
MOX-Report No. 05/2017

Logratio approach to distributional modeling

Menafoglio, A.; Hron, K.; Filzmoser, P.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



Logratio approach to distributional modeling

Alessandra Menafoglio1, Karel Hron2, Peter Filzmoser3

1MOX-Department of Mathematics, Politecnico di Milano, Milano, Italy
2Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science,
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Abstract

Symbolic data analysis (SDA) as introduced in [3, 21] provides a unified ap-
proach to analyze distributional data, resulting from capturing intrinsic variability
of groups of individuals as input observations. In parallel to the SDA approach, a
concise methodology has been developed since the early 1980s to deal with com-
positional data — i.e., data carrying only relative information [1, 22] — through
the logratios of their parts. Most methods in compositional data analysis aims to
treat multivariate observations which can be identified with probability functions
of discrete distributions. Nevertheless, a methodology to capture the specific fea-
tures of continuous distributions (densities) has been recently introduced [8, 27].
The aim of this work is to describe a general setting that includes both the discrete
and the continuous setting, and to provide specific details to both frameworks fo-
cusing on the implications on SDA. The theoretical developments are illustrated
with real-world case studies.

Keywords: compositional data; Bayes spaces; centred log-ratio transformation; multi-
variate functional principal component analysis

1 Introduction

There are several types of variables in symbolic data analysis that naturally induce
a probability distribution. For the discrete case, the prominent case is formed by
categorical modal variables. A categorical modal variable Y with a finite domain
O = {m1, . . . ,mD} is a multi-state variable such that, for each element of Y , a cat-
egory set is given and, for each category ml, a weight (e.g., frequency or probability)
is provided. If the weight is a frequency, it represents the proportion of individuals of
the underlying microdata set characterized by this category. Consequently, from the

1



probabilistic point of view, we would get a probability function over a set of categories.
Although the unit sum of weights is taken as a usual representation, it is rather a con-
vention than a real need. For example, the weights could also contain concentrations of
chemical elements, or household expenditures in local currency. Alternatively, proba-
bility functions can also be obtained if one considers histogram-valued variables with
either absolute or relative frequencies, and assumes that the classes of the histograms
are fixed for each variable [18]. In this case, the “observations” (the histograms) are
again of the same data type, each class of the histograms being a part (category).

In all the above cases, the main point is that weights (frequencies) contain quan-
titatively expressed relative contributions on a whole. The concrete representation of
weights (probabilities, concentrations, ppm and so on) can be chosen arbitrarily without
any loss of information. This idea could also be adapted to the continuous case, where
the domain of symbolic variables is characterized by a subset of the real line, typically a
bounded or unbounded interval. Then the probability function is replaced by a density,
a non-negative Borel measurable function with unit integral constraint. An example
can be age/income distribution in a certain region, i.e., the finite domain is replaced by
an infinite one. And again, even if we used a representation of density that would lead
to another integral value, the main feature – i.e., that density conveys relative contribu-
tions of Borel sets (subsets of the domain) to the overall probability (weight, frequency)
– remains unaltered. In other words, both compositional data and density functions as
distributional variables share the property of scale invariance. Additionally also their
relative scale should be taken into account. For example, for the case of densities, the
relative increase of a probability over a Borel set from 0.05 to 0.1 (2 multiple) differs
from the increase 0.5 to 0.55 (1.1 multiple), although the absolute differences are the
same in both cases. Accordingly, not only scale invariance, but also relative scale of
distributional variables should be reflected by their statistical processing. The features
of both discrete and continuous distributional variables are captured in the geometry of
the Bayes space [27], that results in the Aitchison geometry on the simplex [10] when
considering the special case of discrete distributions (expressed through compositional
data).

Even though compositional data analysis belongs to multivariate statistics and the
statistical processing of densities to functional data analysis (FDA, [23]), they both rep-
resent just univariate cases from the perspective of symbolic data analysis. Therefore,
the main challenge in this setting is to extend the existing compositional methodology to
handle more than one symbolic variable (discrete or continuous), simultaneously. The
aim of this chapter is to take a step forward in this direction. Therefore, the next sec-
tion is devoted to describe Bayes spaces and, as a special case, the Aitchison geometry
for compositional data, that form the milestones to introduce the statistical analysis of
compositions and density functions through the logratio approach. Concrete aspects of
their modeling, with extension to multivariate symbolic variables, are discussed in Sec-
tion 3. Two real-world data sets, representing discrete and continuous distributions, are
employed in Section 4 to illustrate the methodological developments. Finally, Section
5 concludes.
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2 The Bayes space embedding for compositional vectors

