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Abstract

In this paper we present a model and a complete numerical tool
for simulating the three-dimensional dynamics of realistic stratified
sedimentary basins. We developed dedicated mathematical algorithms
to include most of the key physical aspects such as the movement of
the basement, the non-Newtonian behavior of the sediments, the effects
of faults and the presence of compaction phenomena. This approach
is mandatory to capture all the three-dimensional effects of realistic
evolution dynamics, whose duration is about millions of years and to
provide reliable results. In this work we apply our methods to a realistic
and topologically complex sedimentary system.

1 Numerical models for advanced basin simula-
tions

The numerical simulation of the geological evolution of a sedimentary basin
represents a challenging aspect of applied numerical mathematics. Many
physical aspects such as the compaction, the basement movement, the rhe-
ology, and reciprocal interactions between the sediment layers should be
taken into account for a reliable simulation. In some cases most of these
aspects have been considered, see [30], while in many other cases (especially
in 3D see [22, 28]), only some simplified approaches have been implemented.
In this work we aim at creating a complete numerical tool that includes the
physical aspects analyzed in [30], extended to a three-dimensional realistic
framework. We model the sediments with a classical stratified creeping flow
problem. In particular, we complement the techniques already developed
in [28] to include the non-Newtonian rheology of the sediments, the faults,
the compaction, the movement of the basement and of the free surface. Al-
though, a complete physical validation of the numerical scheme is beyond
the scope of this work, yet we show some numerical results that are quali-
tatively consistent with the observed configuration of sediment layers.
Let’s consider now the innovations added in the model. First of all we
introduce the non-Newtonian rheology. A complete and exhaustive theo-
retical analysis of the sediment rheology is still missing. Experiments have
shown different behaviors of the sediments, such as elastic, elasto-plastic,
visco-plastic and visco-elastic, see [11, 48]. Semi-empirical relations are
widespreadly adopted, since the theory can explain only a few mechanisms
(an example is the viscous-fluid rheology of a crystalline structure, see [47]).
In [40] a tensor splitting technique is exploited to adapt the simulation to al-
most every type of isotropic rheology. Here we concentrate on visco-plastic
rheologies, as they account for the two main deformation mechanisms on
geological timescales and we completely neglect the elastic behavior, as it
is often related to shorter-period phenomena such as earthquakes. This ap-
proach has already been considered in [30] but, in this work, we consider a
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broader choice of pseudo-plastic rheologies: the Carreau, Cross, Powell, and
Yeleswarapu relations and we figure out their impact on the final geological
timing and geometry, with regards to the stress field.
Let’s now consider the porosity and compaction modeling. In various works,
the compaction is modeled in a simplified way, for example, as a vertical re-
duction of the volume occupied by the sediments [10], or even neglected (see
[22, 40] and [52]). In [31] a new splitting algorithm is introduced: the di-
vergence of the solid flow field is computed according to some experimental
compaction curves. Then, under the hypothesis of vertical compaction, the
problem is reduced to a linear stationary hyperbolic equation. Here, we do
not make any assumption about the direction of the compaction, but we
address directly the modeling of the compaction function, i.e., the function
that measures the rate of decrease of the solid volume (see [33]) and we
solve a Stokes problem with a non-null divergence. We stress that, if the
fluid part is not simulated it is mandatory to consider some empirically de-
rived compaction curves.
Fault modeling is seldom included in geological basin simulations and, until
now, only in a few works it has been considered (see [29, 30, 40] and [43]).
Fault location and time of appearance in the geological history are hardly
predictable from the mechanical point of view, but fortunately seismic and
well data are able to provide sufficiently accurate information. Hence, we
assume to know the location and the time of appearance of the faults and
we concentrate on the modeling of their effects. Faults are fracture zones
where damaged rock creates sliding planes. A possible way to model them
as a fluid is to reduce the fluid viscosity in the damaged area. For an active
fault, the viscosity in a thin region around its sliding plane is reduced by
several orders of magnitude (see [30]). This approach has two potential dis-
advantages: the identification of the elements in the grid where the viscosity
has to be reduced and the grid local refinement necessary to make the ele-
ment size match the fault thickness (which is of the order of tens of meters,
while a typical mesh element is about hundreds of meters in a basin scale
simulation). To face these problems, we have implemented an innovative
implicit tracking algorithm based on a level set function and a local recur-
sive bisection algorithm. For a review of the mesh refinement techniques in
three-dimensions see [5, 26, 27, 41] and [51].
Let’s now consider another important aspect, namely, the movement of the
lateral basin boundary. The basement, the free surface, and the lateral con-
tour are subject to displacements as the surrounding soil moves with Earth
plates. This effect is of upmost importance in basin evolution as it is one
of the driving forces for fault formation and movement. Not all the numer-
ical schemes developed till now allow the extension or contraction of the
basement, for example in [22] the basin is a fixed box. This geometrical
constraint is not acceptable for many applications and several works, such
as [30, 31, 40], have a more general geometrical treatment. All of them use
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a Lagrangian approach combined with frequent remeshing, as it handles the
movement of the boundary naturally. However, the application of classi-
cal Lagrangian methods to a real three-dimensional case is computationally
very expensive. Some new types of Lagrangian methods, such as the Particle
Finite Element Methods (PFEM), have been introduced in mechanical en-
gineering [36] and applied to computational geology [34, 37]. In these latter
works, the Particle-In-Cell (PIC) technique is used. All these Lagrangian
methods require a frequent mesh regeneration, that makes the cost of the
algorithm critically dependent on the efficiency of the grid generator. To
overcome this problem we have chosen an Arbitrary Lagrangian Eulerian
method (ALE), similar to the one described in [13]. The reason is that,
since the deformation of the basin boundary is usually small compared with
that of the internal layers, we can decouple the two problems and use a
Lagrangian scheme to reconstruct only the boundary movement and an im-
plicit tracking algorithm for the internal layers (see [50]). The displacement
of the grid is only prescribed on the boundary, while a suitable movement
law is considered for the internal nodes, for example to minimize the mesh
distortion. The ALE method has found several applications, see for instance
[1, 16, 21, 24, 35, 39] and [46]. The definition of the numerical algorithm
for the computation of the internal grid movement is the most critical part:
indeed we want at the same time to adapt the grid size where necessary,
and to preserve its overall quality. To achieve these goals, we choose the so
called r-adaptivity (see [2]) combined with the ALE scheme. This technique
is cheaper than the h-adaptivity, although less effective. Anyway, as the
computational cost is an important issue for our purposes, the r-adaptivity
is a reasonable choice. We exploit then the information given by a residual-
type error estimator to construct an error-dependent metric, which drives
the ALE scheme in adapting the grid size, according to the minimization of
the estimated upper error bound.
Three descriptions of the internal grid movement have been introduced so
far. The first two require the solution of a Laplace-type problem and the
solution of a net of connected springs respectively, while the third one mod-
els the grid as a continuum elastic body. The first approach is used in
[2, 3, 32]. Its merits are the low computational cost and the compatibility
with a metric-type adaptivity. On the other hand, it could fail if high curva-
tures are present on the domain boundary; in particular, non convex regions
could induce mesh tangles, that’s why sometimes this method is combined
with a smoothing technique (see [15]). The second method, widespreadly
adopted in aeroelastic analysis, is the spring method (see [7, 8]). The mesh is
considered as a net of nodes linked by springs, whose topology varies among
the methods. One of its most appreciated qualities is the robustness, as the
mesh tanglement is (in the most advanced variants) always prevented. How-
ever, it is very expensive and several simplified versions have been developed,
in which, for example, the nodes are moved one by one. This latter approach
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is very effective in aeroelastic simulations, where the boundary movement
is usually concentrated in a small region at the center of the computational
domain (which could represent an airfoil, an aircraft, etc), but it is less
effective in geological simulations where the boundary movement is more
distributed. The last method is based on an elastic model (see [23]). It
is more robust than the Laplace-type approach, although more expensive
from the computational point of view. Therefore, we choose to implement a
linearized version, as a compromise between robustness and computational
efficiency. In particular we derive the elastic equation from an optimization
problem, so that the r-metric adaptivity can be directly embedded in the
model.
This paper is organized as follows: in Section 2 we give an overview on the
geometric and mathematical model of the sedimentary basin, together with
some physical key features of the problem. A temporal time splitting tech-
nique is introduced in 3, and the discretization and the spaces related to
the physical variables are introduced in Section 4. Then in Sections 5 and
6 we deal with the two main new features we have introduced, the adaptive
grid movements algorithm and the faults modeling. Finally some numerical
results obtained from the simulation of a realistic case, are presented.

