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Abstract

Two key elements in any function approximation problem are the selection of
data points and the choice of the structure of the ansatz within a given family
of approximation functions. This paper is devoted to the development and anal-
ysis of greedy reconstruction algorithms that address both aspects to improve
approximation accuracy and efficiency. The general idea of these methods is to
select an optimal set of data points while simultaneously identifying a minimal
structure that is able to accurately approximate the selected data. Theoretical
and numerical studies on polynomial interpolation and function approximation
by neural networks demonstrate the efficiency of the proposed algorithms.

Keywords: Function approximation, polynomial interpolation, data-driven methods,
neural networks, greedy reconstruction algorithms

1 Introduction

When dealing with approximation problems, one needs to consider two main aspects:
the computation (or selection) of the data and the optimization of the structure of the
approximation ansatz, within a given family of approximation functions. For instance,
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the first issue is known for polynomial approximation, where one searches for a set
of interpolating nodes that leads to the best approximation quality (see, e.g., [1, 2]).
Here, while the structure of the approximation ansatz is fixed (a polynomial of a given
order), the computation of the data (interpolating nodes) is a crucial aspect that
strongly affects the approximation error. Another prominent field where both aspects
play an important role is machine learning. Before training a neural network (the
approximation ansatz) for a specific task, one must determine its structure (number
and dimensions of the network layers) and choose an appropriate set of training data to
avoid over/underfitting; see, e.g., [3–5]. This paper deals with developing and analyzing
greedy algorithms designed to handle these aspects. More specifically, given the task
of finding an approximation (a surrogate) g⋆ of a function f , the goal of our methods
is to construct a set of data points {(x̃xxj , f(x̃xxj))}Kj=1 while optimizing the structure
of the ansatz set G, within a given family of approximation functions, in which one
searches for g⋆. Given these two objects, one obtains g⋆ by computing an element in
G that minimizes the distance from f when evaluated at the points {x̃xxj}Kj=1.

Our new greedy algorithms are inspired by those introduced in [6–10] in the field of
Hamiltonian identification and inverse problems, and can be divided into two classes.
A first class, closer to the methods developed in [6–10], splits the process into online
and offline phases. We call them greedy reconstruction (GR) algorithms. Here, the
evaluation of f is allowed only in an online phase (in which g⋆ is computed) after the
set {x̃xxj}Kj=1 and the structure of G (within a given family of approximation functions)
have been designed by a GR algorithm in an offline phase. Note that GR algorithms do
not use f to build {x̃xxj}Kj=1, and the data set {(x̃xxj , f(x̃xxj))}Kj=1 is built only afterwards.
Moreover, we will also introduce an optimized version of GR, called OGR, where the
greedy character of the method is fully exploited and extended to better optimize
the structure of the approximation ansatz. The second class assumes that a (very)
large data set {(x̃xxj , f(x̃xxj))}Jj=1, with J ≫ K, is given. We call algorithms in this
second class Data Greedy Reconstruction (DGR) algorithms. These aim to select the
smallest subset of K elements from {(x̃xxj , f(x̃xxj))}Jj=1 while simultaneously optimizing
the structure of G. Note that, unlike the first class, DGR strategies use the (available)
data {(x̃xxj , f(x̃xxj))}Jj=1, but select only those that are needed to build g⋆.

To study the applicability of our new numerical strategies and analyze their per-
formance, we consider two classes of problems: polynomial interpolation and function
approximation by neural networks. Since polynomial interpolation is a well-understood
branch of function approximation problems, it represents a concrete benchmark for
studying our GR, OGR and DGR algorithms and obtaining concrete theoretical
results. In particular, we prove that GR and OGR compute exactly a set of (tensor-
product) Leja points (see, e.g, [11–14] and references therein). Moreover, we show that
for polynomial interpolation, OGR is equivalent to the well-known Empirical Inter-
polation Method (EIM); see, e.g,. [15–20] and references therein. Although the two
methods can be equivalent, GR, OGR and DGR have one main advantage over EIM:
EIM (and also other greedy algorithms used for function approximation, see, e.g., [21])
is limited to linear parametrizations of the ansatz function, while GR, OGR and DGR
can also handle nonlinear parameterizations, such as weights and biases of neural net-
works. This is exactly the second class of problems to which we apply our greedy
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algorithms, and where it is possible to see how nicely they can simultaneously select
the data set and optimize the network structure. In particular, we develop a combina-
tion of OGR and DGR tailored for neural network applications, called Network OGR
(NOGR) algorithm. We provide a detailed discussion about the network structure
optimization and illustrate how our algorithms can optimize the depth and number of
neurons of a network. Our paper is organized as follows: in Section 2 we set our nota-
tion. In Section 3, we introduce our GR algorithms in a general setting. In Section
4, the behavior of our GR algorithms for polynomial interpolation (in univariate and
multivariate settings) is studied. In Section 5, we detail our GR algorithms for func-
tion approximation by neural networks and study their behavior through extensive
numerical experiments. Finally, we present our conclusions in Section 6.

2 Notation

We denote by x̃j ∈ R and x̃xxj = [x̃j,1, . . . , x̃j,N ]⊤ ∈ RN any interpolation point,
while using x and xxx = [x1, . . . , xN ]⊤ for general points in R and RN , respectively.
For N,M ∈ N, we let G = G(X,RM ) be a class of functions over some closed and
bounded set X ⊂ RN . In particular, for M = 1 we denote by Pn := Pn(X) the
space of polynomials p over X with degree deg(p) ≤ n, meaning that p : X → R,
x 7→ p(x) =

∑n
|βββ|=0 aβββxxx

βββ , for coefficients aβββ ∈ R with βββ ∈ NN , |βββ| =
∑N

i=1 βi, and

xxxβββ = xxx(β1,...,βN ) := xβ1

1 · · ·xβN

N . For a monomial aβββx
βββ , we call βββ = (β1, . . . , βN ) ∈ NN

its componentwise degree.
We denote by FW,b a residual neural network of depth m, with input size N ∈ N,

output size M ∈ N and hidden layers of (the same) width d ∈ N, represented by
weights W = (W [1], . . . ,W [m]) ∈ RN×d × · · · × Rd×M and biases b = (bbb[1], . . . , bbb[m]) ∈
Rd × · · · ×Rd ×RM . We call W(ddd) := (RN×d × · · · ×Rd×M )× (Rd × · · · ×Rd ×RM )
the joint space of the weight matrices W and the bias vectors b.

3 Greedy algorithms for function approximation

For a (finite-dimensional) function space G over X ⊂ RN , the interpolant of a function
f : X → RM for a set of points {x̃xxj}Kj=1 ⊂ X is the element g⋆ ∈ G such that
g⋆(x̃xxj) = f(x̃xxj), j = 1, . . . ,K. A general approach of finding this interpolant is to solve
the least-squares problem

min
g∈G

K∑
j=1

∥f(x̃xxj)− g(x̃xxj)∥22. (1)

The overall goal is to find a g⋆ that approximates f well at all other points xxx ∈
X \ {x̃xx1, . . . , x̃xxK}. In other words, the interpolant g⋆ must ideally solve

min
g∈G

max
xxx∈X

∥f(xxx)− g(xxx)∥22.
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Algorithm 1 GR for function approximation

Require: A set B = {g1, . . . , gK} ⊂ G with corresponding parameterizations

{α̃αα1, . . . , α̃ααK} ⊂ RK̃ withK, K̃ ∈ N with K̃ ≤ K and such that gk = gα̃ααk for k = 1, . . . ,K.
1: Set k = 1 and find x̃xx1 that solves

max
xxx∈X

∥g1(xxx)∥22. (2)

2: while k ≤ K − 1 do
3: Fitting step: Find an αααk that solves

min
ααα∈span(α̃ααi)ki=1

k∑
j=1

∥gααα(x̃xxj)− gk+1(x̃xxj)∥22. (3)

4: Splitting step: Find an x̃xxk+1 that solves

max
xxx∈X

∥gαααk (xxx)− gk+1(xxx)∥22. (4)

5: Update k ← k + 1.
6: end while

In that regard, the choice of the points {x̃xxj}Kj=1 plays a crucial role. One reasonable
assumption is that for an increasing number of interpolation points K, the approxi-
mation error max

xxx∈X
∥f(xxx)− g⋆(xxx)∥22 decreases. However, depending on the application,

the evaluation of the function f at a large number of points might be very expen-
sive or create an imbalance in the approximation properties of the interpolant g⋆ with
respect to X. Thus, our goal is to find an efficient set of points {x̃xxj}Kj=1, i.e., the fewest
number of points such that the approximation error is still reasonably small.