2.1 An introduction to Bayes spaces

The distribution of a random variable is characterized by a σ-finite positive measure µ
on a measurable space (Ω,A). Although in practice exclusively probability measures
P are considered for this purpose, the condition of normalization by P(Ω) = 1 is rather
a convention than an actual need. In fact, any probability measure forms just a repre-
sentation of a family of proportional measuresM = {µ | ∃c > 0 : ∀A ∈ A, µ(A) =
cP(A)}, which are equivalent from the viewpoint of the relative information they pro-
vide. Indeed, a rescaling of the measure leaves the ratios (or logratios) between its
“parts” unchanged — i.e., between the measure of the measurable subsets of Ω —,
which in turn is the only relevant information embedded into the measure itself. As
such, two measures µ, ν are equivalent if they are proportional, denoted hereafter by
µ =B(λ) ν, where λ is a reference measure on (Ω,A). Given a measure µ, if there
exists its Radon-Nikodym derivative with respect to λ (i.e., the density dµ/dλ), it is
identified with the measure µ itself. As long as (R,B(R)) is concerned, the reference
measure λ is often set to the Lebesgue measure. However, any (probability) measure P
could be considered as well. Given a reference measure P, the equivalence classes of
σ-finite measures can be equipped with the geometrical structure of a Bayes space as
in [26], whose origin is precisely the reference measure P. More specifically, a Bayes
space is a space of (B(P)-equivalence classes of σ-finite) measures on (Ω,A) endowed
with a vectorial structure induced by the perturbation and powering operations (⊕,�),
which are defined as

(µ⊕ ν)(A) = B(P)

∫
A

dµ

dP
(x)

dν

dP
(x) dP(x); (1)

(α� µ)(A) = B(P)

∫
A

(
dµ

dP
(x)

)α
dP(x), (2)

with µ, ν elements of the space and α a real number. Both perturbation and powering
can also be expressed in terms of densities; for f = dµ/dP and g = dν/dP we get

(f ⊕ g)(x) =B(P) f(x)g(x), (α� f)(x) =B(P) f(x)α. (3)

The results of both operations are densities again, possibly rescaled to unit integral
constraint using the closure operation C(f) = f∫

f dP
. Subtraction (or perturbation-

subtraction) of densities is then defined as f 	 g = f ⊕ (−1 � g) =B(P) f/g. This
operation can be used, e.g., to change the reference measure to P1 by employing the
well-known chain rule, (dµ/dP1)(dP1/dP) = dµ/dP.

Given a reference measure P, we call B2(P) the Bayes space whose elements are
(B(P)-equivalence classes of σ-finite) measures µ such that∫ ∣∣∣∣ln dµdP

∣∣∣∣2 dP < +∞.
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Here, measures are identified with the corresponding Radon-Nikodym densities. In
B2(P) an inner product can be defined as [8, 7]

〈f, g〉B2(P) =
1

2P(Ω)

∫ ∫
ln
f(x)

f(y)
ln
g(x)

g(y)
dP(x) dP(y), (4)

for f, g densities in B2(P). The induced notions of norm and distance are then

||f ||B2(P) =
1

2P(Ω)

∫ ∫
ln2 f(x)

f(y)
dP(x) dP(y)

and

dB2(P)(f, g) =
1

2P(Ω)

∫ ∫ (
ln
f(x)

f(y)
− ln

g(x)

g(y)

)2

dP(x) dP(y),

respectively. The space B2(P) equipped with the operations of perturbation and pow-
ering (⊕,�), and the inner product 〈·, ·〉 is a separable Hilbert space [27].

The reference measure P may be chosen according to convenience. Although sev-
eral options are discussed in [27], two cases are thoroughly considered in the literature:
(a) the continuous uniform measure Pc (i.e., the Lebesgue measure) [27, 5, 19, 20], and
(b) the discrete uniform measure Pd (i.e., the counting measure), which leads to the
Aitchison geometry [1, 10]. The continuous uniform measure, defined on the interval
I = [a, b](≡ Ω) through its density as

dPc
dλ

(x) = 1,

can be considered as a reference for functional distributional variables (i.e., continuous
densities) with bounded domain. Nevertheless, Pc has often been considered as ref-
erence even for variables with (theoretically) unbounded domain, e.g., by neglecting
subdomains with very rare occurrence. In all these cases, the inner product simplifies
to

〈f, g〉B2(Pc) =
1

2η

∫ b

a

∫ b

a
ln
f(x)

g(x)
ln
f(y)

g(y)
dx dy,

with η = b − a, and by virtue of the Weierstrass theorem, continuous densities belong
to B2(Pc).

