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Abstract

In this work, we present a new high order Discontinuous Galerkin time integration
scheme for second-order (in time) differential systems that typically arise from the space
discretization of the elastodynamics equation. By rewriting the original equation as a
system of first order differential equations we introduce the method and show that the
resulting discrete formulation is well-posed, stable and retains super-optimal rate of con-
vergence with respect to the discretization parameters, namely the time step and the
polynomial approximation degree. A set of two- and three-dimensional numerical experi-
ments confirm the theoretical bounds. Finally, the method is applied to real geophysical
applications.

1 Introduction

In this paper we present and analyze a high-order time discontinuous Galerkin finite element
method for the time integration of second order differential problems as those stemming from
e.g. elastic wave propagation phenomena.

Classical approaches for the time integration of second order differential systems employ
implicit and explicit finite differences, Leap-frog, Runge-Kutta or Newmark schemes, see e.g.
[42, 16, 48] for a detailed review. In computational seismology, explicit time integration
schemes are nowadays preferred to implicit ones, due to their computational cheapness and
ease of implementation. Indeed, although being unconditionally stable, implicit methods are
typically computationally expensive. The main drawback of explicit methods is that they
are conditionally stable and the choice of time step imposed by the Courant-Freidrichs-Levy
(CFL) condition can sometimes be a great limitation.

To overcome this limitation one can employ local time stepping (LTS) algorithms [33, 26,
21, 28] for which the CFL condition is imposed element-wise leading to an optimal choice
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of the time step. The unique drawback of this approach is the additional synchronization
process that one need to take into account for a correct propagation of the wave field from
one element to the other.

In this work, we present an implicit time integration method based on a discontinuous
Galerkin (DG) approach. Originally, DG methods [49, 43] have been developed to approximate
in space hyperbolic problems [49], and then generalized to elliptic and parabolic equations
[59, 12, 36, 20, 50, 35, 25]. We refer the reader to [51, 32] for the application of DG methods to
scalar wave equations and to [28, 60, 11, 7, 4, 9, 6, 44, 10, 23] for the elastodynamics problem.

The DG approach has been used also to approximate initial-value problem where the DG
paradigm shows some advantage with respect to other implicit schemes such as the Johnson’s
method, see e.g. [39, 3]. Indeed, since the information follows the positive direction of time,
the solution at time-slab [tn, tn+1] depends only on the solution at the time instant t−n . By
employing DG methods in both space and time dimensions it leads to a fully DG space-time
formulation such as [24, 57, 58, 10].

More generally, space-time methods have been largely employed for hyperbolic problems.
Indeed, high order approximations in both space and time are simple to obtain, achieving
spectral convergence of the space-time error through p-refinement. In addition, stability can
be achieved with local CFL conditions, as in [46], increasing computational efficiency. Space-
time methods can be divided according to which type of space-time partition they employ. In
structured techniques [17, 56], the space-time grid is the cartesian product of a spatial mesh
and a time partition. Examples of applications to second order hyperbolic problems can be
found in [55, 29, 14]. Unstructured techniques [37, 38] employ grids generated considering
the time as an additional dimension. See [61, 1, 27] for examples of applications to first order
hyperbolic problems. Unstructured methods may have better properties, however they suffer
from the difficulty of generating the mesh, especially for three-dimensional problems. Among
unstructured methods, we mention Trefftz techniques [40, 13, 15], in which the numerical
solution is looked for in the Trefftz space, and the tent-pitching paradigm [31], in which the
space-time elements are progressively built on top of each other in order to grant stability
of the numerical scheme. Recently, in [45, 47] a combination of Trefftz and tent-pitching
techniques has been proposed with application to first order hyperbolic problems. Finally,
a typical approach for second order differential equations consists in reformulating them as
a system of first order hyperbolic equations. Thus, velocity is considered as an additional
problem’s unkwnown that results in doubling the dimension of the final linear system, cf.
[24, 37, 30, 39, 34].

The motivation for this work is to overcome the limitations of the space-time DG method
presented in [10] for elastodynamics problems. This method integrates the second order (in
time) differential problem stemming from the spatial discretization. The resulting stiffness
matrix is ill-conditioned making the use of iterative solvers quite difficult. Hence, direct
methods are used forcing to store the stiffness matrix and greatly reducing the range of prob-
lems affordable by that method. Here, we propose to change the way the time integration
is obtained, resulting in a well-conditioned system matrix and making iterative methods em-
ployable and complex 3D problems solvable.

In this work, we present a high order discontinuous Galerkin method for time integration
of systems of second-order differential equations stemming from space discretization of the
visco-elastodynamics problem. The differential (in time) problem is firstly reformulated as
a first order system, then, by imposing only weak continuity of tractions across time slabs,
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we derive a discontinuous Galerkin method. We show the well posedness of the proposed
method through the definition of a suitable energy norm, and we prove stability and a priori
error estimates. The obtained scheme is implicit, unconditionally stable and super-optimal in
term of accuracy with respect to the integration time step. In addition, the solution strategy
adopted for the associated algebraic linear system reduces the complexity and computational
cost of the solution, making three dimensional problems (in space) affordable.

The paper is organized as follows. In Section 2 we formulate the problem, present its nu-
merical discretization and show that it is well-posed. The stability and convergence properties
of the method are discussed in Section 3, where we present a priori estimates in a suitable
norm. In Section 4, the equations are rewritten into the corresponding algebraic linear sys-
tem and a suitable solution strategy is shown. Finally, in Section 5, the method is validated
through several numerical experiments both in two and three dimensions.

Throughout the paper, we denote by ||a|| the Euclidean norm of a vector a ∈ Rd, d ≥ 1
and by ||A||∞ = maxi=1,...,m

∑n
j=1 |aij |, the `∞-norm of a matrix A ∈ Rm×n, m,n ≥ 1. For

a given I ⊂ R and v : I → R we denote by Lp(I) and Hp(I), p ∈ N0, the classical Lebesgue
and Hilbert spaces, respectively, and endow them with the usual norms, see [2]. Finally, we
indicate the Lebesgue and Hilbert spaces for vector-valued functions as Lp(I) = [Lp(I)]d and
Hp(I) = [Hp(I)]d, d ≥ 1, respectively.

