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Abstract

This paper presents a novel combination of the Fictitious Domain (FD) approach with the
Hierarchical Model (HiMod) reduction for the simulation of the hemodynamics in an artery with
a drug-eluting stent. Classical finite element methods are computationally expensive due to the
geometrical complexity of stented arteries. The FD approach merges stent and lumen domains
into a single computational domain, weakly imposing boundary conditions on the stent-lumen
interface via Lagrange multipliers. However, the FD technique can lead to inaccurate solutions
when dealing with non-conforming grids. In contrast, a HiMod formulation offers flexibility in
tuning accuracy and computational cost but struggles with non-smooth domains like stented
arteries. To address these limitations, we combine the FD and HiMod approaches, using a
reduced stent-lumen interface condition to simplify implementation while maintaining accuracy.
This combined approach is tested on an advection-diffusion equation to model drug elution into
the bloodstream. For proof-of-concept, we use a simplified axisymmetric geometry comprising
an idealized artery segment and a ring-shaped stent. Finally, we extend our analysis to include
more realistic blood flow conditions and conduct a sensitivity analysis of drug concentration with
respect to ring spacing. The numerical results demonstrate the effectiveness of the proposed
approach.

Keywords: hemodynamics, drug-eluting stents, fictitious domain, hierarchical model reduction.

1 Introduction

Vascular stents are biomedical devices designed to keep stenosed blood vessels open, thus playing a
critical role in the treatment of cardiovascular diseases. These devices interact with the blood flow
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in a complex way. In particular, vascular stents may alter the blood dynamics near the vascular
wall, which can affect the shear stress [49] as well as the distribution of blood cells and nutrients [35].
Furthermore, stent implantation can lead to serious side effects, such as in-stent restenosis [15]. Thus,
an accurate in-silico prediction of such procedure outcomes, prior to stent implantation, is crucial to
help interventional cardiologists make informed decisions. More specifically, an integrated approach,
which includes mechanical analysis of stent expansion, interaction with the artery, characterization
of blood flow, disturbances in fluid dynamics, and subsequent tissue remodeling [30], is essential to
predict the efficacy of endovascular therapies.

In recent decades, numerical models have become invaluable tools for studying stent implantation
[40]. The early models, limited by computational resources, dealt with simplified scenarios and
idealized arteries [54]. Today, advances in computational capabilities have allowed these models
to address complex clinical scenarios, including multiple stents in bifurcated or curved arteries [8].
Recent literature has witnessed the introduction of image-based methods for reconstructing realistic
coronary vessel geometries, enhancing the precision of numerical models [52]. Furthermore, significant
advancements in the structural and fluid dynamics modeling of arteries have been achieved [41, 53],
for instance to better understand how therapeutic chemicals interact with the vascular wall through
the bloodstream when dealing with drug-eluting stent (DES) devices [37].
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(a) Computational model overview, including the reduced approach (in blue).

(b) Lumen with Xience V stent (in red) and targeted mesh refinement.

(c) Lumen with ring stent (in red) and targeted mesh refinement.

Figure 1: Scheme illustrating the main steps involved in modeling arteries with DES and restenosis,
including the role of the proposed fictitious domain (FD) and model reduction (HiMod) approach.
For the proof-of-concept, we transition from a complex stent, such as the Xience V, to a simplified
one-ring stent.

However, stented artery modeling still poses significant challenges. First of all, modeling multi-
physics processes, such as in-stent restenosis, includes complex interaction among blood flow, stent
and artery wall. A sketch of the main phenomena involved in arteries with DES and restenosis [50] is
shown in Figure 1a (leftmost 3 columns). It is essential to include various cell types, such as smooth
muscle and endothelial cells, and growth factors (e.g., PDGF and TGF) [36] to model neointima
growth. DES release drug both by direct contact with the arterial wall and into the bloodstream,
where it is subsequently absorbed by the artery. Drug absorption, along with cell dynamics and
hemodynamic disturbances, influences predictions of restenosis-related arterial growth. Addition-
ally, restenosis further disrupts hemodynamics, necessitating updates to the stented lumen. From
a modeling viewpoint, the Navier-Stokes equations are widely used to manage the hemodynamics.
For cell dynamics, two main approaches are recurrent, i.e., agent-based models, which are limited to
2D scenarios [11], and advection-diffusion-reaction equations [24], which are used in a 3D continuum
setting and are also suitable for modeling drug release. Advection-diffusion-reaction equations pro-
vide an ideal framework for describing the transport and interaction of chemicals, offering a versatile
approach applicable to various biomedical contexts.
As a second challenge in modeling arteries with DES, in addition to stent deployment, we highlight
the need to preserve a detailed geometric representation while reducing model complexity. Models
have been developed to investigate drug release from stents [37], utilizing approaches ranging from
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one-dimensional [38, 47] and two-dimensional [28, 2], to complex three-dimensional representations
[12, 27]. A possibility is to use a targeted mesh refinement (see Figure 1a, first step in right-most
column), as higher accuracy is required near the stent struts (see, e.g., Figure 1b). These regions are
identified a priori, particularly when addressing different levels of stent indentation [10]. However,
targeted mesh refinement can reduce computational costs only moderately [49].
As an alternative, dimensional model reduction has been used to provide detailed geometrical and
physical descriptions of stents, facilitating cost-effective calculations [55]. Recent approaches using
mixed-dimensional and fluid-beam interaction models address the detailed geometric issue by preserv-
ing the intricate stent design while simplifying the complexity of surrounding flow and drug transport
models [55, 23]. These methods build upon fictitious domain (FD) methods, which have been exten-
sively used to address problems involving complex geometries [4, 31, 19]. A comprehensive review of
FD approaches in combination with the finite element method (FEM) and its enhancements can be
found in a recent work by Regazzoni [51]. In the FD approach, to simplify the geometrical complex-
ity, two intersecting domains are merged into one, while preserving the interface between the parts.
Various techniques are adopted to impose boundary conditions on this interface. Among the others,
Lagrange multipliers (LM) have been successfully applied to enforce Dirichlet boundary conditions,
proving to be effective in multiple applications [6]. In the specific case of modeling stented arteries,
the artery domain is much larger than the stent, which acts as an obstacle in the main domain. A pre-
vious work shows that the LM approach becomes particularly effective as the obstacle size decreases
[5].

In this work we employ a variant of the FD method [20] – specifically derived for addressing fluid-
beam interaction problems by means of reduced-order interface coupling conditions [25, 5, 32] – to
model the stent presence in the artery, while reducing the computational effort associated with drug
elution modeling through the adoption of a model order reduction technique [18, 26, 48]. To this end,
we properly combine the FD approach with a Hierarchical Model (HiMod) reduction (see Figure 1a,
second and third step in right-most column), which proved to be an ideal tool to surrogate models
with an intrinsic (geometrical or physical) directionality, in different application contexts, such as
advection-diffusion-reaction phenomena [45, 1, 14, 43, 46, 33, 34, 9], blood flow modeling [21, 7, 44],
linear acoustics [17], and electromagnetism [16]. The advantage of HiMod reduction lies in the use
of separation of variables, allowing different levels of accuracy between the main and the transverse
direction. This separation allows for numerical approximations to be specifically tailored to distinct
features of the problem, optimizing computational efficiency while preserving essential dynamics.
However, HiMod is inherently characterized by limitations on the geometry of the computational
domain. For example, sharp angles or bifurcations are difficult to model with a HiMod reduction.
Similarly, stent structures and the resulting stented lumen geometry generally do not meet such
geometrical requirements. The combination of HiMod with a FD approach allows us to overcome this
limitation. In addition, the reduced LM method helps enforce non-matching constraints across the
stent-fluid interface [5, 32].
The objective of this work is to demonstrate the effectiveness of combining FD and HiMod reduction
techniques in simplifying drug-eluting stent modeling, ensuring a comprehensive and robust treatment
of both the drug release and fluid model. In more detail, HiMod reduction is applied to an advection-
diffusion equation that models drug elution, while we adopt a simplified one-ring device geometric
configuration, given the proof-of-concept nature of this study (see Figure 1c).

The manuscript is organized as follows. Section 2 introduces the computational model for the
drug release from a DES, along with the associated axisymmetric formulation, thus reducing the ring
stent benchmark case to a 2D problem. Section 3 constitutes the core of the paper, initially presenting
the FD formulation with a reduced interface in a FEM framework, followed by the combination with
HiMod reduction. Section 4 presents the results both for a benchmark case with one-ring stent and
for a production case with three rings. In particular, in Section 4.1, we analyze both accuracy and
convergence, with and without HiMod, for the benchmark case, while in Section 4.2, we perform a
sensitivity analysis for scenarios with multiple rings and realistic flow conditions, discussing the key
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observations in Section 4.3. Finally, we draw some conclusions in Section 5.

2 Computational model of a drug-eluting stent

In this section, we present the model for drug elution from a stent using an advection-diffusion equa-
tion, where the advection field is given by the solution of the Navier-Stokes equations. In particular,
in Section 2.1 we move from a 3D setting to an axisymmetric 2D setup for simplicity.

Concerning the computational domain, we consider an idealized coronary artery with a DES. The
lumen segment without DES coincides with a 10 mm long cylinder, with a 2 mm diameter. We
assume perfect contact between stent and artery wall (i.e., no indentation[10]) and that the stent is
completely contained within the artery segment. Furthermore, we consider a simplified stent geometry
made of rings with square cross-section and thickness ε = 0.1 mm. We denote by Ωẑ the domain
of the artery lumen and by ω̂ε the volume enclosed by the stent structure. Both the stent and the
artery are embedded in a 3D Cartesian system of coordinates, with ẑ = (x, y, z). The perforated
domain Ωẑ,ε = Ωẑ \ ω̂ε is the spatial domain of a lumen segment with a DES, where the stent acts as
obstacle to the blood flow, and ∂Ωẑ,ε is the boundary of the perforated domain. It is important to
highlight that we are only considering the drug released from the stent into the blood stream. Thus,
the drug released by direct contact with the artery wall is neglected and the relevant stent surface is
Γ̂S = ∂ω̂ε\∂Ωẑ. Furthermore, the interface between lumen and artery wall is Γ̂w,ε in the perforated

domain, but, the complete artery wall is given by Γ̂w. A visual sketch is provided in Figure 2.
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Figure 2: Representation of an idealized 3D artery lumen (in blue) with a ring stent (in red) and
corresponding domain and boundary notations.

