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Abstract

Shallow shells are widely encountered in biological structures, especially during

embryogenesis, when they undergo significant shape variations. As a consequence

of geometric frustration caused by underlying biological processes of growth and re-

modeling, such thin and moderately curved biological structures experience initial

stress even in the absence of an imposed deformation. In this work, we perform a

rigorous asymptotic expansion from three-dimensional elasticitiy to obtain a non-

linear morphoelastic theory for shallow shells accounting for both initial stress and

large displacements. By application of the principle of stationary energy for admis-

sible variation of the tangent and normal displacement fields with respect to the

reference middle surface, we derive two generalised nonlinear equilibrium equations
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of the Marguerre-von Kármán type. We illustrate how initial stress distributions

drive the emergence of spontaneous mean and Gaussian curvatures which are gen-

erally not compatible with the existence of a stress free configuration. We also show

how such spontaneous curvatures influence the structural behavior in the solutions

of two systems: a saddle-like and a cylindrical shallow shell.

Keywords: Elastic shallow shell, Marguerre-von Kármán equations, residual stress, asymp-

totic theory.

1 Introduction

Shallow shells are characterized by their moderately curved, thin-walled geometry and are

found in numerous biological structures such as blood vessels, cell membranes, and plant

tissues [1]. In the biological realm, they are also widely encountered in early stages of

embryos in the form of curved monolayers or cell sheets undergoing folding and shaping

under the action of physical forces [21].

In continuum mechanics, the fundamental concepts for the linear elastic theory of

shallow shells was proposed by Marguerre [24] under the assumptions of small strains and

rotations. Reissner later expanded the theory by considering the effects of transverse shear

deformation, which was particularly important for thick shells [34], making the models

more applicable to a wider range of engineering problems.

Since living matter undergoes significant deformations during processes such as cell

migration and division, nonlinear models are needed to describe their mechanics accurately

[16]. Nonlinear shallow shells models indeed account for large strains and rotations, being

capable of capturing post-buckling behavior, large deflections, and more complex stability

phenomena [33, 27].

Notable contributions were made by Novozhilov who developed a theory for thin shells

with geometric nonlinearities [32], and by Naghdi who provided a robust mathematical
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framework for analyzing the stability and dynamic response of shallow shells [20, 28],

including the effects of initial imperfections and nonlinear material properties [26].

A comprehensive review of rigorous mathematical derivations of both linear and non-

linear models for elastic shallow shells from three-dimensional elasticity was given by

Ciarlet [7], together with other notable works on the existence and uniqueness of solu-

tions to nonlinear shell theories [8], the development of higher-order shell models [6], and

the derivations of intrinsic equation, whose sole unknowns are the bending moments and

the stress resultants [9]. More recent contributions also provided crucial insights into the

stability and post-buckling behavior of shallow shells [37, 36], also from a computational

viewpoint [5].

The use of asymptotic shell and shallow shell models for biological materials has been

extensively explored. In a seminal work, Helfrish et al. [17] extended classical shell

theories to account for the anisotropic behavior of biological membranes, shedding light

on the mechanical response of lipid bilayers to external stimuli. A refined theoretical

framework for analyzing the growth and form of thin elastic sheets was later proposed for

highlighting the role of geometric constraints in shaping biological structures [12], with

applications to the mechanics of cellular membranes to investigate the interplay between

membrane curvature and mechanical properties [13]. These mechanical models revived

the interest in shallow shell theories for the morphogenesis of biological tissues, revealing

how tissue folding arises from mechanical instabilities [3].

An accurate analysis of biological shell structures requires to consider a pre-stressed

configuration accounting for initial or residual stresses, which are ubiquitous in biological

materials. Initial stresses often emerge due to differential growth or remodeling, playing a

pivotal role in driving morphogenetic processes and influencing the stability of biological

structures [38, 2, 14]. These effects are particularly relevant during embryogenesis, where

growth-induced residual stresses are responsible for complex tissue folding and the emer-

gence of functional shapes, even in the absence of traction loads [30, 39, 41]. Residual
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stresses significantly influence mechanical responses, such as arterial wall thickening or

tumor-induced deformations [19, 4]. A rigorous understanding of the coupling between

growth, remodeling, and initial stress is therefore crucial for addressing key biological

questions and developing predictive models for the morphogenesis of biological shells.

Previous studies have highlighted the importance of residual stresses in biological struc-

tures, demonstrating their influence on deformation [31]. They also explore the role of

residual stresses in the mechanical behavior of arterial walls, emphasizing their impact on

structural stability and pathology [42], and in marine organisms to emphasize evolution-

ary adaptation and structural optimization [29]. Extending classical shallow shell models

to include these factors is crucial for more accurate prediction of structural behaviors.

In the following, we present a formal asymptotic derivation of the nonlinear shallow

shell equations for an elastic shell with initial stresses. In Section 2, we introduce the

geometric and kinematical framework as well as the constitutive theory of nonlinear elastic

shells with initial stresses under the assumption of material isotropy. In Section 3, we

introduce the scaling assumptions for the geometrical parameters and the initial stress,

and we derive by means of a dimensional reduction procedure, the governing equations

for an initially stressed elastic shallow shell. In Section 4, we explicitly solve the derived

shallow shell equations in two physical system models, discussing how the initial stress

concentration may drive the emergence of spontaneous curvatures and buckling patterns.

Concluding remarks are finally summarized in Section 5.

2 The nonlinear three-dimensional elastic model

In this section, we derive the three-dimensional nonlinear theory for biological elastic

shells with initial stress. Classical approaches to nonlinear shell theory rigorously derive

governing equations under the assumption of a stress-free reference configuration. Our

derivation builds upon this foundation by explicitly incorporating initial stresses into the
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three-dimensional elastic potential. This inclusion allows us to capture the effects of

strain incompatibilities that are prevalent in morphoelastic systems, providing a more

general framework. This approach aligns with related studies on incompatible strains,

such as the works [22, 10] for plates. By extending these concepts to shallow shells, we

introduce a methodology to analyze how residual stresses influence nonlinear morphologies

and stability, particularly in contexts where geometric frustration drives spontaneous

curvature and buckling. In the following, we first detail the kinematic and geometric

assumptions pertaining to shells and then discuss the constitutive theory accounting for

initial stress.