2 Discontinuous Galerkin approximation of a second-order ini-
tial value problem

For T > 0, we consider the following model problem [41]: find u(t) ∈H2(0, T ] such that
P ü(t) + Lu̇(t) +Ku(t) = f(t) ∀ t ∈ (0, T ],

u(0) = û0,

u̇(0) = û1,

(1)

where P,L,K ∈ Rd×d, d ≥ 1 are symmetric, positive definite matrices, û0, û1 ∈ Rd and
f ∈ L2(0, T ]. Then, we introduce a variable w : (0, T ]→ Rd that is the first derivative of u,
i.e. w(t) = u̇(t), and reformulate problem (1) as a system of first order differential equations:

Ku̇(t)−Kw(t) = 0 ∀ t ∈ (0, T ],

P ẇ(t) + Lw(t) +Ku(t) = f(t) ∀ t ∈ (0, T ],

u(0) = û0,

w(0) = û1.

(2)

Note that, since K is a positive definite matrix, the first equation in (2) is consistent with the
definition of w. By defining z = [u,w]T ∈ R2d, F = [0,f ]T ∈ R2d, z0 = [û0, û1]

T ∈ R2d and

K̃ =

[
K 0
0 P

]
∈ R2d×2d, A =

[
0 −K
K L

]
∈ R2d×2d, (3)

we can write (2) as {
K̃ż(t) +Az(t) = F (t) ∀ t ∈ (0, T ],

z(0) = z0.
(4)
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To integrate in time system (4), we first partition the interval I = (0, T ] into N time-slabs
In = (tn−1, tn] having length ∆tn = tn − tn−1, for n = 1, . . . , N with t0 = 0 and tN = T , as it
is shown in Figure 1.

t0 · · · tn−1

In

tn

In+1

tn+1 · · · T

t−nt+nt+n−1 t−n+1

∆tn

Figure 1: Example of time domain partition (bottom). Zoom of the time domain partition:
values t+n and t−n are also reported (top).

Next, we incrementally build (on n) an approximation of the exact solution u in each time
slab In. In the following we will use the notation

(u,v)I =

∫
I
u(s) · v(s)ds, 〈u,v〉t = u(t) · v(t),

where a · b stands for the euclidean scalar product between tho vectors a, b ∈ Rd. We also
denote for (a regular enough) v, the jump operator at tn as

[v]n = v(t+n )− v(t−n ) = v+ − v−, for n ≥ 0,

where
v(t±n ) = lim

ε→0±
v(tn + ε), for n ≥ 0.

Thus, we focus on the generic interval In and assume that the solution on In−1 is known.
We multiply equation (4) by a (regular enough) test function v(t) ∈ R2d and integrate in time
over In obtaining

(K̃ż,v)In + (Az,v)In = (F ,v)In . (5)

Next, since u ∈ H2(0, T ] and w = u̇, then z ∈ H1(0, T ]. Therefore, we can add to (5) the
null term K̃[z]n−1 · v(t+n−1) getting

(K̃ż,v)In + (Az,v)In + K̃[z]n−1 · v(t+n−1) = (F ,v)In . (6)

Summing up over all time slabs we define the bilinear form A : H1(0, T )×H1(0, T )→ R

A(z,v) =

N∑
n=1

(K̃ż,v)In + (Az,v)In +

N−1∑
n=1

K̃[z]n · v(t+n ) + K̃z(0+) · v(0+), (7)

and the linear functional F : L2(0, T )→ R as

F(v) =

N∑
n=1

(F ,v)In + K̃z0 · v+0 , (8)
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where we have used that z(0−) = z0. Now, we introduce the functional spaces

V rn
n = {z : In → R2d s.t. z ∈ [Prn(In)]2d}, (9)

where Prn(In) is the space of polynomial defined on In of maximum degree rn,

Vr = {z ∈ L2(0, T ] s.t. z|In = [u,w]T ∈ V rn
n }, (10)

and
VrCG = {z ∈ [C0(0, T ]]2d s.t. z|In = [u,w]T ∈ V rn

n and u̇ = w}, (11)

where r = (r1, . . . , rN ) ∈ NN is the polynomial degree vector
Before assessing the discontinuous Galerkin formulation of problem (4), we need to intro-

duce, as in [53], the following operator R, that is used only on the purpose of the analysis
and does not need to be computed in practice.

Definition 1. We define a reconstruction operator R : Vr → VrCG such that

(R′(z),v)In = (z′,v)In + [z]n−1 · v(t+n−1) ∀v ∈ [Prn(In)]2d,

R(z(t+n−1)) = z(t−n−1) ∀n = 1, . . . , N.
(12)

Now, we can properly define the functional space

VrDG = {z ∈ Vr and ∃ ẑ = R(z) ∈ VrCG}, (13)

and introduce the DG formulation of (4) reads as follows. Find zDG ∈ VrDG such that

A(zDG,v) = F(v) v ∈ VrDG. (14)

For the forthcoming analysis we introduce the following mesh-dependent energy norm.

Proposition 1. The function ||| · ||| : VrDG → R+, is defined as

|||z|||2 =

N∑
n=1

||L̃z||2L2(In)
+

1

2
(K̃

1
2z(0+))2 +

1

2

N−1∑
n=1

(K̃
1
2 [z]n)2 +

1

2
(K̃

1
2z(T−))2, (15)

with L̃ =

[
0 0

0 L
1
2

]
∈ R2d×2d. Moreover a norm on VrDG.

Proof. It is clear that homogeneity and subadditivity hold. In addition, it is trivial that if
z = 0 then |||z||| = 0. Therefore, we suppose |||z||| = 0 and observe that

||L̃z||L2(In) = ||L
1
2w||L2(In) = 0 ∀n = 1, . . . , N.

Since L is positive definite we have w = 0 on [0, T ]. Hence, w′ = 0 on [0, T ]. Using this result
into (13) and calling v = [v1,v2]

T , we get

(ŵ′,v2)In = 0 ∀v2 ∈ [Prn(In)]d and ∀n = 1, . . . , N.

Therefore ŵ′ = 0 on [0, T ]. In addition, from (13) we get 0 = w(t−1 ) = ŵ(t+1 ) that combined
with the previous result gives ŵ = 0 on [0, T ].
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Now, since ẑ ∈ VrCG, we have û′ = ŵ = 0 on [0, T ]. Therefore using again (13) we get

(u′,v1)In + [u]n−1 · v1(t+n−1) = 0 ∀v1 ∈ [Prn(In)]d and ∀n = 1, . . . , N.

