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Abstract

We introduce a new technique for computing the explicit dependence of

the result of the numerical integration of a conservation law with respect

to one or more parameters. The method is intrusive, but it relies on an

automatic di�erentiation algorithm, therefore it requires minimal modi�-

cations of the code used for the plain numerical integration. We present

an example of application to the study of the shock tube, that is Euler's

system of equations with discontinuous initial conditions.

1 Introduction and motivations

Most mathematical models need to be complemented with data and parameters.
These data may concern the geometry, the boundary and initial conditions, the
external forces. The parameters may also describe the constitutive laws of the
system. In many situations, the data and parameters cannot be exactly speci�ed,
because of some limitations in the experimental data available (for instance in
the measurament or identi�cation of some model constant), in the knowledge of
the system (for instance in the early design stage, where the forcing and bound-
ary conditions may not be precisely de�ned yet), or because of some inherent
variability of the systems studied (for instance due to dimensional tolerances in
the production and assembly process, variability in operating conditions, etc...).
So, it is essential that an algorithm is robust with respect to a variation of the

1



parameters and data. Furthermore, it may be very useful to know the functional
dependence of the results with respect of the parameters and data, in order to
better understand and exploit the model. In fact, such knowledge can be very
useful to tune the model, to characterize the robustness and controllability of the
system, to perform risk analysis and to manage variability.

There is a vast literature on intrusive methods for uncertainty quanti�cation,
we refer e.g. to [A, LMK, TLMNE] and references therein. Those methods are
focussed on the computation of the probability distribution of the output of the
computation, given a probability distribution of the parameters in input. The
general idea of those methods stems from the polynomial chaos introduced by
Wiener [W]. The other basic fact about these methods is that the equations
under study are projected on a suitable basis for the probability space, and such
projection is then integrated.

Here we present a new approach to the problem of studying systems de-
pending on parameters and data, and speci�cally of computing the functional
dependence of the response of the system with respect to the parameters. Unlike
the methods for uncertainty quanti�cation and propagation, this technique is not
focussed on the computation of the probability distribution of the response of
the system, but on the determination of the functional dependence of the out-
put with respect to the parameters. The method is intrusive and it relies on
automatic di�erentiation algorithms.

The basic idea comes from the Taylor Models (TM) developed by Berz and
Makino [BM1, BM2, BM3, BM4] to study dynamical systems whose initial data
are intervals. Such idea, in turn, is a development of techniques of automatic
di�erentiation. The key-word here is �automatic�: this technique does not require
new algorithms, nor signi�cant changes in the equations describing the model;
rather, by making extensive use of object oriented programming, it only requires
a minor adaptation of the algorithms used to integrate the model with �xed
values of the parameters. We focus the attention on computing the functional
dependence of the result of the numerical integration of a nonlinear hyperbolic
system with one parameter. Since hyperbolic systems can generate discontinu-
ities such as shocks and contact waves, they could be a very good test. We
choose as an example of a non linear hyperbolic system a well known system of
conservation laws of the gas dynamics, the one dimensional Euler's equations,
more precisely the shock tube introduced in [S].

In Section 2 we describe the general framework. In Section 3 we describe the
experiment. In Section 4 we describe the results with the plain Taylor expansion.
In Section 5 we analyze the shortcomings of the Taylor expansion and provide a
correction.
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2 Functional treatment of parameters

Consider a generic mathematical model depending on a parameter x ∈ RN which
we write in implicit form

F (y, x) = 0 . (1)

We assume here that all data, e.g. initial or boundary values in the case where
the model is a di�erential equation, are included either in the de�nition of F , or in
some components of the parameter x. For generality, assume that the unknown
y lies in a Banach space X, which will eventually be discretized. Assume that the
parameter x ranges in some multiinterval, say x ∈ X0 = [xa1, x

b
1]×· · ·× [xaN , x

b
N ].

Our main aim is to �nd the explicit dependence on x of the solution y.
We present the method in the case N = 1, the extension to the general case

being straightforward. The basic idea is to compute the Taylor expansion with
respect to the parameter x of the solution. More precisely, we choose a degree
K and de�ne

y(x) =
K∑
k=0

yk(x− x0)k . (2)

The aim is to be able to compute the Taylor coe�cients {yk} in the case when
the direct computation of the derivatives of the function F is not available or it is
not feasible, which is what happens in any non elementary computation. What
we have in mind in this paper is the case where y represents the solution of a
hyperbolic partial di�erential system solved by a simple numerical algorithm,
but the method is quite general and applicable to a large variety of problems.