In case of multivariate compositional data, the discrete uniform measure is usually
employed as a reference measure on Ω = {m1, . . . ,mD}, i.e.,

dPd(x) = 1, x ∈ Ω,

thus obtaining the Aitchison geometry. Here, compositions withD parts, x = (x1, . . . , xD)′,
are identified with discrete probability functions over Ω (thus referring to a categorical
modal variable). Having set the unit sum representation of compositions, the sample
space of compositional data becomes the (D − 1)-dimensional simplex

SD =

{
x = (x1, . . . , xD)′, xi > 0,

D∑
i=1

xi = 1

}
.
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In this setting, the closure operation reads C(x) = x/
∑D

i=1 xi; as before, both x and
C(x) belong to the same equivalence class. For two compositions x,y ∈ SD and a real
α, the operations of perturbation and powering read

x⊕ y =B2(Pd) C(x1y1, . . . , xDyD)′, α� x =B2(Pd) C(x
α
1 , . . . , x

α
D),

respectively, and the Aitchison inner product

〈x,y〉A =
1

2D

D∑
i=1

D∑
j=1

ln
xi
xj

ln
yi
yj
.

This geometry is the basis of compositional data analysis of multivariate compositional
vectors, based on the logratio approach. In the next subsection, we illustrate a practical
strategy to employ the Bayes space geometry, either continuous or discrete, for the
statistical analysis of compositions.

2.2 Statistical analysis in Bayes spaces

A statistical analysis of continuous or discrete density functions needs to properly ac-
count for both the data dimensionality and the geometrical structure governing Bayes
spaces. In fact, although continuous densities are functional data and discrete compo-
sitions are multivariate observations, they both are featured by the basic properties of
compositions (as scale invariance and relative scale), that are captured neither by FDA
nor by classical multivariate methods. For instance, most methods of FDA rely on the
assumption that the data belong to the space L2(P) of squared-integrable functions with
respect to a reference measure P (usually set to the Lebesgue measure). However, the
geometrical structure of the space L2(P) is not appropriate for compositions (e.g., the
point-wise sum of compositions does not result in a composition). Similarly, most mul-
tivariate statistical methods are built in the Euclidean setting, which is not appropriate to
analyze discrete compositions. Nevertheless, as long as the data are embedded in a sep-
arable Hilbert space, one can map the observations in L2(P) or in the Euclidean space
RD, and accordingly perform the statistical analysis via FDA or multivariate statistics,
while accounting for the Bayes space geometry.

Let us first focus on the continuous case, having set the reference measure to a mea-
sure P (not necessarily a probability measure). As separable Hilbert spaces, an isomet-
ric isomorphism exists between B2(P) and L2(P). An instance of such an isometry is
provided by the centered logratio (clr) transformation, defined for a density f = dµ/dP
as

clr(f) = ln f − 1

P(Ω)

∫
ln f dP. (5)

Consequently, for α ∈ R, f, g ∈ B2(P) the following relations hold,

clr(f ⊕ g) = clr(f) + clr(g), clr(α� f) = α · clr(f),

〈f, g〉B2(P) = 〈clr(f), clr(g)〉L2(P).
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We note that these relations enable one to handle clr-transformed densities in the L2 set-
ting. Due to its construction, clr transformations fulfill the integral constraint

∫
clr(f) dP =

0 that should be taken into account in any statistical analysis based on clr-transformed
data. Moreover, in case of a uniform reference measure P ≡ Pc, (5) reads

clr(f)(t) = ln f(t)− 1

η

∫ b

a
ln f(τ) dτ. (6)

Note that it would also be possible to get rid of the zero integral constraint resulting
from the clr transformation, e.g., by expressing the densities via the Fourier coefficients
of a basis inB2(Pc) (such as Legendre polynomials [25]); though, most recent literature
works propose clr-based methods [19, 15].

The situation is a bit different for compositional data (the case of Pd), where the
clr transformation of a composition x (in fact, coordinates with respect to a generating
system on the simplex) results in

clr(x) = (y1, . . . , yD)′ =

ln
x1

D

√∏D
i=1 xi

, . . . , ln
xD

D

√∏D
i=1 xi

′ . (7)

Sequential binary partitioning (SBP) [9] provides a range of possibilities to build inter-
pretable coordinates. Indeed, SBPs enables one to construct D− 1 coordinates with re-
spect to an orthonormal basis of the simplex, on the basis of balances between groups of
compositional parts, expressed through their geometric means. The use of SBP usually
requires some prior knowledge about the problem at hand. However, an “automated”
versions of orthonormal coordinates can be considered as well [12]. For instance, for a
composition x one can obtain the (D−1)-dimensional real vector z = (z1, . . . , zD−1)

′,
as [14]

zi =

√
D − i

D − i+ 1
ln

xi

D−i

√∏D
j=i+1 xj

, i = 1, . . . , D − 1. (8)

Note that only the first coordinate contains the part x1 in terms of its logratio to the
remaining parts at hand, thus it conveys information about the dominance of x1 “in av-
erage”. The remaining coordinates (z2, . . . , zD−1) then represent the subcomposition
including the parts x2, . . . , xD. We notice that if the l-th part is of interest, one can
consider a permutation of the parts in the input composition such that xl, l = 1, . . . , D,
takes the first position, the others being placed arbitrarily (different orthonormal coor-
dinate systems are just rotations of each other [10]). In this case, the first element of the
corresponding coordinates, denoted by z(l) = (z

(l)
1 , . . . , z

(l)
D−1)

′ would have the above
interpretation.

