thetollerane for the stopping riterion in the ontrol loop is set equal again to10�4. For Algorithm 5 we have only one tollerane, set again equal to 10�4.In Fig. 6 the uid axial veloity at the inlet of the domain at two di�erentinstants obtained with Algorithms 1, 2 and 3 is shown. The solution obtainedwith the inexat Algorithms 4 and 5 are not reported sine they are in exellentagreement with the solution obtained with Alg. 3.In Tab. 1, the left value in eah box is the mean number of total iterationsper time step. In partiular, for Algorithm 2 we reported the sum of the meannumber of Robin-Neumann iterations needed to solve the �rst and the seondFSI problem in the GMRes loop. For Algorithm 1 eah of the RN iterations is aow rate problem whih has been solved with the GSC (rigid) sheme, requiringthe solution of two uid problems. For what onerns Algorithms 3 and 4, themean number of iterations per time step of the ontrol loop multiplied for themean number of iterations of the Robin-Neumann sheme per ontrol loop'siteration, is reported. For Algorithm 5 the mean number of iterations per timestep refers to the unique loop. On the right of eah blok the CPU time toperform 10 time steps, normalized with the best performane, is shown.Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5�; �t; �s 9:1 � 1:00 11:4 � 1:24 3� 7:6 � 2:46 3� 5:9 � 1:96 11:6 � 1:3210�; �t; �s 4:7 � 1:00 X 3� 4:0 � 2:49 3� 3 � 1:91 5:2 � 1:16�; �t=10; �s 21:9 � 1:04 28:1 � 1:34 3� 18:2 � 2:60 3� 13:5 � 1:99 19:4 � 1:00�; �t; 10�s 8:4 � 1:00 10:8 � 1:26 3� 7:4 � 2:58 3� 5:7 � 2:05 11:4 � 1:39Table 1: Mean number of iterations per time step (left) and relative CPU timein seonds to perform 10 time steps (right). X means that onvergene is notahieved.Let us disuss the results in Tab. 1 starting from the three algorithms forthe solution of system (15), namely Alg. 3, 4 and Alg. 5 . First of all, wepoint out that both the inexat algorithms 4 and 5 onverge in all the numerialsimulations. A onvergene analysis of suh shemes is still missing. However,these experimental results are very promising. Among these three shems, Alg.5 seems to be the most performing. Indeed, the (mean) redution fator of theCPU times is 2:08 with respet to Alg. 3 and 1:61 with respet to Alg. 4.Therefore, the use of just one loop seems to be the most promising and thenonly Algorithm 5 is onsidered in the sequel.Let us now fous on Alg. 1, 2 and 5. We observe that Alg. 1 is the mostperforming in all ases but one, that is for a small value of the time disretization,where Alg. 5 is faster. Alg. 2 works quite well for big values of �t and � anddoes not onverge for a value of � equal to 10 times the referene value. All the23



algorithms seems to be insensitive to an inrement of the struture density. Thisis due to the hoie of the Robin-Neumann sheme as partitioned proedures,whih has been shown to be robust with respet to the added mass e�et (see[3℄).6.2 An appliation to a 2D bifuration geometryIn this setion we apply Alg. 1 and 5 to a 2D geometry whih is an idealizationof a realisti domain, namely the human arotid. We use the same parametersintrodued in the previous subsetion, apart for the values � = 1:3�106dyne=m2and �t = 10�3s. We impose the following ow-rate impulseF (t) = � Fin t � 0:005 s0 t > 0:005 sand we use the Robin-Neumann sheme as partitioned proedure. In Fig. 7 thepressure in the deformed uid domain and the exploded position of the strutureobtained with Alg. 5 are shown at 4 di�erent instants. The ow-rate impulse isFin = 50 m2=s. The solutions obtained with Alg. 1 are in exellent agreementand for this reason their visualization are not reported. In Tab. 2 the mean num-ber of iterations (left) and the CPU times normalized with the best performane(right) are reported for 2 values of the ow-rate impulse, namely Fin = 10 m2=sand Fin = 50 m2=s. We point out that the omputational e�ort of the twoAlg. 5 Alg. 1Fin = 10 m2 14:2 � 1:00 20:25 � 1:37Fin = 50 m2 14:3 � 1:00 19:9 � 1:39Table 2: Mean number of iterations per time step (left) and relative CPU timein seonds (right) to perform 16 time steps for the arotid simulation.algorithms seems to be independent of the Reynolds number. However, Alg. 5performs better than Alg. 1, both in term of number of subiterations needed toreah onvergene and of CPU time.7 ConlusionsIn this paper we fous on the problem arising when the uid-struture intera-tion (FSI) problem is solved in a trunated omputational domain, in partiularwhen no suÆient data are available to be presribed at the arti�ial setions.Among the varoius \defetive" data, we onsider here the ow rate onditionsfor the uid. This paper has to be intended as a �rst step in the diretion ofsolving a FSI problem with general uid and struture defetive data. We pro-pose three di�erent strategies for the numerial solution of the Flow rate/FSI24