For this purpose, we introduce adapted versions of the so-called greedy reconstruc-
tion (GR) algorithms (compare [6–10]). These methods compute the inputs {x̃xxj}Kj=1

in an offline phase, i.e., without having access to the outputs of f (namely the data
{f(x̃xxj)}Kj=1), but they require a set (or basis) B := {g1, . . . , gK} ⊂ G.

In order to handle different function spaces G, we assume that the set B can be

parameterized, i.e., there exists K̃ ≤ K, a closed and convex subspace A ⊂ RK̃ , and an
isomorphism g̃ : A → G,ααα 7→ g̃(ααα) := gααα. In this way, we can identify B = {g1, . . . , gK}
with a set {α̃αα1, . . . , α̃ααK} ⊂ A such that gk := gα̃ααk for k = 1, . . . ,K. A simple example
for such a parameterization is the case where B is a linear basis of G. Then we can
choose K̃ = K, A = RK and α̃αα

k
= eeek the canonical vectors in RK . For a general

ααα ∈ RK we obtain gααα =
∑K

k=1 αkgk.
Now, we can formulate the standard version of GR as described in [7–10]. GR

applied to the setting of problem (1) is stated in Algorithm 1. GR builds the set
{x̃xxj}Kj=1 recursively. Assume that after k iterations a set {x̃xxj}Kj=1 has been computed.
The new point x̃xxk+1 is obtained in two substeps. First, one solves the interpolation
problem (3), which attempts to find a parameterization αααk such that the function
gαααk(x̃xxj) fits gk+1(x̃xxj) in all previously computed points {x̃xxj}kj=1. Second, x̃xxk+1 is com-
puted as the solution to (4) by maximizing the difference between gαααk(x̃xxk+1) and
gk+1(x̃xxk+1).
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Algorithm 2 OGR for function approximation

Require: A set B = {g1, . . . , gK} ⊂ G with parameterizations A = {α̃αα1, . . . , α̃ααK} ⊂ RK̃

with K, K̃ ∈ N, K̃ ≤ K and such that gk = gα̃ααk , k = 1, . . . ,K, and a tolerance tol > 0.
1: Find x̃xx1 and ℓ1 that solve

max
ℓ∈{1,...,K}

max
xxx∈X

∥gℓ(xxx)∥22. (5)

2: Swap g1 and gℓ1 in B, α̃αα1 and α̃ααℓ1 in A, and set fsplit = ∥g1(x̃xx1)∥22 and k = 1.
3: while k ≤ K − 1 and fsplit ≥ tol do
4: for ℓ = k + 1, . . . ,K do
5: Fitting step: Find αααℓ that solves

min
ααα∈span(α̃ααi)ki=1

k∑
j=1

∥gααα(x̃xxj)− gℓ(x̃xxj)∥22. (6)

6: end for
7: Splitting step: Find x̃xxk+1 and ℓk+1 that solve

max
ℓ∈{k+1,...,K}

max
xxx∈X

∥gαααℓ(xxx)− gℓ(xxx)∥22. (7)

8: Swap gk+1 and gℓk+1
in B, α̃ααk+1 and α̃ααℓk+1 in A.

9: Update fsplit ← ∥gαααk (x̃xxk+1)− gk+1(x̃xxk+1)∥22 and k ← k + 1.
10: end while

Notice that GR performs a sweep over the set B, computing a new input x̃xx for
each element in B. Hence, the choice and order of the elements g1, . . . , gK can have a
large impact on the selection of {x̃xxj}Kj=1. Since it is usually not clear a-priori which

set B yields the inputs {x̃xxj}Kj=1 with the best approximation features, we would like to

remove or at least reduce the dependence of the algorithm on the functions {gk}Kk=1.
For this purpose, in Algorithm 2 we introduce a strategy that has also been discussed
in [7–10], called optimized GR algorithm (OGR). The main novelty of OGR over
the standard GR algorithm is that it considers all remaining elements in the set B
simultaneously at each iteration. In the spirit of greedy procedures, the new splitting
step (7) selects simultaneously the next input and element of B as the ones that return
the largest overall cost function value. Additionally, the second condition for the while
loop in line 3 allows stopping OGR when a specific error tolerance is reached. This can
be particularly useful if the error between f and any function in G is a priori expected
to be of a certain order, meaning that further decreasing the “internal” error within
G does not decrease the overall approximation error.

Both GR and OGR are data-free methods, in the sense that they do not require
evaluations of the function f (outputs). However, there are many applications, espe-
cially in the field of machine learning, where output data are already available. A
common issue in these data-driven settings is that the data is imbalanced, which can
lead to biased models (see, e.g., [5, Section 5.3.1]) and thereby a lack of robustness.
With the goal of selecting optimal data points that represent well the whole data set
and avoid biased models, we introduce a data-driven version of GR (DGR) in Algo-
rithm 3. Notice that the termination criterion, that is ∥gαααk(x̃xxk+1) − ỹyyk+1∥22 < tol,
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Algorithm 3 DGR for function approximation

Require: A set of data points Z := {(xxxj , yyyj)}Jj=1 ⊂ X × RM with yyyj := f(xxxj) and J ∈ N,
a set of functions B = {g1, . . . , gK} ⊂ G and a tolerance tol > 0.

1: Find (x̃xx1, yyy1) that solves

max
(xxx,yyy)∈Z

∥yyy∥22. (8)

2: Update Z ← Z \ (x̃xx1, ỹyy1) and set fsplit = ∥ỹyy1∥22, k = 1.
3: while k ≤ J − 1 and fsplit ≥ tol do

4: Fitting step: Find an αααk that solves

min
ααα∈span{α̃ααi}k

i=1

k∑
j=1

∥gααα(x̃xxj)− ỹyyj∥
2
2. (9)

5: Splitting step: Find (x̃xxk+1, ỹyyk+1) that solves

max
(xxx,yyy)∈Z

∥gαααk (xxx)− yyy∥22. (10)

6: Update Z ← Z \ (x̃xxk+1, ỹyyk+1), fsplit ← ∥gαααk (x̃xxk+1)− ỹyyk+1∥22 and k ← k + 1.
7: end while

is similar to that of OGR where the evaluation gk+1(x̃xxk+1) is replaced by the data
ỹyyk+1. This ensures that DGR terminates when the function gαααk is a sufficiently good
approximation of the full data set {(xxxj , yyyj)}Jj=1. In general, it is also possible to mod-
ify DGR by using other features of OGR to DGR like, for example, the automatic
selection of the next element gk+1 from B. However, we omit this discussion here, since
the resulting method is very similar to the NOGR strategy introduced in Section 5.1.

4 GR algorithms for polynomial approximation

In this section, we apply our methods to the well-known case of function approximation
by polynomials, i.e., M = 1 and G = Pn(X), and study the corresponding behavior.
For a set of linearly independent polynomials B = {p1, . . . , pK} ⊂ Pn, we consider

the simple linear parameterization pααα =
∑K

k=1 αkpk for ααα ∈ RK . This implies that, at
the k-th GR iteration, the fitting step is interpolating the new polynomial pk+1 by a
linear combination of the polynomials p1, . . . , pk. GR for polynomial interpolation is
detailed in Algorithm 4. Now, we analyze the behavior of this algorithm in sections
4.1 and 4.2. Finally, in section 4.3 we discuss practical implementation aspects.

4.1 Analysis of GR algorithms

In this section, we investigate the points selected by Algorithm 4 for one-dimensional
and multivariate polynomial interpolation. First, we consider the standard case of one-
dimensional polynomials in Section 4.1.1, since it is well understood and the notation
is simple. This allows us to formulate the main arguments of our analysis in a compre-
hensible way. Afterwards, we build the analysis for multivariate polynomials in Section
4.1.2 on top of the one-dimensional foundation.
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Algorithm 4 GR for polynomial interpolation

Require: A set of linearly independent polynomials B = {p1, . . . , pK} ⊂ Pn.
1: Set k = 1 and find x̃xx1 that solves

max
xxx∈X

|p1(xxx)|2. (11)

2: while k ≤ K − 1 do
3: Fitting step: Find an αααk that solves

min
ααα∈Rk

k∑
j=1

|pααα(x̃xxj)− pk+1(x̃xxj)|2, (12)

where pααα(xxx) =
∑k

i=1 αipi(xxx).
4: Splitting step: Find an x̃xxk+1 that solves

max
xxx∈X

|pαααk (xxx)− pk+1(xxx)|2. (13)

5: Update k ← k + 1.
6: end while

4.1.1 One-dimensional polynomial interpolation

We begin with the one-dimensional setting N = 1 with X ⊂ R a closed interval. We
also consider the standard assumption that the number of selected points matches the
degree of the polynomials in B, i.e., K = n+ 1.