Recently, a similar approach has been used in the setting of computer assisted
proofs, see e.g. [AK1, AK2, AK3, ADBB, ADBM] and references there. We
refer to such papers for an extensive discussion of the main ideas, while, for the
convenience of the reader, we describe here the basics.

It is straightforward to implement on a computer an arithmetic of Taylor
polynomials. More precisely, one represents a Taylor polynomial as the list of
the coe�cients, and then implements a procedure that, given a scalar α and two
Taylor polynomials T1, T2 (that is, their coe�cients), computes the (coe�cients
of the) Taylor polynomial corresponding to α(T1 ∗ T2), where ∗ is either the
addition or the multiplication. This implies that, given a polynomial p(x), it is
possible to compute a Taylor polynomial p(T1), and since all analytic functions
f(x) can be approximated with polynomials, it is also possible to compute the
Taylor approximation of f(T1). Using object-oriented programming and operator
overloading, it is possible to de�ne an �object Taylor� and a set of functions which
perform the basic operations and the computation of the elementary functions.
Then, the object Taylor can be treated as a �oating point number, and most
numerical algorithms can be implemented directly on such object, see Section
2.1 below, while some other algorithm may need some minor adaptation.

While the direct computation of the expansion (4) is feasible, it turns out
that, in order to evaluate the e�ectiveness of the method, it is more convenient

3



to rescale the parameter to the interval [−1, 1] by setting

x = x(ξ) =
xa + xb

2
+
xa − xb

2
ξ with ξ ∈ [−1, 1] (3)

and then looking for the expansion

y(ξ) =

K∑
k=0

ckξ
k . (4)

In order to compute (4), all we have to do is solve (1) by our favorite numerical
algorithm, using object Taylors instead of �oating point numbers and setting the
value of the parameter x as given in (3). We remark that the extension of the
arithmetic of Taylor polynomials to the case where there are many variables is
not trivial, but this problem has been addressed in [BM4], where a very e�cient
algorithm is presented.

As a very simple example of the technique, we show how to compute the
eigenvalue of largest norm (and the corresponding eigenvector) of an n×n matrix
A(x) whose entries {Ajk(x)} depend analitically on the parameter x.

2.1 A simple example

Let X the Banach algebra of functions analytic in the unit disk D = {z ∈ C :
|z| ≤ 1} and such that, if

f(z) =

+∞∑
l=0

flz
l ,

then

‖f‖ =

+∞∑
l=0

|fl| < +∞ .

For j, k = 1, . . . , n, let Ajk(z) ∈ X and

Ajk(z) =
+∞∑
l=0

Ajklz
l .

Given w0 ∈ Xn, de�ne recursively

uk = Awk−1
wk = uk/||uk||
µk = (wk, Awk) ,

(5)

where (a, b) =
∑

j aj b̄j and ‖a‖2 = (a, a) for all a, b ∈ Xn. The following theorem
can be proved by adapting standard methods of numerical analysis:
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Theorem 2.1 Assume that the matrix A(z), whose entries are the functions

{Ajk(z)}, admits n eigenpairs {λi(z), ei(z)} for all z ∈ D, and assume that

λi ∈ X and {ei}l ∈ X. Then µk → λ1 in X and wk → e1 in XN , where µk wk

are as in (5).

This result can be applied in a straightforward way to build a numerical
algorithm that produces the Taylor expansion of any chosen order n of the largest
eigenvalue of the matrix A(z) and the corresponding eigenvector; it su�ces to:

1. Compute the Taylor polynomial of degree n of each entry of the matrix:
Ajk(x) =

∑n
l=0 a

l
jkx

l.

2. De�ne w0(x) as an arbitrary and constant Taylor polynomial of degree n,
w0(x) = w0.

3. Repeat the steps in (5), using the arithmetics of polynomials described
above, until a chosen tolerance is met.

We tested this example with the matrix

A(x) =

(
sin(x) 1

1 1

)
whose largest eigenvalue (and its Taylor expansion at x = 0) can be computed
explicitly:

λ(x) =
1

2

(√
sin2(x)− 2 sin(x) + 5 + sin(x) + 1

)
. (6)

Let {λk}, k = 0, . . . , 10 be the �rst coe�cients of the McLaurin expansion of
λ(x) computed with the algorithm presented above and let {µk}, k = 0, . . . , 10
be the coe�cients computed by di�erentiating (6) explicitely. It turns out that
maxk |λk − µk| < 10−16.