2 Physical and mathematical models

2.1 Nomenclature

Let’s introduce the geometric model of a sedimentary basin (Figure 1). The
domain Ω ⊂ R3 is divided into ns disjoint subdomains Ωi (without overlaps),
which represent different sedimentary layers characterized by different phys-
ical properties. The external boundary Γ of the domain Ω is divided into
three parts: the basement ΓB, where we apply a Dirichlet condition for the
velocity field, the top of the basin ΓS, with a free surface condition, and the
lateral contour ΓL, where we impose a Dirichlet condition on the horizontal
plane and a slip condition in the vertical direction. Moreover, we suppose
ΓL vertical for simplicity. To complete our overview let’s introduce some
nomenclature: X⃗ = (x1, x2, x3) ∈ Ω indicates a point in the spatial domain
of coordinates xi, with i = 1, 2, 3, (x̂1, x̂2, x̂3) are the unit vectors of the
coordinate system, n⃗ is the domain outward normal and t ∈ (0, T ] is the
time coordinate. For a generic vector u⃗, we denote its components with
(u1, u2, u3).

2.2 Rheological models

Rocks and sediments usually exhibit a wide range of rheological behaviors.
In a basin scale framework we find convenient to adopt some pseudo-plastic
relations since they embed the fluid and plastic behaviors. These are the
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Figure 1: External shape of the domain Ω. The external boundary Γ is
divided into three parts: the basement ΓB, the free surface ΓS, and the
lateral contour ΓL.

most relevant effects on the geological time scales, but no laws have been
derived in literature specifically for rocks at such a scale. Anyway rocks
behavior has proved to be far more complicated than a Newtonian one,
so it comes necessary to consider non-Newtonian relationships, see [40].
The pseudo-plastic relations we have considered are well known and widely
adopted in different fields, such as the simulation of blood flow (that also
shows shear thinning), and provide reliable results in several applications.
These laws are empirically derived and have to be fitted case by case, setting
the depending parameter according to the considered fluid, though in this
field reliable values are difficult to be validated. All of them are generalized
Newtonian laws with a stress dependent viscosity. We have considered five
different rheological relations for the apparent viscosity µi:

µi =



µ∞i = µ0i Newton,

µ∞i +
µ0i − µ∞i

(1 + ξiγ)(2−r)/r
Carreau,

µ∞i +
µ0i − µ∞i
1 + (ξiγ)r

Cross,

µ∞i + (µ0i − µ∞i )
sinh−1(ξiγ)

ξiγ
Powell,

µ∞i + (µ0i − µ∞i )
1 + ln(1 + ξiγ)

1 + ξiγ
Yeleswarapu,

(1)

where µ0i is the reference unstressed viscosity, µ∞i is the asymptotic viscosity
for γ → ∞, with γ the squared Frobenius norm of the symmetric gradient
∇⃗u⃗ + (∇⃗u⃗)T ; moreover u⃗ is the macroscopic velocity of the rocks, r is a
positive coefficient, also known as the power law coefficient, and ξi is a
material dependent parameter. For some reference see [43, 44]. We can now
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define an averaged viscosity as

µ = ψ

ns∑
i=1

λiµi, (2)

where λi are the characteristic functions of the layers and ψ(t, X⃗) ≤ 1 is the
viscosity abatement function and it takes into account the possible presence
of faults (a complete description of the fault model is provided in Section
6). In other terms ψ(t, X⃗) = 1 outside the faulted region while ψ << 1 in
the faulted region. The stress tensor is, then, given by

¯̄σ = µ
(
∇⃗u⃗+ (∇⃗u⃗)T

)
,

where µ is a function of the shear stress.

2.3 Modeling the compaction

We now detail the compaction model we have implemented for our sim-
ulations. We model the porosity decrease in the deep layers imposing a
non-solenoidal velocity of the sediments, in other terms

∇⃗ · u⃗ = Φ,

where Φ is also called the compaction function, see [33].
To find a relation for Φ we denote by S(x1, x2) the relative height of the
free surface, that is the distance along the x̂3 direction of the free surface
from the x1−x2 plane. Hence, we can define the depth ζ as ζ = x3−S (see
Figure 2).

Figure 2: An outline of the sedimentary basin with a reference frame having
axes (x̂1, x̂2, x̂3). The surface position is indicated with S(x1, x2), the depth
with ζ.

The objective is to model Φ using only a ϕ-depth relation. Let’s consider,
in particular, the so-called Athy compaction law for the porosity ϕ

ϕ = exp(Bζ)

(
ns∑
i=1

λiϕ
0
i

)
, (3)
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where ϕ0i is the reference porosity of the i-th layer and B is an empirical
constant. We wish to determine Φ through (3). From [43] we get

∇⃗ · u⃗ =
1

1− ϕ

Dϕ

Dt
, (4)

where D/Dt = ∂/∂t + u⃗ · ∇⃗ is the material derivative. Plugging equation
(3) into (4) yields

∇⃗ · u⃗ =
1

1− ϕ

Dϕ

Dζ

Dζ

Dt
= B ϕ

1− ϕ

(
Dx3
Dt

− DS

Dt

)
.