In general, drug release from the stent into the blood stream is modeled with an advection-diffusion
equation for a given diffusion, D, here assumed constant, and an advective field, u. Experimental
results of DES show that drug is released over the time span of few months. Hence, we consider the
drug concentration to be in a quasi-steady regime within a one day time horizon and drop the time
dependence[50]. Thus, the drug release reference model is given by





−D∆c+ u · ∇c = 0 in Ωẑ,ε

c = c0 on Γ̂S

c = 0 on Γ̂in

D∇c · n = 0 on Γ̂out

c = 0 on Γ̂w,ε,

(1)

with c = c(ẑ) the drug concentration in the lumen, c0 the drug load on the stent surface Γ̂S , Γ̂in and

Γ̂out the inflow and outflow boundary, n the outward unit normal vector to the domain boundary,
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where we have assumed that no drug is transported upstream the stent. The artery wall, Γ̂w,ε, is
here treated as a perfect sink. As an alternative, it may model a membrane in equilibrium with zero
flux. This is equivalent to replacing condition c = 0 on Γ̂w,ε in (1) with homogeneous Neumann
boundary data. The advective field, u, here assumed divergence-free, can be chosen arbitrarily to
ensure a global Péclet number, Pe, strictly less than one, or it can coincide with the solution to the
incompressible Navier-Stokes equations





ρu · ∇u−∇ · (2µ E(u)) +∇p = 0 in Ωẑ,ε

∇ · u = 0 in Ωẑ,ε

u = 0 on Γ̂S

u = f on Γ̂in

(2µ E(u)− pI)n = 0 on Γ̂out

u = 0 on Γ̂w,ε,

(2)

to model the blood flow in the coronary artery, with u(ẑ) = [ux(ẑ), uy(ẑ), uz(ẑ)]T the velocity vector,
p = p(ẑ) the pressure, E(u) = 1

2

(
∇u +∇uT

)
the strain rate tensor, ρ and µ the blood density and

dynamic viscosity, respectively – both considered constant throughout the paper – and I the identity
matrix. We have assumed here a Newtonian constitutive law for the blood flow although the model
can be easily adapted to a shear-thinning regime. The velocity, f = f(ẑ), imposed at the inflow has a
parabolic profile whose magnitude depends on the characteristic flow rate in a right coronary artery
[49]. Given the quasi-steady behaviour of the drug release, the pulsatile blood flow is averaged to
1 ml/s, while any elastic response of the arterial wall to the blood pressure is neglected [39].

2.1 Axisymmetric formulation of the prototype stent problem

Due to the approximately cylindrical shape of arteries, we rewrite problem (1) in a cylindrical co-
ordinate system, using the standard coordinate transformation ẑ = (x, y, z) → z = (x, r, ϕ), with
r and ϕ the radial and the azhimutal coordinate, respectively, and where the following relation
holds: (x, y, z) = (x, r cos(ϕ), r sin(ϕ)). Thanks to the artery and stent geometrical assumptions, the
computational domain is axisymmetric, i.e., symmetric with respect to rotations around the x-axis.
Thus, the axisymmetric concentration c = c(x, r), velocity u = u(x, r) = [ux(x, r), ur(x, r)]

T and
pressure p = p(x, r) are independent of the coordinate ϕ[3]. This simplification allows us to reduce
the computational domain by one dimension and to consider only the half section Ω = Ωx,ε ∪ ωε,
with x = (x, r, 0) = (x, r), after assuming that any section is equivalent in terms of the azhimutal
coordinate ϕ. Thus, we denote by ωε the 2D axisymmetric stent, and by Γin, Γw,ε, ΓS , Γout, and
Γaxi the axisymmetric boundaries of the corresponding perforated domain Ωx,ε, where Γaxi is the
boundary along the symmetry axis resulting from the choice of the half section (see Figure 3 for a
sketch). On Γaxi we impose a zero flux condition (D∇c · n = 0) for the concentration in (1), and
an impenetrability condition (u · n = 0) for the velocity u in (2). Concerning the other boundary
portions, we retain the same conditions as in (1) and (2), including the non homogeneous data c0 on
ΓS and f on Γin.

A reformulation of the advection-diffusion and of the Navier-Stokes equations in (1) and (2) within
the new geometric framework is obtained by introducing the definition of the gradient, the divergence
and the Laplacian axisymmetric operators in cylindrical coordinates [29], being ∇ = (∂x, ∂r), ∇· =(
∂x,

1
r + ∂r

)
, ∆ = ∂xx + ∂rr + 1

r∂r. Moreover, we remark that the volume integral
∫

Ωz
f(z) dΩz =

∫ L
0

∫ R
0

∫ 2π

0
f(x, r, ϕ)r dx dr dϕ over the generic 3D domain Ωz in cylindrical coordinates simplifies to

2π
∫ L

0

∫ R
0
f(x, r)r dx dr for an azimuthally-invariant function f such that f(x, r, ϕ) = f(x, r) for any

ϕ. As a consequence, the dimension reduction associated with an axisymmetric formulation results
in a simpler expression for the integrals, thus significantly simplifying the numerical implementation.
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Figure 3: Axisymmetric 2D artery lumen (in blue) with a ring stent (in red) and corresponding
domain and boundary notations.

As a starting point in setting up the method proposed in this work, we consider the weak for-
mulation of the axisymmetric counterpart of problems (1) and (2). To this end, we introduce the
appropriate function framework, starting from the space

L2
r(Ωx,ε) =

{
v : Ωx,ε → R :

(∫

Ωx,ε

∣∣v(x, r)
∣∣2 r dx dr

)1/2

< +∞
}

(3)

together with the space H1
r (Ωx,ε) of the functions in L2

r(Ωx,ε) with gradient belonging to
[
L2
r(Ωx,ε)

]2
.

Thus, we define the spaces[3]

Wx(Ωx,ε) =

{
wx ∈ H1

r (Ωx,ε) : wx = 0 on ΓNSD

}
,

Wr(Ωx,ε) =

{
wr ∈ H1

r (Ωx,ε) :

(∫

Ωx,ε

|wr(x, r)|2
1

r
dx dr

) 1
2

< +∞, wr = 0 on ΓNSD

}
,

Q(Ωx,ε) =

{
q ∈ L2

r(Ωx,ε) :

∫

Ωx,ε

q(x, r) r dx dr = 0

}
,

V (Ωx,ε) =
{
v ∈ H1

r (Ωx,ε) : v = 0 on ΓADD

}
,

(4)

with ΓNSD = Γw,ε ∪ ΓS and ΓADD = Γin ∪ Γw,ε. The weak counterpart of problem (1) leads to find
c ∈ V (Ωx,ε), with c = c0 on ΓS , such that

a(c, v) + b(u; c, v) = 0 ∀v ∈ VΓS (Ωx,ε) (5)

where VΓS (Ωx,ε) =
{
v ∈ V (Ωx,ε) : v = 0 on ΓS

}
,

a(c, v) = D

∫

Ωx,ε

∇c · ∇v r dxdr, b(u; c, v) =

∫

Ωx,ε

u · ∇c v r dxdr. (6)

Concerning the weak form of problem (2), we look for the pair (u, p) = (ux, ur, p) ∈ Wx(Ωx,ε) ×
Wr(Ωx,ε)×Q(Ωx,ε), with u = f on Γin, such that the following system of equations holds

{
cNS(u,u,w) + aNS(u,w) + bNS(p,w) = 0 ∀w ∈Wx,Γin(Ωx,ε)×Wr,Γin(Ωx,ε)

bNS(q,u) = 0 ∀q ∈ Q(Ωx,ε),
(7)

with Wx,Γin(Ωx,ε) =
{
wx ∈ Wx(Ωx,ε) : wx = 0 on Γin

}
, Wr,Γin(Ωx,ε) =

{
wr ∈ Wr(Ωx,ε) : wr =

0 on Γin
}

, and where the trilinear and bilinear forms associated with the Navier-Stokes equations are
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defined by

cNS(v,u,w) = ρ

∫

Ωx,ε

(v · ∇)u ·w r dx dr,

aNS(u,w) = 2µ

∫

Ωx,ε

E(u) : E(w) r dx dr + 2µ

∫

Ωx,ε

1

r
ur wr dx dr,

bNS(q,w) = −
∫

Ωx,ε

(∂xwx + ∂rwr) q r dx dr −
∫

Ωx,ε

wr q dx dr,

respectively. The approximation of problems (5) and (7) can be tackled using standard techniques,
such as a finite element (FE) scheme. In line with the goal of the paper, we employ a HiMod
discretization for the advection-diffusion problem, using a linear FE discretization on a sufficiently
fine mesh as a reference to assess the effectiveness of the proposed approach. To compute the advective
field u in (5), we solve the Navier-Stokes equations with the inf-sup stable FE pair P2-P1, used to
approximate the velocity and pressure fields on a fine computational grid, respectively.

3 A fictitious domain formulation with HiMod reduction

In this section, we present the new combination of the FD approach with the HiMod formulation,
for an efficient numerical simulation of advection-diffusion processes in stented vascular geometries.
The following sections outline the mathematical formulation and the specific implementation issues
related to merging the FD and HiMod methods, with a particular focus on the vascular application
under consideration.

3.1 Fictitious domain formulation

The FD method extends the problem from a complex (in our specific case, the stented artery lumen)
to a larger, more manageable domain, simplifying mesh generation and numerical treatment [31,
19, 5, 22, 32]. In particular, when boundary conditions have to be imposed on internal interfaces
with intricate geometries – which are embedded in the extended domain and do not align with
the computational mesh – standard techniques become impractical. In this setting, the Lagrange
Multiplier (LM) approach provides an effective solution by allowing the weak imposition of such
boundary conditions, enabling the use of non-conforming meshes while maintaining consistency and
flexibility.
Thus, according to a FD formulation, the advection-diffusion equation (5) is solved in the extended
domain Ω = Ωx,ε ∪ ωε. The lumen-wall interface is now identified with Γw (see Figure 3), while the
condition on ΓS is enforced in a weak way through a LM. This requires a modification of the function
spaces involved in (5), as both the drug concentration c and the test function v are now selected in
V (Ω) = {v ∈ H1

r (Ω) : v = 0 on Γin ∪ Γw}, whereas the boundary condition for c on ΓS is no longer
imposed in a strong fashion but enforced through a Lagrange multiplier.
Thus, the resulting FD formulation of equation (5) reads: find c ∈ V (Ω) and λ ∈ (H

1
2 (ΓS))′ such

that 



aΩ(c, v) + bΩ(u; c, v) + 〈λ, v〉ΓS = 0 ∀v ∈ V (Ω)

〈µ,TΓSc〉ΓS = 〈µ, c0〉ΓS ∀µ ∈ (H
1
2 (ΓS))′,

(8)

where µ is the test function associated with the LM, TΓS : H1
r (Ω)→ H

1
2 (ΓS) is the trace operator that

maps the concentration c, defined in the extended domain Ω, onto the boundary portion ΓS , with
H

1
2 (ΓS) the space of traces of H1

r (Ω)-functions on ΓS , symbol 〈·, ·〉ΓS denotes the duality pairing

between H
1
2 (ΓS) and its dual space (H

1
2 (ΓS))′, while the bilinear forms aΩ(·, ·), bΩ(u; ·, ·) extend

definitions in (6) to the entire domain Ω. We observe that the second equation in (8) imposes the
boundary data for c on ΓS , while the term 〈λ, v〉ΓS in the first equation corresponds to the normal
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flux jump, D∇c · n, of c across ΓS , being λ = −D(∇c · n+ + ∇c · n−), with n± the outward unit
normal vectors to ΓS

1.
Note that, with an abuse of notation, we denote by u in (8) the constant extension of the advective field
u, originally defined in Ωx,ε through the solution of (7), to the whole Ω. In practice, we extend u by
defining a null advection inside ωε, thus ensuring continuity across the entire computational domain.
This guarantees that the influence of the advective field is consistent throughout the extended domain,
while maintaining the original physical conditions in the perforated region.

