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Abstract

The purpose of this work is to analyse and study an efficient parametrization tech-

nique for a 3D shape optimization problem. After a brief review of the techniques and ap-

proaches already available in literature, we recall the Free Form Deformation parametriza-

tion, a technique which proved to be efficient and at the same time versatile, allowing

to manage complex shapes even with few parameters. We tested and studied the FFD

technique by establishing a path, from the geometry definition, to the method implemen-

tation, and finally to the simulation and to the optimization of the shape. In particular,

we have studied a bulb and a rudder of a race sailing boat as model applications, where we

have tested a complete procedure from Computer-Aided-Design to build the geometrical

model to discretization and mesh generation.

Keywords: Free Form Deformation, Shape optimization, Viscous flows.

AMS subject classification: 05A16, 65N38, 78M50.

1. Introduction and motivations.

An important problem in computational science and engineering is to
solve partial differential equations in domains involving arbitrary shapes,
more particularly in shape optimization [1,2]. In an optimization context,
one needs to solve the same equations several times, however in general
this procedure may be very expensive for the computational viewpoint
and repetitive with several iterations. This calls for an improvement of
the approach to the problem, which depends on the selected discretiza-
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tion model (e.g. Finite Elements method [3]) and on the description and
parametrization of the domain geometry and to introduce shape perturba-
tion/deformation.

Let us consider a domain and apply a perturbation to it. Some questions
may arise: what would the range of reachable shapes be? Which level of ge-
ometrical complexity could be handled? How much would that cost in com-
putational terms? Is there an easy and intuitive method to use? Developing
such a strategy can be useful in many applications in shape optimization
due to the high flexibility and complexity required for this kind of problems
and because of the high number of iterations that can be needed to reach
the convergence. Examples of practical uses can be found, for instance, in
Aeronautics, for example in the shape optimization of an airfoil, or an entire
wing, when attempting to obtain a drag reduction or an efficiency improve-
ment, obeying to some specific optimization laws [1,2,4–8]. Other fields of
interest are, e.g., the study of aorto-coronaric bypass configuration [9,10],
the optimization of hulls and appendages in naval engineering [11–13], etc.

The aim of this work is to find a simple and powerful method for the
management of a large variety of complex and smooth tridimensional defor-
mations, and test it in order to deform some sample geometries. The method
should be flexible to describe a wide range of shapes with minimum geo-
metrical constraints. Applications will be made to deform the geometry of
a rudder and that of a bulb, two appendages of a sailing yacht, and insert
it in a shape optimization process.

The way to describe shape perturbations can be divided in two cate-
gories: variational or parametric. In this work we considered only the para-
metric shape variation: the perturbed domain is a function of a finite num-
ber of real parameters. There are several methodologies that will briefly be
described below.

Some of the most typical approaches for parametric domains [14], and
the motivations that have led us to choose the most appropriate one, are
the following:

Basis shapes approach: By using this approach there is a well-chosen
set of shape perturbations, which is used to model the geometry
through a suitable linear combination.
The shape changes can be expressed as

(1) R = r +
∑

i

viUi,

where R is the design shape, r is the baseline shape, vi is the design
variable vector and Ui is the design perturbation based on several
proposed shapes.

2



DOI: 10.1685/journal.caim.452

The main problem related to this approach is the definition of a
set of basis shapes that are not linearly dependent. Some sugges-
tion for the correct selection of shaped can be found in [15], where
Karhunen-Loeve Expansion is adopted for the determination of a
basis of independent base shapes. Once independency of the base
shapes is obtained, variety of the possible shapes could be quite
large. Internal subdivision and structural design in general needs
typically to be re-designed once the external shape is changing, and
specific design parameters are classically devoted to the definition
of the inner structures. As a consequence, basis shapes approach
(also called morphing) is also suitable for Multidisciplinary Design
Optimization [14].

Discrete approach: This is the most intuitive approach, based on the use
of the coordinates of the boundary points as design variables. This
method is easy to implement, and the available shapes are limited
only by the number of the boundary points. However, it is difficult
to maintain a smooth geometry, and to do this, the number of the
design variables becomes very large, which leads to a high compu-
tational cost and a difficult optimization problem to solve [16]. This
approach is commonly applied only when an adjoint formulation of
the flow solver is available. Otherwise, the number of design variable
is absolutely not feasible for any nearly-real application.