Since Dx3/Dt = u3 and ∇⃗S is usually small (however this contribution
could be included if necessary), the above equation can be approximated as

∇⃗ · u⃗ = B ϕ

1− ϕ

(
u3 −

∂S

∂t

)
.

From this relation we find that the compaction is the sum of two contribu-
tions: the first one, B (ϕ/(1− ϕ))u3, refers to the relative position of the
layers and the latter, −Bϕ/(1− ϕ)∂S/∂t, is related to the burial of the en-
tire basin. In particular ∂S/∂t is known as the sedimentation speed and is
provided by the geologists on the basis of some conjectures on the history
of the basin.

2.4 The model

Now we can summarize the complete model in the advective ALE form,
including all the new features we have introduced so far

∇⃗ · ¯̄σ(µ, u⃗)− ∇⃗P + ρg⃗ = 0 in Ω× [0, T ],

∇⃗ · u⃗ = Φ(ϕ) in Ω× [0, T ],
∂λi
∂t

+ (u⃗− u⃗g) · ∇⃗λi = 0 in Ω× (0, T ],

∂ψ

∂t
+ (u⃗− u⃗g) · ∇⃗ψ = 0 in Ω× (0, T ],

¯̄σ = µ(u⃗, ψ, ξi)(∇⃗u⃗+ (∇⃗u⃗)T ) in Ω× (0, T ],

λi = λi, ψ = ψ in Ω× {0},
u⃗ = u on ΓB,

(¯̄σ − P ¯̄I) · n̂ = 0 on ΓS ,

u1 = u1, u2 = u2, ((¯̄σ − P ¯̄I) · n̂) · x̂3 = 0 on ΓL,

(5)

where P is the total pressure of the solid-fluid mixture, g⃗ is the gravitational
acceleration vector, λi and ψ are a suitable set of initial conditions, u is
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a boundary velocity field, and u⃗g is the grid velocity linked to the ALE
treatment of the boundary movement. Moreover the density ρ is given by

ρ = ϕρf + (1− ϕ)

(
ns∑
i=1

λiρi

)
, (6)

where ρf is the fluid density and ρi is the reference density of each sedi-
mentary layer. The system above consists of two evolution equations: the
fault tracking function equation and the partial volume equation. For the
latter we use an implicit tracking method, for details see [50], while for the
fault tracking we employ a modified level set method, to be discussed in
detail in Section 6. The remaining equations form a Stokes problem with
non-solenoidal velocity, which is approximated using a finite element dis-
cretization and solved by a preconditioned iterative scheme, see [28].

3 Time splitting algorithm

In this section we introduce the temporal discretization of the model. First
of all, we split the time interval [0, T ] into subintervals whose endpoints are
t0 = 0, t1, . . . , tn, tn+1, . . . , T , where tn+1 = tn + ∆tn and ∆tn is the n-th
time step. Then, for the generic variable a(t, X⃗), we indicate for simplicity
an(X⃗) = a(tn, X⃗). We evolve the solution according the following scheme:

Algorithm 1. At the generic time step, n, we know the following variables
of the problem:{

u⃗n−1, Pn−1, u⃗n−1
g , λni , ψ

n, ρn−1, µn−1
∆ , ϕn−1

}
with n ≥ 1.

Then we use the following numerical scheme to solve problem (5):

1. from λni and relation (3) compute ϕn;

2. from λni , ϕ
n and relation (6) compute ρn;

3. from λni , ψ
n, u⃗n−1 and relations (1) and (2) compute µn.

Note: at the first step (n = 0) u⃗n−1 is not available. Therefore, only
in this case, a non linear Stokes problem is solved using a fixed point
iterative technique{
∇⃗ ·
(
µ(u⃗(0,m))

(
∇⃗u⃗(0,m+1) + (∇⃗u⃗(0,m+1))T

))
− ∇⃗P (0,m+1) + ρ0g⃗ = 0,

∇⃗ · u⃗(0,m+1) = Φ,

where m is the iteration apex and u⃗(0,0) has been set equal to 0;

4. solve a linearized Stokes problem for u⃗n and Pn:{
∇⃗ · (µn(∇⃗u⃗n + (∇⃗u⃗n)T ))− ∇⃗Pn + ρng⃗ = 0,

∇⃗ · u⃗n = Φ(ϕn),
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5. a time step ∆tn is computed. This requires three steps: firstly, from the
velocity u⃗n, a maximum ∆tnALE is estimated such that the movement
of the boundary elements does not exceed a certain threshold; secondly
a maximum ∆tnC is estimated such that the movement of the internal
sediment layers is less than a prescribed length. Finally, the time step
of the n-iteration is computed as

∆tn = min(∆tnALE,∆t
n
C); (7)

6. from ∆tn and the adaptive grid movement algorithm (see Section 5)
the grid velocity u⃗ng is evaluated;

7. compute λn+1
i and ψn+1 by solving the following evolution equations

in (tn, tn+1]:
∂λn+1

i

∂t
+ (u⃗n − u⃗ng ) · ∇⃗λn+1

i = 0 for i = 1, . . . , ns,

∂ψn+1

∂t
+ (u⃗n − u⃗ng ) · ∇⃗ψn+1 = 0;

8. with the grid velocity u⃗ng and ∆tn, the grid is moved to a new configu-
ration.

At the end of the time step, we get the update variable vector of the problem:{
u⃗n, Pn, u⃗ng , λ

n+1
i , ψn+1, ρn, µn, ϕn

}
.

4 Spatial discretization

To describe the spatial discretization scheme, we introduce the geometric
approximation of the domain Ω. Let T G

∆ be a simplicial tetrahedral grid
containing nGe elements eGr (with r = 1, . . . , nGe ) and nGp nodes x⃗Gk (with

k = 1, . . . , nGp ), where the subscript ∆ stands for the maximum diameter

of the grid elements. From T G
∆ we build the mini-grid T M

∆ by adding nGe
barycentric nodes; hence T M

∆ has nMp = nGp + nGe nodes x⃗Mk and nMe = 4nGe
elements eMr . Moreover, with a uniform refinement of T G

∆ carried out for
NR-times, we create a conformal grid T S

∆ , which has nSe = 8NRn
G
e elements

eSr and nSp nodes x⃗Sk . In the following we will refer to T G
∆ as the grid, to T M

∆

as the mini-grid, and to T S
∆ as the sub-grid. Let FG

r,j , FM
r,j and FS

r,j with
j = 1, . . . , 4 be the set of the four faces surrounding the r-th tetrahedron
of the grid, mini-grid and sub-grid respectively. The element sharing the
face FS

r,j with the element eSr will be denoted with eSrj . We also define the

map (r, j) → j, such that, given the indices r and j, j : FS
rj ,j

= FS
r,j (see
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Figure 3). In other words, every common face between the element eSr and
its neighbors eSrj is identified by FS

r,j or FS
rj ,j

depending whether it is a face

of eSr or eSrj . Finally let’s introuce the discrete variables and introduce the

Figure 3: The element eSr and its j-th neighbor eSrj . The j-th face of the

element eSr is FS
r,j and corresponds to the j-th face of eSrj , that is F

S
r,j = FS

rj ,j
.