An explicit relation exists between the clr transformation and the coordinates z, as

yl =
√

D−1
D z

(l)
1 . This relation can be used to support the interpretation of clr variables.

Once compositional data are expressed either via clr or in orthonormal coordinates,
all the standard methods of multivariate statistics that rely on the Euclidean geome-
try [6] can be employed. We discuss this in more detail in the next section from the
perspective of SDA.
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3 Implications for Symbolic Data Analysis

In both the discrete and the continuous setting, most cases of logratio modeling using
the Bayes space methodology represent just univariate cases from the perspective of
symbolic data analysis. Indeed, SDA methods are usually employed to cope with more
distributional variables simultaneously. This raises an urgent need to provide set of
coordinates for compositional data and densities, that would even enable one to per-
form joint analyses of discrete and continuous distributional data, through multivariate
statistical analyses.

In symbolic data analysis, this is traditionally achieved by quantile representation
of distributional data [16]. The principle is to express the observed variable values by
some predefined quantiles of the underlying distribution. For example, for categorical
multi-valued variables, quantiles may be determined from the ranking of the categories
based on their frequencies, or other designed methods. In the simplest case, when
quartiles are chosen, the representation for each variable is defined by the 5-uple (Min,
Q1, Q2, Q3, Max), that forms a kind of coordinates of the variable. Although one can
honor scale invariance by following this approach, their relative scale is not taken into
account.

The issue of coordinates in case of compositional data can be addressed either
through the centered logratio (7), or by orthonormal coordinates (8). Although for
some methods (e.g., principal component analysis and the associated compositional bi-
plot [2]) the clr coordinates are preferable, while in other cases both options are allowed
(e.g., cluster analysis, or regression analysis with compositional response [4]), when-
ever possible the orthonormal coordinates are employed. The reason for this relies in
the fact that they guarantee a regular covariance matrix of the observations, which is a
must for most robust multivariate methods [11]. In the continuous case, a set of coor-
dinates can be obtained by using the Fourier coefficients of a basis in B2(Pc) [8], or a
B-spline representation of clr transformed densities [17]. Note that, in the latter case,
one should take care of the fact that B-spline bases are not orthonormal. Notice that,
except in very particular cases [27], density functions need infinitely many coefficients
to be described. Thus, in general, an appropriate dimensionality reduction needs to be
performed prior to their statistical analysis.

Amongst the compositional methods which are suitable to be extended to SDA
problems, we focus here on two special cases that illustrate the potential of the logratio
approach to analyze distributional data. In the next section, linear regression with a real
response and several compositional covariates is presented, followed by multivariate
principal component analysis for density functions.

3.1 Linear regression with discrete distributions as covariates

In [28] a regression model is presented, where both the response and the explanatory
variables are compositional data. Although the model was not originally intended to
provide a link with symbolic data analysis, it is particularly well-suited for our purposes.
In the following, we employ a simplified version of this model, based on p compositions
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x1, . . . ,xp, containing D1, . . . , Dp parts (D := D1 + · · · + Dp), that explain a real
response variable Y . Note that this setting represents a generalization of the so called
experiments with mixtures [24], that has been adapted to the logratio methodology in
[14].

Instead of analyzing the original compositional data, we express these in orthonor-
mal coordinates, z1, . . . , zp, where zj = (zj,1, . . . , zj,Dj−1)

′, j = 1, . . . , p, and con-
sider the regression model

E(Y |(z1, . . . , zp)) = β0+z1,1β1,1+· · ·+z1,D1−1β1,D1−1+· · ·+zp,Dp−1βp,Dp−1. (9)

The linear model for the observations is

Y = Zβ + ε, (10)

where the n× (D − p+ 1) design matrix Z is defined as

Z =

 1 z′1,1 . . . z′1,p
...

...
...

1 z′n,1 . . . z′n,p

 .

The model thus containsD−p+1 regression parameters. Under the usual assumptions,
the parameters can be estimated by a least squares (LS) method, i.e., by minimizing the
sum of squared residuals RSS. This yields to the estimates β̂0, β̂1,1, . . . , β̂p,Dp−1. The
result can be then used for prediction purposes, or for further statistical inference.

