
MOX-Report No. 04/2022

lifex - heart module: a high-performance simulator for
the cardiac function

Africa, P.C.; Piersanti, R.; Fedele, M.; Dede', L.; Quarteroni, A.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it

life
x � heart module: a high-performance

simulator for the cardiac function

Package 1: Fiber generation

Pasquale C. Africaa, Roberto Piersantia, Marco Fedelea, Luca Dede'a,

and Al�o Quarteronia,b

aMOX, Department of Mathematics, Politecnico di Milano, Italy
bInstitute of Mathematics, École Polytechnique Fédérale de Lausanne, Switzerland

(Professor emeritus)

10 January 2022

Abstract

Modeling the whole cardiac function involves several complex multi-
physics and multi-scale phenomena that are highly computationally
demanding, which makes calling for simpler yet accurate, high-perfor-
mance computational tools still a paramount challenge to be addressed.
Despite all the e�orts made by several research groups worldwide, no
software has progressed as a standard reference tool for whole-heart
fully-coupled cardiac simulations in the scienti�c community yet.

In this work we present the �rst publicly released package of the
heart module of life

x, a high-performance solver for multi-physics
and multi-scale problems, aimed at cardiac applications.

The goal of lifex is twofold. On the one side, it aims at making
in silico experiments easily reproducible and accessible to the wider
public, targeting also users with a background in medicine or bio-
engineering, thanks to an extensive documentation and user guide.
On the other hand, being conceived as an academic research library,
life

x can be exploited by scienti�c computing experts to explore new
modeling and numerical methodologies within a robust development
framework.

life
x has been developed with a modular structure and will be

released bundled in di�erent modules/packages. This initial release
includes a generator for myocardial �bers based on Laplace-Dirichlet-
Rule-Based-Methods (LDRBMs). This report comes with an extensive

O�cial website: https://lifex.gitlab.io/
Download link: https://doi.org/10.5281/zenodo.5810269

1

https://lifex.gitlab.io/
https://doi.org/10.5281/zenodo.5810269

technical and mathematical documentation to welcome new users to
the core structure of a prototypical lifex application and to provide
them with a possible approach to include the generated cardiac �bers
into more sophisticated computational pipelines.

Contents

1 Introduction 2

2 Technical speci�cations 4
2.1 Package content . 4
2.2 License and third-party software 4
2.3 Software and hardware requirements 6

3 How to run lifex executables 6
3.1 Quick start . 6
3.2 Step 0 - Set the parameter �le 7
3.3 Step 1 - Run . 11

3.3.1 Parallel run . 11
3.3.2 Dry run and parameter �le conversion 12

4 Input data 12

5 Fiber generation 13
5.1 Underlying methods . 13
5.2 Setting the parameter �les . 19

5.2.1 Slab �bers . 19
5.2.2 Left ventricular �bers 21
5.2.3 Left atrial �bers . 22

6 Output and visualization 23

7 Future perspectives 25

8 Acknowledgments 25

References 28

1 Introduction

Nowadays, many applications in astrophysics, biology, energy, engineering,
environmental science, and material science demand for accurate in silico
models matching multi-physics phenomena on a multi-scale range [1].

2

Figure 1: lifex o�cial logo.

The human heart function is a complex system involving interacting phe-
nomena at the molecular, cellular, tissue, and organ levels with widely vary-
ing time scales. Therefore, it is still among the most arduous modeling and
computational challenges in a �eld where in silico models and experiments
are essential to reproduce both physiological and pathological behaviors,
which can improve the overall knowledge of the underlying biological and
physical phenomena involved [2].

A satisfactory model for the whole cardiac function must be able to
describe a wide range of di�erent processes, such as the propagation of the
trans-membrane potential and the �ow of ionic species in the myocardium,
the deformation caused by the muscles contraction, as well as the dynamics
of the blood inside the heart chambers and �owing through the valves [3].

These demanding aspects make whole-heart fully-coupled simulations
computationally highly expensive and call for simpler yet accurate, high-
performance computational tools.

In this work we introduce lifex (pronounced /,laIf"Eks/), a high-perfor-
mance library for the solution of multi-physics and multi-scale di�erential
problems. It is written in C++ using the most modern programming tech-
niques available in the C++17 standard and is based on the deal.II1 [4] �nite
element core. The o�cial lifex logo is shown in �g. 1.

All the code is natively parallel and designed to run on diverse archi-
tectures, ranging from laptop computers to High Performance Computing
(HPC) facilities and cloud platforms.

Despite being conceived as an academic research library in the frame
of the iHEART project (see section 8), lifex is intended to provide the
scienti�c community with a tool for real world applications that boosts the
user and developer experience without sacri�cing its computational e�ciency
and universality.