Polynomial and Spline approach: This approach is based on the use
of polynomial and spline representations for shape parametrization.
This can greatly reduce the total number of design variables. The
control of the shape is handled by few special points, called con-
trol points, which by modifying their positions, the value of the
polynomial which describes the curve changes with them. Those
methods are very popular in CAD and in design applications in
general. According to the different mathematical properties that
distinguish one from the other, these are called Bezier, B-splines
and NURBS (Non-Uniform Rational B-Spline) curves [17,18]. Those
types of curves are well suited for shape optimization, as shown in
several works [1,4,5,14,19,20]. Some definitions of such curves are
limited (that is not all the geometries can be represented) but they
are connected with each other in such a way that one definition goes
beyond the limit imposed by the other. NURBS curves are the most
general, followed by Rational Bezier curves, which are slightly more
limited, then by B-spline curves and finally by Bezier curves.
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2. Free Form Deformation.

The problem of defining a solid geometric model of an object bounded
by a complex surface has long been identified as an important research
problem [21]. Free Form Deformation (FFD) is a versatile parametrization
technique that was originally used with solid modeling system [22]. More
recently it has been proposed in a variety of contexts, for example for the
parametrization of airfoils and wings in a shape optimization context for
potential flows [1], thermal flows [23] and viscous flows [24], for instance
for cardiovascular devices [25]. A growing interest in FFD is characterizing
naval field [26–28].

While other commonly used techniques directly manipulate the geomet-
rical object at hands, FFD deforms a lattice that is built around the object
itself, and consequently, manipulates the whole space in which the object
is embedded. Here are some examples found in literature [2,22]. The lattice
has the topology of a cube when deforming 3D objects or a rectangle when
deforming two-dimensional objects.

One of the advantages concern the choice of the parameters, which
is up to the user. Experience [1] shows that FFD is a low dimensional
parametrization that gives a good accuracy even with few parameters and
it has a good sensitivity. It operates on the whole space that embeds the de-
formed objects, through the definition of a reference domain and by moving
some suitable control points. This allows the user to manipulate the control
points of trivariate Beziera volumes.

FFD can treat surfaces of any formulation or degree and it is indepen-
dent from the domain or the mesh which is used for its discretization, and
it features a good trade-off between generality and simplicity.

A distinguishing aspect of this method is that, by deforming the whole
volume around (or inside) the object, the computational grids are also being
automatically deformed with the object, which is a valuable characteristic
for automated design optimization procedures.

FFD can be applied locally or globally and preserves the shape smooth-
ness (and derivative continuity). In the next sections, after formulating
FFD method, some examples of applications will be presented and some
properties will be recalled [1,2,4,6,14,22,29].

Another benefit of using FFD is that the computation may be sub-
divided into an offline stage, which is more time consuming, and an
online part, which can be computed several times once the product of
the offline part is stored and it is much cheaper. This fact matches the
need of the model reduction method, such as the Reduced basis method

aAlso B-splines or NURBS can be used to produce the deformation volume [14].
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(RB) [23–25,30–32]. Without giving details, RB method is based on an
offline and on an online part, as well. So the two methods can be con-
nected, remarkably improving the computational time and the efficiency of
the computation.

2.1. Formulation.

A suitable illustrative example is that of a rectangle (in 2D) or a par-
allelepiped (in 3D) of transparent, flexible plastic in which an object or
several objects are embedded, which are intended to be deformed [2]. Here
we follow the tridimensional case.

After defining a reference domain Ω0 and a subset that we wish to
perturb D0 ⊂ Ω0, a differentiable and invertible map is introduced Ψ :
(x1, x2, x3) → (s, t, p), so that Ψ : (D) → (0, 1)× (0, 1)× (0, 1). The FFD is
defined in the reference coordinates (s, t, p) of the unit cube. Let us select
a regular grid of unperturbed control points P0

l,m,n, where l = 0, . . . , L,
m = 0, . . . ,M and n = 0, . . . , N so that

(2) P0
l,m,n =





l/L
m/M
n/N



 .