Under the Gaussian assumption, a series of tests can be performed. For instance,
one may want to evaluate whether the j-th composition, j = 1, . . . , p, has a significant
influence on the explanatory variable Y . For this purpose, the following test statistic
can be employed,

Qj =
1

(Dj − 1)S2
β̂
′
jW

−1
j β̂j , j = 1, . . . , p, (11)

where S2 = RSS/(D − p+ 1), β̂j = (β̂j,1, . . . , β̂j,Dj−1)
′ and the (Dj − 1)× (Dj −

1) matrix Wj is formed by the block of (Z′Z)−1 that corresponds to βj as part of
β = (β0,β

′
1, . . . ,β

′
p)
′. Under the null hypothesis, the statistic Qj follows a Fisher

distribution with Dj − 1 and n−D + p− 1 degrees of freedom.
If for the j-th composition (distributional variable) the above hypothesis is rejected,

one may want to investigate which of its part(s) does have significant influence on
Y . A solution can be provided again in terms of orthonormal coordinates. Indeed,
one may take advantage of the interpretation of (8), leading to coordinates z

(lj)
j =

(z
(lj)
j,1 , . . . , z

(lj)
j,Dj−1)

′ and the corresponding parameters β(lj)
j = (β

(lj)
j,1 , . . . , β

(lj)
j,Dj−1)

′.

Here, only the first coordinate of z(lj)j and the corresponding regression parameter are

of primary interest. Concretely, if the significance of the regression parameter β(lj)j,1 is
confirmed by the rejection of the corresponding hypothesis on a significance level α,
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then the relative information concerning the lj-th part of the composition xj (resulting
from summarizing logratios to the other parts of xj) has an influence on the response.
The decision can be taken based on the test statistic

Tjlj =
β̂
(lj)
j,1√

S2{(Z′Z)−1}(lj ,lj)
, j = 1, . . . , p, lj = 1, . . . , Dj , (12)

where {(Z′Z)−1}(lj ,lj) denotes the diagonal element of the matrix (Z′Z)−1 which cor-

responds to the coefficient β̂(lj)j,1 . Under the null hypothesis, Tjlj follows a Student’s t
distribution with n−D+ p− 1 degrees of freedom. Note that for an exhaustive search
for significance of coordinates in single explanatory parts, pD regression models would
need to be built. Nevertheless, the estimate of the intercept parameter as well as the co-
efficient of determination for the regression model (9) are always the same [14], due to
the coordinates orthonormality.

3.2 Multivariate functional principal component analysis when data are
density functions

In this subsection we shall focus on multivariate continuous densities, named multi-
variate functional compositions (mFCs). These are defined as K-dimensional vectors
whose components are elements of the Bayes space B2(P), for a continuous reference
measure P. In this subsection, we will always consider as reference measure the uni-
form Pc, and denote B2(Pc) by B2 for the sake of simplicity. For instance, Figure 1
represents a dataset of population pyramids in 57 districts of Upper Austria, that are
mFCs of dimensionK = 2: they are coupled density functions, describing the age den-
sity of males and females in these regions. We aim to introduce a methodology allowing
to explore the variability of a dataset of mFCs, and consistently perform dimensionality
reduction.

In multivariate and functional statistics (functional) principal component analysis
(PCA) is widely employed to attain these types of goals. In (functional) PCA the focus
is posed on the main modes of variability of the sample, whose interpretation is often
insightful in terms of the observed phenomenon. In the recent literature, [15] intro-
duces the simplicial functional principal component analysis (SFPCA) as an extension
of functional PCA to the Bayes space setting. Here, we consider an approach similar to
that introduced in [15] to derive an extension of simplicial principal component analy-
sis to the multivariate, simplicial and functional setting, that relies on the Bayes space
geometry introduced in Section 2.

We first note that mFCs are not multivariate density functions: only the marginal
densities are available, up to a scale factor. Instead, a mFC can be considered as an
element of the space [B2]K = B2 × ... × B2, which is a separable Hilbert space if
equipped with the component-wise B2 operations:

(f ⊕ g)i = fi ⊕ gi, (α� f)i = α� fi, f = (fi), g = (gi) ∈ [B2]K , α ∈ R,
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Figure 1: Population pyramids in the 57 districts of Upper Austria.

and the inner product 〈f , g〉[B2]K =
∑K

i=1〈fi, gi〉B2 , for f = (fi), g = (gi) ∈ [B2]K .
Let X1, ...,XN be a dataset of mFCs, e.g., that displayed in Figure 1. To simplify

the notation and without loss of generality, hereafter we assume the dataset to be cen-
tered. Note that, one can always consider the centered version of a given dataset, that is
X̃1, ..., X̃N , with X̃i = Xi 	X and X = 1

N �
⊕N

i=1Xi. Centering the observation
can be interpreted as setting the reference measure to the sample meanX .

Multivariate SFPCA (mSFPCA) ofX1, ...,XN consists of finding the main modes
of variability of the dataset. These are the orthogonal directions in [B2]K that display
the maximum variability of the dataset. They are identified by a collection of orthogonal
elements {ζj}j≥1, ζj ∈ [B2]K , of unitary norm, that are found by maximizing the
following objective functional

1

N

N∑
i=1

〈Xi, ζ〉2[B2]K subject to ‖ζ‖[B2]K = 1; 〈ζ, ζk〉A2 = 0, k < j, (13)

where 〈Xi, ζ〉2[B2]K
represents the projection of Xi along the direction identified by ζ,

and the orthogonality condition 〈ζ, ζk〉[B2]K = 0, for k < j, is meaningful only for
j ≥ 2.