2.1 Geometric and kinematic assumptions

Let us consider an incompressible nonlinear shell with reference configuration Bτ , occu-

pying the region consisting of all points within a distance H << 1 from a given reference

middle surface ωτ embedded in the three-dimensional Euclidean space E3. In the follow-

ing, we will consider that Bτ is an initially stressed configuration that is characterized by a

given initial distribution of the Cauchy stress tensor τ . The initial stresses will be referred

to as residual stresses, when the entire boundary ∂Bτ is taken free of traction loads. We

assume that the surface ωτ can be parameterized by a smooth injective mapping from

the parameter space P ⊂ R2 to the Euclidean space E3. In the following, Greek letters

range over 1 and 2, while Latin letters range from 1 to 3. Moreover, repeated summation

convention is employed over dummy indices and subscript comma denotes differentiation

with respect to the following variable. Accordingly, the material position of each point

X0 ∈ ωτ is given by X0 = X0(Θ
α), where Θα ∈ P are the reference curvilinear coordi-

nates (see figure 1). Consequently, the covariant coordinate vectors that are tangent to

the reference middle surface are given by:

G1 =
∂X0

∂Θ1
, G2 =

∂X0

∂Θ2
. (1)
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Figure 1: Sketch of the reference and spatial configuration of the shell, with indication
of the middle surface (shaded grey). We also depict the covariant bases Gi, gi at the
reference X, and spatial x position of the middle surface ωτ and ω, respectively.

We then define the corresponding contravariant basis Gα so that Gα · Gβ = δβα, δ
β
α

being the Kronecker delta. The six independent scalar products Gαβ = Gα · Gβ and

Gαβ = Gα ·Gβ represent the covariant and contravariant components of the metric tensor

on the reference middle surface, respectively. We then indicate with G3 the unit vector

normal to the mid-surface ωτ , which we assume to be continuously varying throughout

the domain. It is defined as:

G3 = G3 =
G1 ∧G2

|G1 ∧G2|
. (2)

Finally, using the Weingarten formulas, the curvature tensor of the reference middle sur-

face is given by:

K = −∂G3

∂Θα
⊗Gα, (3)
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where ⊗ denotes the dyadic product, and H = tr(K)/2 and K = det(K) are the referential

mean and Gaussian curvatures, respectively.

For the subsequent analysis it is useful to be more specific about the coordinate system

that we adopt to describe the three-dimensional region occupied by the shell, Bτ . We can

define such coordinates starting from the ones used for the mid-surface and express the

material position X ∈ Bτ as follows

X(Θ1,Θ2, ζ) = X0(Θ
1,Θ2) + ζG3(Θ

1,Θ2), (4)

with ζ ∈ [−H,H]. In such a way, Bτ is the corresponding image of P × [−H,H], and

(Θ1,Θ2, ζ) are the natural curvilinear coordinates of the shell in the reference configu-

ration. Consequently, we can also define the covariant Ḡα and contravariant Ḡα basis

vectors at an arbitrary point within Bτ , and not just on the mid surface. It is easy to

calculate them by differentiating Eq.(4) and exploiting Eq.(3). They are given by:

Ḡα =
∂X

∂Θα
= (1− ζK)Gα, Ḡα = (1− ζK)−TGα. (5)

We remark that they are still orthogonal to the unit normal G3, similarly to their coun-

terpart on the mid surface.

Finally, again by differentiation of Eq.(4), the area and volume elements on the refer-

ence shell read:

dA = |G1 ∧G2| dΘ = G dΘ,

dV = det(I2 − ζK) dΘdζ = (1− 2ζH + ζ2K) dΘdζ,
(6)

where dΘ = dΘ1 dΘ2, G is the determinant of the metric tensor, i.e. G = detGαβ, and

I2 is the rank-2 unit tensor in the space tangent to the shell.

After deformation, the spatial position of a point x within the current configuration B

of the shell is also expressed by a one-to-one function of the natural curvilinear coordinates,
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namely

(Θ1,Θ2, ζ) 7→ x(Θ1,Θ2, ζ) ∈ B. (7)

The deformed middle surface is then mapped by x0 = x(Θ1,Θ2, 0) as reported in the

commutative diagram in Fig.1. Hence, the tangent plane of the deformed middle surface

is spanned by the covariant and contravariant coordinate vectors defined as:

gα = (x0),α, gα · gβ = δβα. (8)

The above formulas define the six independent scalar products gαβ = gα · gβ and gαβ =

gα · gβ representing the covariant and contravariant components of the metric tensor on

the deformed middle surface. Accordingly, the deformation gradient from the reference

to the spatial configuration of the shell is given by:

F =
∂x

∂X
= x,α ⊗ Ḡα +

∂x

∂ζ
⊗G3. (9)

Finally, dealing with biological materials, we also assume that the mapping is volume

preserving and so we impose the incompressibility constraint:

J − 1 = 0, (10)

where J denotes the Jacobian of the deformation gradient, namely, J := detF.

2.2 Constitutive theory with initial stresses

The reference configuration of living matter often possesses initial stresses, arising from

the presence of either geometric misfit or differential growth processes during their devel-

opment. We denote by τ = τ (X) the Cauchy stress tensor in the reference configuration

of the shell. Since the reference configuration is equilibrated, it must obey the following
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balance equation:

Div τ = Ḡα · τ,α +G3 · ∂τ
∂ζ

= 0, τ = τT in Bτ , (11)

where Div is the material divergence operator in the material configuration. Notice that,

for residual stresses, the entire boundary ∂Bτ is free of traction. Hence, in that case we also

impose τN = 0, with N being the local unit normal in the material boundary. In such

a case, by simple application of the mean value theorem, the stress τ is inhomogeneous

and has a zero average over in Bτ [18].

We assume a perfectly elastic consitutive response of the body from the residually

stressed initial configuration, and define a strain energy density Ψ per unit reference

volume that explicitly depends on both the deformation gradient and the residual stress

tensor:

Ψ(X) = Ψ̄(F(X), τ(X)). (12)

By usual invariance requirements under rigid-body motion, the strain energy can be ex-

pressed as a function of the three invariants of the right Cauchy-Green tensor C = FTF,

the three invariants of the initial stress tensor τ , plus their four mixed invariants [35, 25].