3.1.1 Reduced interface conditions

The primary idea of this reduced modeling approach is to enforce the boundary condition on ΓS in a
simplified manner through a low-dimensional approximation, FNLM , of the infinite-dimensional trace

space H
1
2 (ΓS).

Considering the partition, ΓLM = {ΓiLM }
NLM
iLM=1, of the boundary ΓS , such that

ΓS =

NLM⋃

iLM=1

ΓiLM , Γ̊iLM ∩ Γ̊jLM = ∅ ∀ iLM 6= jLM ,

the space FNLM can be defined as

FNLM =
{
v ∈ L2(ΓS) : v

∣∣
ΓiLM

= viLM ∈ R, for iLM = 1, . . . , NLM

}
. (9)

Space FNLM coincides with the set of piecewise constant functions associated with the partition ΓLM
of ΓS . For the purposes of this work, we restrict our analysis to low-dimensional cases, i.e., we choose
NLM = 1, 2, 3. In Figure 4 we show some examples of the partition ΓLM for the lumen-stent interface,
corresponding to NLM = 1, 2, 3. In particular, for NLM = 3, we consider two alternative subdivisions
of ΓS : option (c) is devised to prevent any coupling among the stent faces, whereas option (d) is
intended to explicitly account for such an interaction. This consideration will be particularly useful
to manage the case of a zero flux condition across Γw,ε (namely, of a null flux condition across Γw)
as shown in Section 4.1.2 (see Figure 16).
Therefore, the definition of the space FNLM allows us to reformulate problem (8) as the following
reduced advection-diffusion problem: find c ∈ V (Ω) and λNLM ∈ FNLM such that:

{
aΩ(c, v) + bΩ(u; c, v) + (λNLM , v)ΓS = 0 ∀v ∈ V (Ω)

(µNLM ,TΓSc)ΓS = (µNLM , c0)ΓS ∀µNLM ∈ FNLM ,
(10)

where (f, g)ΓS =
∫

ΓS
f(x, r)g(x, r)r dxdr denotes the surface integral in cylindrical coordinates. Note

that using the reduced space FNLM to approximate the trace space yields a discretized formulation
with substantially fewer degrees of freedom associated with the Lagrange multiplier. This strategy
has already proven particularly effective in settings that demand high computational efficiency and
involve small obstacles, while maintaining accuracy [25, 5, 32].

The discrete counterpart of the advection-diffusion reduced model (10), obtained via a FE scheme,
is denoted in the following as reduced FD-FEM. In particular, we adopt a linear FE discretization to
approximate the concentration c.

1Splitting the diffusion term aΩ(c, v) in (8) on the perforated domain Ωx,ε and on the obstacle ωε, integrating both
terms by parts, and exploiting the extension of (1) to the whole Ω so that D∆c = u · ∇c in Ω, it follows [5]

aΩ(c, v) = D(∇c,∇v)Ωx,ε +D(∇c,∇v)ωε = −D(∆c, v)Ω + (D(∇c · n+ +∇c · n−), v)ΓS

= −(u · ∇c, v)Ω − 〈λ, v〉ΓS = −bΩ(u; c, v)− 〈λ, v〉ΓS .
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(a) NLM = 1 (b) NLM = 2 (c) NLM = 3 (d) NLM = 3

Figure 4: Examples of partition ΓLM of the lumen-stent interface ΓS for different values of NLM .

3.2 Hierarchical model reduction with fictitious domains

In this section, we apply the HiMod reduction [14, 45] to the advection-diffusion problem in (10). A
HiMod discretization begins with the assumption that the computational domain can be represented
as a fiber bundle, Ω =

⋃
x∈Ω1D

{x} × γx, where Ω1D = (0, L) is a one-dimensional supporting fiber
aligned with the main dynamics of the phenomenon under study, while γx ⊂ R denotes the transverse
fiber at x ∈ Ω1D, orthogonal to Ω1D and aligned with the secondary dynamics. In the axisymmetric
context considered in this paper, the leading direction is identified by the coordinate x, which changes
along Γaxi and thus coincides with Ω1D, while γx corresponds to the domain over which the radial
coordinate r varies. Moreover, since the fiber γx is independent of x, all transverse fibers are identical
and are denoted simply by γ = (0, R) (see the sketch in Figure 3).

A HiMod reduction relies on the introduction of a map Ψ : Ω→ Ω̂, which transforms the physical
domain Ω into a reference simpler domain Ω̂, so that Ψ(x) = Ψ(x, r) = x̂ = (x̂, r̂), for any (x, r) ∈
Ω [45]. The idea is to carry out all computations in the simplified domain Ω̂ and then map the results
to different computational domains under the action of the inverse of map Ψ. It is worth noting that
HiMod reduction requires the map Ψ, as well as its inverse, to satisfy specific regularity assumptions
such as differentiability (see, e.g., the paper [45] for detailed requirements). These conditions exclude
irregular profiles, such as those induced by the presence of a stent. This, in turn, justifies the adoption
of the FD method, which allows HiMod to be applied to configurations with irregular geometries such
as stented arteries, otherwise disregarded in the conventional HiMod theory. In particular, since the
domain underlying the FD approach coincides with a very simple geometry (i.e., a rectangle), we can
directly identify the reference domain Ω̂ with the fictitious domain Ω. This allows us to avoid the
use of the map Ψ in the formalization of the HiMod methodology, significantly simplifying both the
theoretical treatment and the numerical computations.

The separation of variables paradigm underlying a HiMod formulation allows the construction
of the reduced HiMod space by combining functional settings associated with the leading and the
transverse direction, respectively. In more detail, we associate the space V1D ⊆ H1(Ω1D) with the
supporting fiber and the set {φk}k∈N+ ⊂ H1

r (γ) of modal basis functions with γ.
Following the seminal paper [45], we identify V1D with the space of the continuous FE functions
corresponding to a partition Th of Ω1D. In particular, we choose linear FE for the discretization in
the leading direction. Notice that the FE basis, denoted by {θl}Nhl=1, must be compatible with the
possible imposition of essential boundary conditions on Γin and Γout. As for the modal basis, the
functions φk are assumed to be orthonormal with respect to the L2

r(γ)-product, so that
∫

γ

φk(r)φl(r)r dr = δkl ∀ k, l ∈ N+ (11)

with δkl the Kronecker symbol2. Functions φk are designed to accommodate the boundary conditions
prescribed on the horizontal sides, Γw and Γaxi, of the domain Ω. In a previous work [1], the authors
propose a practical method to construct such functions, by solving an auxiliary Sturm-Liouville
eigenvalue problem which enforces the desired boundary data in an essential manner, regardless

2It can be verified that (f, g)γ =
∫
γ f(r)g(r)r dr defines an inner product on the weighted space L2

r(γ) when f and

g belong to the classical space L2(γ).
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of the specific type. In particular, the resulting eigenfunctions constitute the modal basis {φk}.
Concerning the specific application in Section 4, we adopt a more pragmatic approach by selecting
ad-hoc basis functions that directly satisfy the boundary conditions on Γw and Γaxi (see Sections
4.1.1 and 4.1.2 for more details). Then, these functions are post-processed using a Gram-Schmidt
orthonormalization procedure to ensure property (11).

Thus, the HiMod approximation of problem (10) can be formulated as: find c ∈ VM and λNLM ∈
FNLM such that

{
aΩ(c, v) + bΩ(u; c, v) + (λNLM , v)ΓS = 0 ∀v ∈ VM

(µNLM ,TΓSc)ΓS = (µNLM , c0)ΓS ∀µNLM ∈ FNLM ,
(12)

where

VM =

{
v(x) =

M∑

k=1

ṽk(x)φk(r) : ṽk ∈ V1D with x = (x, r) ∈ Ω

}
(13)

denotes the HiMod space. The modal index M , defining the level of detail of the reduced model, can
be chosen a priori from knowledge of the phenomenon under investigation, rather than automatically
determined through an a posteriori modeling error analysis (we refer the interested reader to previous
studies [46, 42]).

3.2.1 Algebraic representation

In this section we derive the algebraic representation of the HiMod formulation in (12). To this aim,
we expand the HiMod solution c and the generic HiMod test function v in terms of the modal and
FE basis functions, namely

c(x) =

M∑

j=1

Nh∑

i=1

θi(x)φj(r)cij , v(x) = θl(x)φk(r) (14)

for k = 1, . . . ,M , l = 1, . . . , Nh, so that the actual unknowns of formulation (12) are the MNh
coefficients cij ∈ R, with j = 1, . . . ,M , i = 1, . . . , Nh, in addition to the NLM coefficients defining
the Lagrange multiplier λNLM .

Now, we exploit expansions (14) in the definition of the bilinear forms in (12)1, thus obtaining

aΩ(c, v) = D

∫

Ω

∇c(x) · ∇v(x) r dxdr

=

M∑

j=1

Nh∑

i=1

cij D

∫

Ω

[
(φjφk) θ′iθ

′
l +
(
φ′jφ

′
k

)
θiθl
]
r dxdr,

(15)

bΩ(u; c, v) =

∫

Ω

u(x) · ∇c(x)v(x) r dxdr

=

M∑

j=1

Nh∑

i=1

cij

∫

Ω

[
(ux(x)φjφk) θ′iθl +

(
ur(x)φ′jφk

)
θiθl
]
r dxdr,

(16)

respectively where the dependence of functions θi (θl) on x and of functions φj (φk) on r is here
left implicit. Thus, by collecting the corresponding terms from (15) and (16) and exploiting the
separation of variables underlying the HiMod formulation, we obtain

aΩ(c, v) + bΩ(u; c, v) =

M∑

j=1

Nh∑

i=1

Ajk(θi, θl)cij , (17)
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being v = θlφk for k = 1, . . . ,M , l = 1, . . . , Nh, and where

Ajk(θi, θl) =

∫

Ω1D

[
Q11
jk θ
′
i(x)θ′l(x) +Q10

jk(x) θ′i(x)θl(x) +Q00
jk(x) θi(x)θl(x)

]
dx. (18)

In particular, coefficients Qstjk, with s, t = 0, 1, depend explicitly on the problem data and on the
chosen modal basis, and account for the dynamics in the radial direction, being defined as

Q11
jk = D

∫

γ

φj(r)φk(r)r dr, Q10
jk(x) =

∫

γ

ux(x, r)φj(r)φk(r)r dr,

Q00
jk(x) =

∫

γ

[Dφ′k(r) + ur(x, r)φk(r)]φ′j(r)r dr.
(19)

We now consider the term in (12)1 associated with the boundary portion ΓS . To properly define it,
the partition Th along Ω1D has to be consistent with the obstacle geometry, meaning that the vertical
sides of the obstacle must correspond in the x-direction to specific vertices of Th, here denoted by xl1
and xl2 , respectively. Based on the modal representation v = θlφk in (14) and the definition of the
space FNLM in (9), we have

(λNLM , v)ΓS =

∫

ΓS

λNLM v(x, r)r dxdr =

NLM∑

iLM=1

λiLM

∫

ΓiLM

θl(x)φk(r)r dxdr (20)

for k = 1, . . . ,M , l = 1, . . . , Nh. To streamline the derivation, we expand the computations in the
simplified case of a single Lagrange multiplier, that is, we set NLM = 1 in (20) and denote λ1 simply
by λ, thus obtaining

(λ, v)ΓS = λ

∫

ΓS

θl(x)φk(r)r dxdr = ALMk (θl)λ (21)

for k = 1, . . . ,M , with

ALMk (θl) =

[
θl(xl1)

∫ R

r̄

φk(r)r dr + φk(r̄) r̄

∫ xl2

xl1

θl(x) dx+ θl(xl2)

∫ R

r̄

φk(r)r dr

]
(22)

and r̄ the distance of the stent bottom edge from Γaxi. The first and third integrals are associated
with the vertical sides of ΓS and provide a contribution only to the FE basis functions θl1 and θl2 . The
second integral, instead, is associated with the horizontal side of the stent and therefore contributes
to all basis functions θl with l ∈ {l1, . . . , l2}.