Recall (e.g., from [2, Theorem 8.2]) that for any set of points {x̃j}n+1
j=1 and the

polynomial p⋆ ∈ Pn interpolating a (n+ 1)-times continuously differentiable function
f at these points, there exists for each x ∈ X a ξ ∈ X such that

|f(x)− p⋆(x)| =
∥f (n+1)(ξ)∥∞

(n+ 1)!

n+1∏
j=1

|x− x̃j |. (14)

Thus, to minimize the error |f(x)− p⋆(x)|, the points {x̃j}n+1
j=1 should be chosen such

that they minimize max
x∈X

∏n+1
j=1 |x− x̃j |. One popular set of points that can be derived

directly from this goal, are the so-called Leja points. This class of interpolation points
was first introduced by Edrei [12] and later studied by Leja [11]. Starting from any
x̃1 ∈ X the corresponding Leja sequence (xj)

n+1
j=1 is generated iteratively by the update

x̃k+1 = argmax
x∈X

k∏
j=1

|x− x̃j |, k = 1, . . . , n. (15)

The update formula (15) has two main advantages. First, the update formula allows
one to incorporate any preexisting set of points {x̃j}kj=1. This property is of particular
interest in applications, where some preliminary data is already available. Second, the
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computation of the new point x̃k+1 allows one to evaluate the term max
x∈X

∏k
j=1 |x−x̃j | =∏k

j=1 |x̃k+1 − x̃j |, which corresponds to the a-priori interpolation error given in (14).
As main result of this section, we show that GR computes exactly a sequence of

Leja points if B is a polynomial basis of increasing order.
Theorem 1 (GR computes the Leja points). Let B = {p1, . . . , pn+1} ⊂ Pn be such
that span{p1, . . . , pk} = Pk−1 for all k = 1, . . . , n. Then the points {x̃j}n+1

j=1 computed
Algorithm 4 form a Leja sequence.

Proof. We begin by constructing the coefficients αααk ∈ Rk that solve the fitting step
problem (12) at iteration k. Let us define p̃k(x) := −ak+1

∏k
j=1(x − x̃j), where ak+1

is the leading coefficient of pk+1 ∈ Pk. Then p̃k + pk+1 is a polynomial in Pk−1. Since
{p1, . . . , pK} form a basis of Pk−1, there exists αααk ∈ Rk such that pαααk = p̃k + pk+1.
Thus pαααk(x̃j) − pk+1(x̃j) = p̃k(x̃j) = 0 for all j = 1, . . . , k, which implies that αααk =

argmin
ααα∈Rk

∑k
j=1 |pααα(x̃j)− pk+1(x̃j)|. The uniqueness follows by the fact that the points

x̃1, . . . , x̃k are distinct (which can be shown by a simple iterative argument), meaning
that the polynomial pαααk and therefore also αααk are unique.

Now, using the polynomial pαααk constructed above and solving (12), we obtain

|pαααk(x)− pk+1(x)|2 = |p̃k(x)|2 = |ak+1|2
k∏

j=1

|x− x̃j |2.

Since ak+1 does not depend on x, the splitting-step problem (13) can be written as

max
x∈X

∏k
j=1 |x−x̃j |2, which is equivalent to the Leja update (15). Thus, the splitting step

of Algorithm 4 at iteration k computes exactly the point x̃k+1 in the Leja sequence.

Notice that p1 ∈ P0 implies that p1 ≡ c for some c ∈ R. Thus, any x ∈ X is a
solution to the initialization problem (11). Together with the result from Theorem 1,
this implies that one may choose any initial point x̃1 ∈ X and GR will compute the
corresponding Leja sequence {x̃j}n+1

j=1 .

4.1.2 Multivariate polynomial interpolation

Let us turn to the multivariate setting, i.e., N > 1 and X = X1 × · · · ×XN with Xi a
closed and bounded subinterval of R for i = 1, . . . , N . As in the one-dimensional case,
we denote by B a basis of Pn = Pn(X). Notice that dim(Pn) =

(
N+n
N

)
(see, e.g., [22,

Theorem 2.5]), which implies that GR will compute K =
(
N+n
N

)
points.

To relate the points selected by GR to tensor products of Leja points, we introduce
some additional notation. For an initial point x̃xx1 ∈ X, we denote by {yij}

n+1
j=1 ⊂ Xi, y

i
j

the Leja sequence initialized by x̃1,i for i = 1, . . . , N , i.e., yi1 = x̃1,i and

yij = argmax
x∈Xi

j−1∏
ℓ=1

|x− yiℓ|, i = 1, . . . , N, j = 2, . . . , n+ 1. (16)
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Now, we define the m-first tensor-product Leja points for m ∈ N as

Ym :=
{
[y1j1 , . . . , y

N
jN ]⊤ | j1, . . . , jN ∈ N+ s.t.

N∑
i=1

ji ≤ N +m
}
, (17)

with cardinality #Ym =
(
N+m
N

)
. Let us give an example of Ym.

Example 1 (on the set Ym). Let N = n = 2, X = [−1, 1]2 and x̃xx1 = [−1,−1]⊤. Then
y11 = y21 = −1, y12 = y22 = argmax

x∈[−1,1]

|x− (−1)| = 1 and

y13 = y23 = argmax
x∈[−1,1]

|x+ 1||x− 1| = 0.

Thus, the two Leja sequences {y1j }3j=1 and {y2j }3j=1 are given by {−1, 1, 0}. Since

Ym = Ym−1 ∪ {[y1j1 , y
2
j2 ]

⊤ | j1, j2 ∈ N+ s.t. j1 + j2 = 2 +m}

for m ≥ 1, we obtain

Y0 = {[y11 , y21 ]⊤}, = {[−1,−1]⊤}
Y1 = Y0 ∪ {[y11 , y22 ]⊤, [y12 , y21 ]⊤}, = Y0 ∪ {[−1, 1]⊤, [1,−1]⊤}

Y2 = Y1 ∪ {[y11 , y23 ]⊤, [y12 , y22 ]⊤, [y13 , y21 ]⊤} = Y1 ∪ {[−1, 0]⊤, [1, 1]⊤, [0,−1]⊤}.
Y3 = Y2 ∪ {[y12 , y23 ]⊤, [y13 , y22 ]⊤} = Y2 ∪ {[1, 0]⊤, [0, 1]⊤}

Y4 = Y3 ∪ {[y13 , y23 ]⊤} = Y3 ∪ {[0, 0]⊤}.

These sets are represented in Figure 1. Notice that for m ≥ 5 we have Ym = Y4.
Remark 1 (on the set Yn and the full tensor product of Leja points). Notice that
the set Yn = Y2 in Example 1 still contains the full Leja tensor product {y11 , y12} ⊗
{y21 , y22} = {−1, 1}⊗ {−1, 1}. However, this is not the case for general n,N ∈ N since
a full Leja tensor product {y11 , . . . , y1m} ⊗ · · · ⊗ {yN1 , . . . , yNm} of order m ≤ n contains
all points [y1j1 , . . . , y

N
jN

]⊤ with j1, . . . , jN ∈ {1, . . . ,m}. Thus, in order for the set Yn to

contain this point, we require n to satisfy
∑N

i=1 m ≤ N+n, namely that Nm ≤ N+n.
The main result of this section (Theorem 2) is that the points computed by GR

coincide with Yn. To prove it, two assumptions are needed. To clarify their meanings,
we sketch the idea of the proof of Theorem 2 in what follows.

The main part of the result is proven by induction on the degree m of the poly-
nomials in the basis B = {p1, . . . , pK}. For the induction step, we follow the same
idea of the proof for Theorem 1 and thus require that the basis elements are ordered
according to their polynomial order and the appearing monomials. For this purpose,
we introduce the following assumption on the order of B.
Assumption 1. Let m ∈ {0, . . . , n}, k =

(
N+m
N

)
and Km =

(
N+m+1

N

)
. Then the

first k elements p1, . . . , pk in B form a basis of Pm. Additionally, for all ℓ ∈ {k +
1, . . . ,Km} the polynomial pℓ ∈ B introduces exactly one new monomial with respect
to all monomials appearing in the polynomials p1, . . . , pk. In other words, there exists

9



Fig. 1: All tensor-product points (gray crosses) corresponding to the two Leja
sequences {y1j }3j=1 = {y2j }3j=1 = {−1, 1, 0} from Example 1, and points xxx = [x1, x2]

⊤ ∈
[−1, 1]2 (red crosses) contained in the sets Y0 (top left), Y1 (top middle), Y2 (top
right), Y3 (bottom left) and Y4 (bottom right) as defined in (17).

a (unique) polynomial p ∈ span(p1, . . . , pk) such that pℓ = adℓ
1,...,d

ℓ
N
xxx(dℓ

1,...,d
ℓ
N ) + p,

where adℓ
1,...,d

ℓ
N

∈ R \ {0} and (dℓ1, . . . , d
ℓ
N ) denotes the componentwise degree of the

new monomial xxx(dℓ
1,...,d

ℓ
N ) introduced by pℓ.