The initial development of lifex has been oriented towards a heartmod-
ule incorporating several state-of-the-art core models for the simulation of
cardiac electrophysiology, mechanics, electromechanics, blood �uid dynam-
ics and myocardial perfusion. Such models have been recently exploited for
a variety of standalone or coupled simulations both under physiological and
pathological conditions (see, e.g., [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]).

1https://www.dealii.org/

3

https://www.dealii.org/

Since cardiac �bers drive the electric signal propagation throughout the
myocardium, accurately modeling their arrangement is the essential build-
ing block for simulating cardiac electrophysiology and mechanical deforma-
tion. This initial release includes a generator for myocardial �bers based on
Laplace-Dirichlet-Rule-Based-Methods (LDRBMs) [15], with application to
a number of di�erent prototypical and realistic geometries (slab models, left
ventricles and left atria).

The content presented hereafter is organized as follows: section 2 de-
scribes the technical speci�cations of the software release associated with
this documentation, i.e. the package content, licensing details and soft-
ware/hardware requirements; in section 3 are detailed the instructions to
run a generic lifex application; then, in sections 4, 5 and 6 is outlined a
generic pipeline (along with guided examples) for generating cardiac �bers on
di�erent geometries, from the creation of an input mesh satisfying lifex pre-
requisites to the post-processing of the generated results and a possible way
to integrate them into more sophisticated computational models. Finally, in
section 7 we present a possible plan for future releases and developments.

2 Technical speci�cations

In this section we specify the package content, copyright and licensing infor-
mation and software/hardware speci�cations required by the present lifex

release.

2.1 Package content

The �ber generation package of lifex is delivered in binary form as an
AppImage2 executable.

This provides a universal package for x86-64 Linux desktop systems,
without the need to deliver di�erent distribution-speci�c versions. From
the user's perspective, this implies an e�ortless download-then-run process,
without having to manually take care of installing the proper system depen-
dencies required.

Once the source code will be made publicly accessible, a standard build-
from-source procedure with automatic installers will be available to make
the dependencies setup tailored to the speci�c hardware of HPC facilities or
cloud platforms.

2.2 License and third-party software

This work is copyrighted by the lifex authors and licensed under the Cre-
ative Commons Attribution Non-Commercial No-Derivatives 4.0 Interna-

2https://appimage.org/

4

https://appimage.org/

tional License3.
lifex makes use of third-party libraries. Please note that such libraries

are copyrighted by their respective authors (independent of the lifex au-
thors) and are covered by various permissive licenses.

The third-party software bundled with (in binary form), required by,
copied, modi�ed or explicitly used in lifex is listed here: Boost4, PETSc5,
Trilinos6, deal.II7, VTK8.

Some of the packages listed above, as stated by their respective authors,
rely on additional third-party dependencies that may also be bundled (in
binary form) with lifex, although not used directly. These dependencies
include: ADOL-C9, ARPACK-NG10, BLACS11, Eigen12, FFTW13, GLPK14, HDF515,
HYPRE16, METIS17, MUMPS18, NetCDF19, OpenBLAS20, ParMETIS21, ScaLAPACK22,
Scotch23, SuiteSparse24, SuperLU25, oneTBB26, p4est27.

The libraries listed above are all free software and, as such, they place
few restrictions on their use. However, di�erent terms may hold. Please refer
to the content of the folder doc/licenses/ for more information on license
and copyright statements for these packages.

Finally, an MPI installation (such as Open MPI28) may also be required
to successfully run lifex executables in parallel.

3http://creativecommons.org/licenses/by-nc-nd/4.0/
4https://www.boost.org/
5https://www.mcs.anl.gov/petsc/
6https://trilinos.github.io/
7https://www.dealii.org/
8https://vtk.org/
9https://github.com/coin-or/ADOL-C
10https://github.com/opencollab/arpack-ng
11https://www.netlib.org/blacs/
12https://eigen.tuxfamily.org/
13https://www.fftw.org/
14https://www.gnu.org/software/glpk/
15https://www.hdfgroup.org/solutions/hdf5/
16https://www.llnl.gov/casc/hypre/
17http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
18http://mumps.enseeiht.fr/index.php?page=home
19https://www.unidata.ucar.edu/software/netcdf/
20https://www.openblas.net/
21http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
22https://www.netlib.org/scalapack/
23https://gitlab.inria.fr/scotch/scotch
24https://people.engr.tamu.edu/davis/suitesparse.html
25https://portal.nersc.gov/project/sparse/superlu/
26https://oneapi-src.github.io/oneTBB/
27https://www.p4est.org/
28https://www.open-mpi.org/