Take n = N , then [u]N−1 = 0 (from |||z||| = 0) and therefore u′ = 0 on IN . Combining this
result with u(T−) = 0 we get u = 0 on IN from which we derive 0 = u(t+N−1) = u(t−N−1).
Iterating until n = 2 we get u = 0 on In, for any n = 2, . . . , N . Moreover

0 = u(t+1 ) = u(t−1 ) = û(t+1 ) = û(t−1 ) = û(0+) = u(0−),

since û′ = 0 on I1. Using again |||z||| = 0 we get u(0+) = 0, hence [u]0 = 0. Taking n = 1
we get u = 0 on I1. Thus, z = 0 on [0, T ].

The following result states the well-posedness of (14)

Proposition 2. Problem (14) admits a unique solution uDG ∈ VrDG.

Proof. By taking v = z we get

A(z, z) =
N∑
n=1

(K̃ż,z)In + (Az, z)In +
N−1∑
n=1

K̃[z]n · z(t+n ) + (K̃
1
2z)2.

Since K̃ is symmetric, integrating by parts we have that

(K̃ż, z)In =
1

2
〈K̃z, z〉t−n −

1

2
〈K̃z, z〉t+n−1

.

Then, the second term can be rewritten as

(Az, z)In = (−Kw,u)In + (Ku,w)In + (Lw,w)In = ||L̃z||2In ,

cf. also (3). Therefore

A(z, z) =

N∑
n=1

||L̃z||2In + (K̃
1
2z(0+))2 +

1

2

N−1∑
n=1

(K̃
1
2 [z]n)2 + (K̃

1
2z(T−))2 = |||z|||2.

The result follows from Proposition 1, the bilinearity of A and the linearity of F .

3 Convergence analysis

In this section, we first present an a-priori stability bound for the numerical solution of (14)
that can be easily obtained by direct application of the Cauchy-Schwarz inequality. Then,
we use the latter to prove optimal error estimate for the numerical error, in the energy norm
(15).

Proposition 3. Let f ∈ L2(0, T ], û0, û1 ∈ Rd, and let zDG ∈ VrDG be the solution of (14),
then it holds

|||zDG||| .
( N∑
n=1

||L−
1
2f ||2

L(0,T )
+ (K

1
2 û0)

2 + (P
1
2 û1)

2
) 1

2
. (16)
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Proof. From the definition of the norm ||| · ||| given in (15) and the arithmetic-geometric
inequality we have

|||zDG|||2 = A(zDG, zDG) = F(zDG) =
N∑
n=1

(F , zDG)In + K̃z0 · zDG(0+)

.
1

2

N∑
n=1

||L−
1
2f ||2L2(In)

+
1

2

N∑
n=1

||L̃zDG||2L2(In)
+ (K̃

1
2z0)

2 +
1

4
(K̃

1
2zDG)2

.
1

2

N∑
n=1

||L−
1
2f ||2L2(In)

+ (K̃
1
2z0)

2 +
1

2
|||zDG|||2.

Hence,

|||zDG|||2 .
N∑
n=1

||L−
1
2f ||2L2(In)

+ (K
1
2 û0)

2 + (P
1
2 û1)

2.

Before deriving an a priori estimate for the numerical error we introduce some preliminary
results. We refer the interested reader to [52] for further details.

Lemma 1. Let I = (−1, 1) and u ∈ L2(I) continuous at t = 1, the projector Πru ∈ Pr(I),
r ∈ N0, defined by the r + 1 conditions

Πru(1) = u(1), (Πru, q)I = 0 ∀ q ∈ Pr−1(I), (17)

is well posed. Moreover, let I = (a, b), ∆t = b−a, r ∈ N0 and u ∈ Hs0+1(I) for some s0 ∈ N0.
Then

||u−Πru||2L2(I) ≤ C
(

∆t

2

)2(s+1) 1

r2
(r − s)!
(r + s)!

||u(s+1)||2L2(I) (18)

for any integer 0 ≤ s ≤ min(r, s0). C depends on s0 but it is independent from r and ∆t.

Proceeding similarly to [52], we now prove the following preliminary estimate for the
derivative of the projection Πru.

Lemma 2. Let u ∈ H1(I) be continuous at t = 1. Then, it holds

||u′ −
(
Πru

)′||2L2(I) ≤ C(r + 1) inf
q∈Pr(I)

{
||u′ − q′||2L2(I)

}
. (19)

Proof. Let u′ =
∑∞

i=1 uiL
′
i be the Legendre expansion of u′ with coefficients ui ∈ R, i =

1, . . . ,∞. Then (cfr. Lemma 3.2 in [52])

(
Πru

)′
=

r−1∑
i=1

uiL
′
i +

∞∑
i=r

uiL
′
r

Now, for r ∈ N0, we denote by P̂ r the L2(I)-projection onto Pr(I). Hence,

u′ −
(
Πru

)′
=

∞∑
i=r

uiL
′
i −

∞∑
i=r

uiL
′
r =

∞∑
i=r+1

uiL
′
i −

∞∑
i=r+1

uiL
′
r = u′ −

(
P̂ ru

)′ − ∞∑
i=r+1

uiL
′
r.
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Recalling that ||L′r||L2(I) = r(r + 2) we have

||u′ −
(
Πru

)′||2L2(I) ≤ ||u
′ −
(
P̂ ru

)′||2L2(I) −

∣∣∣∣∣
∞∑

i=r+1

ui

∣∣∣∣∣r(r + 1).

Finally, we use that

∣∣∣∣∣∑∞i=r+1 ui

∣∣∣∣∣ ≤ C
r ||u

′||L2(I) (cfr. Lemma 3.6 in [52]) and get

||u′ −
(
Πru

)′||2L2(I) ≤ C
{
||u′ −

(
P̂ ru

)′||2L2(I) + (r + 1)||u′||2L2(I)

}
. (20)

Now consider q ∈ Pr(I) arbitrary and insert u′ − q′ into (20). The thesis follows from the
reproducing properties of projectors Πru and P̂ ru and from the fact that ||u − P̂ ru||L2(I) ≤
||u− q||L2(I) for any q ∈ Pr(I).

By employing Proposition 3.9 in [52] and Lemma 2 we obtain the following result.