Let us clarify Assumption 1 by the following example.
Example 2. Let N = n = 2 and consider a basis B = {p1, . . . , pK} with K =

(
N+n
N

)
=

6 such that Assumption 1 holds. Then p1 must be the constant polynomial, i.e., p1 ≡ a
for some a ∈ R. Now, there are two possible choices for p2:

p2(xxx) = a1x1 + a0 or p2(xxx) = a1x2 + a0,

for a1 ∈ R \ {0}, a0 ∈ R. Let us assume that p2(xxx) = a1x1 + a0. Then

p3(xxx) = b1x2 + b0,

for b1 ∈ R \ {0}, b0 ∈ R. Now, we have three choices for p4:

p4(xxx) =


a3x

2
1 + a2x2 + a1x1 + a0,

a3x
2
2 + a2x2 + a1x1 + a0,

a3x1x2 + a2x2 + a1x1 + a0,

10



for a3 ∈ R \ {0}, a2, a1, a0 ∈ R. Depending on the choice of p4, the polynomials p5
and p6 will be of the remaining two forms and thereby introduce the other monomials
of degree 2.

Assumption 1 allows us to uniquely identify the basis elements in B by the com-
ponentwise degree of the monomials introduced by the basis elements. For example,
if we choose p4 = a3x1x2 + a2x2 + a1x1 + a0 in Example 2, then we can identify p4
by the componentwise degree (1, 1) that corresponds to the monomial a3x1x2. Let us
conclude the discussion on Assumption 1 with the following remark, relating the space
of polynomials Pm+1 \ Pm with the set of Leja points Ym+1 \ Ym, for m = 0, . . . , n.
Remark 2 (on the sets Pm and Ym). Let m ∈ {0, . . . , n}, k =

(
N+m
N

)
and Km =(

N+m+1
N

)
. Then Assumption 1 implies that the polynomials {pℓ}Km

ℓ=k+1 form a basis of

Pm+1\Pm. Thus, the componentwise degrees (dℓ1, . . . , d
ℓ
N ) of the monomials xxx(dℓ

1,...,d
ℓ
N )

introduced by the polynomials pℓ, for ℓ = k + 1, . . . ,Km, coincide with all possible
combinations (d1, . . . , dN ) ∈ NN that satisfy

∑N
i=1 di = m+1. Moreover, we can write

Ym+1 \ Ym =
{
[y1j1 , . . . , y

N
jN ]⊤ | j1, . . . , jN ∈ N+ s.t.

N∑
i=1

ji = N +m+ 1
}

=
{
[y1d1+1, . . . , y

N
dN+1]

⊤ | (d1, . . . , dN ) ∈ NN s.t.

N∑
i=1

di = m+ 1
}
.

Hence, there exists a one-to-one relation between the componentwise degrees of the
monomials introduced by the polynomials {pℓ}Km

ℓ=k+1 and the Leja points Ym+1 \ Ym.
The next step in the proof of our main result is to show that the splitting-step

problem (13) is equivalent to a multivariate version of the Leja update (16). However,
notice that maximization problems involving multivariate polynomials in general do
not have a unique solution. Consider, for example, the maximization problem

max
xxx∈X

|p(xxx)|2, p(xxx) =

(
1∏

j=1

(x1 − y1j )

)(
0∏

j=1

(x2 − y2j )

)
· · ·

(
0∏

j=1

(xN − yNj )

)
= x1 − y1j .

(18)
Then any xxx = [x1, . . . , xN ]⊤ ∈ X with x1 ∈ argmax

x∈X1

|x1 − y1j |2 is a solution to (18).

Notice that x1 does not has to be unique. Thus, we introduce the following assumption
that sets all components to the next entry of the corresponding Leja sequence.
Assumption 2. At iteration k ∈ {1, . . . ,K−1} of Algorithm 4, let (dk+1

1 , . . . , dk+1
N ) ∈

NN be the componentwise degree of the unique monomial that pk+1 ∈ B introduces,
according to the second part of Assumption 1. If the splitting-step problem (13) is given
by max

xxx∈X
|pαααk(xxx)− pk+1(xxx)|2 with

pαααk(xxx)− pk+1(xxx) = a

( dk+1
1∏
j=1

(x1 − y1j )

)
· · ·

( dk+1
N∏
j=1

(xN − yNj )

)
, (19)

11



for some a ∈ R, then Algorithm 4 selects the point x̃xxk+1 =
[
y1
dk+1
1 +1

, . . . , yN
dk+1
N +1

]⊤
.

Notice that, if the polynomial pαααk(xxx)− pk+1(xxx) is given as in (19), then

max
xxx∈X

|pαααk(xxx)− pk+1(xxx)|2 = a

(
max
x1∈X1

dk+1
1∏
j=1

|x1 − y1j |2
)
· · ·

(
max

xN∈XN

dk+1
N∏
j=1

|xN − yNj |2
)
.

(20)
Thus, by the Leja update (16),

[
y1
dk+1
1 +1

, . . . , yN
dk+1
N +1

]
is always a solution to (20) and

hence to the splitting-step problem (13). We can now state our main result.
Theorem 2 (multivariate GR computes tensor product Leja points). Let n,N ∈
N, K =

(
N+n
N

)
, B = {pk}Kk=1 a basis of Pn and x̃xx1 ∈ X the solution to (11). If

Assumptions 1 and 2 hold, then the points computed by Algorithm 4 coincide with Yn.

Proof. We prove the result by induction on the degree m of the polynomials in B. The
case m = 0 is trivial since Y0 = {[y11 , . . . , yN1 ]⊤} = {x̃xx1}. Let us now assume that for
some m ∈ {1, . . . , n} and k =

(
N+m
N

)
the set {x̃xxj}kj=1 coincides with Ym. Then the

result follows if we can show that the set {x̃xxj}Km
j=1 for Km =

(
N+m+1

N

)
coincides with

Ym+1. To do so, recalling Remark 2, it is sufficient to show that Algorithm 4 computes
exactly the point [y1

dℓ
1+1

, . . . , yN
dℓ
N+1

]⊤ at iteration ℓ ∈ {k + 1, . . . ,Km}. We prove this

result by a second induction argument on the index ℓ.
Let us begin with the base case ℓ = k + 1. By Assumption 1, we have

pk+1 = adk+1
1 ,...,dk+1

N
xxx(dk+1

1 ,...,dk+1
N ) + p,

for some p ∈ span{p1, . . . , pK}. Now, we define the polynomial

p̃(xxx) := −adk+1
1 ,...,dk+1

N

( dk+1
1∏
j=1

(x1 − y1j )

)
· · ·

( dk+1
N∏
j=1

(xN − yNj )

)
∈ Pm+1, (21)

where yij are the Leja points defined in (16). By the definition of the polynomial degree

given in Section 2, we can write p̃(xxx) =
∑m

|βββ|=0 aβββxxx
βββ−pk+1(xxx), for some aβββ ∈ R. Thus,

since the polynomials {p1, . . . , pK} form a basis of Pm (by Assumption 1), there exists
a unique αααk ∈ Rk such that

p̃(xxx) = pαααk(xxx)− pk+1(xxx) =

k∑
i=1

αk
i pi(xxx)− pk+1(xxx), for all xxx ∈ X.

Recalling (17), we have for any yyy ∈ Ym that yyy = [y1j1 , . . . , y
N
jN

]⊤ for some indices

j1, . . . , jN ∈ N+ with
∑N

i=1 ji = N+m. Since
∑N

i=1 d
k+1
i = m+1, there exists at least

one ji such that 1 ≤ ji ≤ dk+1
i .1 Together with (21), this implies that p̃(yyy) = 0 for all

1This follows by a contradiction argument: assume that all ji > dk+1
i for all i ∈ {1, . . . , N}, then∑N

i=1 ji ≥
∑N

i (dk+1
i + 1) = N + m + 1, contradicting

∑N
i=1 ji = N + m.
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yyy ∈ Ym. Since we assume that the set (x̃xxj)
k
j=1 coincides with Ym, we obtain p̃(x̃xxj) = 0

for all j ∈ {1, . . . , k}. Thus, αααk is the unique solution to the fitting-step problem (12),
and the splitting-step problem (13) can be written as max

xxx∈X
|p̃(xxx)|2. By Assumption 2,

Algorithm 4 will now choose exactly x̃xxk+1 =
[
y1
dk+1
1 +1

, . . . , yN
dk+1
N +1

]⊤
.