A parameter vector µl,m,n is introduced, whose dimension is 3× (L+ 1)×
(M + 1)×(N + 1), because for each control point we consider the possibility
to move in three different directions (s, t and p). In Figure 1 we can show
how they are distributed.

P
0

l, m, n

t, m

s, l

p, n

Figure 1. Unperturbed control points and parameters vector.

Each control point is perturbed by the corresponding value of the pa-
rameters vector:

(3) Pl,m,n

(

µl,m,n

)

= P0
l,m,n + µl,m,n.

Then the parametric domain map is constructed T : D0 → D (µ) as

(4) T (Ψ (x) ;µ) = Ψ−1

(

L
∑

l=0

M
∑

m=0

N
∑

n=0

bL,M,N
l,m,n (s, t, p)Pl,m,n

(

µl,m,n

)

)

,
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where

bL,M,N
l,m,n (s, t, p) = bLl (s) bMm (t) bNn (p) = . . .

· · · =

(

L
l

)(

M
m

)(

N
n

)

(1− s)(L−l) sl (1− t)(M−m) tm

· (1− p)(N−n) pn,

(5)

are tensor products of the 1-d Bernstein basis polynomials

(6)

bLl (s) =

(

L
l

)

(1− s)(L−l) sl,

bMm (t) =

(

M
m

)

(1− t)(M−m) tm,

bNn (p) =

(

N
n

)

(1− p)(N−n) pn,

defined on the unit square with local variables (s, t, p) ∈ [0, 1]× [0, 1]× [0, 1],
and the function Ψ maps (x1, x2, x3) 7→ (s, t, p).

As mentioned, in order to effectively calculate the global map T there
are two parts: one offline, that is the precomputation of the transformation
by the use of a symbolic expression, and the other is online, that is the
evaluation of the function for the parameters and the coordinates of the
real system. This second part is very cheap, even in the 3D case. So once
the offline part is completed, that is the part which takes the majority
of the cost, the map T is calculated, so it is enough to evaluate it. For
optimization problems, which implies to reiterate the computation several
times, it may be an excellent tool.

2.2. FFD properties and practical issues.

FFD is a method that involves all the domain, as a lattice created
by Bernstein polynomials where all the internal objects are deformed and
follow the deformation rule imposed by them. In fact, by just moving one
control point in one direction implies the deformation of all the domain,
assuring a smooth and continuous deformation, no matter how complex
this could be.

Since Bernstein polynomials vanish on the boundary, all the deformation
takes place only inside the boundary domain.

Another thing to highlight is that the use of FFD also reduces the num-
ber of shape parameters: in [23] it has been estimated that compared to a
small perturbation approach by moving individual mesh nodes, a very sub-
stantial reduction (up to 2 orders of magnitude) in the number of geometric
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parameters can be achieved. This is another strong point in favor of this
method, which makes it still more complete and efficient at the same time.

Last but not least, FFD can be applied also locally, in order to deform
just a part of the domain and to focus only on it. Following this idea,
multiple FFD blocks can be chained together to enhance the deformation of
an object, the control points where the two FFD blocks are joined cannot be
deformed. FFD can therefore be adapted according to the type of problem
at hands, yielding a very versatile method.

FFD may also allow to maintain the same mesh during the optimiza-
tion process, due to the fact that the smooth deformation involves all the
domain where the FFD lattice is defined, including the mesh points. This is
another important feature, because one does not need to remesh for every
iteration, but the new mesh follows the deformation. In other words, since
FFD is a technique to deform the space, it can be used to deform the mesh
and the shape simultaneously [6]. However, one should proceed carefully,
in order to ensure that a smooth deformation is imposed, which does not
generate overlapping effects in the mesh. The smoothness of the deforma-
tion is ensured inside the lattice, since deformation is ruled by Bernstein
polynomials. That is why we have chosen to operate just with the internal
point of the FFD domain, as we have mentioned.

Another feature that can be taken into consideration is the possibility
of implementing a rotation of the FFD lattice. This could be helpful for
example in case the object to be deformed is rotated over a certain angle or
it is necessary to deform this object in order to maintain a symmetry not
aligned with the orthogonal axes. The mentioned rotation can be obtained
by applying an additional rotational matrix R to compute the global map
T.