Accordingly, the presence of the residual stress adds inhomogeneity to the material re-

sponse and changes the symmetry group of the material response relative to the reference

configuration. Following standard thermo-mechanical arguments for isochoric deforma-

tions, the first and second Piola-Kirchhoff stress tensors, P and S, are respectively given

by:

P =
∂Ψ̄

∂F
(F, τ)− pJF−1, S =

∂Ψ̄

∂F
(F, τ)F−T − pJC−1, (13)

where p is the Lagrange multiplier enforcing the incompressibility constraint.

Aiming to develop a shallow shell theory accounting for geometric nonlinearities, we con-

sider the constitutive response of a residually stressed neo-Hookean material, given by
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[15]:

Ψ̄(F, τ) = Ψ̃(trC, tr(τC), Iτ1, Iτ2, Iτ3) =
1
2
(tr(τC) + r trC− 3µ) , (14)

where µ is the shear modulus of the unstressed material, Iτ1 = tr τ , Iτ2 =
1
2
[(I2τ1− tr(τ 2)],

Iτ3 = det τ , and r = r(Iτ1, Iτ2, Iτ3) is the real root of:

r3 + Iτ1r
2 + Iτ2r + Iτ3 − µ3 = 0. (15)

We remark that the actual Cauchy stress σ must equal the initial stress tensor τ in

the absence of deformation. Hence, being σ(F) = JFP, we immediately deduce:

τ = σ(I) =
∂Ψ

∂F
(I, τ)− pτ I, pτ = r. (16)

From (13), the constitutive equation for the initially stressed Neo-Hookean material with

strain energy given by (14) is:

P = rFT − pJF−1 + τFT , S = rI− pJC−1 + τ. (17)

We finally recall that, if we neglect the presence of body forces, the equilibrium con-

ditions in the reference configuration are:

DivP = 0, FP = PTFT in Bτ , (18)

together with the traction boundary conditions NP = l on ∂Bτ , l being the surface

tractions.
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3 Variational formulation of a nonlinear theory of ini-

tially stressed shallow shells

In this Section we introduce the shallow shell assumptions and subsequently derive the

reduced nonlinear theory by means of a variational asymptotic procedure.

3.1 Shallowness of the reference configuration

We preliminary remark that, the shell domain Bτ features two main characteristic lengths,

L being the geodetic diameter of the set ωτ and H, the half-thickness of the shell. The lat-

ter is supposed to be small with respect to L and so we can identify a small dimensionless

parameter ϵ = H/L≪ 1.

Let us then introduce the Cartesian unit vectors (E1,E2,E3) in the reference config-

uration and parametrize the reference position of the middle surface ωτ by:

X0(Θ
1,Θ2) = Θ1E1 +Θ2E2 + Z(Θ1,Θ2)E3. (19)

According to the above formula, the shallowness assumptions imposes that in every point

of the spatial domain of the shell, the following holds:

max|Z,α| ≪ 1. (20)

In particular, for the purpose of the subsequent dimensional reduction, we will assume

a specific scaling of the slope of the shell, namely, Z,α = O(ϵ) uniformly throughout the

domain.

Given the parametrization in Eq (19), the covariant base reads:

Gα = Eα + Z,αE3, (21)
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and, accordingly, the covariant metric components are Gαβ = δαβ + Z,αZ,β, so that at

the leading order, the coordinate lines are orthogonal everywhere and the metric is flat.

Similarly, the unit normal vector of the middle surface can be approximated as G3 =

−Z,αEα + E3 + o(ϵ2), and the mean and Gaussian curvature at the leading order read,

respectively:

H =
Z,αα

2
, K = Z,11Z,22 − Z2

,12 = [Z,Z], (22)

where with the square brackets we denote the following bilinear operator [a, b] = 1/2(a,11b,22+

b,11a,22− 2a,12b,12). We also remark that, at the leading order, the surface coordinates are

lines of curvature coordinate if and only if Z,12 = 0.

It is important to mention that, to be consistent with the shallowness hypothesis, the

shell is supposed to remain shallow even after the deformation. Hence it is essential to

derive proper scaling laws for the tangent and normal displacements. This issue will be

addressed in the next Subsection.

3.2 Scaling for the displacement fields

We expand the spatial position of any point within the shell as follows

x(Θα, ζ) = X(Θα, ζ) + u0(Θ
α) + ζu1(Θ

α) + o(ϵ3L), (23)

where u0(Θ
α) is the displacement of the middle surface. Following standard arguments,

we formulate two other shallow shell assumptions : one for the displacement of the mid-

dle surface and another for the rotation vectors. Using (21) and (20), we first assume

that the planar components of the displacement fields are much smaller then the normal

components. In particular, we set

u0(Θ
α) = Uα(Θ

α)Eα +W (Θα)E3, u1(Θ
α) = Uζα(Θ

α)Eα +Wζ(Θ
α)E3, (24)
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with Uα = O(ϵ2L) and W = O(ϵL). To set the order of magnitude of u1 we argue

as follows: we define the rotation vectors as ηα = Gα ∧ FGα and assume that their

component along the normal direction are much smaller than their planar counterparts,

so that:

ηα ·Gβ = O(ϵ), forα ̸= β, ηα ·G3 = O(ϵ2). (25)

Hence, the rotation around the normal is much smaller than the rotation around any axis

in the tangential plane of the middle surface. By combining (24) and (25), we deduce the

following scaling: Uζα = O(ϵ) and Wζ = O(ϵ2).

It is now possible to compute an approximation of the Cauchy-Green strain tensor C.

By using Eq.(9), it is easy to deduce:

C = FTF = (x,α · x,β)Ḡ
β ⊗ Ḡα + |G3 + u1|2G3 ⊗G3, (26)

which, neglecting terms of order o(ϵ2), can be expanded as:

C = I+ A0 + ζ Aζ , (27)

with:

A0 =(Uα,β + Uβ,α +W,αW,β − UζαZ,β − UζβZ,α)Eα ⊗Eβ+ (28)

+(Uζα +W,α)(E3 ⊗Eα +Eα ⊗E3)+ (29)

+(2Wζ + U2
ζ,α + 2W,αZ,α)E3 ⊗E3 = O(ϵ2), (30)

Aζ = (Uζα,β + Uζβ,α)Eα ⊗Eβ = O(ϵ/L). (31)

For later purposes it is worth mentioning two more consequences of the kinematic

assumptions expressed in (24). First, by means of Eq. (27), the inverse of C can be
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approximated, up to second order in ϵ, as

C−1 = I− (A0 + ζAζ) + o(ϵ2). (32)

Secondly, we can write the expression for the admissible virtual displacements as

δu = δWE3 + (δUα + ζδUζα)Eα + ζδWζE3 + o(Lϵ3), (33)

for some arbitrary scalar functions δW , δUα, δUζα and δWζ .