With regard to equation (12)2, we first introduce a HiMod expansion for the trace term TΓSc,
which can be rewritten as

TΓSc(x) =

M∑

j=1

l2∑

i=l1

θi(x)φj(r)cij for r ∈ (r̄, R). (23)

Thus, the boundary contribution (µNLM ,TΓSc)ΓS takes the form

∫

ΓS

µNLM TΓSc(x, r)r dxdr =

NLM∑

iLM=1

µiLM

[ M∑

j=1

l2∑

i=l1

cij

∫

ΓiLM

θi(x)φj(r)r dxdr

]
, (24)

which, after setting NLM = 1 and µ1 = µ, simplifies to

∫

ΓS

µNLM TΓSc(x, r)r dxdr = µ

M∑

j=1

l2∑

i=l1

cij

∫

ΓS

θi(x)φj(r)r dxdr = µ

M∑

j=1

l2∑

i=l1

ALMj (θi)cij , (25)
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with

ALMj (θi) =

[
θi(xl1)

∫ R

r̄

φj(r)r dr + φj(r̄) r̄

∫ xl2

xl1

θi(x) dx+ θi(xl2)

∫ R

r̄

φj(r)r dr

]
,

consistently with (22). Concerning the right-hand side in (12)2, it simplifies to

(µ, c0)ΓS = µc0

∫

ΓS

r dxdr = µc0 |ΓS | = µBLM

with BLM = c0 |ΓS |, |ΓS | denoting the measure of the stent surface3.
Thus, to provide the algebraic counterpart of problem (12), we first rearrange the coefficients cij

in (14) into a vector c ∈ RMNh , ordered by FE node (for a fixed mode) and subsequently by mode,

c = [c1, c2, . . . , cM ]T with ck = [c1k, c2k, . . . , cNhk]T ∈ RNh k = 1, . . . ,M.

Then, we associate: a matrix Ajk ∈ RNh×Nh with coefficients Ajk in (18), being

[Ajk]li = Ajk(θi, θl) i, l = 1, . . . , Nh, j, k = 1, . . . ,M ;

a vector ALMk ∈ RNh with quantities ALMk in (22), such that

[ALMk ]l = ALMk (θl) l = 1, . . . , Nh, k = 1, . . . ,M.

These notations allow us to rewrite the HiMod formulation (12), when employing a single LM, as the
following system of linear equations

[
A ALM

[ALM ]T 0

][
c

λ

]
=



A11 · · · AM1 ALM1

...
. . .

...
...

A1M · · · AMM ALMM

[ALM1 ]T · · · [ALMM ]T 0





c1

...

cM

λ


=



0

...

0

BLM


. (26)

The solution of the HiMod system (26) is denoted as FD-HiMod in the following. Specifically,
the leading dynamics is discretized with linear FE, while the transverse behavior is modeled through
modal functions tailored to the boundary data prescribed on Γw.

The sparsity pattern of the FD-HiMod system matrix is shown in Figure 5 for a representative
case with 1 LM, 200 intervals in Ω1D, and 5 modes. The main contribution in A (in red) exhibits the
characteristic block structure of the HiMod approach, with 5× 5 blocks. Each block has the typical
tridiagonal pattern of the linear FE basis (see the gray square). The contributions from the LM in
[ALM ]T and the weakly imposed boundary conditions on ΓS in ALM are added as one additional
row and column (in blue), respectively. These contributions also display a repeated block pattern,
consistently with the previously chosen value of M = 5. Within each block, non-zero entries appear
only at the nodes indexed by l ∈ {l1, . . . , l2} (see the yellow circle). For a single LM, two out of the
200 intervals of Ω1D are involved, corresponding to three nodes with non-zero entries per block.

4 Numerical simulation of drug release

In this section, we present numerical results for drug release in vascular stented configurations using
the proposed FD-HiMod method. The purpose of the simulations is to validate this new methodology

3The area of the annular recess occupied by the stent is obtained by summing the area of the two annular regions
defined by concentric circles of radius R and r̄, respectively (i.e., 2π(R2 − r̄2)), with the area of the lateral surface of

a cylinder of radius r̄ and height (xl2 − xl1 ) (i.e., 2πr̄(xl2 − xl1 )), so that
∫
Γ̂S

dŜ = 2π[R2 − r̄2 + r̄(xl2 − xl1 )]. Now,

exploiting the relation between the integrals on Γ̂S and ΓS , it follows
∫
ΓS

r dxdr = R2 − r̄2 + r̄(xl2 − xl1 ).
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[ALM]T

ALM

A

Figure 5: Sparsity pattern of the FD-HiMod system matrix for NLM = 1: the red square highlights
the classical HiMod matrix A, with block structure indicated by red dashed lines. Each block shows
a tridiagonal pattern typical of linear FE discretization (grey square). The blue rectangles indicate
the contributions from the FD approach, ALM and [ALM]T , with their block structure and a focus on
the non-zero entries (yellow circle).

and to assess its accuracy and efficiency against the reduced FD-FEM approach, when using finite
elements on both conforming and non-conforming grids. The numerical simulations are divided into
two main categories:

1. a benchmark case designed to evaluate the performance of the FD-HiMod approximation on
simple configurations with a well-defined reference solution;

2. a production case, focusing on a more realistic configuration and highlighting the practical
applicability of the proposed approach in clinical settings through a sensitivity analysis of ring
spacing.

From a modeling viewpoint, we assume that the concentration is normalized with respect to the
initial drug load, c0, thus becoming dimensionless. Moreover, for simplicity, the spatial units of the
coordinates x and r, the mesh size h (either in the reduced FD-FEM or along the HiMod supporting
fiber Ω1D), and the ring spacings are omitted, with all quantities expressed in millimeters (mm).
Finally, the reduced FD-FEM results, as well as all reference solutions used in this work, are ob-
tained using the open-source software FreeFEM, while the FD-HiMod approach is implemented in
MATLAB4.

4.1 The benchmark case

The final objective of this section is to assess the discrepancy between the reduced FD-FEM and the
FD-HiMod approaches with respect to a high-fidelity solution, providing insights into the effectiveness
of the proposed method and the potential applicability to realistic configurations, such as the one
considered in Section 4.2.

Here, we consider a simplified stent model, consisting of a single-ring structure embedded in a
circular lumen. The solution is computed under a constant advective field, u = (1, 0)T , ensuring

4The simulations are performed on a laptop with a 2,3 GHz Quad-Core Intel ®Core™i5 processor, integrated with
Intel ®Iris Plus Graphics, and 16 GB of RAM.
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(a) Conforming mesh T c
h of Ω with targeted refinement (h = 0.005 near the stent and h = 0.1 on Γin ∪ Γaxi ∪ Γout ).

(b) Zoom near the stent for the mesh in 6a. (c) Structured mesh of Ωx,ϵ near stent with h = 0.005. (d) Non-conforming mesh near stent with h = 0.032. (e) Non-conforming mesh near stent with h = 0.073.

(f) HiMod virtual grid with h = 0.05. Quadrature nodes on the transverse fibers are shown in blue.

(g) HiMod virtual grid near stent with h = 0.05. (h) HiMod virtual grid near stent with h = 0.025. (i) HiMod virtual grid near stent with h = 0.01. (j) HiMod virtual grid near stent with h = 0.005.

Figure 6: Benchmark case: reduced FD-FEM and FD-HiMod grids, for different choices of the mesh
size h.

that the global Péclet number remains strictly below one. Specifically, the advective field is extended
as constant throughout the FD domain Ω, so that the condition u = (1, 0)T also holds inside the
obstacle ωε. This choice avoids potential errors that would arise if u were taken from the Navier-
Stokes solution in (2).
We exploit this simple setup to compare the accuracy of the reduced FD-FEM and of the FD-HiMod
approaches under various settings, including mesh type, LM arrangement, and boundary conditions
on the artery wall Γw.
Regarding the mesh, we distinguish between conforming and non-conforming grids for the reduced
FD-FEM approximation (see Figure 6). In the conforming case, we consider a targeted refined mesh,
T ch , where h = 0.005 near the stent and h = 0.1 on Γin ∪ Γaxi ∪ Γout, yielding a mesh approximately
consisting of 46,500 triangles (see Figures 6a and 6b). In the non-conforming case, the mesh size is
chosen uniform, so as to avoid nodes coinciding with the stent boundary ΓS (see Figures 6d and 6e).
As for the FD-HiMod approach, no actual mesh of the full computational domain is constructed,
since the HiMod formulation only requires discretization along the supporting fiber, to which we
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associate the mesh size h. Nevertheless, in the r-direction it is computationally convenient to refer
to the quadrature nodes used for evaluating the integrals involved in (12). The set of these nodes
constitutes the so-called virtual grid. In particular, the quadrature nodes are selected to conform to
the obstacle geometry and to guarantee sufficient accuracy in the integral evaluation for a reasonably
large number M of modes (see Figures 6f-6j, which illustrate the virtual grid for different mesh sizes
h, i.e., for a diverse spacing of the HiMod fibers).
Concerning the LM arrangement, we analyze cases with one, two, or three LMs according to the
different options illustrated in Figure 4.
Finally, the boundary Γw is treated as a perfect sink in Section 4.1.1, in contrast to Section 4.1.2,
where it is modeled as a membrane in equilibrium with zero flux.

In the next sections, the accuracy of the reduced FD-FEM and FD-HiMod solutions is assessed
against a high-fidelity linear FE approximation. This is computed on a conforming mesh of the
perforated domain Ωx,ε, obtained from the mesh of Ω in Figure 6a by removing the obstacle ωε,
delimited by the red boundary ΓS where the Dirichlet boundary condition c = c0 in (1) is strongly
enforced. The high-fidelity solution is then interpolated onto the structured triangular mesh in Figure
6c, yielding the reference solution cR used throughout the analysis below. The projection step ensures
a fair comparison of cR with the reduced FD-FEM and FD-HiMod solutions. Both the approximations
are linearly interpolated onto the same structured mesh, thus avoiding additional errors that would
arise from projecting HiMod results onto an unstructured FE mesh.