Lemma 3. Let I = (a, b), ∆t = b− a, r ∈ N0 and u ∈ Hs0+1(I) for some s0 ∈ N0. Then

||u′ −
(
Πru

)′||2L2(I) .

(
∆t

2

)2(s+1)

(r + 2)
(r − s)!
(r + s)!

||u(s+1)||2L2(I)

for any integer 0 ≤ s ≤ min(r, s0). The hidden constants depend on s0 but are independent
from r and ∆t.

Finally we observe that the bilinear form appearing in formulation (14) is strongly con-
sistent, i.e.

A(z − zDG,v) = 0 ∀v ∈ VrDG. (21)

We now state the following convergence result.

Theorem 1. Let û0, û1 ∈ Rd. Let z be the solution of problem (4) and let zDG ∈ VrDG be its
finite element approximation. If z|In ∈ Hsn(In), for any n = 1, . . . , N with sn ≥ 2, then it
holds

|||z − zDG||| .
N∑
n=1

(
∆t

2

)µn+ 1
2

(
(rn + 2)

(rn − µn)!

(rn + µn)!

) 1
2

||z||Hµn+1(In), (22)

where µn = min(rn, sn), for any n = 1, . . . , N and the hidden constants depend on the norm
of matrices L, K and A.

Proof. We set e = z − zDG = (z − Πr
Iz) + (Πr

Iz − zDG) = eπ + eh. Hence we have |||e||| ≤
|||eπ|||+ |||eh|||. Employing the properties of the projector (17) and estimates (18) and (20),
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we can bound |||eπ||| as

|||eπ|||2 =
N∑
n=1

||L̃eπ||2L2(In)
+

1

2
(K̃

1
2eπ(0+))2 +

1

2

N−1∑
n=1

(K̃
1
2 [eπ]n)2 +

1

2
(K̃

1
2eπ(T−))2

=
N∑
n=1

||L̃eπ||2L2(In)
+

1

2

N∑
n=1

(
−
∫ tn

tn−1

K̃
1
2 ėπ(s)ds

)2

.
N∑
n=1

(
||eπ||2L2(In)

+ ∆t||ėπ||2L2(In)

)
.

N∑
n=1

[(
∆tn

2

)2µn+2 1

r2n
+

(
∆tn

2

)2µn+1

(rn + 2)

]
(rn − µn)!

(rn + µn)!
||z||Hµn+1(In)

.
N∑
n=1

(
∆tn

2

)2µn+1

(rn + 2)
(rn − µn)!

(rn + µn)!
||z||Hµn+1(In),

where µn = min(rn, sn), for any n = 1, . . . , N . For the term |||eh||| we use (21) and integrate
by parts to get

|||eh|||2 = A(eh, eh) = −A(eπ, eh)

=

N∑
n=1

(K̃ėπ, eh)In +

N∑
n=1

(Aeπ, eh)In +
N−1∑
n=1

K̃[eπ]n · eh(t+n ) + K̃eπ(0+) · eh(0+)

=
N∑
n=1

(K̃eπ, ėh)In +
N∑
n=1

(Aeπ, eh)In +
N−1∑
n=1

K̃[eh]n · eπ(t−n )− K̃eπ(T−) · eh(T−).

Thanks to (17), only the second term of the last equation above does not vanish. Thus, we
employ the Cauchy-Schwarz and arithmetic-geometric inequalities to obtain

|||eh|||2 =
N∑
n=1

(Aeπ, eh)In .
1

2

N∑
n=1

||eπ||2L2(In)
+

1

2

N∑
n=1

||L̃eh||2L2(In)
.

1

2

N∑
n=1

||eπ||2L2(In)
+

1

2
|||eh|||2.

Hence,

|||eh|||2 .
N∑
n=1

(
∆tn

2

)2µn+2 1

r2n

(rn − µn)!

(rn + µn)!
||z||Hµn+1(In),

where µn = min(rn, sn), for any n = 1, . . . , N and the thesis follows.

4 Algebraic formulation

In this section we derive the algebraic formulation stemming after DG discretization of (14)
for the time slab In. We consider on In a local polynomial degree rn. In practice, since we
use discontinuous functions, we can compute the numerical solution one time slab at time,
assuming the initial conditions stemming from the previous time slab known. Hence, problem
(14) reduces to: find z ∈ V rn(In) such that

(K̃ż,v)In + (Az,v)In + 〈K̃z,v〉t+n−1
= (F ,v)In + K̃z(t−n−1) · v(t+n−1), ∀n = 1, . . . , N. (23)
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Introducing a basis {ψ`(t)}`=1,...,rn+1 for the polynomial space Prn(In) we define a vectorial

basis {Ψ`
i(t)}

`=1,...,rn+1
i=1,...,2d of V rn

n where

{Ψ`
i(t)}j =

{
ψ`(t) ` = 1, . . . , rn + 1, if i = j,

0 ` = 1, . . . , rn + 1, if i 6= j.

Then, we set Dn = d(rn + 1) and write the trial function zn = zDG|In ∈ V rn
n as

zn(t) =
2d∑
j=1

rn+1∑
m=1

αmj Ψm
j (t),

where αmj ∈ R for j = 1, . . . , 2d, m = 1, . . . , rn + 1. Writing (23) for any test function Ψ`
i(t),

i = 1, . . . , 2d, ` = 1 . . . , rn + 1 we obtain the linear system

MZn = Gn, (24)

where Zn,Gn ∈ R2Dn are the vectors of expansion coefficient corresponding to the numerical
solution and the right hand side on the interval In by the chosen basis. Here M ∈ R2Dn×2Dn

is the local stiffness matrix defined as

M = K̃ ⊗ (N1 +N3) +A⊗N2 =

[
K ⊗ (N1 +N3) −K ⊗N2

K ⊗N2 P ⊗ (N1 +N3) + L⊗N2

]
, (25)

where N1, N2, N3 ∈ Rrn+1 are the local time matrices

N1
`m = (ψ̇m, ψ`)In , N2

`m = (ψm, ψ`)In , N3
`m = 〈ψm, ψ`〉t+n−1

, (26)

for `,m = 1, ..., rn + 1. Similarly to [34], we reformulate system (24) to reduce the compu-
tational cost of its resolution phase. We first introduce the vectors Gu

n, G
w
n , Un, Wn ∈ RDn

such that
Gn =

[
Gu
n,G

w
n

]T
, Zn =

[
Un,Wn

]T
and the matrices

N4 = (N1 +N3)−1, N5 = N4N2, N6 = N2N4, N7 = N2N4N2. (27)

Next, we apply a block Gaussian elimination getting

M =

[
K ⊗ (N1 +N3) −K ⊗N2

0 P ⊗ (N1 +N3) + L⊗N2 +K ⊗N7

]
,

and

Gn =

[
Gu
n

Gw
n − Id ⊗N6Gu

n

]
.