In order to achieve the purposes of this work and to apply an efficient
method of deformation and use it in an automatic shape optimization pro-
cess, it is necessary to have the appropriate tools to work with and have
efficient interactions and communications among them. So there is the ne-
cessity to create an initial geometry, define the problem we want to solve
and implement by the FFD method. For this reason, many options and
softwares have been used and explored, and it has been necessary to study
a connection between them, so that they can interact and communicate
with proper interfaces and consistent datab.

bA CAD software (Computer-Aided Design) has been necessary for the setting up
and design of the models and their geometries that we want to optimize. For this pur-
pose, many CAD softwares are available, such as Rhino [33], AutoCad [34]. SOLID-

WORKS [35], used in this work, is the starting point, where all the initial design decisions
are taken. Secondly, the geometries are exported in a suitable format and imported into
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2.3. Geometrical models.

A complete underwater part of a sailboatc, with all its appendages, is
shown in Figure 2.

Figure 2. Bulb and appendages of a sailboat.

In particular, in this work we have focused on the shape optimization of
two: the bulb and the rudder, which have both been created using SOLID-
WORKS. First in Figure 3(a) the bulb is presented, which has a much less
complex shape than the shape of the rudder (Figure 3(b)). It is just an
initial surface, which will be given as an initial guess in the optimization
process. Keel and winglets (see Figure 2) are not present because usually a
shape optimization of a bulb under a uniform flow includes just the geom-
etry of the bulb itselfd [12,36].

In order to geometrically create the rudder, a mean spanwise airfoil
NACA 63012 [37], a root cord of 0.5 m and a total length of 3.02 m have
been used.

the equation solver program. COMSOL Multiphysics has been used to define the problem
and to solve it at every iteration of the optimization process.

cImage courtesy of CMCS (Chair of Modelling and Scientific Computing - EPFL -
Lausanne).

dWinglets are largely influencing the performances in oblique flow, as well as they are
also important in the symmetric case, but a simplification is required in order not to
increase too much the computational cost. We think that this is a reasonable choice for
the preliminary investigation, but not the best practical approach, since the real problem
includes winglets and fin.

8
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SolidWorks Educational Edition.
 Solo per uso istruttivo.

(a) Bulb. (b) Rudder.

Figure 3. Initial geometrical models.

3. Mathematical and numerical formulation of the model prob-

lems.

3.1. Problem definition.

Given a domain Ω ⊂ R
3 (the complementary of the region occupied by

the sailing boat), the equations considered are the incompressible steady
Navier-Stokes equations, for a viscous Newtonian fluid [3,38–40]:

(7)

{

(u · ∇)u+∇p−∇ ·
[

ν
(

∇u+ (∇u)T
)]

= f, x ∈ Ω

∇ · u = 0, x ∈ Ω,

where ρ is the fluid density, which is constant, u is the velocity field of the
fluid, p is the pressure divided by the density, ν is the kinematic viscosity,
ν = µ

ρ
, where µ is the dynamic viscosity and f is a forcing term per mass

unit. The first equation of the system is the momentum equation, the second
is the conservation of mass equation, which is known also as continuity
equation. In Figures 4(a) and 4(b) we show the boundary conditions and
on which face of the domain they have been imposed. The numbers on the
surface correspond to a cruising condition:

1. Inlet: uniform velocity u = −U0n;

2. Open boundary: normal stress
[

−pI+ µ
(

∇u+ (∇u)T
)]

n = 0;

3. Outlet: pressure p = p0 and no viscous stress µ
(

∇u+ (∇u)T
)

n = 0;

4. Wall: no slip u = 0;

where n is the normal to the face of the domain considered, u is the velocity
vector and p is the pressure. As previously introduced, µ is the dynamic
viscosity, U0 and p0 are the values of the velocity and of the pressure in the
unperturbed field, respectively.

9
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(a) Boundary conditions for the rud-
der problem.

(b) Boundary conditions for the bulb problem.

Figure 4. Domain definition and boundary conditions.

(a) The rudder and the mesh of
the domain (number of elements:
222138).

(b) The bulb and the mesh of the domain
(number of elements: 8904).

Figure 5. Domain definition and boundary conditions.