Accuracy is examined with respect to the mesh size h for both reduced FD-FEM and FD-HiMod
approximations, and with respect to the number M of modes for FD-HiMod only. We will also
investigate the impact of the total number of degrees of freedom (#DOFs) on accuracy, where

#DOFs(reduced FD-FEM) = Nh +NLM , #DOFs(FD-HiMod) = NhM +NLM . (27)

The control parameter in the reduced FD-FEM is the mesh size h (i.e., the number of mesh nodes
Nh) together with the number, NLM , of Lagrange multipliers, while in FD-HiMod the number, M ,
of modes also contributes.

4.1.1 Perfect Sink Boundary Conditions

In this section we treat the artery wall as a perfect sink, which is equivalent to imposing homogeneous
Dirichlet boundary conditions on Γw. Accordingly, we select the modal basis functions in the HiMod
expansion (14) as

φk(r) = cos
((
πk − π

2

)
r
)

k = 1, . . . ,M.

For this configuration, we analyze the performance of the reduced FD-FEM and FD-HiMod ap-
proaches as the number of LMs, the mesh size, and the number M of modal functions φk vary.
Figure 7 shows the color plot of the reference solution, cR. As a first validation, Figure 8 shows
the comparison between cR, the reduced FD-FEM approximation (with both conforming and non-
conforming meshes), and the FD-HiMod discretization, along the white section highlighted in Figure
7. In more detail, the conforming reduced FD-FEM solution is computed on the mesh shown in Fig-
ures 6a-6b, the non-conforming reduced FD-FEM model relies on a mesh similar to those in Figures
6d-6e with h = 0.043, while for the FD-HiMod approximation we set h = 0.05 along the support-
ing fiber and choose M = 30. This corresponds to approximately 23,000 DOFs for the conforming
reduced FD-FEM and about 6,000 DOFs for both the non-conforming reduced FD-FEM and the
FD-HiMod approximation. The number of LMs is varied in all cases. In particular, for NLM = 3, we
adopt the configuration shown in Figure 4c.
All reduced solutions underestimate the concentration near the stent and produce local overshoots
and undershoots. For all the models, accuracy improves with two or three LMs, particularly in
capturing the downstream decay. Overall, the FD-HiMod outperforms the non-conforming reduced
FD-FEM, for a comparable number of degrees of freedom, provided that the mesh size and number
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of modes are appropriately chosen. The conforming reduced FD-FEM model, on the other hand, is
slightly more accurate than FD-HiMod, but this comes at the cost of a significantly higher number
of DOFs.

Figure 7: Benchmark case (perfect sink boundary conditions): reference solution. The white line
marks the section selected for the analysis in Figure 8.

Figure 8: Benchmark case (perfect sink boundary conditions): comparison of drug distribution along
the section highlighted in Figure 7 among the reference solution (solid green line), the conforming
(dashed lines) and the non-conforming (dotted lines) reduced FD-FEM, and the FD-HiMod (solid
lines) approximation for a different number of LMs.

We now qualitatively analyze the pointwise distribution of the signed error between the reference
solution cR, the conforming/non-conforming reduced FD-FEM approximation and the FD-HiMod
discretization. The pointwise error is primarily concentrated near the stent, so we focus the com-
parison in this region (see Figure 9). We distinguish regions where the reduced FD-FEM and the
FD-HiMod solutions underestimate (positive values) or overestimate (negative values) the reference
concentration. The conforming reduced FD-FEM scheme provides a baseline, with most error aris-
ing from the weak enforcement of Dirichlet conditions on ΓS in combination with the reduced LM
approach presented in (10). Increasing the number of LMs localizes the error closer to the stent but
also introduces more alternating positive and negative values. The non-conforming reduced FD-FEM
error exhibits a similar pattern, but more spread and with higher peaks. Finally, with the FD-HiMod
approximation, both the magnitude and spatial extent of the error decrease as the number of modes
M increases. A sufficient number of modes is required to prevent oscillations from propagating from
the stent toward r = 0, a characteristic inherent to the trigonometric modal expansion. Moreover,
with higher LM counts, the error alternations may intensify if the number of modes is not large
enough, producing larger peak oscillations, as observed when comparing the case with 3 LMs to the
choice of 1 LM for M = 10.

To quantify the discrepancy between the reference and the reduced FD-FEM and FD-HiMod

16



(a) 1 LM, conforming reduced FD-FEM. (b) 1 LM, non-conforming reduced FD-FEM. (c) 1 LM, FD-HiMod with M = 10. (d) 1 LM, FD-HiMod with M = 20.

(e) 2 LMs, conforming reduced FD-FEM. (f) 2 LMs, non-conforming reduced FD-FEM. (g) 2 LMs, FD-HiMod with M = 10. (h) 2 LMs, FD-HiMod with M = 20.

(i) 3 LMs, conforming reduced FD-FEM. (j) 3 LMs, non-conforming reduced FD-FEM. (k) 3 LMs, FD-HiMod with M = 10. (l) 3 LMs, FD-HiMod with M = 20.

Figure 9: Benchmark case (perfect sink boundary conditions): distribution of the signed pointwise
error associated with the conforming (first column) and non-conforming (second column) reduced FD-
FEM, and the FD-HiMod (third and fourth columns) approximation, with 1 (first row), 2 (second
row), and 3 (third row) LMs.

models, we evaluate the relative error in the L2(Ωx,ε)-norm. Table 1 summarizes this error for the
two reduced FD-FEM approximations (conforming and non-conforming) across different mesh sizes h
and numbers of LMs, as well as for the FD-HiMod reduced solution when varying h, M , and number
of LMs. In line with expectations, regardless of the chosen strategy, increasing the number of LMs or
decreasing h leads to a reduction in the error. For the FD-HiMod approximation, a similar behavior
is observed when increasing the number M of modal functions. In this case, the interplay between
the discretization along Ω1D and the modal discretization becomes evident: the error may stagnate
despite refining h if the number of modes is not sufficiently large, and likewise may not decrease by
increasing M if the mesh size is not sufficiently small.
The error of the conforming reduced FD-FEM approach represents the asymptotic case, with values
that roughly halve as the number of LMs increases, reaching about 12% with 3 LMs. Although this
error may appear significant, it should be noted that concentration values remain very low (of the
order of 10−3–10−2) across most of the domain under perfect sink conditions. For this boundary data
setup, the FD-HiMod approach outperforms the non-conforming reduced FD-FEM for all LMs, even
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Table 1: Benchmark case (perfect sink boundary conditions): L2(Ωx,ε)-norm of the relative error
associated with the reduced FD-FEM and the FD-HiMod approaches, for different mesh size, number
of modes and of LMs.

conforming reduced FD-FEM non-conforming reduced FD-FEM

NLM T c
h h = 0.032 h = 0.043 h = 0.056 h = 0.073

1 0.30483 0.53517 0.60180 0.71831 0.95308
2 0.20704 0.37211 0.43236 0.53296 0.77099
3 0.12017 0.27189 0.29363 0.40450 0.51158

FD-HiMod, h = 0.05

NLM M = 10 M = 15 M = 20 M = 25 M = 30 M = 35 M = 40 M = 45
1 0.49254 0.42981 0.41443 0.39787 0.38112 0.37525 0.37165 0.36732
2 0.35144 0.30281 0.28906 0.27706 0.26424 0.25963 0.25667 0.25351
3 0.23302 0.18341 0.18110 0.17240 0.16258 0.16161 0.16075 0.15904

FD-HiMod, h = 0.025

NLM M = 10 M = 15 M = 20 M = 25 M = 30 M = 35 M = 40 M = 45

1 0.47721 0.40862 0.39253 0.37579 0.35777 0.35108 0.34738 0.34297
2 0.33838 0.28495 0.27061 0.25883 0.24501 0.24015 0.23723 0.23412
3 0.21308 0.17012 0.16542 0.15499 0.14366 0.14174 0.14044 0.13826

FD-HiMod, h = 0.01

NLM M = 10 M = 15 M = 20 M = 25 M = 30 M = 35 M = 40 M = 45

1 0.47283 0.40236 0.38605 0.36924 0.35052 0.34326 0.33949 0.33503
2 0.33476 0.28013 0.26567 0.25395 0.23963 0.23443 0.23147 0.22835
3 0.20797 0.16713 0.16171 0.15081 0.13901 0.13669 0.13522 0.13288

FD-HiMod, h = 0.005

NLM M = 10 M = 15 M = 20 M = 25 M = 30 M = 35 M = 40 M = 45

1 0.47221 0.40147 0.38512 0.36830 0.34945 0.34209 0.33831 0.33383
2 0.33425 0.27945 0.26498 0.25326 0.23886 0.23359 0.23063 0.22750
3 0.20726 0.16674 0.16122 0.15026 0.13839 0.13601 0.13452 0.13215

in its least accurate configuration (h = 0.05, M = 10). In the most accurate setting (h = 0.005,
M = 45), a comparison with the conforming reduced FD-FEM asymptotic case shows that the
error introduced by the HiMod reduction alone is about 3%, 2%, and 1.2% for 1, 2, and 3 LMs,
respectively. Finally, note that results for 2 LMs with h = 0.02 are not reported, since this mesh size
is not conforming with the partition corresponding to NLM = 2.
Figure 10 shows line plots of the relative error, derived from the values reported in Table 1, for the
non-conforming reduced FD-FEM with respect to h and for the FD-HiMod approach with respect to
M , as the number, NLM , of LMs varies. The plots confirm the observations drawn from the tabulated
data. The error decreases very slowly for both reduced FD-FEM and FD-HiMod approaches, likely
due to the complexity of the FD setup combined with a discontinuity at the boundary Γw (even though
it is weakly imposed). In particular, for FD-HiMod the error stagnates starting from approximately
30 modes. This trend differs from the zero flux case, as will be discussed in Section 4.1.2.

For completeness, in Figure 11 we compare the performance of reduced FD-FEM and FD-HiMod
methods in terms of the number of DOFs, computed as in (27), for different choices of NLM . The
conforming reduced FD-FEM approximation provides the best overall accuracy, with its error rep-
resented as a horizontal dashed line serving as a baseline for the other approaches, although this
configuration involves approximately 23, 000 DOFs due to the targeted mesh refinement adopted in
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(a) non-conforming reduced FD-FEM. (b) FD-HiMod, for 1 LM. (c) FD-HiMod, for 2 LMs. (d) FD-HiMod, for 3 LMs.

Figure 10: Benchmark case (perfect sink boundary conditions): L2(Ωx,ε)-norm of the relative error
for the non-conforming reduced FD-FEM scheme with respect to h and for the FD-HiMod approach
with respect to M and for different values of h, when varying the number of LMs.

(a) NLM = 1. (b) NLM = 2. (c) NLM = 3.