problem. Among the various algorithms proposed for the numerial solution,the numerial results have showed that Alg. 5 seems to be the most suited forrealisti simulations. Moreover, its versatility is very attrative when other de-fetive data (suh as the ones related to the struture) are onsidered. Indeed,the inlusion of these defetive informations through the enrihment of the fun-tional to be minimized should not inrease the omputational ost if just \oneloop" implementation is used, ontrary to the other strategies.AknowledgementsL. Formaggia and C. Vergara wish to aknowledge the support of the ItalianMURST, through a projet COFIN07. C. Vergara wishes to thank all the sta� ofthe Department of Mathematis & Compuer Siene at Emory University, wherepart of this work has been arried out, for the nie and fruitful environment.
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Figure 6: Comparison of axial veloities obtained with Algorithms 1, 2 and 3. -t = 0:10 s (left), t = 0:30 s (right) .
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Referenes[1℄ I. Babuŝka. The �nite element method with Lagrange multipliers. Nu-merishe Mathematik, 20:179{192, 1973.[2℄ S. Badia, F. Nobile, and C. Vergara. Robin-Robin preonditioned Krylovmethods for uid-struture interation problems. Submitted.[3℄ S. Badia, F. Nobile, and C. Vergara. Fluid-struture partitioned proeduresbased on Robin transmission onditions. Journal of Computational Physis,227:7027{7051, 2008.[4℄ S. Badia, A. Quaini, and A. Quarteroni. Splitting methods based on alge-brai fatorization for uid-struture interation. SIAM Journal on Sien-ti� Computing, 30(4):1778{1805, 2008.[5℄ M. Bernadou. M�ethodes d' �El�ements Finis pour les Probl�emes de CoquesMines. Masson, 1994.[6℄ D. Braess. Finite Element. Cambridge University Press, 2002.[7℄ F. Brezzi. On the existene, uniqueness and approximation of saddle pointproblems arising from Lagrange multipliers. RAIRO Anal. Numer., 8:129{151, 1974.[8℄ J. Donea. An arbitrary Lagrangian-Eulerian �nite element method for tran-sient dynami uid-struture interation. Computer Methods in AppliedMehanis and Engineering, 33:689{723, 1982.[9℄ M.A. Fern�andez, J.F. Gerbeau, and C. Grandmont. A projetion semi-impliit sheme for the oupling of an elasti struture with an inompress-ible uid. International Journal for Numerial Methods in Engineering,69(4):794{821, 2007.[10℄ L. Formaggia, J.-F. Gerbeau, F. Nobile, and A. Quarteroni. Numerialtreatment of defetive boundary onditions for the Navier-Stokes equation.SIAM Journal on Numerial Analysis, 40(1):376{401, 2002.[11℄ L. Formaggia, A. Quarteroni, and A. Veneziani (Eds.). CardiovasularMathematis - Modeling and simulation of the irulatory system. Springer,2009.[12℄ L. Formaggia, A. Veneziani, and C. Vergara. A new approah to numer-ial solution of defetive boundary value problems in inompressible uiddynamis. SIAM Journal on Numerial Analysis, 46(6):2769{2794, 2008.
29



[13℄ J.G. Heywood and R. Rannaher. Finite element approximation of thenonstationary Navier-Stokes problem. I: Regularity of solutions and seond-order error estimates for spatial disretization. SIAM Journal on NumerialAnalysis, 19:275{311, 1982.[14℄ J.G. Heywood, R. Rannaher, and S. Turek. Arti�ial boundaries andux and pressure onditions for the inompressible Navier-Stokes equations.International Journal for Numerial Methods in Fluids, 22:325{352, 1996.[15℄ T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann. Lagrangian-Eulerian�nite element formulation for inompressible visous ows. Computer Meth-ods in Applied Mehanis and Engineering, 29(3):329{349, 1981.[16℄ F. Nobile and C. Vergara. An e�etive uid-struture interation formula-tion for vasular dynamis by generalized Robin onditions. SIAM Journalon Sienti� Computing, 30(2):731{763, 2008.[17℄ A. Veneziani. Mathematial and numerial modeling of blood ow problems.PhD thesis, University of Milano, 1998.[18℄ A. Veneziani and C. Vergara. Flow rate defetive boundary onditions inhaemodinamis simulations. International Journal for Numerial Methodsin Fluids, 47:803{816, 2005.[19℄ A. Veneziani and C. Vergara. An approximate method for solving inom-pressible Navier-Stokes problems with ow rate onditions. Computer Meth-ods in Applied Mehanis and Engineering, 196(9-12):1685{1700, 2007.

30



MOX Technical Reports, last issues
Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

06/2009 L. Formaggia, A. Veneziani, C. Vergara:
Numerical solution of flow rate boundary for incompressible fluid in
deformable domains

05/2009 F. Ieva, A.M. Paganoni:
A case study on treatment times in patients with ST-Segment Elevation
Myocardial Infarction

04/2009 C. Canuto, P. Gervasio, A. Quarteroni:
Finite-Element Preconditioning of G-NI Spectral Methods

03/2009 M. D’Elia, L. Dedé, A. Quarteroni:
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