By writing the weak formulation and using the Galerkin finite element
method, we obtain:

{

AU+N (U) +BTP = F

BU = 0,

10
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where all matrices depend on appropriate test functions.

3.1.1. Cost functionals.

We have chosen to minimize the following functionals: either

Jb (µ) =
D (µ)

D0
,(8)

or

Jr (µ) =
1

2

(

D (µ)

D0
+

E0

E (µ)

)

,(9)

where Jb is the functional for the bulb, Jr is the functional for the rudder,
E = L/D is the efficiency where L and D are, respectively, the lift of the
rudder and the drag force obtained by solving the Navier-Stokes equations,
and D0 and E0 are reference quantities (generally the values of the first
step). D and L are obtained by making a pressure integration on the rudder
surface (for the bulb it is done only for the drag) in a streamwise and
spanwise direction, respectively.

3.2. Optimization algorithm.

The next step is the description of the iterative optimization algo-
rithm. In literature many optimization methods have been proposed [16,41].
Among them, the most common ones are the gradient-like method [42,43],
genetic algorithms [44]. Gradient-like methods require the gradient of the
scalar cost function and constraints (dependent variables), respecting the
shape design (independent) variables. The problem of these kinds of meth-
ods is that they may converge to local optimum and not to the global one.
Besides, Genetic Algorithms (GAs) have proven their strength against lo-
cal limits, however they may require a very high number of configurations
evaluation to converge. In our case, the cost of GA methods is still not
affordable, thus we will focus on the gradient methods, preferring also a
deterministic approach to the probleme.

For a smooth constrained problem, let g and h be vector functions
representing all inequality and equality constraints respectively. Our opti-

eThe built-in MATLAB function fmincon comes to our purpose [45]. It is a function
based on gradient-like method, which finds a constrained minimum of a scalar function
of several variables, starting from an initial estimate.
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mization process can be written as

min
µ

J (µ) ,

subject to g (µ) ≤ 0,

h (µ) = 0,

(10)

where µ is the set of FFD parameters defined in Section 2.1, the design vari-
ables which are correlated with the control points displacement. A priori,
one has to decide which parameters to choose, according to the direction
of the deformation, and this is absolutely arbitrary.

Then, we define the Lagrangian function as

(11) L (µ,λ) = J (µ) +
∑

λg,igi (µ) +
∑

λh,ihi (µ) ,

where λ is the Lagrange multiplier vector of λg and λh. Its length is the
total number of constraints. The Hessian of this function is shown below

(12) W = ∇2
µµL (µ,λ) = ∇2J (µ) +

∑

λg,i∇
2gi (µ) +

∑

λh,i∇
2hi (µ) ,

where ∇2
µµ is the Laplacian in respect to vector µ. The function fmincon

uses a Sequential Quadratic Programming (SQP) method, that is one of
the most popular and robust algorithms for nonlinear continuous optimiza-
tion [46,47], and it is appropriate for small or large problems. The method
solves a series of subproblems designed to minimize a quadratic model of
the objective function using a linearization of the constraints. A non-linear
program in which the objective function is quadratic and the constraints
are linear is called a Quadratic Program (QP). An SOP method solves a
QP at each iteration. In particular, if the problem is unconstrained, then
the method reduces to Newton’s method [48] to find a point where the gra-
dient of the objective vanishes. If the problem only equality constraints,
then features the method is equivalent to applying Newton’s method to
the first-order optimality conditions (or Karush-Kuhn-Tucker (KKT) con-
ditions [46]) of the problem.

In order to define the k-th subproblem, both the inequality and equality
constraints have to be linearized. If p = µk+1−µk, where k is the iteration
counter, we obtain the local subproblem

min
1

2
pTWkp+∇JT

k p,

subject to ∇hi (µk)
T
p+ hi (µk) = 0,

∇gi (µk)
T
p+ gi (µk) ≥ 0,

(13)

A QP method is now used to solve this problem [46].
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3.3. Solvers.

For the (symmetric) bulb problem a direct solver (PARDISO [49]) has
been used, while the iterative solver BiCGStab [43] has been used for the
rudder.

All the operations involved in the optimization process are summarized
in Figure 6, starting from the definition of the model problem and the design
variables, through the choice of the cost functional and the iterations of the
optimization process, till the final optimized shape.