It can be shown that, for each j = 1, 2, ..., maximization of (13) leads to a unique
solution in [B2]K ([13], Theorem 3.2). Indeed, the principal components are uniquely
found as the eigenfunctions of the sample covariance operator V : [B2]K → [B2]K ,
that acts on x ∈ [B2]K as

V x =
1

N
�

N⊕
i=1

〈Xi,x〉[B2]K �Xi.

The N − 1 non-zero eigenvalues of the operator V , λ1 < λ2 < ... < λN−1, represent
the variability of the dataset along its main modes of variability ζ1, ..., ζN−1.

For actual computation of the eigenpairs (λj , ζj), j = 1, ..., N − 1, we propose
to employ the clr-transformation (5), in order to map the problem in L2(P) (L2 for
short) and proceed as in the multivariate functional case. Specifically, we propose the
following procedure
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(1) Transform: For i ∈ 1, ..., N , transform the i-th observed mFC as clr(Xi), where
the mapping clr acts as a component-wise clr transformation: clr(f) = (clr(fl)) ∈
[L2]K , for f = (fl) ∈ [B2]K ;

(2) Solve in [L2]K : Compute the multivariate FPCs ξ1, ..., ξN−1 in [L2]K and the cor-
responding eigenvalues λ1, ..., λN−1;

(3) Back-transform: Employ the inverse clr-transformation to ξ1, ..., ξN−1, i.e., ap-
ply component-wise the inverse of the clr-transformation, and set ζj = clr−1(ξj).

It is possible to prove that (i) the eigenvalues found at step (1) are the same as those
of the operator V , and (ii) this procedure leads to a correct characterization of the set
of eigenpairs of V , since the clr-transformation is an isometric isomorphism between
B2 and L2. The proof of these points can be obtained by generalizing the arguments
presented in [15] (not shown).

To reduce the dimensionality of the dataset, we can then follow the same lines of the
classical setting. For instance, we can employ the scree plot to determine the relevant
mSFPCs in terms of the proportion of explained variability. The interpretation of the
mSFPCs can be based on graphical displays, such as the plot of the eigenfunctions
(possibly transformed via clr), or the perturbation of the mean via the eigenfunction
perturbed by a coefficient. The former allows to single out contrasts between parts of the
domains to which different weights are attributed; the latter enables one to visualize the
portion of variability around the mean which is captured by the corresponding principal
component.

4 Case studies

4.1 Effect of GDP components and causes of death on life expectancy

Eurostat provides various data sets at http://ec.europa.eu/eurostat/data
that refer to economy, population, health, education, etc., of the EU countries. For
the purpose of illustrating the procedure outlined in Section 3.1, we consider the life
expectancy as response variable, and two compositions as explanatory variables. The
first composition includes the most important components of the GDP (Gross Domestic
Product), namely the private final consumption expenditure (private), the government
final consumption expenditure (governmt), the gross fixed capital formation (capital),
the exports, and the imports. All these data are taken from the year 2011, for the EU
countries, as well as for Norway and Switzerland, and we use the data reported in abso-
lute values (million Euros). The second composition contains the most relevant causes
of death. Again, we use data from 2011, for the same countries as before, and take the
absolute numbers as a basis. The following groups are considered (the abbreviations in
brackets refer to the ICD codes, and to the abbreviations we are using later on): Certain
infectious and parasitic diseases (A00-B99) (infect), Malignant neoplasms (C00-C97)
(neoplasm), Endocrine nutritional and metabolic diseases (E00-E90) (nutrition), Men-
tal and behavioral disorders (F00-F99) (mental), Diseases of the nervous system and
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Table 1: Absolute numbers of causes of death for the male population of some selected
countries.

nervous infect neoplsm nutrition mental circul respirat digest
BE 1971 1104 15381 1128 1477 14228 5782 2287
BG 547 334 9807 720 41 35453 2483 2205
CZ 996 647 15051 1204 413 24303 3282 2583
DK 807 385 8118 900 1324 6540 2727 1275
DE 10765 7565 119818 12396 11003 145647 32050 20562

Table 2: Coordinates for the causes of death (male) for variable nervous at the first
position, for some selected countries.

z1 z2 z3 z4 z5 z6 z7
BE 0.51 1.22 -1.45 1.15 1.17 -1.11 -0.66
BG 0.96 1.64 -1.77 0.76 4.29 -2.22 -0.08
CZ 0.93 1.54 -1.63 0.83 2.30 -1.73 -0.17
DK 0.79 1.72 -1.31 0.86 0.66 -1.02 -0.54
DE 0.88 1.39 -1.38 0.85 1.23 -1.42 -0.31

the sense organs (G00-H95) (nervous), Diseases of the circulatory system (I00-I99)
(circulatory), Diseases of the respiratory system (J00-J99) (respiratory), and Diseases
of the digestive system (K00-K93) (digestive).