related discrete spaces:

u⃗n∆ ∈ VM
1 : VM

1 =
{
φ⃗∆ ∈ C0(Ω) : φ⃗∆|eMr ∈ P1, r = 1, . . . , nMe

}
,

Pn
∆ ∈ VG

1 : VG
1 =

{
φ∆ ∈ C0(Ω) : φ∆|eGr ∈ P1, r = 1, . . . , nGe

}
,

¯̄σn∆ ∈ W
M

0 : W
M

0 =
{
¯̄φ∆ ∈ L2(Ω) : ¯̄φ∆|eMr ∈ P0, r = 1, . . . , nMe

}
,

u⃗ng,∆ ∈ VG
1 : VG

1 =
{
φ⃗∆ ∈ C0(Ω) : φ⃗∆|eGr ∈ P1, r = 1, . . . , nGe

}
,

ρn∆, µ
n
∆, ϕ

n
∆ ∈ WG

0 : WG
0 =

{
φ∆ ∈ L2(Ω) : φ∆|eGr ∈ P0, r = 1, . . . , nGe

}
,

ψn
∆ ∈ WS

0 : WS
0 =

{
φ∆ ∈ L2(Ω) : φ∆|eSr ∈ P0, r = 1, . . . , nSe

}
,

λni,∆ ∈ VS
0 : VS

0 = {φ∆ ∈ L2(Ω) : φ∆|τSk ∈ P0, k = 1, . . . , nSp },
(8)

where τSk are the cells of the dual sub-grid (see [50] for more details on the
geometrical construction of the dual grid). In (8) the notation follows these
conventions, V and W denote a finite element space with, respectively, node-
related and cell-related degrees of freedom (DOF), the suffixes G,M,S refer
to the grid discrete space, and the indices 0 and 1 indicate the degree of the
basis.

5 Adaptive grid movement

5.1 Grid movement equations

To move the mesh according to a displacement of the lateral boundary, we
define an artificial elasticity problem and use a solution dependent metric.
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More precisely, let Ωn be the domain at time tn and let Y⃗ n ∈ Ωn be the
position vector in the current reference system. We want to build a smooth
displacement field S⃗n : Ωn → Ωn+1 such that

S⃗n = u⃗n∆∆t
n on ΓB,

Sn
1 = un∆,1∆t

n, Sn
2 = un∆,2∆t

n on ΓL,

S⃗n · n⃗ = (u⃗n∆ · n⃗)∆tn on ΓS .

To implement our mesh movement-adaption scheme, we adopt the ideas of
[19], [20], that is we seek a best fit solution in H1(Ω) to the alignment and
to the equal distribution condition

(∇⃗X⃗)T · ¯̄M · (∇⃗X⃗) = ¯̄I

(
1

|Ω|

∫
Ω

√
det( ¯̄M)

)2/3

, (9)

with ∫
Ω

√
det( ¯̄M) = |Ω|, (10)

where ¯̄M is a positive definite second order tensor which will be linked
to the adaption process and X⃗ is the position with respect to the initial
configuration Y at t = 0. A best fit solution of the alignment condition is
given by the minimization of

min
X⃗∈H1(Ω)

1

2
∥(∇⃗X⃗)T · ¯̄M · (∇⃗X⃗)− ¯̄I∥2D, (11)

where ∥ ¯̄C∥2D =
∫
Ωn

¯̄C· ¯̄D· ¯̄C, ¯̄D is a tensor with components Dijhk = ELδijδhk+
2KLδikδjh, and δij , EL, KL are respectively the Kronecker delta, and the
fictitious shear and bulk elastic moduli. According to [2] and [23] we choose
EL|er = KL|er = 1/|eGr |. The optimality conditions of (11) can be trans-
formed into a non linear partial differential equation, but since the displace-
ment between two time steps is kept small, we can consider a linearized
form of the resulting PDE. Moreover, to simplify its derivation, we neglect
for now the boundary conditions as they will be introduced later on.
The linearized form of (11) with respect to the coordinate system Y n is

min
S⃗n∈H1(Ωn)

1

2

∫
Ωn

¯̄ϵn · ¯̄D · ¯̄ϵn +

∫
Ωn

¯̄σn0 : ¯̄ϵn, (12)

where ¯̄σn0 is the pre-stress at time tn. At n = 0 we have ¯̄σn0 = 0, and shortly
we will define how to update it. Then

¯̄ϵn =
1

2

(
(∇⃗X⃗n)T · ¯̄Mn · ∇⃗X⃗n − ¯̄I

)
, (13)

is the strain tensor. Plugging

X⃗n = Y⃗ n + S⃗n (14)
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into (13) we get

¯̄ϵn =
1

2

(
(∇⃗S⃗n)T · ¯̄Mn · (∇⃗S⃗n)

)
︸ ︷︷ ︸

¯̄ϵn2

+
1

2

(
(∇⃗S⃗n)T · ¯̄Mn + ¯̄Mn · (∇⃗S⃗n)

)
︸ ︷︷ ︸

¯̄ϵn1

+
1

2

(
¯̄Mn − ¯̄I

)
︸ ︷︷ ︸

¯̄ϵn0

.

By differentiating equation (12) with respect to the displacement we obtain∫
Ωn

( ¯̄w1 + ¯̄w2) · ¯̄D · (¯̄ϵn0 + ¯̄ϵn1 + ¯̄ϵn2 ) +

∫
Ωn

¯̄σ n
0 : ( ¯̄w1 + ¯̄w2) = 0 ∀v⃗ ∈ H1(Ω),

where

¯̄w1 =
1

2

(
(∇⃗v⃗)T · ¯̄Mn + ¯̄Mn · (∇⃗v⃗)

)
,

¯̄w2 =
1

2

(
(∇⃗S⃗n)T · ¯̄Mn · (∇⃗v⃗) + (∇⃗v⃗)T · ¯̄Mn · (∇⃗S⃗n)

)
,

and v⃗ ∈ H1(Ω) is a test function. Considering only the linear parts, we get∫
Ωn

¯̄w1 · ¯̄D · ¯̄ϵn1 +

∫
Ωn

(¯̄σ n
0 + ¯̄D · ¯̄ϵn0 ) : ( ¯̄w1 + ¯̄w2) = 0 ∀v⃗ ∈ H1(Ω).