3.3 Scaling of the stress tensor components

To approximate the stress in the shallow regime, we first expand the Lagrange multiplier

p around the initial pressure pτ , which according to Eq.(16) equals r. Moreover, for

physical consistency with the displacement field, we set an expansion for p that is affine

with respect to ζ, consistently with Eq.(23). Hence, we write

p(Θα, ζ) = r(Θα, ζ) + p0(Θ
α) + ζpζ(Θ

α) + o(µϵ2), (34)

with p0 = O(µϵ2) and pζ = O(µϵ). Then, using Eq.(17), (32) and (34), the second

Piola-Kirchhoff stress tensor can be approximated as

S := rI− pJC−1 + τ = r(A0 − Jp0I) + rζ(Aζ − Jpζ I) + τ + o(µϵ2). (35)

Notice that, since J = O(1) (this can be deduced from Eq.(27)) the dominant part of the

stresses induced by elastic deformations, namely Ŝ = S−τ , is of second order: Ŝ = O(ϵ2µ).

We are left with discussing the missing ingredient that is necessary for the dimensional

reduction procedure, namely, the scaling for the initial stress tensor τ . Let us first write
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τ in the contravariant base along the coordinate lines:

τ = τijḠ
i ⊗ Ḡj, τij = τij(Θ

α, ζ), (36)

where τij are the corresponding components. We assume that the tangent components

of the initial stress are of the same order as the elastic stress induced by the planar

displacement Ŝ, that is we set ταβ = O(ϵ2 µ). This choice is motivated by the aim

to investigate the stability of the reference configuration under the residual stress. In

addition, if the τ ’s are residual, the leading order equilibrium equation (11) reads τij,i = 0,

with τi3(Θ
α,±H) = 0, and so it seems natural to take τ3α = O(ϵ3 µ) and τ33 = O(ϵ4 µ). As

a first consequence of these choices, notice that the dominant contribution of the whole

stress tensor S is of second order in ϵ, as can be seen from Eq.(35). Moreover, at the

leading and next to leading orders, the equilibrium equation (11) can be expressed as a

function of the average tangent stress components Tij(Θα) =
∫ H

−H
τij dζ as:

Tαβ,α = 0 at O(ϵ2 µ), Tα3,α = 0 at O(ϵ3 µ). (37)

Moreover, the invariants of the residual stress tensor have the following scaling:

Iτ1 = ταα = O(µϵ2), Iτ2 = o(µϵ2), Iτ3 = o(µϵ2), (38)

so that, the leading order expression of r in (15) is given by :

r = µ− ταα
3

+ o(µϵ2). (39)

In the following, we use these scaling assumptions to derive a rigorous asymptotic

expansion of the three-dimensional boundary value problem given by (18).
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3.4 Variational derivation of the nonlinear shallow shell equa-

tions

First, let us rewrite the balance equations in (18) according to the variational framework.

To this purpose, let us introduce the total free energy

E =

∫
ωτ

∫ H

−H

(ψ(F, τ)− p(J − 1)) dζ dĀ−
∫
ω±

ℓ · u dā−
∫ H

−H

(

∫
∂ω

h · u d|∂ω|) dζ, (40)

where the tractions l have been split into ℓ and h: ℓ = ℓαEα + ℓ3E3 denote the tractions

on the surfaces ω± := ω × {±H}, and h = hαEα + h3E3 the tractions on ∂ω × [−H,H].

Moreover dĀ and dā are the reference and current area elements defined as dĀ = Ḡ dΘ

and dā = ḡ dΘ, respectively.

Let us now rewrite the three-dimensional elastic boundary value problem stated in

Eq.(18) as the stationarity of total free energy with respect to any admissible variation of

the deformation and the pressure p. It reads:

∫
ωτ

∫ H

−H

1

2
tr(S δC) dζ dĀ− L[δu] = 0 ∀δu, (41)∫

ωτ

∫ H

−H

δp(J − 1) dζ dĀ = 0 ∀δp (42)

where

L[δu] :=
∫
ω±

ℓ · δu dā+

∫ H

−H

(

∫
∂ω

h · δu d|∂ω|) dζ,

δC being the variation of the conjugate strain measure, namely, the right Cauchy-Green

tensor, and δu the variation of the displacement u := x−X.

It is clear by looking at equations (27), (35) and (41) that the leading order contribu-

tion of the power expended by internal stresses is O(µϵ5). Indeed, we already mentioned

in Section 3.3, that S is of second order in ϵ as well as the admissible variation of the

Cauchy strain, as evident from Eq.(27). Consequently the magnitude of the traction loads
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ℓ and h must be chosen accordingly, so that the load power L balances out the internal

power. Specifically we must choose ℓ3 = O(µLϵ4), ℓα, h3 = O(µLϵ3) and hα = O(µLϵ2).

This fact can be easily verified by checking that the leading order term of the load power

L is infact O(µϵ5). Indeed, once we recognize that dĀ = dΘ+O(H2), dā = dΘ+O(H2),

d|∂ω| = d|∂P| + O(ϵH) and by means of formula (33), we can write the leading order

term of L as

L =

∫
P

(
ℓ̃3δW + ℓ̃αδUα −H

˜
ℓαδW,α

)
dΘ+ (43)

+

∫
∂P

(h3δW + hαδUα −mαδW,α) d|∂P|,

where we defined the operators f̃ := f+ + f− and
˜
f := (f+ − f−) 1 , and the boundary

tractions and torques

hi =

∫ H

−H

hi dζ, mα =

∫ H

−H

hαζ dζ, (44)

respectively. Eventually, the aforementioned choice for the scalings of the loads becomes

apparent once we look at the leading order of L as written in Eq.(43). Given our assump-

tions, the load power of order O(µϵ5).

3.4.1 Boundary conditions and incompressibility constraint

Here we exploit the boundary conditions and the incompressibility constraint to derive

an expression for the Cauchy-Green strain and the Piola-Kirchoff stress solely in terms of

Uα and W .

The boundary conditions can be expressed by equating the work performed by the

tractions L to the one performed by the stresses on the boundary. In particular, they

must be of the same order in ϵ, that is O(µϵ5). Let us focus on the normal boundary, i.e.