Note that during this optimization procedure, there is no need to regrid
after deformation, since the deformation applied from the FFD techniques
involves not only the geometry but also the mesh itself. When limiting to
small deformation fields, the mesh continues to maintain its validity.

Definition of the model
problem

FFD and
Parameters definition

Definition of the cost
functional

Solution of the model problem

Sequential Quadratic
Programming method

Shape and parameters
modification

Final shape

Functional calculation

Navier-Stokes equation,
Boundary conditions,
Geometries, Mesh, etc.

Number,
Directions to move

Determination of the
optimal condition project

Application of the
optimization method

FFD application with the
new parameters

Solution with the
modified shape

Depends on the
new solution

Number of parameters,
Directions to move

Determination of the
optimal condition of the
project

Ite
ra

tiv
e

Pr
oc

ed
ur

e

Figure 6. Scheme for the shape optimization process.
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4. Simulations and results.

4.1. Bulb.

First we present the results concerning the bulb. In the simulation, the
cost functional described in previous section has been used. A FFD into a
bounding box has been applied (see Figures 7 and 8). The total number of
control points is 343 (L = 6, M = 6 and N = 6, referred to x, y, and z
direction respectively), however the ones actively involved in the simulation
are only 12, corresponding to the use of 20 parameters.

The following constraints have been imposed:

� Concerning the volume V we allow a variation up to 20% of its initial
value. This is to avoid the most obvious condition of minimum resistance,
when the bulb degenerates to a point in the space.

� In order to maintain the symmetry along the z direction additional con-
straints have been imposed to displacements of control points indicated
as A and B in Figure 8, such that µA = −µB. Instead, no constraints to
the control points have been imposed to maintain the symmetry along
the y direction, to test whether the result still remains symmetric with-
out explicitly imposing the symmetry (for consistency and generalization
purposes).

� The parameters vary between [−80%, 80%] (expressed in percentage of
the chord) to maintain the deformation contained and to avoid mesh
degeneracy.

In Figure 8 the displacements of the control points chosen as parameters
for the optimization are shown.

Figure 7. Domain where the bulb is inserted and definition of the FFD bounding box.

14
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−4

−2

0

2

4

A

B

Figure 8. Lateral view of the domain and the FFD bounding box.

Results after the optimization process follow. For a better view we
present just the flow field belonging to the XY plane, being a symmet-
ric flow. In Figure 9 the initial pressure field around the undeformed bulb
is shown, while in Figure 10 we report the pressure field obtained after the
shape optimization.

Figure 9. Pressure field of the initial shape of the bulb in plane XY (Pa).

Figure 10. Pressure field around the optimized bulb in plane XY (Pa).

In Figure 11 the initial velocity field around the initial shape of the
bulb is shown, while in Figure 12 velocity field obtained after the shape
optimization is represented.

As it can be noticed, the optimization succeeded to reduce the wake past
the bulb. In fact, the drag force D is composed by two contributions: one
given by skin friction force and the other given by the pressure force [38].
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Figure 11. Velocity field of the initial shape of the bulb in plane XY (m/s).

Figure 12. Velocity field around the optimized bulb in plane XY (m/s).

Depending on the shape of the object, besides of course on the Reynolds
number, one contribution becomes more important than the other one. In
the case of a bulb, or a blunt body, and in presence of a sufficient high Re,
as in our case the major contribution derives from the pressure force. By
trying to contain this contribution, the frontal area of the bulb is reduced,
as we expected, and it becomes more and more similar to an airfoil, where
the skin friction drag, or the viscous one, is predominant.

In Table 1 the values of the parameters and of the cost functional J
obtained as results, which are defined in Section 3.1.1, are reported. To
recall, D0, V0 and J0 are the drag, the volume and the cost functional,
respectively, referred to the undeformed bulb, while D, V and J are the
ones obtained at the end of the optimization. The percentage gain of drag
decrease is denoted with %∆.

Table 1. Value obtained before and after the shape optimiza-
tion for the bulb.

D0 [N] D [N] V0

[

m3

]

V
[

m3

]

J0 J %∆

1.389 1.005 0.7156 0.5725 1 0.724 27.6

In Figure 13 the initial and final shape are compared.
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Figure 13. Visualization of the initial and final shape of the bulb.