We define the matrix M̂n ∈ RDn×Dn as

M̂n = P ⊗ (N1 +N3) + L⊗N2 +K ⊗N7, (28)
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and the vector Ĝn ∈ RD as
Ĝn = Gw

n − Id ⊗N6Gu
n. (29)

Then, we multiply the first block by K−1 ⊗ N4 and, exploiting the properties of the
Kronecker product, we get[

IDn −Id ⊗N5

0 M̂n

] [
Un
Wn

]
=

[
(K−1 ⊗N4)Gu

n

Ĝn

]
.

Therefore, we first obtain the velocity Wn by solving the linear system

M̂nWn = Ĝn, (30)

and then, we can compute the displacement Un as

Un = Id ⊗N5Wn + (K−1 ⊗N4)Gu
n. (31)

Finally, since
[
Gu
n

]`
i

= KU(t−n−1) ·Ψ`
i(t

+
n−1), by defining Ḡu

n ∈ RDn as[
Ḡu
n

]`
i

= U(t−n−1) ·Ψ
`
i(t

+
n−1), (32)

we can rewrite (31) as
Un = Id ⊗N5Wn + (Id ⊗N4)Ḡu

n. (33)

5 Numerical results

In this section we report a wide set of numerical experiments to validate the theoretical
estimates and asses the performance of the DG method proposed in Section 2. We first present
a set of verification tests for scalar- and vector-valued problems, then we test our formulation
onto two- and three-dimensional elastodynamics wave propagation problems, through the
open source software SPEED (http://speed.mox.polimi.it/).

5.1 Scalar problem

For a time interval I = [0, T ], with T = 10, we solve the scalar problem
u̇(t) = w(t) ∀t ∈ [0, 10],

ẇ(t) + 5w(t) + 6u(t) = f(t) ∀t ∈ [0, 10],

u(0) = 2,

w(0) = −5,

(34)

whose exact solution is z(t) = (w(t), u(t)) = (−3e−3t − 3e−2t, e−3t + e−2t) for t ∈ [0, 10].
We partition the time domain I into N time slabs of uniform length ∆t and we suppose

the polynomial degree to be constant for each time-slab, i.e. rn = r, for any n = 1, . . . , N .
We first compute the error |||zDG−z||| as a function of the time-step ∆t for several choices of
the polynomial degree r, as shown in Figure 2 (left). The obtained results confirms the super-
optimal convergence properties of the scheme as shown in (22). Finally, since z ∈ C∞(R),
from Figure 2 (right) we can observe that the numerical error decreases exponentially with
respect to the polynomial degree r.
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Figure 2: Test case of Section 5.1. Left: computed error |||zDG−z||| as a function of time-step
∆t, with r = 2, 3, 4, 5. Right: computed error |||z− zDG||| as a function of polynomial degree
r, using a time step ∆t = 0.1.

5.2 Application to a the visco-elastodynamics system

In the following experiments we employ the proposed DG method to solve the second-
order differential system of equations stemming from the spatial discretization of the visco-
elastodynamics equation:{

∂tu−w = 0, in Ω× (0, T ],

ρ∂tw + 2ρζw + ρζ2u−∇ · σ(u) = f, in Ω× (0, T ],
(35)

where Ω ∈ Rd, d = 2, 3, is an open bounded polygonal domain. Here, ρ represents the density
of the medium, ζ is a decay factor whose dimension is inverse of time, f is a given source term
(e.g. seismic source) and σ is the stress tensor encoding the Hooke’s law

σ(u)ij = λ
d∑
k=1

∂uk
∂xk

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, for i, j = 1, ..., d, (36)

being λ and µ the first and the second Lamé parameters, respectively. Problem (35) is
usually supplemented with boundary conditions for u and initial conditions for u and w, that
we do not report here for brevity. Finally, we suppose problem’s data are regular enough to
gaurantee its well-posedness [8].

By employing a finite element discretization (either in its continuous or discontinuous
variant) for the semi-discrete approximation (in space) of (35) we obtain the following system(

I 0
0 P

)(
u̇
ẇ

)
+

(
0 −I
K L

)(
u
w

)
=

(
0
f

)
,

that can be easily rewritten as in (2). We remark that within the matrices and the right hand
side are encoded the boundary conditions associated to (35). For the space discretization of
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(35), we consider in the following a high order Discontinuous Galerkin method based either
on general polygonal meshes (in two dimensions) [9] or on unstructured hexahedral meshes
(in three dimensions) [44].

For the forthcoming experiments we denote by h the granularity of the spatial mesh and
p the order of polynomials employed for space approximation. The combination of space and
time DG methods yields to a high order space-time DG method that we denote by STDG.

Remark that the latter has been implemented in the open source software SPEED (http:
//speed.mox.polimi.it/).

5.2.1 A two-dimensional test case with space-time polyhedral meshes

As a first verification test we consider problem (35) in a bidimensional setting, i.e. Ω =
(0, 1)2 ⊂ R2. We set the mass density ρ = 1, the Lamé coefficients λ = µ = 1, ζ = 1 and
choose the data f and the initial conditions such that the exact solution of (35) is z = (u,w)
where

u = e−t
[
− sin2(πx) sin(2πy)
sin(2πx) sin2(πy)

]
, w = ∂tu.

We consider a polygonal mesh (see Figure 3) made by 60 elements and set p = 8. We take
T = 0.4 and divide the temporal iterval (0, T ] into N time-slabs of uniform lenght ∆t.

0

0.5

1 0

0.5

1

tk

tk+1

x

y

ti
m

e

Figure 3: Test case of Section 5.2.1. Example of space-time polygonal grid used for the
verification test.