Next, consider the induction step ℓ → ℓ+1. Let us denote by (x̃xxj)
ℓ
j=k+1 the set of

points computed by Algorithm 4 from the base case until iteration ℓ. By the induction
hypothesis, we have (x̃xxj)

ℓ
j=k+1 ∈ Ym+1. Now, the induction step ℓ → ℓ + 1 follows

analogously to the base case above. We only have to show that the new polynomial

p̃(xxx) := −adℓ+1
1 ,...,dℓ+1

N

( dℓ+1
1∏
j=1

(x1 − y1j )

)
· · ·

( dℓ+1
N∏
j=1

(xN − yNj )

)
∈ Pm+1 (22)

satisfies p̃(x̃xxj) = 0 also for all j ∈ {k + 1, . . . , ℓ}. This can be shown by the following
contradiction. Assume that p̃(x̃xxj) ̸= 0 for some j ∈ {k + 1, . . . , ℓ}. By the assumption
of the induction step, we have x̃xxj ∈ Ym+1 \ Ym and x̃xxj = [y1

dj
1+1

, . . . , yN
dj
N+1

]⊤ with∑N
i=1 d

j
i = m+1. On the other hand, since pℓ+1 ∈ Pm+1\Pm we also have

∑N
i=1 d

ℓ+1
i =

m + 1. Thus, p̃(x̃xxj) ̸= 0 together with (22) imply that dji + 1 > dℓ+1
i for all i ∈

{1, . . . , N}. Since
∑N

i=1 d
j
i =

∑N
i=1 d

ℓ+1
i , we obtain dji = dℓ+1

i for all i ∈ {1, . . . , N}.2
Since j < ℓ+ 1, this is a contradiction to the second part of Assumption 1.

Notice that the full grid of tensor-product Leja points of order n is given by

Y := (y1j )
n+1
j=1 × · · · × (yNj )n+1

j=1 = {[y1j1 , . . . , y
N
jN ]⊤ | j1, . . . , jN ∈ {1, . . . , n+ 1}}.

Clearly, we have Yn ⊊ Y, meaning that GR applied to a basis B of Pn only computes
a subset of the tensor-product Leja points. However, analogously to Theorem 2, one
can also show that if we use a basis B that spans the same space as the monomials up
to componentwise degree nN , then GR computes the full tensor product Y.

4.2 OGR and equivalence with EIM

As in Section 3, we can formulate an OGR for polynomial interpolation problems.
The resulting method is stated in Algorithm 5. This algorithm looks similar to a pop-
ular greedy algorithm introduced in [15]: the empirical interpolation method (EIM).
While EIM is mostly used in the context of reduced-basis applications for parameter-
dependent PDEs, it has also been studied for polynomial interpolation (see, e.g.,
[17, Section 3]). The version of EIM used for the setting of polynomial interpolation
(compare [17, Section 2]), adapted to our notation, is stated in Algorithm 6.

Although the two methods are very similar, OGR has one main advantage over
EIM: the parameterization discussed in Section 3. While EIM only considers linear

2This follows by a contradiction argument: assume that there exists i ∈ {1, . . . , N} with dj
i ̸= dℓ+1

i . Then,

since
∑N

i=1 dj
i =

∑N
i=1 dℓ+1

i , there exists î ∈ {1, . . . , N} with dj

î
< dℓ+1

î
. This implies that dj

î
+ 1 ≤ dℓ+1

î
,

which contradicts dj
i + 1 > dℓ+1

i for all i ∈ {1, . . . , N}.
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Algorithm 5 OGR for polynomial interpolation

Require: A set BOGR = {p1, . . . , pK} ⊂ Pn for K,n,N ∈ N and a tolerance tol > 0.
1: Find x̃xx1 and ℓ1 that solve

max
ℓ∈{1,...,K}

max
xxx∈X

|pℓ(xxx)|2. (23)

2: Swap p1 and pℓ1 in BOGR, and set fsplit = |p1(x̃xx1)| and k = 1.
3: while k ≤ K − 1 and fsplit ≥ tol do
4: for ℓ = k + 1, . . . ,K do
5: Fitting step: Find αααℓ that solves

min
ααα∈Rk

k∑
j=1

∣∣∣ k∑
i=1

αipi(x̃xxj)− pℓ(x̃xxj)
∣∣∣2. (24)

6: end for
7: Splitting step: Find x̃xxk+1 and ℓk+1 that solve

max
ℓ∈{k+1,...,K}

max
xxx∈X

∣∣∣ k∑
i=1

αℓ
ipi(xxx)− pℓ(xxx)

∣∣∣2. (25)

8: Swap pk+1 and pℓk+1
in BOGR, and set pαααk =

∑k
i=1 α

ℓk+1

i pi.
9: Update fsplit ← |pαααk (x̃xxk+1)− pk+1(x̃xxk+1)| and k ← k + 1.

10: end while

combinations of the elements in BEIM , OGR can handle also nonlinear parameteri-
zations, for example a set BOGR of neural networks where the parameterizations are
given by the weights and biases. We will discuss this example in more detail in Section
5.

Let us now compare OGR (Algorithm 5) and EIM (Algorithm 6) in more detail.
The initializations of OGR (line 1 in Algorithm 5) and EIM (lines 1-2 in Algorithm
6) are obviously equivalent, since ∥p∥L∞(X) = max

xxx∈X
|p(xxx)| for any p ∈ Pn. A similar

analogy also holds for the maximization problems inside the while loops (line 7 in
OGR and lines 8-9 in EIM). The difference here is that, while OGR selects elements
pk directly from the set BOGR, EIM generates a new basis of polynomials {qk}Kmax

k=1

(see also line 10 in EIM). If we neglect this difference between pi and qi for a moment,
we notice that the fitting step (line 5 in OGR) solves the strictly convex problem (24),
whose optimality system coincides with the linear system (26). On the other hand, if
at iteration k the polynomials {p̂i}ki=1 computed by EIM coincide with the set {pi}ki=1

selected by OGR, then we also have span{pi}ki=1 = span{qi}ki=1. This is because q1 is a
rescaled version of p̂1 (see line 3 in EIM) and the qk for k ≥ 2 are linear combinations
of p̂1, . . . , p̂k (see line 10 in EIM).

To prove the equivalence of OGR and EIM, we need the following results [17]:
P1 If Kmax ≤

(
N+n
N

)
then problem (26) is uniquely solvable (see [17, Thm 1]).

P2 For all k ∈ {1, . . . ,Kmax} and all p ∈ span{qi}ki=1 we have p −∑k
i=1[ααα(p)]iqi = 0 (see [17, Lemma 1]).

Theorem 3 (Equivalence of OGR and EIM). Assume that BOGR = BEIM =: B. Let
{x̃xxj}KOGR

j=1 , {pi}KOGR
i=1 and {ỹyyj}

Kmax
j=1 , {qi}Kmax

i=1 be the points and polynomials selected

14



Algorithm 6 EIM for polynomial interpolation

Require: A set of polynomials BEIM = {p1, . . . , pK} ⊂ Pn forK,n,N ∈ N, and a maximum
number of iterations Kmax ≤ K.

1: Compute p̂1 = argmax
p∈BEIM

∥p∥L∞(X).

2: Compute ỹyy1 = argmax
yyy∈X

|p̂1(yyy)|.

3: Set q1 = p̂1

p̂1(ỹyy1)
and k = 1.

4: while k ≤ Kmax − 1 do
5: for p ∈ BEIM do
6: Find ααα(p) ∈ Rk that solves the interpolation problem

k∑
i=1

[ααα(p)]iqi(ỹyyj) = p(ỹyyj), j = 1, . . . , k. (26)

7: end for
8: Compute p̂k+1 = argmax

p∈BEIM

∥p−
∑k

i=1[ααα(p)]iqi∥L∞(X).

9: Compute ỹyyk+1 = argmax
yyy∈X

|p̂k+1(yyy)−
∑k

i=1[ααα(p̂k+1)]iqi(yyy)|.

10: Set qk+1 =
rk+1

rk+1(ỹyyk+1)
, where rk+1(yyy) = p̂k+1(yyy)−

∑k
i=1[ααα(p̂k+1)]iqi(yyy).

11: Update k ← k + 1.
12: end while

by OGR and EIM, respectively. Then for any K̂ ∈ N, K̂ ≤ min{KOGR,Kmax}, it

holds that x̃xxj = ỹyyj for j = 1, . . . , K̂ and span{pi}K̂i=1 = span{qi}K̂i=1.