For simplicity, we set ¯̄Σn
0 = ¯̄σ n

0 + ¯̄D · ¯̄ϵn0 . Integrating by parts, we obtain the
following balance equation for the displacements

− ∇⃗ ·
[
EL(∇⃗S⃗n : ¯̄Mn) ¯̄I + KL

(
(∇⃗S⃗n)T · ¯̄Mn + ¯̄Mn · (∇⃗S⃗n)

)
+ ¯̄Σn

0 · (∇⃗S⃗n + ¯̄I) · ¯̄Mn
]
= 0, (15)

which is complemented by the following set of boundary conditions (dis-
tributed as in Figure 4):

S⃗n = u⃗n∆∆t
n on ΓB,

Sn
1 = un∆,1∆t

n, Sn
2 = un∆,2∆t

n, ( ¯̄Σn
0 · n⃗) · x̂3 = 0 on ΓL,

S⃗n · n⃗ = (u⃗n∆ · n⃗)∆tn, ( ¯̄Σn
0 · n⃗) · n⃗ = 0 on ΓS .

This is a linear elastic-type equation with a pre-stress term that arises
from the previous deformation of the grid. We seek a solution using the finite
element method, therefore we introduce now the discrete weak formulation,

i.e., we seek S⃗n
∆ ∈ VG

1 ∩H1
Γ such that:

aALE(S⃗∆
n
, v⃗∆) = FALE(v⃗∆) ∀v⃗∆ ∈ VG

1 ∩H1
Γ, (16)

where H1
Γ is the set of the functions v⃗ belonging to H1 such that

v⃗ = u⃗n∆∆t
n on ΓB,

v1 = un∆,1∆t
n, v2 = un∆,2∆t

n on ΓL,

v⃗ · n⃗ = (u⃗n∆ · n⃗)∆tn on ΓS .
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Figure 4: An open three-dimensional view of a sedimentary basin with the
boundary conditions distribution and their physical effects.

Moreover S⃗∆
n ∈ VG

1 is the discrete counterpart of S⃗n and

aALE(S⃗∆
n
, v⃗∆) =

∫
Ωn

[
EL(∇⃗S⃗n : ¯̄Mn) ¯̄I +KL

(
(∇⃗S⃗n)T · ¯̄Mn + ¯̄Mn · (∇⃗S⃗n)

)
+ ¯̄Σn

0 · ∇⃗S⃗n · ¯̄Mn
]
: ∇⃗v⃗∆,

FALE(v⃗∆) = −
∫
Ωn

¯̄Σn
0 · ¯̄Mn.

If KL, EL > 0, problem (16) is coercive. Moreover if ¯̄Σn
0 ,

¯̄Mn,KL, EL ∈
L∞(Ω), then the bilinear form aALE(·, ·) and the linear functional FALE(·)
are bounded and problem (16) has a unique solution (see [14] and [42]).
The pre-stress term is updated as follows

¯̄σ n+1
0 = (∇⃗S⃗n)−T · ¯̄Σn

0 · (∇⃗S⃗n)−1.

Once the displacement field is computed, the grid speed is calculated as

u⃗ng,∆ =
S⃗n
∆

∆tn
.

5.2 Metric definition

A good metric definition is expected to preserve the mesh quality and, at
the same time, relocate the nodes to get a more accurate solution. Our goal
is to construct the metric tensor ¯̄Mn relying upon a residual error estimate
En
r = ∆2(Rn

r )
2 +∆(Jn

r )
2 + (Dn

r )
2 where

Rn
r = ∥∇⃗Pn

∆ − ∇⃗ · ¯̄σn∆ − ρn∆g⃗∥L2(eGr ),

Dn
r = ∥Φ− ∇⃗ · u⃗n∆∥L2(eGr ),

Jn
r =

1

2

∑4
j=1 ∥[(¯̄σn∆ − Pn

∆
¯̄I) · n̂r,j ]∥L2(FG

r,j)
.

(17)

and n̂r,j is the outward normal of the j-th face of the r-th element.

We choose an isotropic metric ¯̄Mn = ¯̄Iηn. By doing so, the problem re-
duces to finding a suitable field ηn. Then, we define an auxiliary variable

14



βnr = (ηn)3/2 that represents the local volumetric deformation induced by
the metric ¯̄Mn. We define βnr as the solution of the following minimization
problem

min
βn
r ∈RnG

e

1

2
(βnr − β̂nr )

2 +
δ

2
(βnr − β̃nr )

2, (18)

where δ is an appropriate weight factor (that will be defined later) and

β̃nr = K̃nRn
r , β̂nr =

√
Kn

E
En
r

, (19)

being Rn
r the ratio between the volume of the element eGr at time t0 and at

time tn−1. Then

K̃n =
|Ω|∑nG

e
r=1Rn

r |e
G,n
r |

,
√
Kn

E =
|Ω|∑nG

e
r=1 |e

G,n
r |/En

r

. (20)

As we will see shortly, the solution of (18) represents a compromise between
the aim to distribute the error uniformly along the cells and the necessity
to maintain the overall mesh quality, by means of the weight δ.
The term (βnr − β̂nr )

2/2 in problem (18) triggers the equidistribution of the
error. Indeed we would like that the contribution to the error of each element
in the grid at time tn be the same, that is(

En
r

|eG,n+1
r |
|eG,n

r |

)2

= (En
r β

n
r )

2 = Kn
E r = 1, . . . , nGe ,

where we have supposed that, for small grid deformations, the ratio |Er|/|eG,n−1
r |

is almost independent of the grid geometry.
The term δ(βnr − β̃nr )

2/2 in problem (18) instead ensures that the grid does
not experience an excessive deformation, and in particular, we would like to
impose that the elements deform with the same volume variation, i.e.,

βnr = K̃Rn
r r = 1, . . . , nGe .

The solution of (18) is

βr =
δβ̃nr + β̂nr
1 + δ

. (21)

We can show that (21) satisfies (10), in fact

∫
Ωn

√
det( ¯̄Mn) =

nG
e∑

r=1

βr|eG,n
r |. (22)
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Then using (19) and (20) we get:

∫
Ωn

√
det( ¯̄Mn) =

1

1 + δ

δK̃n

nG
e∑

r=1

Rn
r |eG,n

r |+
√
Kn

E

nG
e∑

r=1

|eG,n
r |
En
r

 =

1

1 + δ
(δ|Ω|+ |Ω|) . (23)

As regards the weight δ we choose

δ > max

(
β̂nmax − U
U − β̃nmax

,
L − β̂nmin

β̃nmin − L
, 0

)
, (24)

where β̂nmax, β̃
n
max are the maximum values of β̂nr , β̃

n
r and β̂nmin, β̃

n
min are the

minimum values of β̂nr , β̃
n
r and U , L are the upper and lower bounds we

want to impose on βr. Indeed we have:

Proposition 1. If U > β̃nmax, L < β̃nmin, then (21) and (24) imply L ≤ βnr ≤
U .

Proof. βnr is an increasing function of β̂nr and β̃nr , as

∂βnr

∂β̂nr
=

1

1 + δ
> 0,

∂βnr

∂β̃nr
=

δ

1 + δ
> 0.