1For each generic field ϕ we denote with ϕ+ (ϕ−) the quantity ϕ|ζ=1 (ϕ|ζ=−1)
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ω+ ∪ ω−, where N = G3. The power of the stresses on the boundary must then satisfy

∫
ω±

NP · δu dā = O(µϵ5). (45)

A straightforward computation shows that the above formula forces the lower order terms

of N P to vanish on the boundary. Specifically, we need (N P) · Ḡα to vanish up to first

order in ϵ, thus leading to:

Uζα = −W,α. (46)

In passing, notice that the above formula expresses the classical Kirchhoff-Love hypothesis,

that is here justified by vanishing of the leading order shear stress components on the

boundary. On the other hand, (45) forces (N P) ·N to vanish up to second order in ϵ,

which leads to

p0 = −µUα,α + µWζ and pζ = µWα,α. (47)

Finally, we have to impose the incompressibility constraint expressed in Eq.(42). First,

by using (27), we expand the Jacobian as J = 1+trA0 + ζ trAζ+O(ϵ
4). Next, we take as

admissible pressure variations all the functions δp such that δp(Θ, ζ) = δp0(Θ) ∼ O(µϵ2).

Finally, we integrate equation (42) along ζ and approximate it up to order O(ϵ5) thus

obtaining trA0 = 0. If we make explicit the trace of A0 and equate it to zero we get

Wζ = Uα,α − gαα +Gαα. (48)

At this point, equations (46),(47) and (48) give us all the ingredients to express the

kinematics just in term of Uα and W , as previously anticipated. In particular, neglecting

terms of order o(ϵ2), the metric components of the middle surface in the reference and

spatial configurations read:

Gαβ = δαβ + Z,αZ,β, gαβ = δαβ + Uα,β + Uβ,α + (W + Z),α(W + Z),β, (49)
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respectively. Consequently, the right Cauchy-Green strain tensor is given by C = I+A0+

ζAζ + o(ϵ2), where:

A0 = (gαβ −Gαβ)Eα ⊗Eβ − (gαα −Gαα)E3 ⊗E3, (50)

Aζ = −2W,αβEα ⊗Eβ. (51)

In turn, also the expressions for admissible displacements and strain can be updated and

expressed as a function of the variations (δUα, δW ) of the planar and normal components

of the displacement. We get:

δu = ϵδWE3 + ϵ2(δUα − ζδW,α)Eα + o(ϵ2L), (52)

δC = (δUα,β+δUβ,α+δW,α(Z+W ),β+δW,β(Z+W ),α−2ζδW,αβ)Eα⊗Eβ+o(ϵ
2). (53)

Lastly, once the the kinematics in known it is immediate to derive and expression for

S in terms of Uα and W . First, the pressure terms in Eq.(47), p0 and pζ , can be rephrased

as

p0 = µ(Gαα − gαα), pζ = µW,αα. (54)

Eventually,

S = S0 + ζ Sζ + τ (2) + o(µϵ2), (55)

with:

S0 = µ ((gγγ −Gγγ)δαβ + µ(gαβ −Gαβ))Eα ⊗Eβ, (56)

Sζ = −2µW,αβEα ⊗Eβ, (57)

τ (2) = τα,βEα ⊗Eβ. (58)

We can rewrite the leading order contribution O(µϵ5) of the potential energy varia-

tion, as the sum of two contributions arising from the tangent (δUα) and normal (δW )
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variations, respectively. In the following we consider these two variation separately, for

the sake of simplicity.

3.4.2 Stretching equation

The tangent contribution in (41) is the virtual work made by the planar stresses onto

planar variations δUα. The planar equilibrium is then expressed by

∫
P
(Nαβ + Tαβ)(δUα,β + δUβ,α) dΘ−

∫
P
ℓ̃βδUβ dΘ−

∫
∂P

hα d|∂P| = 0, ∀δUα, (59)

with:

Nαβ =

∫ H

−H

S0αβ dζ = 2HS0αβ.

Integrating by parts Eq.(59) and taking into account Eq.(37), we get the in-plane

equilibrium

Nαβ,α + ℓ̃β = 0 in P , (60)

(Nαβ + Tαβ)nβ = hα in ∂P , (61)

where n denotes the unit outer normal to ∂P .

In the case of conservative external loads, instead of considering the above equation,

we can rely on the existence of an Airy stress function defined as follows. First let us

introduce the potential functions L+ and L− for the external loads so that

ℓ± = ∇L±. (62)

Then we build an Airy function so as to satisfy

χ,22 = Σ11, χ,11 = Σ22, −χ,12 = Σ12 = Σ21, (63)
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where Σαβ := Nαβ + Tαβ + L̃δαβ. Thanks to the Airy potential the stress defined above

automatically satisfies Eq.(60). However, some compatibility conditions for χ must be

added, namely, ∇4
tχ = Σ11,22 +Σ22,11 − 2Σ12,12, where ∇t is the gradient operator in R2.2

Using Eq.(60,63), we finally get the following expression for the compatibility condition:

−∇4
tχ = 12Hµ [W,Z +W/2]− µCG − 1

2
L̃,αα (64)

In the above formula, [·, ·] denotes the already mentioned bilinear operator, namely, [a, b] =

1
2
(a,11b,22 + a,22b,11 − 2a,12b,12) while CG := (T11,22 + T22,11 − 2T12,12)/µ and plays the role

of a spontaneous Gaussian curvature imposed by the tangent residual stress.