In Figure 4 (left) we show the energy norm (15) of the numerical error |||zDG − z|||
computed for several choices of time polynomial degree r = 1, 2, 3 by varying the time step ∆t.
We can observe that the error estimate (22) is confirmed by our numerical results. Moreover,
from Figure 4 (right) we can observe that the numerical error decreases exponentially with
respect to the polynomial degree r. In the latter case we fixed ∆t = 0.1 and use 10 polygonal
elements for the space mesh, cf. Figure 3.
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Figure 4: Test case of Section 5.2.1. Left: computed error |||z − zDG||| as a function of
time-step ∆t for r = 1, 2, 3, using a space discretization with a polygonal mesh composed of
60 elements and p = 8. Right: computed error |||z − zDG||| as a function of the polynomial
degree r = p, using a spatial grid composed of 10 elements and a time step ∆t = 0.1.

5.2.2 A three-dimensional test case with space-time polytopal meshes

As a second verification test we consider problem (35) for in a three dimensional setting.
Here, we consider Ω = (0, 1)3 ⊂ R3, T = 10 and we set the external force f and the initial
conditions so that the exact solution of (35) is z = (u,w) given by

u = cos(3πt)

sin(πx)2 sin(2πy) sin(2πz)
sin(2πx) sin(πy)2 sin(2πz)
sin(2πx) sin(2πy) sin(πz)2

 , w = −3π cos(3πt)u. (37)

We partition Ω by using a conforming hexahedral mesh of granularity h, and we use
a uniform time domain partition of step size ∆t for the time interval [0, T ]. We choose a
polynomial degree p ≥ 2 for the space discretization and r ≥ 1 for the temporal one. We
firstly set h = 0.0125 corresponding to 512 elements and fix p = 6, and let the time step ∆t
varying from 0.4 to 0.00625 for r = 1, 2, 3, 4. The computed energy errors are shown in Figure
5 (left). We can observe that the numerical results are in agreement with the theoretical
ones, cf. Theorem 1. We note that with r = 4, the error reaches a plateau for ∆t ≤ 0.025.
However, this effect could be easily overcome by increasing the spatial polynomial degree p
and/or by refining the mesh size h. Then, we fix a grid size h = 0.25, a time step ∆t = 0.1
and let vary together the polynomial degrees, p = r = 2, 3, 4, 5. Figure 5 (right) shows an
exponential decay of the error.

5.2.3 Plane wave propagation

The aim of this test is to compare the performance of the proposed method STDG with the
space-time DG method (here referred to as STDG0) firstly presented in [5] and then applied
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Figure 5: Test case of Section 5.2.2. Left: computed errors |||zDG − u||| as a function of the
time-step ∆t, with r = 1, 2, 3, 4, h = 0.125 and p = 6. Right: computed errors |||zDG − u|||
as a function of the polynomial degree p = r, with ∆t = 0.1, h = 0.25.

to 3D problems in [10]. The difference between STDG0 and STDG is in the way the time
approximation is obtain. Indeed, the former integrates the second order in time differential
problem, whereas the latter discretizes the first order in time differential system. On the one
hand, as pointed out in [10], the main limitation of the STDG0 method is the ill-conditioning
of the resulting stiffness matrix that makes the use of iterative solvers quite difficult. Hence,
for STDG0 direct methods are used forcing to store the stiffness matrix and greatly reducing
the range of problems affordable by that method. On the other hand, even if the final linear
systems stemming from STDG0 and STDG methods are very similar (in fact they only differ
upon the definition of the (local) time matrices) we obtain for the latter a well-conditioned
system matrix making iterative methods employable and complex 3D problems solvable.

Here, we consider a plane wave propagating along the vertical direction in two (horizontally
stratified) heterogeneous domains. The source plane wave is polarized in the x direction and
its time dependency is given by a unit amplitude Ricker wave with peak frequency at 2 Hz.
We impose a free surface condition on the top surface, absorbing boundary conditions on
the bottom surface and homogeneous Dirichlet conditions along the y and z direction on the
remaining boundaries. We solve the problem in two domains that differs from dimensions and
material properties, and are called as Domain A and Domain B, respectively.

Domain A has dimension Ω = (0, 100) m × (0, 100) m × (−500, 0) m, cf. Figure 6, and
is partitioned into 3 subdomains corresponding to the different material layers, cf. Table 1.
The subdomains are discretized in space with a uniform cartesian hexahedral grid of size
h = 50 m that results in 40 elements. Domain B has dimensions Ω = (0, 100) m×(0, 100) m×
(−1850, 0) m, and has more layers, cf. Figure 7 and Table 2. The subdomains are discretized
in space with a cartesian hexahedral grid of size h ranging from 15 m in the top layer to 50 m
in the bottom layer. Hence, the total number of elements is 1225.

In Figure 8 on the left (resp. on the right) we report the computed displacement u along
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100m100m

500m

�3

�2

�1

Figure 6: Test case of Sec-
tion 5.2.3-Domain A. Com-
putational domain Ω =
∪3`=1Ω`.

Layer Height [m] ρ[kg/m3] cp[m/s] cs[m/s] ζ[1/s]

Ω1 150 1800 600 300 0.166

Ω2 300 2200 4000 2000 0.025

Ω3 50 2200 4000 2000 0.025

Table 1: Mechanical properties for test case of Section 5.2.3-
Domain A. Here, the Lamé parameters λ and µ can be ob-
tained through the relations µ = ρc2s and λ = ρc2p − µ.

100m100m

1850m

�11

�10

..
.

�1

Figure 7: Test case of Sec-
tion 5.2.3-Domain B. Com-
putational domain Ω =
∪11`=1Ω`.

Layer Height [m] ρ[kg/m3] cp[m/s] cs[m/s] ζ[1/s]

Ω1 15 1800 1064 236 0.261

Ω2 15 1800 1321 294 0.216

Ω3 20 1800 1494 332 0.190

Ω4 30 1800 1664 370 0.169

Ω5 40 1800 1838 408 0.153

Ω6 60 1800 2024 450 0.139

Ω7 120 2050 1988 523 0.120

Ω8 500 2050 1920 600 0.105

Ω9 400 2400 3030 1515 0.041

Ω10 600 2400 4180 2090 0.030

Ω11 50 2450 5100 2850 0.020

Table 2: Mechanical properties for test case of Section 5.2.3-
Domain B. Here, the Lamé parameters λ and µ can be ob-
tained through the relations µ = ρc2s and λ = ρc2p − µ.
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Figure 8: Test case of Section 5.2.3. Computed displacement u along x−axis registered at
P = (50, 50, 0) m obtained employing the proposed formulation, i.e. STDG method, and the
method [10], i.e. STDG0, for Domain A (left) and Domain B (right). We set the polynomial
degree p = r = 2 in both space and time dimensions and time step ∆t = 0.01.

the x−axis, registered at point P = (50, 50, 0) m located on the top surface for Domain A
(resp. Domain B). We compare the results with those obtained in [10], choosing a polynomial
degree p = r = 2 in both space and time variables and a time step ∆t = 0.01. In both cases,
we can observe a perfect agreement of the two solutions.