Figure 11: Benchmark case (perfect sink boundary condition): L2(Ωx,ε)-norm of the relative error for
the conforming and non-conforming reduced FD-FEM with respect to #DOFs and for the FD-HiMod
approach with respect to #DOFs and for different values of h, when varying the number of LMs.

the conforming setup. In the FD-HiMod case, for a fixed h and NLM , the error decreases with the
increase in DOFs (i.e., as the number M of modes grows), while increasing the number of LMs re-
duces the error, essentially at fixed DOFs. Moreover, for a comparable number of DOFs, FD-HiMod
consistently outperforms the non-conforming reduced FD-FEM. In particular, apart from the coarsest
choice h = 0.05, which is clearly unsuitable for accurate results, the behavior of the error curves is
similar for different values of h, with a horizontal shift due to the increase in DOFs. The FD-HiMod
approach therefore offers greater flexibility, leading to a more favorable error-to-DOFs trade-off. In
particular, it allows one to keep a finer mesh (i.e., a smaller h) than in the non-conforming reduced
FD-FEM case, especially near the stent where accuracy is crucial, while containing the computational
cost by selecting a moderate number M of modes.

4.1.2 Zero Flux Boundary Conditions

In this section, the artery wall is modeled as a membrane in equilibrium with zero flux. This corre-
sponds to imposing homogeneous Neumann boundary conditions on Γ̂w,ε for the advection-diffusion
problem (1). Consequently, the boundary portion ΓADD involved in (4) reduces to ΓS , whereas the
HiMod modal basis functions in (14) are selected to satisfy homogeneous Neumann conditions on
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both Γaxi and Γw, i.e.,
φk(r) = cos (π(k − 1)r) k = 1, . . . ,M.

Analogously to the perfect sink setting, we investigate the performance of the reduced FD-FEM and
FD-HiMod approaches by varying the number of LMs (where, as in the previous test case, we adopt
the configuration in Figure 4c with NLM = 3) and the mesh size for the reduced FD-FEM scheme,
as well as the number of modes for the FD-HiMod formulation.

Figure 12: Benchmark case (zero flux boundary condition): reference solution. The gray box high-
lights the portion of Γw selected for the analysis in Figure 13.

Figure 13: Benchmark case (zero flux boundary condition): comparison of drug distribution along
the portion of boundary highlighted in Figure 12 among the reference solution (solid green line),
the conforming (dashed lines) and the non-conforming (dotted lines) reduced FD-FEM, and the FD-
HiMod (solid lines) approximation for a different number of LMs.

The performance analysis is carried out with respect to the reference solution, cR, in Figure
12. The different drug concentration distribution resulting from the zero flux boundary condition
is evident when compared with the perfect sink setting in Figure 7. The aim here is to model the
equilibrium between lumen and arterial wall, where the drug may be absorbed by the wall under
specific conditions.
In Figure 13, we compare the reference solution with the conforming/non-conforming reduced FD-
FEM and the FD-HiMod approaches, using the same discretizations as in Figure 8. We first observe
that solution cR shows a lower concentration than expected at x = 3. This discrepancy is a well-known
limitation of standard FE methods, which often struggle to approximate advection-dominated prob-
lems, particularly in domains with sharp corners, such as the square stent, and that exhibit boundary
discontinuity, such as the imposition of c = c0 on ΓS [13]. As in the perfect sink configuration,
the conforming reduced FD-FEM model remains the most accurate, although it requires the largest
number of DOFs (about 23, 000). Unlike in Figure 8, the number of LMs affects accuracy differently.
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Specifically, using a single LM leads to a significant overestimation of the drug concentration with
respect to the reference values of cR. In contrast, two and three LMs provide more reliable results,
although two LMs yield slightly higher accuracy than three, particularly in the FD-HiMod case. Bal-
ancing accuracy and computational cost, the FD-HiMod approximation with two LMs emerges as
the best option: it closely follows the reference curve cR and deviates only slightly from the conform-
ing reduced FD-FEM models with 2 and 3 LMs, while being significantly more efficient than both,
requiring only about 6, 000 DOFs instead of 23, 000.

(a) 1 LM, conforming reduced FD-FEM. (b) 1 LM, non-conforming reduced FD-FEM. (c) 1 LM, FD-HiMod with M = 5. (d) 1 LM, FD-HiMod with M = 20.

(e) 2 LMs, conforming reduced FD-FEM. (f) 2 LMs, non-conforming reduced FD-FEM. (g) 2 LMs, FD-HiMod with M = 5. (h) 2 LMs, FD-HiMod with M = 20.

(i) 3 LMs, conforming reduced FD-FEM. (j) 3 LMs, non-conforming reduced FD-FEM. (k) 3 LMs, FD-HiMod with M = 5. (l) 3 LMs, FD-HiMod with M = 20.

Figure 14: Benchmark case (zero flux boundary condition): distribution of the signed pointwise error
associated with the conforming (first column), non-conforming (second column) reduced FD-FEM,
and the FD-HiMod (third and fourth columns) approximation, with 1 (first row), 2 (second row),
and 3 (third row) LMs.

Moving to a qualitative error analysis, Figure 14 shows the distribution of the pointwise signed
error between the reference solution cR and the approximations obtained with the conforming/non-
conforming reduced FD-FEM and FD-HiMod approaches. Assigning this new boundary condition
improves the accuracy of the approximations compared to the perfect sink configuration, as the
overestimation and underestimation with respect to the reference solution is now concentrated at the
stent corners rather than spread along its boundary for NLM = 2, 3 (compare with Figure 9). This
error distribution shows that employing a 3 LM partition (with the three stent sides decoupled) does
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not necessarily enhance accuracy compared to the 2 LM configuration. The conforming FD-FEM
approximation remains the most accurate also under the zero flux boundary condition, with a further
improvement observed when moving from 2 to 3 LMs. Conversely, for a sufficiently large number of
modes, the non-conforming reduced FD-FEM and FD-HiMod approximations become comparable,
with little to no improvement from increasing the number of LMs from 2 to 3 (in agreement with Figure
13). Interestingly, using only a few modes results in a significant overestimation of the concentration
beneath the stent (towards r = 0), which is corrected when more modes are employed (compare
Figures 14g, 14k with Figures 14h, 14l).

Table 2: Benchmark case (zero flux boundary conditions): L2(Ωx,ε)-norm of the relative error asso-
ciated with the reduced FD-FEM and the FD-HiMod approaches, for different mesh size, number of
modes and of LMs (the 3∗ case is omitted for h = 0.05, as the associated partition coincides with the
2 LM configuration).

conforming reduced FD-FEM non-conforming reduced FD-FEM

NLM T c
h h = 0.032 h = 0.043 h = 0.056 h = 0.073 h = 0.099

1 0.2315 0.37035 0.39275 0.43867 0.48167 0.43688
2 0.0111 0.03228 0.03354 0.04290 0.04973 0.06572
3 0.0128 0.02896 0.04038 0.04096 0.07476 0.07561
3* 0.0087 0.01765 0.02240 0.03124 0.04918 0.07699

FD-HiMod, h = 0.05

NLM M = 5 M = 10 M = 15 M = 20 M = 25 M = 30 M = 35 M = 40 M = 45

1 0.39308 0.33106 0.29232 0.28329 0.27337 0.26942 0.26504 0.26284 0.26044
2 0.07924 0.04601 0.02647 0.02241 0.01872 0.01723 0.01586 0.01517 0.01456
3 0.18028 0.12673 0.06805 0.05754 0.04610 0.04184 0.03732 0.03510 0.03278

FD-HiMod, h = 0.025

NLM M = 5 M = 10 M = 15 M = 20 M = 25 M = 30 M = 35 M = 40 M = 45

1 0.38935 0.32489 0.28529 0.27553 0.26518 0.26093 0.25632 0.25396 0.25143
2 0.07761 0.04467 0.02480 0.02122 0.01750 0.01628 0.01489 0.01433 0.01370
3 0.16471 0.12084 0.06290 0.05254 0.04101 0.03675 0.03213 0.02989 0.02751
3∗ 0.10303 0.06716 0.02914 0.02194 0.01560 0.01332 0.01146 0.01080 0.01020

FD-HiMod, h = 0.01

NLM M = 5 M = 10 M = 15 M = 20 M = 25 M = 30 M = 35 M = 40 M = 45

1 0.38835 0.32319 0.28330 0.27328 0.26276 0.25835 0.25363 0.25117 0.24856
2 0.07723 0.04445 0.02461 0.02119 0.01752 0.01638 0.01504 0.01451 0.01390
3 0.16095 0.11935 0.06160 0.05129 0.03972 0.03546 0.03082 0.02857 0.02617
3∗ 0.09133 0.05544 0.02435 0.01911 0.01452 0.01312 0.01103 0.01019 0.00943

FD-HiMod, h = 0.005

NLM M = 5 M = 10 M = 15 M = 20 M = 25 M = 30 M = 35 M = 40 M = 45
1 0.38821 0.32294 0.28302 0.27295 0.26240 0.25797 0.25324 0.25076 0.24813
2 0.07718 0.04443 0.02459 0.02120 0.01754 0.01641 0.01508 0.01456 0.01395
3 0.16043 0.11914 0.06142 0.05112 0.03954 0.03530 0.03064 0.02839 0.02598
3∗ 0.09104 0.05524 0.02424 0.01904 0.01447 0.01308 0.01099 0.01015 0.00940

A quantitative error analysis is reported in Table 2, consistently with the results in Table 1. As a
general remark, the relative error values in Table 2 are significantly lower than those in Table 1, in some
cases gaining up to one order of magnitude in percentage points. This confirms that, from a modeling
perspective, imposing a zero flux condition yields a considerably more accurate approximation of the
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drug concentration. In particular, for the conforming and non-conforming reduced FD-FEM models,
the error behaves as expected with respect to the mesh size h, reaching errors of about 2% in the
non-conforming case and 1% in the conforming case. Increasing the number of LMs from 2 to 3
does not provide the desired improvement, except for the non-conforming case with h = 0.032 and
h = 0.056.
The FD-HiMod approximation confirms its intrinsic modeling flexibility: for sufficiently small h and
large M , it achieves a relative error close to 1%, comparable to the conforming reduced FD-FEM case,
which remains the asymptotic benchmark also under this boundary condition. Notably, five modes
are already sufficient to achieve high accuracy, unlike the perfect sink case where at least ten modes
were required to reach a 20% error. As expected, the error decreases both when refining h and when
increasing M . No improvement is obtained, however, when moving from 2 to 3 LMs. This may be
due to the partition in Figure 4c, which appears unfavorable since the error tends to accumulate at
the corners. For this reason, we also tested the alternative partition in Figure 4d, which we denote in
the table as the case NLM = 3∗. This choice indeed delivers the expected improvement, provided that
the HiMod discretization is sufficiently fine (e.g., with h = 0.025 and M ≥ 25, or with h = 0.01 or
h = 0.005 and M ≥ 15). Likewise, the conforming and non-conforming reduced FD-FEM approaches
improve in accuracy with the 3∗ setup, provided that the mesh size h is sufficiently small in the
non-conforming case (for istance, h = 0.099 is too coarse to observe any improvement).