3 The Euler system of equations

We test the method on a hyperbolic system of conservation laws, more precisely
the one dimensional Euler system of equations. The main di�culty is that solu-
tions can exhibit discontinuities due to development of shock and contact waves.
Our purpose is estimate the performance of the method on describing accurately
not only the full dynamics of the system, but in particular the discontinuites.

We choose the shock tube problem introduced in [S] as a test: the physical set-
up is a tube �lled with gas initially divided by a membrane into two sections. The
gas has a higher density and pressure in one half of the tube, than in the other
half, with zero velocity everywhere. At time t = 0 the membrane is removed and
the gas is allowed to �ow. The result is a net motion in the direction of lower
pressure.
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The structure of this �ow involves three distinct waves. Across two of these
waves there are discontinuities in some of the variables. A shock wave propagates
into the region of lower pressure; across this wave the density and the pressure
jump to lower values and all the variables are discontinuous. A contact discon-
tinuity also moves towards the region of lower pressure, but at lower speed; here
only the density is discontinuous. The third wave moves in the opposite direction
and has a di�erent structure: indeed all the variables are continuous and there
is a smooth transition. This is the rarefaction wave and the density of the gas
decreases as this wave passes through.

We consider a tube of length L = 1. At �rst, we discretize the space by
dividing the domain in N = 100 cells and we choose a time step ∆t corresponding
to Courant number equal to 0.9. The equation is

Ut + F (U)x = 0 ,

in (t, x) ∈ [0, T ]× [0, 1], where

U =

 ρ
ρv
ρe

 and F (U) =

 U2
U2
2

U1
+ p

(U3 + p)U2
U1

 .

We choose T = 0.15, since the waves which characterize the solution have time to
fully develop, without reaching the boundaries of the tube. ρ(t, x) is the density
of the gas, v(t, x) is the velocity, e(t, x) is the energy density and p(t, x) is the
pressure. In order to have a closed set of equation, we need a relation between
p, e, ρ, v, that is the equation of state of the gas. We choose the equation of state
for a polytropic ideal gas, that is

ei =
p

ρ(γ − 1)

where γ = cp/cv is the ratio of the speci�c heats at constant pressure and at
constant volume and ei is the internal energy density, de�ned by

e = ei +
1

2
v2 .

The initial conditions of the experiment are:

(ρ(0, x), v(0, x), p(0, x)) =

{
(1, 0, 1) if x ∈ [0, 1/2]

(1/8, 0, 1/10) if x ∈ (1/2, 1] .

Since the nodes close to the boundary are une�ected by the experiment, the
boundary conditions are irrelevant, as long as they do not introduce any kind of
new dynamics. We use absorbing boundary conditions, implemented by adding
one ghost cell at each end of the tube, and using a zeroth order extrapolation to
assign values to them.
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Figure 1: Picture in space and time of the di�erences of ρ, v and p

Figure 2: Picture at time t = T of ρ, v and p at the extreme values of γ

The variable parameter is γ. Since monoatomic gases have γ = 5/3 and
biatomic gases have γ = 7/5, we consider γ varying in the interval [7/5, 5/3].
The shock wave travels to the right at speed v + c(γ), where the speed of sound
c(γ) is given by c(γ) =

√
γp/ρ, the rarefaction wave travels to the left at speed

v− c(γ) and the contact discontinuity travels to the right at speed v. So, when γ
takes values in an interval, the velocities of the shock and rarefaction waves also
take values in an interval.

We compute a solution of the system with Roe's approximate Riemann solver.
We refer to [R] for a description of the well known numerical algorithm: here we
only point out that we implemented it �as is�, except for the fact that we used
�objects Taylor� instead of �oating point numbers.

4 Taylor expansion

We integrate the equation from the initial condition at t = 0 until t = T . Figure
1 displays the di�erence of density, speed and pressure computed between the
extreme values of γ for all t ∈ [0, T ], while Figure 2 displays the �nal values
(t = T ) of the same variables. Here ρ, v and p have been computed by evaluating
a �fth order Taylor expansion.