The life expectancy as well as the causes of death are available for the total pop-
ulation, and for males and females separately. Therefore, in the analyses below we
investigate models for these three cases separately. The GDP composition is of course
unchanged.

In order to get an impression about the raw data, Table 1 shows for the males and
for some selected countries the absolute numbers of the considered causes of death. It
is clear that these raw values would not be meaningful for a direct analysis, since the
population sizes in the countries are very different.

A first impression about the data structure is provided in Figure 2. We compare
the relative dominance of death by diseases of the nervous system and the sense organs
(nervous) with the life expectancy, separately for males (left) and females (right). Thus,
in the second composition, the variable nervous is put to the first position, and the first
coordinate after applying Equation (8) represents all relative information about nervous.

Table 2 shows for the data presented in Table 1 the resulting coordinates. The first
coordinate (z1) is used on the horizontal axis on the left plot in Figure 2.

According to the figure, high values on this coordinate correspond to dominance
of the disease nervous, which relates to low life expectancy, and vice versa. The most
important diseases covered by nervous are Alzheimer and Parkinson.

The regression model (10) is now applied to the problem, and the idea is to iden-
tify economic and/or health information that relate to life expectancy. The regression
models which are considered here (total, male, female) lead to multiple R2 values of

12
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Figure 2: Relation between all relative information to the diseases of the nervous system
and the sense organs with the life expectancy; left for males, right for females.

Table 3: Results of the test (11) for both compositions, for models based on the total
population, the males, and the females, respectively. Shown are the resulting p-values
of the test for the two compositions.

Total Males Females
GDP compositions <0.001 0.22 <0.001
Causes of death <0.001 0.13 <0.001

more than 0.9. We apply the test statistic (11) to the different settings, and the resulting
p-values are reported in Table 3. Both compositions have significant influence for the
models based on the total and on the female population, whereas for the males we do
not obtain significance.

The second test according to (12) tests for significance of the single parts in the
compositions via their corresponding coordinates. The results are presented in Table 4
for the first composition, and in Table 5 for the second composition. We realize that
none of the parts in the first composition is significant on its own. In order to get signif-
icance, we would need to go for other coordinates from (8) or even to consider a more
complex coordinate system [9]. In contrast, several parts from the second composition
are contributing significantly. For example, the part nervous that was under considera-
tion in Figure 2 has significant contribution in all settings (total, male, female), and the
regression coefficient is negative, as it was expected from the plot. So, dominance of
this disease (and subsequent death) refers to countries with lower life expectancy. Dom-
inance of neoplasm for females also relates to low life expectancy, while dominance of
the other significant diseases circulatory and digestive are in relation to countries with
higher life expectancy.

Note that the analysis above would lead to exactly the same results if the abso-
lute values of the compositions (million Euro for GDP composition, numbers of death
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Table 4: Results of the test (12) for the first composition, for models based on the total
population, the males, and the females, respectively. Shown are the resulting p-values
of the test, and the regression coefficients (coeff.) for the parts of the first composition.

Total Males Females
p-value coeff. p-value coeff. p-value coeff.

private 0.50 -1.32 0.98 0.08 0.58 -0.85
governmt 0.18 2.42 0.47 1.64 0.22 1.66
capital 0.56 -1.19 0.43 -2.18 0.47 -1.19
exports 0.68 1.57 0.92 0.52 0.49 2.00
imports 0.72 -1.49 0.99 -0.06 0.61 -1.61

Table 5: Results of the test (12) for the second composition, for models based on the
total population, the males, and the females, respectively. Shown are the resulting p-
values of the test, and the regression coefficients (coeff.) for the parts of the second
composition.

Total Males Females
p-value coeff. p-value coeff. p-value coeff.

infect 0.60 0.40 0.10 1.60 0.66 0.24
neoplasm 0.17 -3.71 0.52 -2.09 0.01 -5.06
nutrition 0.21 -0.85 0.07 -1.67 0.49 -0.37
mental 0.99 0.003 0.78 0.18 0.29 0.42
nervous 0.004 -2.69 0.005 -3.70 <0.001 -2.76
circulatory 0.03 3.40 0.04 3.35 <0.001 3.77
respiratory 0.42 -1.056 0.17 -2.74 0.39 1.02
digestive 0.005 4.49 0.004 5.06 0.01 2.74
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causes) would have been expressed in relative units, like proportions or percentages.