In Table 3 we collect the condition number of the system matrix, the number of GMRES
iterations and the execution time for the STDG0 and STDG methods applied on a single time
integration step, computed by using Domain A and Domain B, respectively. From the results
we can observe that the proposed STDG method outperforms the STDG0 one, in terms of
condition number and GMRES iteration counts for the solution of the corresponding linear
system. Clearly, for small problems, when the storage of the system matrix and the use of a
direct solvers is possible the STSG0 remains the most efficient solution.

Dom. p
Condition number # GMRES it. Execution time [s]
STSG0 STDG STSG0 STDG STSG0 STDG

A 2 1.2 · 109 1.3 · 102 1.5 · 104 27 1.1 3.0 · 10−3

A 4 2.7 · 1010 2.8 · 103 > 106 125 > 2200 0.3 · 10−1

B 2 1.3 · 1014 5.0 · 102 4.2 · 105 56 452.3 6.5 · 10−2

Table 3: Test case of Section 5.2.3. Comparison between the proposed formulation (14) and
the method presented in [10] in terms of conditioning and iterative resolution. We set p = r
and we fix the relative tolerance for the GMRES convergence at 10−12.
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5.2.4 Layer over a half-space

In this experiment, we test the performance of the STDG method by considering a benchmark
test case, cf. [22] for a real elastodynamics application, known in literature as layer over a
half-space (LOH). We let Ω = (−15, 15) × (−15, 15) × (0, 17) km be composed of two layers
with different material properties, cf. Table 4. The domain is partitioned employing two
conforming meshes of different granularity. The “fine” (resp. “coarse”) grid is composed of
352800 (resp. 122400) hexahedral elements, varying from size 86 m (resp. 167 m), in the top
layer, to 250 m (resp. 500 m) in the bottom half-space, cf. Figure 9. On the top surface we
impose a free surface condition, i.e. σn = 0, whereas on the lateral and bottom surfacews we
consider absorbing boundary conditions [54].

30 km 30 km

17 km

1

2

Figure 9: Test case of Section 5.2.4. Computational domain Ω = ∪2`=1Ω` and its partition.

Layer Height [km] ρ[kg/m3] cp[m/s] cs[m/s] ζ[1/s]

Ω1 1 2600 2000 4000 0

Ω2 16 2700 3464 6000 0

Table 4: Test case of Section 5.2.4. Mechanical properties of the medium. Here, the Lamé
parameters λ and µ can be obtained through the relations µ = ρc2s and λ = ρc2p − µ.

The seismic excitation is given by a double couple point source located at the center of
the domain expressed by

f(x, t) = ∇δ(x− xS)M0

(
t

t20

)
exp (−t/t0), (38)

where xS = (0, 0, 2) km, M0 = 108 Nm is the scalar seismic moment, t0 = 0.1 s is the
smoothness parameter, regulating the frequency content and amplitude of the source time
function. The semi-analytical solution is available in [22] together with further details on the
problem’s setup.

We employ the STDG method with different choices of polynomial degrees and time inte-
gration steps. In Figures 10-13 we show the velocity wave field computed at point (6, 8, 0) km
along with the reference solution, in both the time and frequency domains, for the sets of

18



parameters tested. We also report relative seismogram error

E =

∑nS
i=1(uδ(ti)− u(ti))

2∑nS
i=1(u(ti)2)

, (39)

where nS is the number of samples of the seismogram, uδ(ti) and u(ti) are, respectively, the
value of seismogram at sample ti and the corresponding reference value. In Table 5 we report
the set of discretization parameters employed, together with some results obtaineds in terms
of accuracy and computational efficiency.
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Figure 10: Test case of Section 5.2.4. Velocity wave field recorded at (6, 8, 0) km along with
the reference solution (black line), in the time domain (left) and frequency domain (right),
obtained with the “fine” grid, polynomial degree p = 4 for space and r = 1 for time domain,
and time-step ∆t = 10−3 s. The error E is computed as in (39).
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Figure 11: Test case of Section 5.2.4. Velocity wave field recorded at (6, 8, 0) km along with
the reference solution (black line), in the time domain (left) and frequency domain (right),
obtained with the “fine” grid, polynomial degree p = 4 for space and r = 2 for time domain,
and time-step ∆t = 10−3 s. The error E is computed as in (39).
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Figure 12: Test case of Section 5.2.4. Velocity wave field recorded at (6, 8, 0) km along with
the reference solution (black line), in the time domain (left) and frequency domain (right),
obtained with the “coarse” grid, polynomial degree p = 4 for space and r = 4 for time domain,
and time-step ∆t = 10−3 s. The error E is computed as in (39).

0 1 2 3 4 5 6 7 8 9
-2

0

2
Radial E = 0.32925

0 1 2 3 4 5 6 7 8 9
-2

0

2

ve
lo

ci
ty

[m
/s

]

Transverse E = 0.64139

0 1 2 3 4 5 6 7 8 9

time [s]

-2

0

2
Vertical E = 0.37878

100 101
10-2

10-1

100

100 101
10-2

10-1

100

P
ow

er
 S

pe
ct

ru
m

100 101

frequency [Hz]

10-2

10-1

100

Figure 13: Test case of Section 5.2.4. Velocity wave field recorded at (6, 8, 0) km along with
the reference solution (black line), in the time domain (left) and frequency domain (right),
obtained with the “coarse” grid, polynomial degree p = 4 for space and r = 4 for time domain,
and time-step ∆t = 5 · 10−2 s. The error E is computed as in (39).