Therefore, from (21) it follows that βnr < (β̂nmax+ δβ̃
n
max)/(1+ δ). Since (24)

implies (β̂nmax + δβ̃nmax)(1+ δ) < U , we get the first part of the bound. With
similar arguments the other bound holds. �

6 Handling of faults

6.1 A finite volume scheme

Here we introduce an innovative scheme for fault tracking. Since we do not
aim at representing the fault surface precisely at this stage, we consider a
piecewise-constant indicator function, defined on the elements of the sub-
grid, i.e., the uniformly refined grid. In other terms we represent the fault-
damaged region rather than the fault surface. This choice goes towards the
increase of the accuracy of the discrete solution. Indeed, three-dimensional
grids usually have many more elements than nodes, therefore the use of
element-related unknowns guarantees a lot of degrees of freedom in the fault
region. Moreover our scheme is particulary computationally efficient since,
as we will see in Section 8, the fault function (i.e., the level set-like function
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that implicitly defines the faulted region) can be reconstructed only a few
times. We now define the fault function as{

λF > 1/2 in ΩF ,

λF ≤ 1/2 in Ω\ΩF .
(25)

Then, we define the viscosity abatement function ψ, already introduced in
(2), as

ψ =

{
A in ΩF ,
1 in Ω\ΩF ,

where 0 < A ≤ 1 is the viscosity abatement factor. The evolution of the
fault function is determined by the following transport equation in an ALE
form

∂λF

∂t
+ (u⃗− u⃗g,∆) · ∇⃗λF = 0. (26)

The discrete counterpart of λF (t, ·) is λF∆(t, ·) ∈ WS
0 and is piecewise con-

stant on the elements. Its degrees of freedom at time tn are indicated by
λF ,n
r . We solve (26) with an implicit tracking method (see [50]) i.e.,

λF ,n+1
r =

1 +

4∑
j=1

νnr,j

λF ,n
r −

4∑
j=1

Fn
r,j ,

where

νnr,j =
∆tF ,n

|eSr |

∫
FS

r,j

(u⃗(tn, ·)− u⃗g,∆(t
n, ·)) · n̂

are the interface Courant numbers, and ∆tF ,n is the time step. The time
step is chosen such that νnr,j satisfies the following condition

νnr,j <
1

4
∀r = 1, . . . , nSe , ∀j = 1, . . . , 4.

Usually, the time stepping required for the stability of the main scheme,
∆tn, is bigger then ∆tF ,n. Therefore ∆tF ,n is chosen as a submultiple of
∆tn and a sub-time stepping is performed. Finally, Fn

r,j are the numerical
fluxes

Fn
r,j =

{
νnr,jλ

F ,n
r,j if νnr,j ≥ 0,

νnr,jλ
F ,n

r,j
otherwise,

where
λF ,n
r,j = λF ,n

r + γnr,j∆λ
F ,n
r,j . (27)
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The limiter γnr,j of the LS–VT scheme (defined in (27)) is computed, for
j = 1, . . . , 4, in the following way

γnr,j =



min

(
1,

1 +
∑4

j=1 ν
n
r,j − νnr,j

νnr,j |Jr|∆λ
F ,n
r,j

λF ,n
r ,

1− λF ,n
r,j

∆λF ,n
r,j

)
if ∆λF ,n

r,j > 0,

min

(
1,

1 +
∑4

j=1 ν
n
r,j − νnr,j

νnr,j |Jr|∆λ
F ,n
r,j

(λF ,n
r − 1),

−λF ,n
r,j

∆λF ,n
r,j

)
if ∆λF ,n

r,j < 0,

1 if ∆λF ,n
r,j = 0,

where ∆λF ,n
r,j = 1/2(λF ,n

rj − λF ,n
r ), and Jr is the set of indexes of the outflow

faces of the r-cell, i.e., Jr = {j ∈ 1, . . . , 4 : νnr,j > 0}. It is worth noting

that the LS–VT coupled scheme is positive, i.e., 0 ≤ λF∆(t, ·) ≤ 1 for all
t > 0, see [50]. The next step is to develop a proper set reconstruction
technique, since the definition of the level set function here is different from
the standard distance function (see [38, 45]).

6.2 Set reconstruction (continuous part)

The set reconstruction problem can be seen as follows: given λF∆ and ΩF =
H(λF∆ − 1/2), where H is the Heaviside function

H(x) =

{
1 if x > 0,

0 if x ≤ 0,

find a new fault region function that is less diffused. In this section we con-
struct a method in the continuous framework to find a function θ such that
H(θ) = ΩF , given λF and ΩF . This is a tautology in the continuous frame-
work, however, in the discrete one H(θ) can be used as the reconstruction
of the fault function.
Let’s now introduce the method in its continuous form. We define a coeffi-
cient α(t) as

α(t) =

∫
Ω

(
λF (t, ·)− 1/2

)
H(λF (t, ·)− 1/2). (28)

The fault region can be found as H(θ), where θ satisfies
J = min

θ∈L2(Ω)

1

2

∫
Ω
(θ − λF )2,∫

Ω
θ = α,

θ ≥ 0.

(29)

We will see in a while that H(θ) = H(λF − 1/2).
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Proposition 2. The solution of problem (29) is

θ =
(
λF − 1/2

)
H(λF − 1/2). (30)

Proof. We show that every perturbation of the solution (30) yields an in-
crease of the functional J . Let’s consider a small perturbation of the solution
that satisfies the constraints θ = θ + εθ̃, where ε is a parameter that tends
to zero. θ̃ is a perturbation function that satisfies the constraints in (29),
therefore

θ̃(X⃗) ≥

0 if X⃗ /∈ ΩF

−θ(X⃗)

ε
if X⃗ ∈ ΩF

,

∫
ΩF

θ̃ +

∫
Ω/ΩF

θ̃ = 0. (31)

Let’s evaluate the functional J in θ + εθ̃:

J(θ + εθ̃) =
1

2

∫
Ω
(θ − λF )2 + ε

∫
Ω
θ̃(θ − λF ) +O(ε2)

= J(θ) + ε

∫
ΩF

θ̃(θ − λF ) + ε

∫
Ω/ΩF

θ̃(θ − λF ) +O(ε2).

From (30) we get

J(θ + εθ̃) = J(θ)− 1

2
ε

∫
ΩF

θ̃ − ε

∫
Ω/ΩF

θ̃λF +O(ε2),

that, combined with the last equation of (31), leads to

J(θ + εθ̃) = J(θ) + ε

∫
Ω/ΩF

θ̃

(
1

2
− λF

)
+O(ε2).