Figures 1 and 2 show clearly that the in�uence of the parameter γ is par-
ticularly relevant near the shock wave. In order to study the accuracy of the
results, we de�ne the estimated local error on a variable w as

ε(x, t) :=

(
1

M

M−1∑
i=0

(
wT (x, t, ξi)− wN (x, t, ξi)

)2)1/2

(7)

where wT (x, t, ξ) e wN (x, t, ξ) are computed for a speci�c value of ξ (the rescaled
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Figure 3: Picture at time t = T of ρ, v and p for all values of γ

Figure 4: Error on the density at di�erent Taylor orders

parameter, see (3)) respectively by evaluating the Taylor expansion and by solv-
ing directly the numeric problem. We set ξi = −1 + 2i/(M − 1).

Figure 4 displays the estimated errors on the density at di�erent Taylor or-
ders. It is quite clear that, by using a su�ciently high order, it is possible to
obtain very accurate results.

5 A �ner grid

The results obtained in Section 4 show that it is possible to represent the solution
of the Euler system with a very good precision on a grid of 100 points. In order to
test the e�cacy of the method to represent discontinuities, we increase the spatial
resolution, that is we use a �ner grid. The experiments show that it is possible
to do so only up to a point: when the partition exceeds N = 300 the errors in
the region close to the shock wave become larger and larger. Figure 5 on the left
shows ρ for di�erent values of the parameter in the region close to the shock wave:
note that, while the result is realistic for values of the parameter close to the
center of the interval, this is not the case when the parameter takes the largest
and the smallest value. The picture on the right shows ρ with γ = 1.4, with
the computation performed at di�erent orders. We observe that the oscillations
become wider with a larger order. Figure 6 on the left shows the estimated error
on ρ, with the full interval for the parameter γ. Figure 6 on the right shows the
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Figure 5: Density with N = 400

Figure 6: Error on the density with γ ∈ [1.4, 1.67] and γ ∈ [1.47, 1.6].

same error, but with the interval of variability of γ cut in half. The fact that the
errors are a few order of magnitude larger, when a wider interval is considered,
and that an increase of the order of the expansion does not improve the accuracy
hints to the fact that the Taylor expansion fails. A similar phenomenon occurs for
the other physical variables. A possible explanation of this behavior is that the
radii of convergence of the Taylor series in the rescaled variable ξ, representing
the physical variables in the nodes close to the shock become smaller than 1. So,
it appears useful to attempt to estimate the radius of convergence of the Taylor
expansion. In order to do that, we compute the coe�cients of a geometric series

S∗ =
∑
k

Axk

(r∗)k
(8)

which is the best approximation (in the sense of the least squares) of the Taylor
polynomial

S =
∑
k

Ckx
k , (9)

that is, we compute A and r∗ which best �t the equality

|Ck| =
A

(r∗)k
.

Figure 7 shows the estimated radius of convergence of the Taylor expansion of
order 30 for the density, in the region around the shock, for di�erent values of
the partition of the grid. We observe that the radius decreases below the value
1 when N > 300.
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Figure 7: Estimate of the radius of convergence in the region close to the shock

Figure 8: Radii of convergence

It turns out that, in order to have a better description of the shock wave,
it is necessary to use a �ner grid and, at the same time, to decrease the width
of the interval where the parameter ranges. In order to cover the entire original
interval, it would be necessary to partition it in subintervals and repeat the
computation for each subinterval. For example, in order to be able to use N =
400, it is necessary to decrease the width of the interval to roughly 30% of the
original value. Figure 8 displays the estimated radii of convergence of the Taylor
expansion of the density in the region close to the shock wave, with N = 400. In
the next Section we develop a method to address this issue.

6 A deformation of the domain of the parameter

The experiments of the previous section have shown some evidence that the
Taylor expansion of the physical variables has singularities in the complex plane,
which move closer to the real axis (and therefore inside the circle of radius one
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centered at the point where the expansion is computed), when the grid is made
�ner. Therefore, the functions describing the variables of the equations with
respect to the parameter do not seem to be analytic in the whole circle and, in
order to study the system when the parameter varies in the original interval,
we would be forced to partition it in smaller subintervals and repeat the whole
computation once for each subinterval.

This approach has a clear disadvantage: not only it forces us to integrate
the system as many times as the number of subintervals, but also it does not
provide us with a single polynomial expansion of the dependence of the result
with respect to the parameter. Since the region of convergence appears to be
bounded by singularities close to the real axis, we may try to �nd a holomorphic
map that deforms it into a circle. Using this map, we can substitute the circle
of convergence with a region of analyticity closer to the real axis. This can be
done e.g. by the change of variable described below.