4.2 Dimensionality reduction of population pyramids via mSFPCA in Bayes
spaces

We demonstrate the results of the methodology proposed in Subsection 3.2 on the
dataset of population pyramids displayed in Figure 1, and presented in [15]. A sim-
ilar dataset has been considered in [5]. To perform the computations, we resort to
numerical integration to deal with clr-transforms and we solve numerically the eigen-
problem in [L2]K involved in step (2). Another strategy may be employed as well, e.g.,
by representing the data via a functional basis and expressing the solution through the
corresponding coefficient [23, 15]. Figure 3 summarizes the obtained results. Figure
3a displays the variability explained by the first eight SFPCs. It shows a rapid decrease
in these variances, which suggests a possible dimensionality reduction to two or three
mSFPCs. However, the variability of the estimated scores along the third component
(i.e., of 〈Xi, ζj〉2[B2]K

, with j = 3, i = 1, ..., N ) appears affected by the presence of
an outlier. Hence, we focus on the first two components for scope of interpretation and
dimensionality reduction. To ease the interpretation, Figure 3c-d display the clr trans-
formation of the elements of ζ1 and ζ2, i.e., ξ1 and ξ2 obtained from step (2); colors
are used to identify the gender. The transformed eigenfunctions can be interpreted as
in FPCA, e.g., looking for meaningful contrasts between portions of the domain. No-
tice that the clr-transformed eigenfunctions are continuous, non-constant and fulfill the
zero-integral constraints which is characteristic for clr-transformed FCs. As such, con-
trasts are expected in all the ξi, i ≥ 1. Considering the first mSFPCs, we notice that
in both elements, a contrast exists between the oldest population (age>80/75 years, for
men and women, respectively) and the younger one. We note that this result is consis-
tent with that of [15], that analyzes separately men and women subpopulations. Hence,
high scores along the first mSFPC are expected for the municipalities with a higher
incidence of the elder population than the mean, and vice versa. This is evident also
when observing the plot displayed in Figure 3e. Here, the effect of the variability along
the first principal component is visualized via the perturbation of the mean by the first
mSFPC powered by ±2 ·

√
λ1. Having fixed the sign of the eigenfunction ξ1 as in Fig-

ure 3c, data with high corresponding scores (dark grey line) tend to have heavier tails
than the mean and vice versa.

The interpretation of the second mSFPC in Figure 3d is in terms of contrast be-
tween men and women subpopulations, with a positive contribution in men for right
tails (age>93 years) higher than the mean, and a negative contribution in women’s
right tails (age>75 years) higher than the mean. Overall, Figure 3f shows that low
scores along the second mSFPC associate with more pronounced peaks in the density
functions and vice versa. Figures 3g and h display the contribution to the variability
along the two mSFPCs: in each panel, the elements 〈Xi, ζk〉[B2]K � ζk, i = 1, ..., N ,
k = 1, 2, are represented. In agreement with the previous comments, these plots sug-
gest that most variability is displayed within the right tails. In addition to this, further
evidence of the previous interpretation is given by plotting the elements with maximum
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scores (black curves). Indeed, high scores along the first mSFPC in Figure 3c corre-
spond to higher incidence of the old population than the mean in both men and women;
instead, high scores along the second mSFPC correspond to higher incidence of the old
population than the mean in men, and lower incidence in women. Similar interpretation
— with opposite score signs — are obtained from the elements with minimum scores.
In this sense, the second mSFPC provides a contrast between the behavior of men and
women subpopulations for the elder ages. Finally, Figure 3j displays the approximation
of the densities which are attained via the first two SFPCs, that together explain more
than 80% of the overall variability.

5 Conclusions

This contribution has been devoted to the logratio approach to symbolic data analysis of
distributional data. In our setting, the relative information embedded in compositions
is being analyzed, based on the logratios between the values of the compositional parts
(either discrete or continuous). Here, we described a unifying framework for both the
continuous and the discrete case, based on the theory of Bayes spaces. We illustrated
the discrete case through a regression setting, for a real response modeled in terms of
a number of compositions. Here, we considered specific representations of the com-
positions in terms of coordinates, in order to use the classical tools for inference. To
this end, we employed a particular type of the isometric logratio (ilr) coordinates. In
the continuous setting, we analyzed multivariate distributional data in the form of den-
sities by extending multivariate functional principal component analysis. Here, the key
to bring theory to practice was to employ the centered logratio (clr) transformation to
simplify computations of eigenfunctions.

The examples on regression and functional principal component analysis served
as illustrations of the great potential of this theory that enables one to deal with both
compositional data and densities in the common framework of the Bayes space method-
ology, adapted to the SDA case. This opens new views even to cope with mixed types
of data (e.g., Euclidean, functional, compositional), that remains one of the greatest
challenges for the future.
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[13] L. Horváth and P. Kokoszka. Inference for Functional Data with Applications.
Springer Series in Statistics. Springer, 2012.

[14] K. Hron, P. Filzmoser, and K. Thompson. Linear regression with compositional
explanatory variables. Journal of Applied Statistics, 39(5):1115–1128, 2012.

[15] K. Hron, A. Menafoglio, M. Templ, K. Hrůzová, and P. Filzmoser. Simplicial
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