Proof. Notice that EIM considers all elements of B in each iteration and does not
reorder the set B. Thus, we may assume that the polynomials in the set B are ordered
as OGR selects them, i.e. the {pi}KOGR

i=1 selected by OGR are exactly the first KOGR

polynomials in B.
We now prove the result by induction. Since ∥p∥L∞(X) = max

xxx∈X
|p(xxx)| for any p ∈ Pn,

OGR and EIM choose the same first point x̃xx1 = ỹyy1 and corresponding polynomial
pℓ1 = p̂1. By the definition of q1 in line 3, we obtain span(pℓ1) = span(q1).

Next, we assume that at iteration k ≤ K̂ we have x̃xxj = ỹyyj for j = 1, . . . , k, and

p̂i = pi in EIM for i = 1, . . . , k, implying that span{pi}ki=1 = span{qi}ki=1. From P1
we obtain that (26) has a unique solution αααℓ

EIM for ℓ = 0, . . . ,K. Since span{pi}ki=1 =
span{qi}ki=1, the optimality system of (25) coincides with (26). Thus, also (25) has a

unique solutionαααℓ
OGR for ℓ = k+1, . . . ,K with

∑k
i=1[ααα

ℓ
OGR]i+1pi =

∑k
i=1[ααα

ℓ
EIM ]i+1qi.

From P2 we know that pℓ(xxx) −
∑k

i=1 α
ℓ
i+1qi(xxx) = 0 for ℓ = 1, . . . , k. On the other

hand, the polynomials pk+1, . . . , pK are linearly independent from {pi}ki=1. Thus, the
splitting step (25) of OGR is equivalent to the two maximization problems of EIM
in lines 8-9, meaning that we obtain x̃xxk+1 = ỹk+1 and pℓk+1

= p̂k+1. Finally, by the

definition of qk+1 we obtain span{pi}K̂i=1 = span{qi}K̂i=1.
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Algorithm 7 DGR for approximation by polynomials

Require: A data set Z = {(xxxj , yj)}Jj=1 for J ∈ N and a tolerance tol > 0.
1: Find (x̃xx1, ỹ1) that solves

max
(xxx,y)∈Z

|y|2. (27)

2: Update Z ← Z \ (x̃xx1, ỹ1) and set fsplit = |ỹ1|, k = 1.
3: while k ≤ J − 1 and fsplit ≥ tol do

4: Fitting step: Find pk ∈ Pk−1 that interpolates {(x̃xxj , ỹj)}kj=1.
5: Splitting step: Find (x̃xxk+1, ỹk+1) that solves

max
(xxx,y)∈Z

|pk(xxx)− y|2. (28)

6: Update Z ← Z \ (x̃xxk+1, ỹk+1), fsplit ← |pk(x̃xxk+1)− ỹk+1| and k ← k + 1.
7: end while

4.3 Practical implementation aspects

To solve the initialization problems (11) and (23), and the splitting-step problems (13)
and (25) numerically, we consider a strategy used for both the Leja points (see, e.g.,
[23]) and EIM (see, e.g., [15, 17]). The idea is to replace the input space X by a finite
approximation (e.g., a grid), which we denote by Xh, compute the value of the cost
function at every xxx ∈ Xh, and select the point x̃xx corresponding to the maximum value.

Notice that the computational effort of this approach grows exponentially with
respect to the dimension of X (increasing with N and n). A possible solution, based on
the so-called Fast Leja points (see [24]), is to adaptively enlarge the discrete set Xh in
each iteration. A similar strategy can also be applied to our GR algorithms. However,
the discussion of these implementation details goes beyond the scope of this work.

4.4 Data approximation GR for polynomial interpolation

Following the idea described in Section 4.3 and replacing the space X by Xh =
{xxxj}Jj=1, J ∈ N, the evaluations of the polynomials p1, . . . , pK on Xh can be precom-
puted, resulting in a discrete set Z := {(xxxj , pi(xxxj))}i∈{1,...,N},

j∈{1,...,J}
. In this way, we can

provide GR directly with Z, instead of the set of polynomials B. On the other hand,
this approach can also be interpreted as GR trying to approximate the “data” Z by
polynomial functions.

This motivates the application of DGR (Algorithm 3 in Section 3) to the setting
of polynomial interpolation. The idea is to consider a data set Z = {(xxxj , f(xxxj))}Jj=1 ⊂
X × R and find the smallest number of data points J̃ ∈ N, J̃ ≤ J , such that the

polynomial of degree J̃ − 1 interpolating {(x̃xxj , f(x̃xxj))}J̃j=1 also approximates well the

remaining data Z\{(x̃xxj , f(x̃xxj))}J̃j=1. For brevity, let us denote yj := f(xxxj), j = 1, . . . , J .
The new version of DGR is stated in Algorithm 7. Notice that the fitting step in line 4
is no longer formulated as a least squares problem, since the interpolation of k points
by a polynomial of degree k − 1 is exact.
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Fig. 2: Interpolation error (30) for the Runge function (29), using the barycentric
Lagrange interpolation for the points computed by DGR at iteration k for a data set
of size J = 100 (blue crosses) and J = 1000 (orange crosses), and for Chebyshev nodes
(green triangles), Fast Leja points (red circles) and equidistant points (purple squares)
of degree k.

Let us now test the performance of DGR to interpolate the famous Runge function

f(x) =
1

1 + 25x2
, x ∈ [−1, 1]. (29)

We provide DGR with a tolerance tol = 10−10 and a data set {(xj , f(xj))}Jj=1 with

equidistant points xj = −1 + 2 j−1
J−1 , j = 1, . . . , J . To solve the interpolation problem

in the fitting step (line 4 of DGR), we use the barycentric Lagrange interpolation (see
[25]). To test the performance of DGR, we evaluate the interpolation error

max
x∈Xh

|f(x)− pk(x)| (30)

at each iteration k of DGR on a fine grid Xh ⊂ [−1, 1] of 100000 equidistant points. We
then compare the result to the interpolation error for the same amount of Chebyshev
nodes (compare, e.g., [2, (10.20)]) and Fast Leja points (see [24]). The results for data
sets of sizes J = 100 and J = 1000 are shown in Figure 2.

We observe that DGR for a data set of size J = 1000 terminates after k = 124
iterations (by reaching the required tolerance tol = 10−10) and is able to match the
convergence rate of the Chebyshev nodes and Fast Leja points. If we only provide
DGR with J = 100 data points, it begins to diverge after 40 iterations. However, this
is to be expected since the data {(xj , f(xj))}Jj=1 provided to DGR are produced using
equidistant points xj , which are known to have a divergent interpolation error for the
Runge function (compare, e.g., [2, Example 8.1]). However, the interpolation error for
pure equidistant points in Figure 2 already starts to diverge at 10 interpolation points.
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Obviously, the computational effort of DGR is larger than that in computing the
Chebyshev nodes or Fast Leja points. Nevertheless, our investigations serve as a proof-
of-concept that this data GR framework can perform well for polynomials, with the
advantage that it can be extended to other frameworks.

5 A greedy algorithm for function approximation by
residual neural networks

The advantage of our class of greedy algorithms is that the approximation ansatz
does not have to be linear with respect to the coefficients ααα. This allows us to extend
them to the field of deep learning, where a neural network depends nonlinearly on
parameters, like weights and biases as in the following example.

We consider the following class of residual neural networks. For a network FW,b of
depth m with activation function σ and input xxx =: zzz0, we let

zzzi =

{
σ(W [i−1]zzzi−1 + bbb[i−1]) for i ∈ {1,m},
zzzi−1 + σ(W [i−1]zzzi−1 + bbb[i−1]) else.

In other words, the input of each hidden layer is summed directly to its output.
That automatically implies that the widths of all hidden layers are equal. Thus, the
architecture of any such network FW,b is determined by its depth m and the widths
of all hidden layers d.

For inputs (x̃xxj)
J
j=1, the problem of approximating a function f by a neural network

can be formulated as

min
(W,b)∈W(d)

L
(
(FW,b(x̃xxj))

J
j=1, (f(x̃xxj))

J
j=1

)
, (31)

where L is a loss function, for example, the mean squared error

L
(
(FW,b(x̃xxj))

J
j=1, (f(x̃xxj))

J
j=1

)
=

1

J

J∑
j=1

∥f(x̃xxj)− FW,b(x̃xxj)∥22. (32)

In Section 5.1, we formulate a combination of OGR and DGR that is able to simul-
taneously select a minimal network architecture (namely m and d) and an optimal
subset of training data for a given data set. Afterwards, in Section 5.3, we test the
performance of our new method, using residual neural networks to learn the Runge
function and a spiral data set.