Let D ⊂ C be de�ned by D = {z ∈ C : |z| ≤ 1}. Fix p > 0 and consider the
map ϕp : D → C de�ned by

ϕp(z) =
(1 + z)p − (1− z)p

(1 + z)p + (1− z)p
.

The map is holomorphic, injective and ϕp([−1, 1]) = [−1, 1]. Let Ep = ϕp(D);
then ϕ−1p : Ep → D is de�ned simply by ϕ−1p = ϕ1/p. The blue curves in
Figure 9 represent the images through the map ϕ1/4 of the circles of radii 0.1k,
k = 1 . . . , 10. If p < 1, Ep ⊂ D and a circle is mapped into a curve compressed
in the imaginary direction. Now we return to the original problem, where we
have a function f : D → C which is holomorphic, except for a singularity in
z0 ∈ D, |z0| < 1. Clearly, there could be more singularities: what really matters
is that the function is holomorphic in Ep, for some value of p; in other words,
the singularities should not come too close to the real axis. We wish to expand
f in power series centered in 0. If we �x some p < 1 such that no singularities
are in Ep, then we can consider a change of variables w = ϕp(z) so that for all
z ∈ D we have w ∈ Ep. Therefore the function de�ned by g(z) = f(ϕp(z)) is
holomorphic in D, there exist coe�cients ck such that

g(z) =
∑
k

ckz
k

and the radius of convergence is 1.

6.1 Results on Euler System

We choose p = 1/4: a smaller value would reduce even further the region of
analyticity, but it would also require a higher order, because, as it is evident from
Figure 9, the map introduces a large distorsion close to the points 1 and −1. We
apply the change of variables to the rescaled parameter, obtaining w = ϕp(ξ)
varying in Ep instead of ξ varying in D.
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Figure 9: Image of E1/4

In order to avoid the distorsion of the map near the extreme values {−1, 1},
we rescale the parameter in such a way that the maximum and minimum value
of γ are assumed at ξ = ±0.9. The circle of radius r = 0.9 is mapped through
ϕ1/4(ξ) to the dashed curve in Figure 9. The variability on γ is now de�ned by:

γ(ξ) =
23

15
+

2/15

ϕ1/4(0.9)
ϕ1/4(ξ) , ξ ∈ [−0.9, 0.9] . (10)

In order to integrate the system with the variability on γ de�ned by (10), we
only have to substitute the explicit expression of the map ϕ1/4(ξ) in (10) with
its power series expansion:

γ(ξ) =
23

15
+

2/15

ϕ1/4(0.9)

∑
k

ckξ
k , ξ ∈ [−0.9, 0.9] .

Now we can use the algorithm described in the previous sections without any
further changes.

In Figure 10 we compare the error on the density obtained with the expansion
with the holomorphic change of variable (dashed line) with the error obtained
with the plain Taylor expansion (continuous line), at N = 400 and expansion
order k = 30. The advantage of the use of the holomorphic deformation of the
domain of the parameter is evident.

Figure 11 shows the density evaluated by the series expansion of order 30 at
ξ = −0.9 and time t = T , for di�erent values N of the spatial discretization. We
observe the expected increase of sharpness with �ner grids.

Figure 12 displays the estimated error on the density with N = 600. As we
can see, we can increase the spatial resolution up to N = 600, maintaining the
error within a magnitude 10−4, with an expansion of order 30. If we want to
increase further the spatial resolution, e.g. N = 700, we get again oscillations
close to the shock wave for the extreme values of ξ. This appears again to be
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Figure 10: Error on the density at t = T with N = 400

Figure 11: Density at t = T and ξ = −0.9

Figure 12: Error on the density at t = T and N = 600
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motivated by the fact that some singularity approaches the real axis and enters
E1/4. We observe again that these oscillations cannot be reduced by increasing
the order of the truncation of series.

7 Conclusions

The method introduced in this paper provides a very e�ective tool for studying
the dependence of the dynamics of a hyperbolic system to a parameter (and it
could be extended in a straightforward way to many parameters). Among the
advantages, it does not require any major change of the numerical algorithms
used to solve the system. Its main drawback is that, since it relies on a Taylor ex-
pansion, it loses applicability in presence of sharp discontinuities. By the change
of variables introduced in Section 6 we can manage to partially overcome this
problem and obtain reliable results even with a rather �ne grid. In a forthcoming
paper we will provide an alternative expansion, based on Chebyshev polynomials,
which is much more e�ective to deal with a �ne grid.
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