3.4.3 Bending equation

As for the stretching counterpart, the transverse contribution in (41) is the virtual work

made by the transverse stresses onto transverse variations δW . It reads

∫
P
[(Nαβ + Tαβ)(Z +W ),β δW,α+

(
4

3
µH3W,αβ −Mαβ

)
δW,αβ

]
dΘ

−
∫
P

(
h̃3δW −H

˜
hαδW,α

)
dΘ−

∫
∂P

(h3δW −mαδW,α) d|∂P| = 0 ∀δW, (65)

where we denoted by M =MαβEα⊗Eβ the tangent torque tensor imposed by the residual

stress, whose cartesian components are defined as

Mαβ =

∫ H

−H

ταβζ dζ. (66)

2Notice that, since Σαβ is divergence free, we have that µCG can be conveniently rewritten as Σ11,22+
Σ22,11 − 3Σ12,12 − 1/2(Σ11,11 +Σ22,22).
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Integration by parts of Eq.(65) eventually leads to the strong form of the equations for

transverse equilibrium of the shell. They read

4

3
H3µ∇4

tW −Mαβ,αβ − [(Nαβ + Tαβ)(Z +W ),β],α − ℓ̃3 −H
˜
ℓα,α = 0 in P , (67)

(Nαβ + Tαβ)(Z +W ),β nα − (∂αmαβ)nβ − ∂t((mαβ −mβ)nαtβ) = 0 in ∂P , (68)

(mαβnα −mβ)nβ = 0 in ∂P . (69)

where t is the tangent unit vector to ∂P and mαβ := 4/3µH3W,αβ − Mαβ. Finally,

exploiting the definition of the Airy stress function χ and of the load potential L we get

the following formulation for transverse equilibrium in Eq.(67)

4

3
H3µ∇4

tW −∇t · ∇t ·M− 2[χ, Z +W ] +
(
L̃,α(Z +W ),α

)
,α
− L̃,3 −H

˜
L,αα = 0

(70)

We finally remark that we can define a quantity CM by setting 8
3
µ∇2

tCM := ∇t ·∇t ·M

which represents the spontaneous mean curvature driven by the torque imposed by the

residual stress.

4 Physical examples

The dimensionally reduced shell model consists of two coupled, nonlinear, partial differen-

tial equations, Eq.(64) and Eq.(70), in the unknowns χ andW , to be solved together with

the boundary conditions given by Eqs.(68) and (69). The governing equations Eq.(64)

and Eq.(70) highlight the interplay between initial stresses and the nonlinear deformation

of shallow shells. In Eq.(64), the compatibility condition explicitly includes the con-

tribution of the tangent residual stress components through the spontaneous Gaussian

curvature CG, defined as a function of the residual stress tensor. This term imposes a

geometric constraint that is absent in the classical MvK equations. Similarly, Eq. (70)
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introduces the effect of residual stress through the torque tensor, which contributes to

the spontaneous mean curvature CM . These contributions encapsulate the role of the

initial stress in shaping the shell’s morphology, altering the equilibrium configuration and

stability characteristics compared to the stress-free case. In the absence of initial stresses,

the terms CG and CM reduce to zero, and we recover the classical MvK equations for

shallow shells, which describe deformations driven solely by external loads and intrinsic

material properties. This demonstrates the consistency of our framework with established

shell theories, while also extending their applicability to contexts involving initial stresses.

The following physical examples are designed to illustrate different aspects of how initial

stresses influence the deformation and the morphological transitions in shallow shells.

Specifically, these examples address scenarios where initial stresses induce spontaneous

curvature, affect buckling thresholds, and drive complex stability behaviors. By focusing

on a twisted saddle-shaped shell and a pre-stressed cylindrical shell, we aim to provide a

detailed exploration of the impact of initial stresses on both local and global mechanical

responses, emphasizing their role in shaping the morphology and stability of shallow shells

under various loading conditions.

4.1 Twisting and stretching of a saddle strip

Let us consider a shallow hyperbolic paraboloidal strip whose undeformed configuration

has the following parametric expression:

Z(Θ1,Θ2) = βΘ1Θ2,

with |Θ1| ≤ l1 and |Θ2| ≤ l2 (see Fig.2). For consistency to the shallowness assumption,

we assume that β · max[l1, l2] ∼ ϵ. Moreover, the undeformed shallow shell is initially

stressed with vanishing tangent torque tensor and the following average tangent stress
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Figure 2: Sketch of the pre-twisted strip along with the Cartesian reference system and
the resultant load F and torque T

components:

T11 = µc2(Θ2
1 − l21), T22 = µc2(Θ2

2 − l22), T12 = −µc2Θ1Θ2, (71)

with c ∼ ϵ3/2. We remark that such an initial stress distribution admits an initial Airy

stress function χi = µc2(Θ2
1 − l21)(Θ

2
2 − l22)/2, inducing a positive spontaneous Gaussian

curvature CG = 4c2.

We now seek for a solution assuming that the shell is free of edge tractions along

Θ2 = ±l2 and it is subjected to self balancing resultant axial force F and torque T along

Θ1 = ±l1. Hence, we make the following ansatz

W = γΘ1Θ2, χ = χ(Θ2). (72)

Accordingly, equation (70) is trivially fulfilled, while the in-plane equilibrium (64) reads

χ
′′′′

= C, C := 12Hµγ(β + γ/2) + 4µc2. (73)
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Hence, upon integration of the Airy potential we get

Σ11 = χ′′ = A(Θ1) +B(Θ1)Θ2 + C
Θ2

2

2
, Σ22 = Σ12 = 0. (74)

Finally, in order to express the global boundary conditions for the resultants F and T , we

simply consider the natural boundary conditions in the equations (68),(69) and test them

on infinitesimal isometries, namely, δU1(Θ1,Θ2) = η1+ΩΘ2, δU2(Θ1,Θ2) = η2−ΩΘ1 and

δW (Θ1,Θ2) = η3 + ψ1Θ1 + ψ2Θ2. In particular, considering rigid body rotations along

the vertical axis E3 we get

∫ l2

−l2

(Θ1Σ12 −Θ2Σ11) dΘ2 = 0, (75)

which leads to B = 0. Moreover, the balance of the traction forces F and the torque T

can be expressed as

∫ l2

−l2

Σ11 dΘ2 = F for Θ1 = ±l1, (76)∫ l2

−l2

((Σ1β(Z +W ),β − (∂αmα2))Θ2 +m1,2) dΘ2 = T for Θ1 = ±l1, (77)

which rewrite as

2Al2 +
1

3
l32

(
−4µc2 + 12H

(
β +

γ

2

)
γµ

)
= F, (78)

2

15

(
5Al32(β + γ) + 20l2H

2γµ+ 3l52(β + γ)(−2µc2 + 3Hγµ(2β + γ))
)
= T. (79)

The above equation can be solved in the unknowns γ and A once F and T are given.