5.1 OGR for minimal neural network structures

In many machine learning applications the training data is already available. However,
the choice of an appropriate/optimal neural network structure for the specific data
is often only based on heuristics, experience, or determined by trial and error. This
leaves open the possibility of choosing a suboptimal network size, which can lead to
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Algorithm 8 NOGR for deep neural networks

Require: A set of networks {F 1
Wi,bi

}Ki=1 with depths {mi}Ki=1 and widths {di}Ki=1 forK ∈ N,
maximum network depth mmax and maximum hidden layer width dmax, a set of training
data Z = {(xxxj , yyyj)}Jj=1 for J ∈ N, a maximum number of iterations Kit ≤ J and two
tolerances tolfit, tolsplit > 0.

1: Set L = {1, . . . ,K}.
2: ((x̃xx1, ỹyy1), fsplit, F

1
NOGR) ← splitting step(L, {F 1

Wℓ,bℓ
}ℓ∈L,Z).

3: Update Z ← Z \ {(x̃xx1, ỹyy1)} and set k = 1.
4: while k ≤ Kit and fsplit ≥ tolsplit do

5: {(F k+1
Wi,bi

}Ki=1, L) ← fitting step({F k
Wi,bi

}Ki=1, (x̃xxj , ỹyyj)
k
j=1, tolfit)

6: ((x̃xxk+1, ỹyyk+1), fsplit, F
k+1
NOGR) ← splitting step(L, {F k+1

Wℓ,bℓ
}ℓ∈L,Z).

7: Update Z ← Z \ {(x̃xxk+1, ỹyyk+1)} and k ← k + 1
8: end while
9: return: Training points {(x̃xxj , ỹyyj)}kj=1 and the (trained) network FNOGR = F k

NOGR with
smallest validation loss fsplit.

Algorithm 9 splitting step

Require: A set of indices L, the corresponding networks {FWℓ,bℓ}ℓ∈L, and a set of points

Z = {(xxxj , yyyj)}J̃j=1, with J̃ ∈ N.
1: for ℓ ∈ L do
2: Splitting step: Find (x̂xxℓ, ŷyyℓ) that solve

max
(xxx,yyy)∈Z

L(FWℓ,bℓ(xxx), yyy). (33)

3: Set fℓ = L(FWℓ,bℓ(x̂xxℓ), ŷyyℓ).
4: end for
5: Compute ℓ̃ = argmin

ℓ∈L
fℓ.

6: Set (x̃xx, ỹyy) = (x̂xx
ℓ̃
, ŷyy

ℓ̃
), fsplit = f

ℓ̃
, and FNOGR = FW

ℓ̃
,b

ℓ̃
.

7: return: The training point (x̃xx, ỹyy) with validation loss fsplit and the corresponding
network FNOGR.

under/overfitting (see, e.g., [26, Section 5.2]). Moreover, even if a “good” network
structure is found, it is a common issue that the data is imbalanced, leading to biased
models (see, e.g., [5, Section 5.3.1]) and thereby lack of robustness.

To address these issues, we introduce a new method, called Network OGR (NOGR),
which combines the ideas of OGR (Algorithm 2) and DGR (Algorithm 3). The main
idea of this new greedy algorithm is to select simultaneously a subset of optimal
training data points and the smallest network (trained on the selected data) capable
of well representing the non-selected data. NOGR is stated in Algorithm 8, while its
splitting and fitting steps are detailed in Algorithms 9 and 10. For a better overview,
we summarize the role of some variables in Table 1.

Let us describe the first iteration of NOGR in more detail. First, NOGR applies
the splitting step (Algorithm 9) to the full set of networks {F 1

Wi,bi
}Ki=1. In this step,

for each network a training point (x̂xx, ŷyy) ∈ Z is computed by maximizing the validation
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Algorithm 10 fitting step

Require: A set of networks {FWi,bi}
K
i=1 with depths {mi}Ki=1 and widths {di}Ki=1 forK ∈ N,

a set of points {(x̃xxj , ỹyyj)}kj=1 for k ∈ N, and tolerances tolfit ∈ R, mmax and dmax.
1: Set K = ∅.
2: while K = ∅ do
3: for ℓ = 1, . . . ,K do
4: Fitting step: Train FWℓ,bℓ on {(x̃xxj , ỹyyj)}kj=1, i.e., find (W̃ℓ, b̃ℓ) that solve

min
(W,b)∈W(dℓ)

L
(
{FW,b(x̃xxj)}kj=1, {ỹyyj}

k
j=1

)
, (34)

and set FWℓ,bℓ = F
W̃ℓ ,̃bℓ

.

5: end for
6: Set K = {ℓ ∈ {1, . . . ,K} | L

(
{FWℓ,bℓ(x̃xxj)}

k
j=1, {ỹyyj}

k
j=1

)
< tolfit}.

7: for i ∈ {1, . . . ,K} \ K do
8: Increase mi and/or di (not beyond mmax, dmax), and update FWi,bi accordingly.
9: end for

10: if min
i∈{1,...,K}

(mi, di) = (mmax, dmax) then

11: STOP with message: “Was not able to fit the data, stopping NOGR!”
12: end if
13: end while
14: return: A set of trained networks {FWj ,bj}

K
j=1 and a set of indices K.

Variable name Description/Role

mmax, dmax Bounds on the depth and hidden layer width of the networks (FWj ,bj )
K
j=1.

tolfit Tolerance used in the fitting step to decide whether the training of a network

was successful or not.

tolsplit Tolerance used to terminate NOGR if the validation error of a network is

sufficiently small.

K Set of indices computed during the fitting step, indicating which networks

were successfully trained.

L Set of indices deciding which networks are considered in the splitting step.

At iterations k ≥ 2 we have L = K.

Z Set of training points not selected by NOGR at a certain iteration.

Table 1: Description for some variables used in Algorithms 8, 9, and 10.

error in (33). Among all these training points, the one that corresponds to the network
F 1
NOGR with the smallest validation error fsplit is selected and denoted by (x̃xx1, ỹyy1).

Next, NOGR checks whether the network F 1
NOGR already represents well enough all

the training data, namely the validation error fsplit is below the tolerance tolsplit. If
that is not the case, NOGR continues with the fitting step (Algorithm 10). Here, all
networks are trained on (x̃xx1, ỹyy1). If the training of some networks is unsuccessful, i.e.,
the final loss of the corresponding training problems is larger than the tolerance tolfit,
then the depths and/or widths of these networks are increased. The fitting step is
repeated until one training was successful or the maximum network depth mmax and
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maximum width of the hidden layers dmax are reached. In the latter case, the process
is stopped because none of the admissible network architecture was able to represent
the selected data. Otherwise, if the training was successful for one or more of the
networks, these (trained) networks are registered in the set L for the next splitting
step.

5.2 Practical implementation aspects

The main advantage of the particular class of residual neural networks that we intro-
duced at the beginning of Section 5 is that it limits the amount of choices when
upgrading the network. One can either add a new hidden layer with the same width
as all the other hidden layers or increase the width of all existing hidden layers by 1.

Let us explain this upgrade strategy in more detail. We initialize NOGR with a set
of networks {FWi,bi}Ki=1 that have no hidden layers (i.e., mi = di = 0), but different
weights and biases that are randomly chosen in [−1, 1]. In the first architecture update
in lines 7-9 of the fitting step (Algorithm 10), we replace all {FWi,bi}i∈{1,...,K}\K with
random networks that have exactly one hidden layer of width 1, i.e., mi = di = 1.
For all further updates, we use the smallest (successfully trained) network as reference
size and add either a new hidden layer, or increase the width of all hidden layers by
1. More precisely, by defining #FW,b as the total number of weights and biases in the

network FW,b, we compute the index of the smallest (successfully trained) network ℓ̂ as

ℓ̂ =


argmin

ℓ∈K
#FWℓ,bℓ if K ̸= ∅,

argmin
ℓ∈{1,...,K}

#FWℓ,bℓ else.

Then we set (m̃1, d̃1) = (mℓ̂ + 1, dℓ̂) and (m̃2, d̃2) = (mℓ̂, dℓ̂ + 1), and replace the set
{FWi,bi}i∈{1,...,K}\K with random networks such that half of them have depth m̃1 and

hidden layers of width d̃1, and the other half have depth m̃2 and hidden layers of width
d̃2.
Remark 3. NOGR can also be extended to other classes of neural networks. The main
challenge here is to design an appropriate strategy to update the network architecture
(lines 7-9 in Algorithm 10). For general feedforward neural networks, for example,
the number of possible incremental upgrades (by one node) grows proportionally to the
number of hidden layers.