As it can be observed, there is an important reduction of the drag with
the new shape, a gain of 27.6% respect to the initial shape. The final volume
is the 80% of the initial one, and this indicates that the optimization has
stopped because it has reached the limit of volume reduction.

4.2. The rudder.

We now show the results for the rudder. The simulations have been more
difficult, due to the fact that the rudder has a more complex and refined
geometry. It has also been rotated by an angle of α = 5° with respect to
the flow field around the z axis. Also in this case, a local FFD has been
applied, as shown in Figures 14 and 15.

Figure 14. The rudder and the subdomains where the rudder is placed, with the lattice
of the rotated FFD bounding box.

As we anticipated in Section 2.3, the mean airfoil is a NACA 63012
profile, which is a symmetric one. To maintain this symmetry, a constraint
on the displacements of the parameters has been imposed, such that all
the displacements are proportionally connected along the z axis. Thus the
constraints imposed are:
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� As in the case of the bulb, the volume of the rudder cannot diminish
more than 20% of its initial value (for demonstration purposes).

� µizk = k
5µiz5 , where i is the i-th parameter, k is the layer of each plane XY

formed by the control points considered along the z axis. In this case we
have considered 5 layers, so k can vary from 1 to 5, where 5 is the highest
XY plane of control points taken into consideration (see Figure 15). So
the displacements at the inferior layers will be proportional to the highest
one.

� At every level k, it has been imposed that µA = −µB (Figure 15) to
maintain the symmetry in the plane of the airfoil.

� Since deformations are very delicate, so the range of the parameters is
restricted to [−200%, 200%] (expressed in percentage of the chord).

Since the rudder is rotated, it has been necessary to rotate also the local
FFD, in order to respect the symmetry condition, as shown in Figure 15.
The lattice has 175 control points (L = 4, M = 4 and N = 6, referred to x,

Figure 15. An upside and a lateral view of the rudder in the XY plane and in the XZ
plane respectively and the displacements considered.

y, and z direction respectively), and the ones chosen for the optimization
and the parameters are 15, which are all indicated in Figure 15. In the
next figures the shape of the rudder is shown from plane XZ, regarding
the pressure (Figures 16(a) and 16(b)) and the velocity field (Figures 17(a)
and 17(b)) before and after the optimization process. Results refer to the
situation in the center of the domain, that is taken at y/2.

The shape is modified, however the deformation is not large enough
to appreciate the entity of the variations. In Figure 18 we show an am-
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(a) Pressure field of the initial shape of
the rudder in plane XZ at y/2 (Pa).

(b) XZ plane showing the pressure field
around the optimized rudder at y/2
(Pa).

Figure 16. Pressure fields around the initial and the final shape of the rudder.

(a) Velocity field of the initial shape of
the rudder in plane XZ at y/2 (m/s).

(b) XZ plane showing the velocity field
around the optimized rudder at y/2
(m/s).

Figure 17. Velocity fields around the initial and the final shape of the rudder.

plification of twice the deformation obtained, just to give an idea of its
magnitude. The values of the physical variables, which have been defined
in Section 3.1.1, are shown in Table 2. D0, E0, V0 and J0 are the vari-
ables referred to the initial shape of the rudder, then D, E, V and J are
the ones referred to the final optimized shape, which are the drag, the
efficiency and the volume respectively (see Section 3.1.1). %∆tot is the rel-
ative gain obtained with the new shape, which includes the contributions
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Figure 18. XZ plane with the amplified deformed rudder.

of the combination of drag D and efficiency E. The optimization process

Table 2. Value obtained before and after the shape optimization for the rudder.

D0 [N] D [N] E0 E V0

[

m3

]

V
[

m3

]

J0 J %∆tot

2.993 2.915 2.559 3.7464 0.0298 0.0207 1 0.829 17.1

has stopped after reaching the maximum range value of the parameters,
which was imposed on the highest layer (k = 5). However, even if the de-
formation involved on the final form of the rudder is small, the wake after it
looks smaller than the original one and there is a total gain of 17.1%, which
corresponds to a 2.6% reduction in drag and a 31.7% gain in efficiency E,
maintaining the construction symmetries.