In particular, we can easily find the solution in the case of vanishing traction force,

i.e. by setting F = 0 in Eq.(78), and hence recover an expression for T as a function of γ
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from Eq.(79). In this case, we obtain the following expressions

A = −1

3
l22
(
2µc2 + 6Hβγµ+ 3Hγ2µ

)
, (80)

T =
8

45
l2µ

(
15H2γ + l42(β + γ)(2c2 + 3Hγ(2β + γ))

)
. (81)

Notice that, the above expressions are still meaningful in the undeformed case, i.e. for

γ = 0, provided we apply the initial torque Ti given by

Ti =
16

45
µβc2l52. (82)

This means that the initial stress tensor given by the Airy stress function χi(Θ1,Θ2) can

be transformed into a uniaxial stress tensor, given by χi(Θ2), by application of a torque Ti

at the edges Θ1 = ±l1. The magnitude of such a required torque depends on the product

between the initial and the spontaneous Gaussian curvatures.

4.2 Buckling of a pre-stressed shallow cylindrical sector

Let us consider a shallow cylindrical sector, whose parametrization at the leading order

in ϵ can be expressed as:

Z(Θ1,Θ2) = R0 −Θ2
1/(2R0),

with (Θ1,Θ2) ∈ [−l1, l1] × [−l2, l2], and R0 ∼ max[l1, l2]/ϵ (see Fig.3). The shell is

subjected to initial stresses arising from the presence of a compressive axial load β and
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Figure 3: Sketch of the cylindrical shell along with its Cartesian dimensions l1 e l2 and
the cylindrical reference system (ER,EΘ,EZ). We also illustrate the distributed axial
load β, the normal pressure p, and the residual torque M11.

an inward outer pressure p. The three-dimensional initial stress state is given by

τRR =
αµ

R2
0

(R−Ri)(Re −R− pR2
0

2Hαµ
), (83)

τΘΘ = −p(Ri − 2R)

2H
− αµ

R2
0

(RiRe − 2(Ri +Re)R + 3R2), (84)

τZZ = −β, (85)

where Ri = (R0−H) and Re = (R0+H) are the internal and external radii, respectively.

The former expressions are derived assuming that the initial stress tensor in the unde-

formed configuration is divergence free. In the shallow shell limit when ϵ = H/l1 ≪ 1,

the above stress distribution implies that:

τ33 = O(µϵ4), τ11 = −pR0

2H
− 2

αµ

R0

ζ + o(µϵ2), τ22 = −β + o(µϵ2), (86)

with α ∼ 1, p ∼ ϵ4, β ∼ ϵ2. Consequently, the shell is subjected to the following average
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in plane stresses and momenta

T11 = −pR0, T22 = −2Hβ, M11 = −4

3
µH3 α

R0

. (87)

Accordingly, the shallow shell equations (64,70) read

−∇4χ = 12µH

(
W,11W,22

4
+

1

2
W,22

(
W,11

2
− 1

R0

)
−
W 2

,12

2

)
, (88)

4

3
H3µ∇4W −

(
χ,11W,22 + χ,22

(
W,11 −

1

R0

)
− 2χ,12W,12

)
+ p = 0. (89)

In the following, we provide a linear bifurcation analysis to identify the critical loads

for the buckling of the shell in three illustrative cases, for p = 0, β = 0 and β, p ̸= 0.

4.2.1 Longitudinal buckling for p=0

Let us consider the regime where p is vanishing and hence, only the axial compressive

load β and the residual torque M11 are present. Consequently, the Airy function of the

initial stresses χi is given by χi = −HβΘ2
1.

Let us search for a base solution (χ0,W0) with mα = 0 at the boundary Θ1 = ±l1, i.e.

mαβ = −4/3µH3W0,αβ +Mαβ = 0. Hence, the base solution must satisfy

4/3µH3W0,11(±l1,Θ2) =M11, 4/3µH3W0,22(Θ1,±l2) = 0, W0(0) = 0, (90)

which are trivially solved by

W0 = − α

R0

Θ2
1

2
, χ0 = −HβΘ2

1. (91)

Then, we linearize the equations Eqs.(88), (89) around this base solution by superposing
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a small perturbation in the following form:

W (Θ1,Θ2) = W0(Θ1) + δW (Θ2), χ(Θ1,Θ2) = χ0(Θ1) + δχ(Θ2). (92)

The resulting incremental equations at the leading order read:

δχ
′′′′ − 6µH

Rα

δW ′′ = 0,
4

3
µH3δW

′′′′
+
δχ′′

Rα

+ 2HβδW ′′ = 0, (93)

where the primes denote differentiation with respect to Θ2, and Rα is defined as

Rα =
R0

1 + α
. (94)

The equations (93) are complemented with the following incremental boundary conditions

stemming from (90)

δW (0) = δW (l2) = 0 and δW ′′(0) = δW ′′(l2) = 0. (95)

The linear bifurcation analysis in then conducted by searching for solutions of the form

δW (Θ2) = A sin(kΘ2) and δχ(Θ2) = B sin(kΘ2) from which the following expression for

the critical loads is deduced

βn =
9µ+ 2H2k4nR

2
αµ

3k2nR
2
α

, kn =
nπ

l2
. (96)

As for the minimum critical load we get

βcr =
2
√
2Hµ

Rα

, kcr =

√
3√

2HRα

, (97)

whose scaling with H is consistent with the classical results in mechanical literature in

the absence of residual stress, see for instance [23, 40].
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4.2.2 Circumferential buckling for β=0

Let us now consider the regime where β = 0 while both the circumferential compressive

load p and the residual torque M11 are present. Consequently, the Airy stress function of

the initial stresses χi is given by χi = −pR0Θ
2
2/2.

As in the previous example we consider a base solution (χ0,W0) satisfying mα = 0 at

the boundary, that is

W0 = − α

R0

Θ2
1

2
, χ0 = −pRαΘ

2
2/2, (98)

with Rα defined as above. Then, we linearize the equations Eqs.(88), (89) around this

base solution by superposing a small perturbation in the following form:

W (Θ1,Θ2) = W0(Θ1) + δW (Θ1), χ(Θ1,Θ2) = χ0(Θ2) + δχ(Θ1). (99)

The resulting incremental equations at the leading order read:

δχ
′′′′

= 0,
4

3
µH3δW

′′′′
+ pRαδW

′′ = 0, (100)

where the primes denote differentiation with respect to Θ1. The equations (100) are

complemented with the following incremental boundary conditions

δW (−l1) = δW (l1) = 0 and δW ′′(−l1) = δW ′′(l1) = 0. (101)

The linear bifurcation analysis in then conducted by searching for solutions of the form