By employing the “fine” grid we obtain very good results both in terms of accuracy and
efficiency. Indeed, the minimum relative error is less than 2% with time polynomial degree
r = 1, see Figure 10. Choosing r = 2, as in Figure 11, the error is larger (by a factor 40%)
but the solution is still enough accurate. However, in terms of total Execution time, with
r = 1 the algorithm performs better than choosing r = 2, cf. Table 5, column 7. As shown
in Figure 12, the “coarse” grid produces larger errors and worsen also the computational
efficiency, since the number of GMRES iterations for a single time step increases. Doubling
the integration time step ∆t, see Figure 13, causes an increase of the execution time for a single
time step that partly compensate the decrease of total number of time steps. Consequently,
the total execution time reduces but only by 12%. In addition, this choice causes some non-
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Grid p r ∆t [s]
GMRES Exec. Time Tot. Exec.

Error E
iter. per iter. [s] Time [s]

Fine 4 1 10−3 6 2.9 3.08 · 104 0.015

Fine 4 2 10−3 8 5.6 6.59 · 104 0.020

Coarse 4 4 10−3 12 7.6 8.14 · 104 0.229

Coarse 4 4 5 · 10−2 24 27.9 7.22 · 104 0.329

Table 5: Test case of Section 5.2.4. Set of discretization parameters employed, and corre-
sponding results in terms of computational efficiency and accuracy. The execution times
are computed employing 512 parallel processes, on Marconi100 cluster located at CINECA
(Italy).

physical oscillations in the code part of the signal that contribute to increase the relative error.
Indeed, we can conclude that for this test case, spatial discretization is the most crucial aspect.
Refining the mesh produces a great decrease of the relative error and increases the overall
efficiency of the method. Concerning time integration, it appears that the method performs
well even with low order polynomial degrees both in terms of computational efficiency and
of accuracy. The method achieves its goal of accurately solving this elastodynamics problem
that counts between 119 (“coarse” grid) and 207 (“fine” grid) millions of unknowns. The
good properties of the proposed STDG method is once again highlighted by the fact that all
the presented results are achieved without any preconditioning of the linear system.

5.3 Seismic wave propagation in the Grenoble valley

In this last experiment, we apply the STDG method to a real geophysical study [19]. This ap-
plication consists in the simulation of seismic wave propagation generated by an hypothetical
earthquake of magnitude Mw = 6 in the Grenoble valley, in the French Alps. The Y-shaped
Grenoble valley, whose location is represented in Figure 14, is filled with late quaternary
deposits, a much softer material than the one composing the surrounding mountains. We ap-
proximate the mechanical characteristics of the ground by employing three different material
layers, whose properties are listed in Table 6. The alluvial basin layer contains soft sediments
that compose the Grenoble’s valley and corresponds to the yellow portion of the domain in
Figure 14. Then, the two bedrock layers approximate the stiff materials composing the sur-
rounding Alps and the first crustal layer. The earthquake generation is simulated through a
kinematic fault rapture along a plane whose location is represented in Figure 14.

Layer ρ [kg/m3] cs [m/s] cp [m/s] ζ [1/s]

Alluvial basin 2140 + 0.125 zd 300 + 19
√
zd 1450 + 1.2 zd 0.01

Bedrock (0− 3) km 2720 3200 5600 0

Bedrock (3− 7) km 2770 3430 5920 0

Table 6: Test case of Section 5.3. Mechanical properties of the medium. Here, the Lamé
parameters λ and µ can be obtained through the relations µ = ρc2s and λ = ρc2p − µ. zd
measures the depth of a point calculated from the top surface.

The computational domain Ω = (0, 50) × (0, 47) × (−7, 3) km is discretized with a fully
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Figure 14: Test case of Section 5.3. Geophysical domain and its location.

unstructured hexahedral mesh represented in Figure 14. The mesh, composed of 202983
elements, is refined in the valley with a mesh size h = 100 m, while it is coarser in the bedrock
layers reaching h ≈ 1 km.

 1    2     3    4    5       6       7        8A B

Figure 15: Left: surface topography in the Grenoble area. The white line indicates the
monitor points examined in Figure 16. Right: cross section of the valley in correspondence of
the monitor points.

On the top surface we impose a free surface condition, i.e. σn = 0, whereas on the lateral
and bottom surface we consider absorbing boundary conditions [54]. We employ the STDG
method with polynomial degrees p = 3 for the space discretization and r = 1 for the time
integration, together with a time step ∆t = 10−3 s. We focus on a set of monitor points whose
location is represented in Figure 15. In Figure 16, we report the velocity field registered at
these points compared with the ones obtained with a different code, namely SPECFEM [18].
The results are coherent with the different location of the points. Indeed, we observe highly
perturbed waves in correspondence of the points 1 − 7 that are located in the valley, i.e. in
the alluvial material. This is caused by a refraction effect that arises when a wave moves
into a soft material from a stiffer one. Moreover, the wave remains trapped inside the layer
bouncing from the stiffer interfaces. The absence of this effect is evident from the monitors
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Figure 16: Test case of Section 5.3. Computed velocity field at the monitored points in Fig-
ure 15, together with the computed peak ground velocity for each monitor point. Comparisono
between the STDG (bloack) solution and the SPECFEM (red) solution [18].

8 and 9 that are located in the bedrock material. These typical behaviors are clearly visible
also in Figure 17, where the magnitude of the ground velocity is represented for different
time instants. Finally, concerning the computation efficiency of the scheme, we report that,
with this choice of discretization parameters, we get a linear system with approximately 36
millions of degrees of freedom that is solved in 17.5 hours, employing 512 parallel processes,
on Marconi100 cluster located at CINECA (Italy).

6 Conclusions

In this work we have presented and analyzed a new time Discontinuous Galerkin method
for the solution of a system of second-order differential equations. We have built an energy
norm that naturally arose by the variational formulation of the problem, and that we have
employed to prove well-posedness, stability and error bounds. Through a manipulation of
the resulting linear system, we have reduced the computation cost of the solution phase and
we have implemented and tested our method in the open-source software SPEED (http:
//speed.mox.polimi.it/). Finally, we have verified and validated the proposed numerical
algorithm through some two- and three-dimensional benchmarks, as well as real geophysical
applications.
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Figure 17: Test case of Section 5.3. Computed ground velocity at different time instants
obtained with polynomial degrees p = 3 and r = 1, for space and time, respectively, and
∆t = 10−3 s.
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