5.3 Numerical experiments

We test the performance of NOGR, using the residual network structure and upgrade
strategy discussed in Section 5.2. In Section 5.3.1, we consider again the Runge func-
tion. Afterwards, in Section 5.3.2, we apply NOGR to a two-dimensional spiral data
set. Our implementations use PyTorch [27].
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Fig. 3: Left: Runge function (blue line), inputs (x̃j)
11
j=1 of the data points selected

by NOGR (green crosses), for tolerances tolfit = tolsplit = 10−5, and output of the
network FNOGR on an equidistant grid Xh of 100000 points (orange dash-dotted line).
Right: Same as left, but for smaller tolerances tolfit = tolsplit = 10−7.

5.3.1 An optimal residual network for the Runge function

Our goal is to find the smallest residual network that is able to learn the Runge function
(29). Similar to Section 4.4, we consider a data set {(xj , f(xj))}Jj=1 for J = 100
equidistant points xj ∈ [−1, 1].

For all networks in this section, we fix input and output size to d0 = dm = 1 and
use the hyperbolic tangent as activation function, i.e., σ(x) = tanh(x). Since we want
to learn the outputs of a function, we consider the mean squared error loss (32). We
solve the fitting-step problem (34) using a BFGS method with the full gradient to
have good convergence properties. Notice that there is no need to apply any stochastic
optimization approach, since the fitting step at iteration k trains the networks only
on the selected training points {(x̃xxj , ỹyyj)}kj=1.

We run NOGR for a set ofK = 100 networks, a maximum network width and depth
of 20 and tolfit = tolsplit = 10−5. The algorithm stops after 11 iterations, selecting
data points (x̃j , f(x̃j))

11
j=1 and a network FNOGR of size (1, 1, 1, 1, 1, 1, 1), i.e., 5 hidden

layers of width 1, accumulating to 11 trainable parameters. The loss of FNOGR on the
full training data set of 100 points is 5.32 · 10−7, the loss on a fine grid Xh ⊂ [−1, 1]
of 100000 equidistant points is 5.38 · 10−7. The results are plotted in Figures 3 and 4.
For a fixed network FW,b the interpolation error in Figure 4 is defined as

max
x∈Xh

|f(x)− FW,b(x)|. (35)

To obtain the plots in Figure 4, we train the networks {F k
Wi,bi

}100i=1 used in the NOGR

fitting step in the iterations k = 3, . . . , 11 on the data points {(xj , f(xj))}kj=1, where
the inputs xj correspond to k Chebyshev nodes, Fast Leja points or equidistant points,
respectively. We then select, for each iteration and each input set, the network F k

W,b

with the smallest interpolation error (35), and plot this error in the left-hand side plot
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Fig. 4: Left: Interpolation error (35) of F k
NOGR at iteration k ∈ {3, . . . , 11} (orange

crosses) for tolerances tolfit = tolsplit = 10−5, compared to the smallest interpolation
error achieved by one of the networks {F k

Wi,bi
}100i=1 trained on k Chebyshev nodes

(green triangles), Fast Leja points (red circles) or equidistant points (purple squares),
respectively. Right: Error (36) for the final network FNOGR = F 11

NOGR (orange line)
evaluated on a fine grid of 100000 points in [−1, 1], compared to the error for the one
network from the set {F 11

Wi,bi
}100i=1 that achieved the smallest interpolation error when

trained on 11 Chebyshev nodes (green dash-dotted line), Fast Leja points (red dash-
dotted line) or equidistant points (purple dash-dotted line), respectively.

of Figure 4. For the final iteration k = 11, we additionally plot the absolute difference

|f(x)− FW,b(x)|, x ∈ Xh, (36)

for the networks F 11
W,b, selected for the different sets of inputs, in the right-hand side

plot of Figure 4. We observe that all input sets perform similarly until iteration k = 8.
Afterwards, NOGR outperforms the other input sets by one order of magnitude. One
possible reason is the fact that NOGR places more inputs towards the center of the
interval, where the Runge function exhibits more rapid changes. Indeed, as we can see
from the right-hand side plot in Figure 4, the networks corresponding to Chebyshev
nodes, Fast Leja points and equidistant points have the largest error in the center area
of the interval. On the other hand, the error peaks for the network FNOGR seem to be
the smallest in the center. This could also explain why the equidistant points perform
better than Chebyshev and Leja points, which tend to accumulate more points towards
the bounds of the interval. However, we also notice that the points, where the error is
dropping very low (i.e., the intersection points between the smooth network functions
FW,b(x) and the Runge function), do not necessarily coincide with the training points.
The reason for this is that there is no guarantee that a trained network will interpolate
the training data exactly, especially since we are dealing with rather small networks.

To better understand the role of the tolerances in NOGR, we repeat our test with
tolfit = tolsplit = 10−7. As expected, the algorithm requires more iterations (13) and a
larger network FNOGR of size (1, 2, 2, 2, 2, 2, 2, 1) in order to fit the data in accordance
with the smaller tolerances. This means that FNOGR has one more layer than for
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Fig. 5: Same as Figure 4, but for smaller tolerances tolfit = tolsplit = 10−7.

the larger tolerances, and the width of all hidden layers is increased by 1. Although
this corresponds to “only” two upgrades of the network structure, the number of
trainable parameters more than triples to a total of 36. On the other hand, we also
obtain a smaller loss on the full training data set (9.48 · 10−9) and on the fine grid Xh

(9.56·10−9). The results are plotted in Figures 3 and 5. As before, the networks trained
on the data selected by NOGR outperform the ones trained on data corresponding to
other input sets.

5.3.2 Optimal learning of a two-dimensional spiral data set

In this numerical experiment, we apply our NOGR to find the smallest residual neural
network that separates two spirals in R2. The data set for this example is adapted
from [28], and consists of 600 input vectors xxx ∈ R2 and corresponding labels yyy ∈
{( 01 ), ( 10 )} ⊂ R2 that indicate whether xxx belongs to the red or blue spiral. We randomly
select J = 450 data points for NOGR and set aside the remaining 150 points to test
the performance of NOGR a posteriori. For all networks in this section, we set input
and output size to d0 = dm = 2. As activation function, we use again the hyperbolic
tangent, i.e., σ(x) = tanh(x). Since we consider a classification problem, we use the
cross entropy loss in both sub-problems of NOGR

L(zzz,yyy) := −
2∑

i=1

log
exp([zzz]i)∑2
j=1 exp([zzz]j)

[yyy]i.

We solve the fitting-step problem (34) with a (full gradient) BFGS method.
We run NOGR for a set of K = 100 networks, a maximum network width and

depth of 20 and tolfit = tolsplit = 10−7. The algorithm stops after 58 iteration with a
network FNOGR of size (2, 4, 2), i.e., one hidden layer of width 4, accumulating to 20
trainable parameters. The loss of FNOGR on the full training data set of 450 points is
1.06 · 10−9, the loss on the 150 test points is 6.36 · 10−9 with a classification accuracy
of 100%. The spiral training data, the outputs of the trained network FNOGR and the
selected data points {(x̃xxj , ỹyyj)}58i=1 are plotted in Figure 6. As we can see, the relatively
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Fig. 6: Full spiral data set (red and blue curve), inputs {x̃xxj}58j=1 of the data points
selected by NOGR (orange crosses) and decision output of the network FNOGR for all
points on the domain (dark and light gray areas).

Fig. 7: Spiral training data (red and blue curve), inputs (x̃xxj)
k
j=1 of the data points

selected by NOGR at iterations k = 14, 28, 42 (from left to right) and decision output
of the network F k

NOGR for all points on the domain (dark and light gray areas).

small network FNOGR selected by NOGR is able to separate the two spirals, while
using only ≈ 13% of the training data. In fact, the interface drawn by FNOGR between
the dark and light area is almost the best possible linear separation for the fewest
number of vertices. The placement of {(x̃xxj , ỹyyj)}58j=1 is also very interesting. Many of
them seem to be chosen close to vertices and edges of the separation interface. To
better understand the interplay of selecting points and training the network during
NOGR, we show in Figure 7 the inputs {x̃xxj}kj=1 of the data points selected by NOGR

and the output of the intermediate network F k
NOGR, at iterations k = 14, 28, 42.

6 Conclusions

In this paper, we developed and analyzed two classes of greedy reconstruction algo-
rithms to improve the data selection process while optimizing the structure of the
ansatz within a given family of approximation functions. Theoretical and numerical
studies on polynomial interpolation and function approximation by neural networks
demonstrated the efficiency of the proposed algorithms. Our algorithms appear very
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promising, especially in machine learning applications. In particular, the structure and
optimization features of our NOGR offer significant potential for future research with
a wide range of possible applications.
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