The first order variation is positive as λF < 1/2 and θ̃ ≥ 0 outside ΩF ,
therefore θ is a minimum for J . �

In our particular case we choose λF = χΩF , where χΩF is the char-
acteristic function of the domain ΩF . In this case we have α = 1/2|ΩF | =
1/2

∫
Ω λ

F . This choice has profound consequences on the discretized method,
that we are going to introduce shortly, since, in the discrete setting, 1/2

∫
Ω λ

F

can be estimated much better than (28). For instance, in the case ∇⃗ · u⃗ = 0,
then α(t) is constant, and any conservative numerical scheme for (26) will
conserve

∫
Ω λ

F and as a consequence α(t). Our tracking method is conser-
vative (see [50]).
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6.3 Set reconstruction (discrete part)

We approximate now θ with Θ∆ ∈ WS
0 , a piecewise constant function defined

on the elements of the sub-grid. The discrete counterpart of problem (29)
has the form

min
Θ∆∈WS

0

1

2

∫
Ω

(
Θ∆ − λF∆

)2
+ η

(∫
Ω
Θ∆ − α

)
−
∫
Ω
MΘ∆ −

∫
Ω
N
(
1

2
−Θ∆

)
,

(32)
where η ∈ R, M : Ω → R and N : Ω → R are the three Lagrange multipliers
that force respectively the first and the second constraint in (29), and Θ∆ ≤
1/2. The latter condition is not present in the continuous form, but comes
from (30), that imposes θ ≤ 1/2. Finally α is estimated as α = 1/2

∫
Ω λ

F
∆.

The equivalent optimality conditions for (32) are
Θr = λFr + (Mr −Nr − η) ,

η =
1

|Ω|

 nS
e∑

r=1

λFr |eSr |+
nS
e∑

r=1

|eSr | (Mr −Nr)− α

 ,

where Mr,Nr,Θr ∈ WS
0 . This system is solvable by the Uzawa method (see

[9] and [25]), as follows

Θm+1
r = 2λF ,m

r + 2(Mm
r −Nm

r )− ηm,

ηm =
2

|Ω|

 nS
e∑

r=1

λFr |eSr |+
nS
e∑

r=1

|eSr |(Mm
r −Nm

r )− α

 ,

Mm
r = max(0,Mm−1

r − ϱΘm
r ),

Nm
r = max

(
0,Nm−1

r − ϱ
(
Θm

r − 1
2

))
,

where ϱ is the acceleration factor. At the end of the iterative cycle, the
function λF∆ is reconstructed by setting λF∆ = H(Θ∆).

6.4 The reconstruction algorithm applied to a simple case

In this subsection we report a numerical result regarding a simple one-
dimensional case. We consider the function λ(x) = x that can represent
a highly diffused step function. As we are interested in the advection of
characteristic functions, we have to deal with its reconstruction. Usually
the sharp profile of a step function is diffused by the finite volume scheme
and gets much smoother. Clearly, in this case, our minimization problem
(29) has an analytical solution that is:

λ(x) =

{
0 for x ∈ [0, 0.5],

1 for x ∈ (0.5, 1].
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Figure 5: The reinitialization algorithm applied once (dashed line) and twice
(solid line) to a highly diffused step function.

In Figure 5 a comparison between the original function before and after
the reinitialization is shown. The algorithm provides a good reconstruction
and a conservative behavior as the mass is conserved up to the 1%.

6.5 Local grid refinement

In this section we recall the local mesh refinement algorithm applied near
the fault region. Actually, we have implemented a general algorithm that
is capable to refine an arbitrary number of elements, referred as marked
elements. In our case, the marked elements correspond to those lying in the
fault region but in general, we will be able to adapt the grid wherever it
might be necessary, for example across the interfaces. We have considered
two local refinement algorithms: the Red–Green and the bisection. The
former exploits a uniform type refinement on the elements and manages the
hanging nodes with dedicated regularization methods; the latter automat-
ically generates a coherent grid, but only some of its variants guarantee a
good mesh quality. A brief review of the latter techniques can be found
in [5, 26, 27, 41] and [51]. We have implemented a recursive longest-edge
refinement which splits the longest edge of the marked elements and assures
a good mesh quality. In fact, to guarantee a coherent mesh, also the tetrahe-
dra adjacent to the marked elements are bisected. The algorithm inputs are
the maximum edge length hmax, the maximum number of iterations Nmax

and the list lT of the indexes of the elements to be refined. Then we proceed
as follows:

Algorithm 2. Mesh refinement:
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(a) (b) (c)

Figure 6: The bisection of four tetrahedrons. a) Four tetrahedrons, six
vertices (blue circles); b) The refinement edge (red dashed); c) Eight tetra-
hedrons, with the new vertex (red diamond).

1. find the longest edge of eGr , with r ∈ lT . For simplicity, we label it with
the letter G;

2. if G is shorter than hmax terminate, otherwise iterate Nmax-times the
following steps:

• find the longest edge belonging to the elements connected to G;
• if this edge is G go to the next step, otherwise label the new edge

as the new G;

3. refine the elements connected with G.

This algorithm terminates in a finite number of steps and produces a
good mesh quality although, for the 3D case, there are no theoretical state-
ments that back this heuristical result. At the end of the refinement phase,
the physical data are transferred from the unrefined to the refined grid and,
as new boundary elements may be created, in case some more boundary
data are generated. Finally, the mini-grid and the sub-grid are built from
the refined grid.

7 Numerical results

We present now some numerical tests to demonstrate the capabilities of our
mathematical modeling set up through some realistic examples of simula-
tion. For the time being we only assure that the numerical techniques we
have chosen work properly, as a complete physical validation test is beyond
the scope of this work. Indeed it is a lengthy process since there are few
experimental data and most of them are incomplete and affected by a high
degree of uncertainty. However a physical discussion of the numerical result
is included.
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The first test we have considered is the kinematical evolution of a faulted
basin. Here we want to show that our numerical scheme is able to cope with
the mesh distortion introduced by a fault. A two-dimensional example of
a fault test case can be found in [30]. In order to maximize the distortion

(a) (b)

(c) (d)

Figure 7: The evolution of a three-layered faulted basin (vertical cut section
at x = 6204 km).

effects we have have set, for all the three layers in Figure 7, µ0i = µ∞i = 1022

Pa s. In other terms we have considered a consolidated rock behavior. This
is a quite unrealistic assumption, since usually the surface sediments are less
compacted and weaker. However the main object of this test is to demon-
strate the code robustness even in these extreme conditions. We also set the
sediment density to 3000 kg/m3 and a Newtonian rheological law.
In Figure 7 we can see the sediment evolution: the fault behaves as a sliding
plane triggering the subduction of the right part of the basin. In this test
case only three surface remeshing steps are needed to prevent mesh tangles
and the overall quality is kept high. Our result can be compared with the
observed qualitative behavior of faults in an extensional sedimentary basins,
see [47]. The qualitative trend of the interaction between the sediment lay-
ers and the fault evolution are captured.
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In the second test case we look into the effect of the rheology on the evolution
of a salt diapir. We have considered a unit cube filled with three sedimentary
layers, whose thicknesses are 0.2 for the lower and the upper layers, and 0.6
for the middle one. A small perturbation is applied to the interface between
the first and second layer (whose characteristics are described in Table 1) in
order to trigger a gravitational instability.