Similarly to the perfect sink case, we analyze the error trend of the reduced FD-FEM and FD-
HiMod models based on the values in Table 2. We first examine the effect of mesh refinement in the
non-conforming reduced FD-FEM approach and of increasing the number of modes in the FD-HiMod
formulation, while varying the number of LMs, as done in Figure 15. The trend across Figures 15a
- 15d confirms that using 3 LMs generally provides no benefit, unlike the 3∗ LMs case, which can
improve accuracy (see Figures 15a and 15d). Note that in Figure 15, a logarithmic scale is used on
the vertical axis to improve visual rendering, as the error quickly stagnates for FD-HiMod beyond 30
modes, particularly in the cases with 2 and 3 LMs. Furthermore, compared to the perfect sink case,
a much lower sensitivity to the mesh size h is observed in Figures 15b–15d, where the error curves
nearly overlap.

(a) non-conforming reduced FD-FEM. (b) FD-HiMod, for 1 LM. (c) FD-HiMod, for 2 LMs. (d) FD-HiMod, for 3 LMs.

Figure 15: Benchmark case (zero flux boundary condition): L2(Ωx,ε)-norm of the relative error for the
non-conforming reduced FD-FEM with respect to h and for the FD-HiMod approach with respect
to M and for different values of h, when varying the number of LMs. In the legend, symbol ∗ is
associated with the 3 LM partition case in Figure 4d.

The error trend with respect to the number of DOFs is shown in Figure 16, where we perform the
same analysis as in Figure 11. Consistently with the perfect sink case, the accuracy improves as the
mesh size h decreases for the non-conforming reduced FD-FEM approach, and as the number M of
modes increases in the FD-HiMod formulation, while the conforming FD-FEM remains the reference
case also under zero flux boundary conditions. However, unlike the perfect sink configuration, the
FD-HiMod outperforms the non-conforming reduced FD-FEM method only when the HiMod approx-
imation is sufficiently refined. In agreement with Table 2 and Figure 15, we also observe that the
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(a) NLM = 1. (b) NLM = 2. (c) NLM = 3 and NLM = 3∗ .

Figure 16: Benchmark case (zero flux boundary condition): L2(Ωx,ε)-norm of the relative error for
the conforming and non-conforming reduced FD-FEM with respect to #DOFs and for the FD-HiMod
approach with respect to #DOFs and for different values of h, when varying the number of LMs.

use of 3 LMs does not necessarily improve the accuracy of the non-conforming reduced FD-FEM and
FD-Himod approximations, unless the 3∗ LM partition in Figure 4d, coupling the three stent sides,
is adopted. As shown in Figure 16c, in this last configuration FD-HiMod achieves an accuracy very
close to that of the conforming reduced FD-FEM: for suitable combinations of h and M , the errors
are only 1-3% larger than the conforming asymptotic values while requiring significantly fewer DOFs
(6, 000-12, 000 versus 23, 000). For larger DOF counts (15, 000-23, 000), other choices of h and M even
allow FD-HiMod to attain errors lower than those of the conforming reduced FD-FEM evaluated on
the 3 LM partition in Figure 4c, which decouples the three stent sides. Moreover, for h = 0.025
selecting appropriate modes M yields errors close to the asymptotic level (about 1%) already for
15, 000-18, 000 DOFs, even compared to the conforming reduced FD-FEM that couples the stent
sides.

4.2 The production case

In this setting, we consider a more realistic scenario where the advective field u models blood flow in a
coronary artery. Specifically, we solve system (2) with a parabolic inflow profile f and the advection-
diffusion model (1) with a zero flux boundary condition on Γw, thus simulating drug release under
physiological conditions with a Reynolds number about equal to 100 and a Péclet number greater
than one. The analysis focuses on the drug concentration along Γw, since the drug is rapidly advected
by the flow and mainly diffuses near the artery wall, where it is absorbed. Indeed, the total amount
of absorbed drug on Γw is directly related to treatment efficacy in preventing restenosis, making
accurate simulations crucial for optimizing stent design and drug-release strategies.
To investigate how strut configurations affect the model performance under these conditions, we
introduce three rings placed at varying mutual distances. This choice allows us to evaluate the
sensitivity of the approximations to obstacle spacing, a relevant factor in realistic stent geometries
where struts may be positioned either close together or further apart, with different physiological
implications.
Concerning the number of LMs, we set NLM = 2, motivated by the benchmark results: two LMs
yield satisfactory accuracy, often comparable to three, while significantly outperforming the one LM
case.

Figure 17 shows the reference solution cR for three equidistant rings. The distances between the
first and second and between the second and third ring are denoted by d1 and d2, respectively, with
the first ring closest to the inflow boundary Γin and the third ring closest to the outflow boundary
Γout. To study the sensitivity of the solution with respect to d1 and d2, we vary their values by
taking d1, d2 ∈ {0.3, 1, 2}. In practice, the position of the second ring is fixed at x = 5, while the first
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d2
d1

Flow direction

Figure 17: The production case: reference solution cR for three equidistant stent rings, with inter-ring
spacings d1 = d2 = 2.

and third rings are shifted accordingly. We recall that the lumen segment is assumed to be 10 mm
long, placing the second ring at the midpoint of the vessel. The maximum distance d = 2 is chosen
because, at this spacing, the rings can be considered effectively independent: in this case, the drug
concentration downstream of two rings matches that obtained with a single one-ring stent placed at
the same distance from the outflow. Conversely, the minimum distance d = 0.3 is selected to remain
consistent with the mesh resolution and to ensure a meaningful solution, avoiding degenerate cases
where cR = 1 on Γw between rings.

Flow direction

(2, 2)

(1, 1)

(0.3, 0.3)

(a) x ∈ (3, 9).

Flow direction

(all cases) (2, 1)
(1, 2)
(1, 1)
(1, 0.3)
(0.3, 1)

(b) x ∈ (5, 9).

Figure 18: The production case: drug distribution of the reference solution along the wall Γw for
different choices of (d1, d2), with symmetric (left) and asymmetric (right) ring arrangements. Above
each plot, a color-coded sketch illustrates the corresponding ring positions (schematic, not to scale).

The main focus of Figure 18 is to show the non-zero drug concentration along the artery wall Γw.
Since upstream values are always zero, all plots start at x > 3, just after the first ring (for d1 = 2).
Figure 18a shows reference solutions cR for equidistant rings, with (d1, d2) = (2, 2), (1, 1), (0.3, 0.3).
As d1 and d2 decrease, concentration increases between the rings but decreases at the outflow. Figure
18b compares four asymmetric configurations, namely (d1, d2) = (1, 2), (2, 1), (0.3, 1), (1, 0.3), with
the equidistant configuration (d1, d2) = (1, 1) in Figure 18a. We restrict our attention to x > 5, since
the profile between the first and second rings remains almost unchanged when varying d2 at fixed d1.
In fact, upstream concentrations are insensitive to downstream spacing due to the highly advective
regime. When d2 = 1 is fixed and d1 varies, only minor changes appear: a small reduction between
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the first and second rings for d1 = 2, and a decrease near the outflow for d1 = 0.3. In contrast, fixing
d1 = 1 and varying d2 produces marked differences along the whole wall, with lower concentrations
at the outflow as d2 decreases.

We now investigate the performance of the non-conforming reduced FD-FEM and FD-HiMod
approaches by computing the L2(Ωx,ε)-norm of the relative error with respect to cR. We vary the
mesh size h ∈ {0.032, 0.043, 0.056, 0.073} for FD-FEM, while both h ∈ {0.05, 0.025, 0.01, 0.005} and
M ∈ {10, 15, 20, 25, 30} for FD-HiMod. The complete set of error values is reported in Table 3. Errors
range between 10% and 15%, less satisfactory than in the benchmark case, likely due to the more
complex advection field and geometric configuration. In general, the error decreases as expected: for
FD-FEM it reduces with mesh refinement, while for FD-HiMod it decreases either with smaller h
(provided M is sufficiently large) or with larger M (for sufficiently small h). Although no clear global
trend emerges with respect to the ring distances, equidistant configurations appear slightly more
accurate, particularly for the choice (d1, d2) = (1, 1). Conversely, strongly asymmetric placements,
such as (d1, d2) = (0.3, 2), tend to yield larger errors, especially when the closest ring is upstream.

Table 3: The production case: L2(Ωx,ε)-norm of the relative error associated with the non-conforming
reduced FD-FEM and FD-HiMod approaches, for different mesh size, number of modes and ring
distances (d1, d2).

(d1, d2) (2, 2) (1, 2) (0.3, 2) (2, 1) (1, 1) (0.3, 1) (2, 0.3) (1, 0.3) (0.3, 0.3)

non-conforming FD-FEM, h = 0.032 0.10690 0.10159 0.11010 0.10155 0.09641 0.10443 0.10570 0.10002 0.10767
non-conforming FD-FEM, h = 0.043 0.13060 0.12891 0.12237 0.12372 0.12352 0.11636 0.12542 0.12519 0.11869
non-conforming FD-FEM, h = 0.056 0.21873 0.18213 0.18469 0.20415 0.19821 0.17007 0.19455 0.18172 0.16280
non-conforming FD-FEM, h = 0.073 0.22211 0.19329 0.19591 0.24044 0.20983 0.21572 0.21350 0.18971 0.18462

FD-HiMod, h = 0.05, M = 10 0.17963 0.17328 0.18444 0.16980 0.16470 0.17539 0.16796 0.16416 0.17561
FD-HiMod, h = 0.05, M = 15 0.16222 0.15688 0.15773 0.15795 0.15136 0.14973 0.15191 0.14810 0.14840
FD-HiMod, h = 0.05, M = 20 0.13924 0.13856 0.14270 0.13946 0.13671 0.13765 0.13689 0.13648 0.13955
FD-HiMod, h = 0.05, M = 25 0.13255 0.13334 0.13835 0.13445 0.13226 0.13313 0.13134 0.13115 0.13499
FD-HiMod, h = 0.05, M = 30 0.13297 0.13401 0.13866 0.13512 0.13297 0.13314 0.13141 0.13149 0.13488

FD-HiMod, h = 0.025, M = 10 0.16787 0.16199 0.17383 0.16015 0.15572 0.16718 0.15986 0.15610 0.16858
FD-HiMod, h = 0.025, M = 15 0.15011 0.14490 0.14664 0.14507 0.13902 0.13865 0.13884 0.13428 0.13485
FD-HiMod, h = 0.025, M = 20 0.12444 0.12406 0.12955 0.12447 0.12171 0.12470 0.12155 0.11968 0.12380
FD-HiMod, h = 0.025, M = 25 0.11782 0.11960 0.12499 0.11941 0.11732 0.11988 0.11657 0.11501 0.11934
FD-HiMod, h = 0.025, M = 30 0.11750 0.11930 0.12479 0.11926 0.11703 0.11953 0.11612 0.11447 0.11880

FD-HiMod, h = 0.01, M = 10 0.15357 0.14933 0.16197 0.14714 0.14371 0.15554 0.15115 0.14736 0.16081
FD-HiMod, h = 0.01, M = 15 0.13853 0.13263 0.13438 0.13237 0.12560 0.12564 0.12850 0.12295 0.12287
FD-HiMod, h = 0.01, M = 20 0.11421 0.11225 0.11742 0.11267 0.10882 0.11259 0.11137 0.10902 0.11212
FD-HiMod, h = 0.01, M = 25 0.10890 0.10806 0.11265 0.10888 0.10486 0.10819 0.10687 0.10492 0.10767
FD-HiMod, h = 0.01, M = 30 0.10826 0.10747 0.11201 0.10843 0.10432 0.10768 0.10627 0.10435 0.10711