To sum up, we can conclude that FFD versatility suits well the optimiza-
tion process, adapting without problems to the different kinds of geometries
and constraints, improving the performance of the object taken into consid-
eration and it may be considered a valid and efficient alternative approach
with respect to more classical shape optimization methods. The major cost
of the computational process is the solution of the Navier-Stokes equations,
and it can become very high by the use of more FFD parameters, since the
optimization process described in Section 3.2 is solved many times before
converging. The use of some reduced order modelling techniques, such as
reduced basis method [23,30,31], can help diminishing the computational
cost of the solution of the Navier-Stokes equations and allow to pursue both
geometrical and computational cost reduction, since FFD is able to manage
shape optimization with a reduced number of parameters.

However, the test cases have been considered with the aim of describing
a shape optimization design process of a generic CAD object by adapting
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the model equations and the quantities appearing in the cost functional and
constraints, which can be weighted differently according to the optimization
that one wants to pursue. In Figure 19 the comparison between the two
geometries is shown: the initial shape and the final one (black dashed line
and red line, respectively).

Figure 19. Rudder initial and final shape comparison.

5. Conclusions.

The FFD proved to be a powerful and efficient parametrization method
that could be used in several applications, such as the shape optimization
of a wing or an airfoil, a bypass conduct or a part of a sailing boat. In
this work, FFD has been tested on 3D examples. We have considered two
shape optimization processes dealing with a bulb and a rudder of a yacht,
respectively. The FFD method has been applied around a bounding box
in order to have a better sensitivity of the deformation around the object.
Moreover, regarding the rudder, FFD has also been rotated/distorted in
order to maintain the symmetry constraint of the deformation along its
spanwise direction. One aspect that could be tested in order to improve
the control of the deformation is to subdivide the domain into several FFD
settings, so that we may have different deformations sets/regions.

A distinguishing feature of the FFD method is that the deformation
involves also the mesh defined inside the lattice of points (bounding box),
and for small and smooth deformation, there is no particular need to make
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a new mesh at each iteration of the shape optimization problem. Thus
FFD is mesh independent and also independent of geometry and even the
PDE model to which it is applied. FFD can also be efficiently used in
the preliminary design phase, for instance of a complete aircraft, more in
general in a multidisciplinary shape optimization problem [30,50].

These features make FFD a very flexible and efficient method. The
results presented in Section 4 show that, applying the Navier-Stokes equa-
tions to solve the flow in a cruising condition, a new optimized shape is
obtained both for the bulb and for the rudder, with an improvement of
the fluid dynamics performances and indexes related with state variables
chosen properly to minimize/maximize, which is drag and a combination
of drag and efficiency, respectively, obtaining as much as the 27.6% in drag
reduction for the bulb and a 17.1% of improvement of the combination of
drag reduction and efficiency for the rudder.

The choice of the degrees of freedom of the admissible deformations and
the number of the parameters are all up to the user. One aspect that can
make the object of further investigation is the setup of a method that, by
identifying which shapes need to be deformed, allows the choice of control
points to improve the shape optimization with the least number and max-
imize the efficiency of the deformation. This could reduce even more the
computational costs needed for the shape optimization process, which is
determined by the number of chosen variables. To reach our goal we have
developed a platform by combining several capabilities already available in
order to combine different tools for geometrical modelling, shape variation,
numerical simulation and optimization [51].

Anyway, the cost of the optimization by solving Navier-Stokes equa-
tions discretized by finite elements at every iteration and for every design
variables may become prohibitive. In this perspective, an aspect of interest
could be to couple FFD method with reduced order modelling techniques.
This will simplify the complexity problem and gain even more in efficiency
of computational performance.

We underline that FFD is seen as an alternative method for shape op-
timization. See [51,52] for some classical results in shape optimization re-
built with FFD and their comparison with classical techniques. For more
advanced uses of FFD we recall some recent studies in [50]. In the aero-
dynamics field, an alternative parametrization named MASSOUD (Multi-
disciplinary Aero/Struc Shaper Optimization Using Deformation), a sort of
evolution of the FFD, has been proposed by Samareh in [53], which modifies
the FFD method in order to parameterize the shape perturbations rather
than the geometry itself. This could lead to a generalized FFD approach.
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