Table 1: Physical characteristics of the three layers for the diapir growth
simulation. r and ξi values come from literature and have been chosen to
stress the plastic effect, and are the same for all the corresponding rheological
laws.

Sediment ρ [103kg/m3] µi [10
20Pa s] r ξi

Bottom 2.14 1 2.0 0
Middle 2.60 100 1.2 70
Top 2.00 10 1.2 70

The rheology has profound influence on the evolution of the sedimentary
basin. The most important effect is on the timing of the diapir growth,
shown in Table 2.

Table 2: Diapir growth time (in Mya) with different rheological models.

Step Newton Carreau Cross Powell Yeleswarapu

15 372 155 122 205 208
20 427 161 126 216 219
25 468 167 130 224 228
30 500 173 135 233 237
35 534 191 146 248 253

Clearly all the pseudoplastic shear-thinning rheologies speed up the diapir
formation. Stronger plastic effects mean shorter times for the diapir evo-
lution. If the timing of the sedimentary layer deposition is known with a
reasonable precision this data could be interpreted to estimate the amount
of plastic effects.
The rheology affects also the shape of the diapir, as shown in Figure 8. At
present date this can be described very precisely, thanks to seismic anal-
ysis [18], therefore it provides another indicator for the choice of a proper
rheological law. In particular in Figure 8 we can notice a strong difference
between the Newtonian law and the plastic laws. Moreover the Carreau
and the Cross laws trigger the fastest diapir evolution while the Powell and
Yeleswarapu laws cause a slower evolution. In fact in the Carreau and in the
Cross laws, the two rheological parameters r and ξi have been adjusted to
describe strong plastic effects. In this simplified test case these two rheolo-
gies match the geological evolution timescales of the diapirs (see [48]) while
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Figure 8: The evolution of a three layer box-shaped basin at time step 25
considering different rheologies: (a) Newton, (b) Carreau, (c) Cross, (d)
Powell, (e) Yeleswarapu.

the other seem to prescribe a too slow evolution.
Finally, in Table 3 we can also analyze the stress field. For a possible com-
parison, some stress measures can be obtained through the mini-frac tests
(see [6]).

Table 3: Maximum and minimum values of the second invariant of the stress
tensor, expressed in 1014 Pa2s2.

max 0.0594 0.0237 0.0330 0.0343 0.0347

min -0.4871 -0.1347 -0.1861 -0.2158 -0.2110

In these examples we have outlined some useful features to calibrate the
physical properties of the model and to choose a proper rheological law.
The last test case we present consists in a realistic three-layered sedimen-
tary basin with two faults and a salt layer. This test case is important in
order to prove the efficiency and the ability of the code to handle realistic
and topologically complicated geological configurations. Here we put to-
gether all the ingredients presented in this work, in particular the tracking
of the faults when they are strongly deformed by a rapidly rising salt di-
apir. The computations have been run on an AMD Opteron 8212 Dual-Core
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2GHz processor; among the several simulations run, the one we present here
has about 50K nodes corresponding to about 1 million of degrees of freedom
requiring approximately 6.1Gb of RAM memory. The basin extension is
23.9×16.8×7.2 km and it is subject to an extensional and downward move-
ment; we consider compaction, sedimentation, and we adopted a Carreau
rheology model. The characteristics of the layers are described in Table 4.

Table 4: Physical characteristics of the layers of the realistic sedimentary
basin, with two faults and a salt layer.

Sediment ρ [103kg/m3] µi [10
20Pa s] ϕ0

Salt 2.14 2 0.05
Oligocene 2.6 200 0.7
Eocene 2.6 200 0.55
Early-Miocene 2.6 200 0.7
Mid-Miocene 2.5 200 0.7
Late-Miocene 2.5 200 0.8
Pliocene 2.5 200 0.8

In Figure 9 we have outlined the evolution of the sedimentary basin from 55.8
to 5.3 Mya ago, corresponding to three sedimentation events occurred in the
geological ages previously introduced. The white layer is the salt layer, the
blue is the Oligocene, the green the Eocene, the yellow the Early-Miocene,
the cyan the Mid-Miocene and the pink and orange are the Late-Miocene and
Pliocene layers respectively. In the figures, the fault regions are transported
by the velocity field and deformed by the rising diapir. As illustrated in
Figure 10, the initialization process is able to capture a thin region across
fault surfaces. Thanks to the efficiency of the fault tracking algorithm, faults
are well followed and reconstructed, and no diffusion is evident, even if there
is still room for improvement as regards the initialization process. The ALE
scheme for grid movement follows the boundary movement as the lateral
walls expand and the basement sinks. Unfortunately, this has proven to be
sensitive to the initial quality of the mesh, insomuch as if the initial mesh is
bad we have to limit the r-adaption or even to disable it. Anyway, in this
case, no remeshes are needed, as the algorithm is able to cope with the mesh
movement and the distortion induced by faults. Therefore, the results show
how our code can deal with the interaction between the salt dynamics and
the fault envisioned.

8 Conclusions

In this work we have introduced an efficient numerical framework for simu-
lating the sedimentary basin evolution, endowed with the modeling of some
relevant physical features: the compaction, the movement of the domain
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Figure 9: The evolution of a two-faulted (in red) sedimentary basin. (a)
55.8 Mya ago, 3 layers. (b) 23 Mya ago, 4 layers. (c) 16.1 Mya ago, 5 layers.
(d) 11.6 Mya ago, 6 layers. (e) 5.3 Mya ago, 7 layers.
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(a) (b)

Figure 10: Faults reconstruction. (a) Faults are initially identified with the
level set function (black). (b) At the end of the simulation step, the fault
regions have not been diffused, and still identified precisely. It can also be
noticed the mesh refinement around faults.

boundaries, faults, and non-Newtonian rheologies.
This is coupled with a reliable mathematical support for grid handling and
boundary movement. The ALE scheme has proven to be robust and effi-
cient, and only a few remeshing are needed during long-run simulations. To
prevent this, anyway, in the future the initial mesh quality should be care-
fully addressed, by means of dedicated regularization algorithms.
The fault tracking technique has proven to be low-diffusive and conservative
in following faults evolution. It can also be applied successfully to all those
applications where a precise reconstruction of the domain boundaries is not
required, and therefore a discontinuous level set function can be used. Fu-
ture developments can include a deeper theoretical analysis on this scheme.
Last, but not least, the rheological properties of the materials pose the main
difficulties to this geological time scale simulations. The confidence in the
simulations is highly dependent on the behavior of the materials, and a
more involving test phase should be carried out to figure out whether the
computed evolution of the basin are coherent with the experimental data col-
lected on the ground. A wider sensitivity analysis of the evolution behavior
with respect to the rheological parameters is also envisioned.
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