δW (Θ1) = A cos(kΘ1) and δχ(Θ1) = B cos(kΘ1) from which the following expression for

the critical loads is deduced

pm =
4H3µk2m
3Rα

, km =
π(2m+ 1)

2l1
. (102)
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As for the minimum critical load we get

pcr =
H3π2µ

3l21Rα

, kcr =
π

2l1
. (103)

4.2.3 Two-dimensional buckling for β, p ̸= 0

Let us now consider the case when both β, p ̸= 0. The initial Airy potential is given by

χi = −pR0Θ
2
2/2 −HβΘ2

1. As in the previous example we take a base solution such that

mα = 0 at the boundary, that is given by

W0 = − α

R0

Θ2
1

2
, χ0 = −pRα

Θ2
2

2
−HβΘ2

1. (104)

Linearization around W0 and χ0 leads to the following incremental equations:

−∇4δχ = −6µH

Rα

δW,22, (105)

4

3
µH3∇4δW + 2HβδW,22 + pRαδW,11 +

δχ,22

Rα

= 0, (106)

together with the incremental boundary conditions

δW (±l1,Θ2) = δW,11(±l1,Θ2) = 0, (107)

δW (Θ1, γ) = δW,22(Θ1, γ) = 0, γ = (0, l2). (108)

Finally, searching for solutions in the form

δW = E cos(k1Θ1) sin(k2Θ2), δχ = F cos(k1Θ1) sin(k2Θ2), (109)
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leads to the following dispersion relation between α, β and p

18Hµk42
(k21 + k22)

2Rα

+Rα(−3k22pRα − 6Hk21β + 4H3(k21 + k22)
2µ) = 0, (110)

with k1 = nπ
l1

and k2 = (2m+1)π
2l2

. Hence, we can compute the expressions for the critical

loads as a function of the shape factors r = l2/l1 and ρ = Rα/l1. In particular we get

p∗nm(β
∗) = − 4

3π2(1 + 2m)2ρ2

(
6n2ϵ2π2ρβ∗

r2
− f

)
, (111)

β∗
nm(p

∗) = − r2

6ϵn2π2ρ

(
3(1 + 2m)2p∗π2ρ2

4
− f

)
, (112)

with:

f =
288ϵn4

ρ((r + 2rm2) + 4n2)2
+

1

4
ϵ3π4

(
(1 + 2m)2 +

4n2

r2

)
.

where p∗ = p/µ and β∗ = β/µ. In Figure 4 we plot the critical loads in equations

(111),(112) versus the corresponding one-dimensional counterparts in equations (97) and

(103), which rewrite

β∗(1D)
cr = 2

√
2
ϵ

ρ
, p∗(1D)

cr =
π2

3

ϵ3

ρ
, (113)

highlighting that the one-dimensional instability modes are indeed the critical ones.

5 Concluding remarks

In summary, we derived a nonlinear morphoelastic theory for an incompressible elastic

shallow shells with initial stress in the reference configuration. We performed a geometric

dimensional reduction by assuming that the small thickness ratio ϵ = H/L of the shell

is of the same order as the slope of the reference middle surface. We later imposed a

constitutive assumption for an initially stressed neo-Hookean material as developed in

[35, 15] to perform a rigorous asymptotic expansion of the three-dimensional potential

energy of the shell. We derived the leading order scaling for the rotation vectors and the
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Figure 4: Plots of the critical traction loads β∗
cr (left) and p∗cr(right) versus the aspect

ratio r, computed at ϵ = 0.1, ρ = 6.66. (a) The solid curves depict β∗
cr for p∗ = {5 ×

10−5, 2.5 × 10−4, p
(1D)
cr }, with p

(1D)
cr = 4.93 × 10−4. (b) The solid curves depict p∗cr for

β∗ = {0.01, 0.03, β(1D)
cr }, with β(1D)

cr = 0.0424.

hydrostatic pressure from the incompressibility constraint and the boundary condition at

the normal boundary of the shell. After application of the principle of stationary energy

for admissible variation of the tangent and normal displacement fields with respect to the

reference middle surface, we derived the generalised Marguerre-von Karman equilibrium

equations (64) and (70) accounting for the effect of initial stresses. We highlight that

the initial stress distribution can physically impose both a mean and a Gaussian curva-

ture to the shell, which are generally not compatible with the existence of a stress free

configuration.

The derived nonlinear equations were explicitly solved for two physical models: a

twisted hyperbolic paraboloidal strip and a pre-stressed shallow cylindrical sector. In

the twisted hyperbolic paraboloidal strip, the analysis demonstrates that the distribution

of initial stresses can be effectively investigated through non-invasive torsion tests. The

initial stress induces a spontaneous Gaussian curvature, which modifies the Airy stress

function and leads to measurable changes in the deformed equilibrium shape. The non-
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linear coupling between the applied torque and the initial stress distribution highlights

how torsion-induced deformations encode information about the underlying stress state.

For the pre-stressed shallow cylindrical sector, the initial stresses influence the critical

buckling loads, altering both the longitudinal and circumferential instability modes. The

analysis demonstrates that the coupling between initial stress, curvature, and deformation

amplifies or mitigates instability depending on the stress distribution and shell geometry,

providing a nuanced understanding of how morphologies evolve under combined mechan-

ical and geometric effects.

These examples demonstrated how initial stress distributions drive the emergence of

spontaneous curvatures, influencing the structural behavior of the shells. Unlike existing

approaches that impose an incompatible growth metric [11, 22, 12], our method directly

incorporates initial stresses into the governing equations, offering a direct link between

the stress state and the resulting deformations. This framework avoids the need for pre-

scribing a priori geometric incompatibilities and instead provides a physically consistent

representation of systems where initial stresses naturally arise, such as in growth-induced

morphological transitions. Furthermore, the proposed approach enables the determination

of initial stress from non-invasive tests that measure deformation fields under controlled

loading conditions. Its suitability for solving direct and inverse mechanical problems

makes the proposed framework particularly suitable for applications where initial stresses

play a critical role but cannot be directly measured.

In future works, we aim to explore the importance of the residual stresses in driving

morphological transitions by solving the resulting nonlinear shallow shell equation in

simple biological system models. Since the residual stresses can be controlled by external

factors in many modern techniques of digital manufacturing, we believe that the proposed

morphoelastic theory may also enable to achieve a robust adaptive control of the shell

metric by external multiphysics stimuli.
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