FD-HiMod, h = 0.005, M = 10 0.15077 0.14648 0.15915 0.14483 0.14125 0.15336 0.14981 0.14616 0.16001
FD-HiMod, h = 0.005, M = 15 0.13683 0.13090 0.13215 0.12982 0.12330 0.12378 0.12768 0.12224 0.12248
FD-HiMod, h = 0.005, M = 20 0.11303 0.11110 0.11577 0.11038 0.10681 0.11115 0.11102 0.10863 0.11186
FD-HiMod, h = 0.005, M = 25 0.10837 0.10735 0.11125 0.10679 0.10301 0.10726 0.10708 0.10513 0.10773
FD-HiMod, h = 0.005, M = 30 0.10763 0.10670 0.11058 0.10624 0.10233 0.10671 0.10646 0.10451 0.10709

To offer a more concise overview of the sensitivity of the solution to the parameters (d1, d2), we
provide in Figure 19 the boxplots of the average concentration c̄ over the entire domain (see Figure
19a) and c̄w along the downstream section of the wall Γw (see Figure 19b). We analyze the nine
combinations of ring distances (d1, d2) through the variability introduced by the non-conforming
reduced FD-FEM (compact blue boxplots, with medians marked by blue circles) and FD-HiMod
(standard boxplots) methods, when varying mesh size h and number M of modes. Trends are assessed
by comparing changes in the median values across different spacing configurations. For each case,
the downstream section of Γw considered corresponds to the stent-free region with non-zero drug
concentration (e.g., measurements start at x = 3 for (d1, d2) = (2, 2), and at x = 4.7 for (d1, d2) =
(0.3, 0.3)), ensuring that upstream zero-concentration regions do not bias comparisons.
Figure 19a shows that the non-conforming reduced FD-FEM method generally predicts higher average
concentrations than FD-HiMod across all (d1, d2) configurations, and exhibits greater variability likely
because only four mesh sizes h are tested, whereas FD-HiMod explores 20 combinations of h and M
values. The median value of c̄ appears more sensitive to d1 than to d2. Grouping the boxplots from
left to right (with d2 = 2, 1, 0.3, respectively), we observe a consistent decrease in c̄ as d1 decreases
from 2 to 0.3, while changes in d2 have a smaller effect. The configuration (0.3, 0.3) produces the
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(a) Average concentration c̄. (b) Average concentration c̄w on artery wall Γw .

Figure 19: The production case: average concentration over the entire domain (on the left) and
along the artery wall (on the right) associated with the non-conforming reduced FD-FEM (compact
boxplots) and the FD-HiMod (standard bloxplots) approaches, for different (d1, d2) configurations.

lowest concentration overall, whereas moderate spacing between rings (∼ 1 mm) tends to maximize
c̄. Since most of the drug accumulates near the artery wall and the domain concentration is otherwise
close to zero, with c̄ of order 10−2, this average value can be interpreted as the fraction of drug washed
out into the bloodstream and lost after release.
Focusing on the effective drug delivered to the artery wall in Figure 19b, we observe trends similar
to those in Figure 19a. Non-conforming reduced FD-FEM generally overestimates c̄w compared to
FD-HiMod, while both approaches show greater variability when the three rings are further apart,
i.e., for d1 > 0.3 and d2 > 0.3., reflecting its sensitivity to both the mesh size h and the number
M of modes, except when the three rings are very close. When d2 is fixed, c̄w is noticeably affected
by reducing d1 from 2 to smaller values (1 or 0.3), though differences between d1 = 1 and d1 = 0.3
are minor. The median c̄w is higher when the two upstream rings are closer. Conversely, fixing
d1 = 2 yields little change between d2 = 2 and d2 = 1, but a marked decrease at d2 = 0.3. The
same decreasing trend appears when fixing d1 = 1 or 0.3 and reducing d2. Overall, drug delivery to
the wall is maximized when the upstream rings are close together, while the third ring is kept at a
moderate distance (d2 = 1 or 2).

4.3 Discussion

The benchmark and production cases confirm the effectiveness of the FD approach combined with Hi-
Mod reduction in handling complex geometries, such as arteries with stent-induced obstacles. Overall,
FD-HiMod provides a balanced solution compared to the reduced FD-FEM models: in particular,
FD-HiMod outperforms the non-conforming case, while being only slightly less accurate than the
conforming version, which however comes at a prohibitive computational cost in terms of DOFs.
Thus, FD-HiMod achieves the desired trade-off between accuracy and efficiency.
As expected from the model formulation, FD-HiMod accuracy depends on the number of LMs, the
mesh size h, and the number M of modes. We recover the interplay already observed in other contexts:
accuracy improves as h decreases (provided M is sufficiently large) and as M increases (provided h
is sufficiently small). The optimal choice of NLM is less straightforward, since simply increasing the
number of LMs does not necessarily lead to better results.
Based on our observations, the optimal number of LMs depends on the type of boundary condition
assigned on the stent. Two cases were considered: a perfect sink (Dirichlet) condition, representing
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complete drug absorption by the artery wall, and a zero flux (Neumann) condition, simulating an
intermediate equilibrium suitable for hydrophobic drugs with staggered lumen-wall absorption. In
general, weak Dirichlet boundary conditions can be employed in a conforming immersed approach to
overcome the limitations of classical FEM, which struggles to capture discontinuities in (1). In par-
ticular, the reduced interface condition on ΓS in (10), consisting of a low-degree LM function space,
is well-suited for small obstacles, such as stents, and for setups with discontinuities between wall and
stent. Thus, adding LMs along the stent boundary improves the approximation of the jump at the
stent-artery interface. In contrast, under a zero flux boundary condition, the concentration difference
at the stent-wall interface is less abrupt, so increasing the number of LMs does not necessarily enhance
accuracy. A comparison between Figure 9 and Figure 14 confirms that for perfect sink conditions,
the error concentrates around the stent edges, with overshoots and undershoots, whereas for zero flux
conditions it is mainly localized at the stent corners. Hence, to improve the error distribution when
increasing the number of LMs, a tailored three LM partitioning strategy that couples the stent edges
is required (see Figure 16c).
Examining the global accuracy of the conforming reduced FD-FEM and FD-HiMod approaches, we
observe that two LMs are already sufficient to achieve an L2(Ωx,ε) norm of the relative error of about
1% for the zero flux case (see Table 2 and Figure 16b). By contrast, the error is significantly higher
under perfect sink conditions as highlighted by the values in Table 1. However, given that the aver-
age concentration c̄ is small (on the order of 10−2), a 20% relative error corresponds to an absolute
difference of only about 0.002, as confirmed by the qualitative comparison in Figure (8).
The analysis of the more complex scenario with realistic flow conditions, using a three-ring stent
configuration, showed that the placement of the stent rings has a significant impact on the potential
effectiveness of the therapy. In particular, Figure 18 illustrates how the local drug distribution along
Γw is influenced by the ring position. If a higher drug concentration near the stent is desired, the
rings should be placed closer together. Conversely, if drug release further downstream is preferred, the
rings should be spaced farther apart. In the case of anti-proliferative drugs, achieving a higher con-
centration near the injured artery wall is particularly important, making closely spaced struts more
suitable for this purpose. Specifically, regarding the quantities analyzed in Figure 19, the average
drug concentration on the artery wall, c̄w, plays the predominant role in this sensitivity analysis with
respect to ring placement, whereas the average concentration across the entire domain, c̄, remains an
important metric for assessing how much drug is washed out and lost into the bloodstream. Thus,
if minimizing drug washout is the primary goal, the (0.3, 0.3) configuration is optimal, even though
it delivers less drug on average to the artery wall. Conversely, if a more homogeneous and higher
delivery along the artery wall is desired, evenly spaced rings, such as (1, 1) and (1, 2), provide the
best results.

5 Conclusions

This study evaluates the effectiveness of the FD-HiMod approach in reducing computational costs
while preserving solution accuracy when modeling complex geometries with obstacles much smaller
than the overall domain, such as stented arteries. While HiMod reduction has already proven effective
in various applications, ranging from blood flow modeling and linear acoustics to electromagnetism,
it is generally restricted to sufficiently smooth domains. This limitation arises from regularity con-
straints on the mapping from the physical to the reference domain, which exclude geometries with
sharp features, such as an artery lumen containing stents. The main contribution of this work is
to combine the FD approach with HiMod, enabling HiMod to handle complex geometries while en-
hancing a standard FD (e.g., FEM) formulation to reduce its computational effort. In particular, the
results of the production case demonstrate that the FD-HiMod approach effectively captures drug
transport dynamics in near-realistic scenarios, while keeping computational costs significantly lower
than conforming reduced FD-FEM simulations. Moreover, the sensitivity analysis with respect to
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strut configuration carried out in Section 4.2 highlights the strong dependence of drug distribution
on ring spacing, emphasizing the crucial role of stent design parameters in ensuring effective drug
release.

This work should be regarded as a proof-of-concept for the FD-HiMod approach. Several exten-
sions could be pursued to increase its applicability, such as including drug diffusion into the arterial
wall (requiring the imposition of Robin-type boundary conditions instead of Dirichlet and Neumann
data), moving beyond the lumen-only setting, and addressing unsteady regimes. Further research
should also address more realistic artery geometries, stent designs, and patient-specific flow condi-
tions, ultimately enhancing the clinical relevance of the method and exploring its potential extension
to full blood flow modeling with the Navier-Stokes equations. Lastly, a natural direction for future
work could be to develop a rigorous convergence theory for the considered FD formulations, thereby
strengthening their mathematical and modeling foundations.
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[5] Muriel Boulakia, Céline Grandmont, Fabien Lespagnol, and Paolo Zunino. Mathematical and
numerical analysis of reduced order interface conditions and augmented finite elements for mixed
dimensional problems. Computers and Mathematics with Applications, 175:536–569, 2024.

[6] James H Bramble. The lagrange multiplier method for dirichlet’s problem. Mathematics of
Computation, 37:1–11, 1981.

[7] Yves Antonio Brandes Costa Barbosa and Simona Perotto. Hierarchically reduced models for
the Stokes problem in patient-specific artery segments. International Journal of Computational
Fluid Dynamics, 34:160–171, 2020.

[8] Claudio Chiastra, Stefano Morlacchi, Diego Gallo, Umberto Morbiducci, Rubén Cárdenes, Igna-
cio Larrabide, and Francesco Migliavacca. Computational fluid dynamic simulations of image-
based stented coronary bifurcation models. Journal of The Royal Society Interface, 10:20130193,
2013.

[9] Giovanni Conni, Stefano Piccardo, Simona Perotto, Giovanni M. Porta, and Matteo Icardi.
Hiphome: High order projection-based homogenisation for advection diffusion reaction problems.
Multiscale Modeling & Simulation, 23:640–667, 2025.

[10] Anne Cornelissen, Roberta Andreea Florescu, Stefanie Reese, Marek Behr, Anna Ranno, Kiran
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