5

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.boost.org/
https://www.mcs.anl.gov/petsc/
https://trilinos.github.io/
https://www.dealii.org/
https://vtk.org/
https://github.com/coin-or/ADOL-C
https://github.com/opencollab/arpack-ng
https://www.netlib.org/blacs/
https://eigen.tuxfamily.org/
https://www.fftw.org/
https://www.gnu.org/software/glpk/
https://www.hdfgroup.org/solutions/hdf5/
https://www.llnl.gov/casc/hypre/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://mumps.enseeiht.fr/index.php?page=home
https://www.unidata.ucar.edu/software/netcdf/
https://www.openblas.net/
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
https://www.netlib.org/scalapack/
https://gitlab.inria.fr/scotch/scotch
https://people.engr.tamu.edu/davis/suitesparse.html
https://portal.nersc.gov/project/sparse/superlu/
https://oneapi-src.github.io/oneTBB/
https://www.p4est.org/
https://www.open-mpi.org/

2.3 Software and hardware requirements

As an AppImage, this lifex release has been built on Debian Buster (the
current oldstable version)29 following the �Build on old systems, run on
newer systems� paradigm30.

Therefore, it is expected to run on (virtually) any recent enough x86-64

Linux distribution, assuming that a version of glibc31 not older than 2.28

is installed.

3 How to run life
x executables

The following steps are required to run a lifex executable.

3.1 Quick start

First, download and extract the lifex release archive available at https:

//doi.org/10.5281/zenodo.5810269. Then3233:

1. open a terminal;

2. move to the directory containing the
lifex_fiber_generation-1.4.0-x86_64.AppImage �le:

cd /path/to/lifex/

3. make the AppImage executable:

chmod +x lifex_fiber_generation -1.4.0 - x86_64.AppImage

4. lifex_fiber_generation-1.4.0-x86_64.AppImage is now ready to
be executed:

./ lifex_fiber_generation -1.4.0 - x86_64.AppImage [ARGS]...

Root permissions are not required. Please note that, in order for the
above procedure to succeed, AppImage relies upon the userspace �lesystem
framework FUSE34. In case of errors, please try with the following commands:

./ lifex_fiber_generation -1.4.0 - x86_64.AppImage \

--appimage -extract

squashfs -root/usr/bin/lifex_fiber_generation [ARGS]...

or refer to the AppImage troubleshooting guide35.

29https://www.debian.org/releases/
30https://docs.appimage.org/introduction/concepts.html
31https://www.gnu.org/software/libc/
32https://docs.appimage.org/introduction/quickstart.html
33https://docs.appimage.org/user-guide/run-appimages.html
34https://www.kernel.org/doc/html/latest/filesystems/fuse.html
35https://docs.appimage.org/user-guide/troubleshooting/fuse.html

6

https://doi.org/10.5281/zenodo.5810269
https://doi.org/10.5281/zenodo.5810269
https://www.debian.org/releases/
https://docs.appimage.org/introduction/concepts.html
https://www.gnu.org/software/libc/
https://docs.appimage.org/introduction/quickstart.html
https://docs.appimage.org/user-guide/run-appimages.html
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://docs.appimage.org/user-guide/troubleshooting/fuse.html

3.2 Step 0 - Set the parameter �le

Every lifex application or example (including also the �ber generation exe-
cutable described in section 3.1) de�nes a set of parameters that are required
in order to be run. They involve problem-speci�c parameters (such as con-
stitutive relations, geometry, time interval, boundary conditions, ...) as well
as numerical parameters (types of linear/non-linear solvers, tolerances, max-
imum number of iterations, ...) or output-related options.

In case an application has sub-dependencies (such as a linear solver), also
the related parameters are included.

Every application comes with a set of command line options, which can
be printed using the -h (or --help) �ag:

./ executable_name -h

The �rst step before running an executable is to generate the parameter
�le(s) containing all the default parameter values. This is done via the -g

(or --generate-params) �ag:

./ executable_name -g

that by default generates a parameter �le named after the executable, in
.prm format.

By default, only parameters considered standard are printed. The pa-
rameter �le verbosity can be decreased or increased by passing an optional
�ag minimal or full to the -g �ag, respectively:

./ executable_name -g minimal

The parameter basename to generate can be customized with the -f (or
--params-filename) option:

./ executable_name -g -f custom_param_file.ext

Absolute or relative paths can be speci�ed.
At the user's option, in order to guarantee a �exible interface to external

�le processing tools, the parameter �le extension ext can be chosen among
three di�erent interchangeable �le formats prm, json or xml, from the most
human-readable to the most machine-readable.

As an example, the three parameter �les listed in listings 1, 2 and 3 are
semantically equivalent.

We highlight that, following with the design of the ParameterHandler

class of deal.II36, each parameter is provided with:

� a given pattern, specifying the parameter type (e.g. boolean, integer,
�oating-point number, string, list, . . .) and, whenever relevant, a range
of admissible values (pattern description);

36
https://www.dealii.org/current/doxygen/deal.II/classParameterHandler.html

7

https://www.dealii.org/current/doxygen/deal.II/classParameterHandler.html

� a default value, printed in the parameter �le upon generation and im-
plicitly assumed if the user omits a custom value;

� the actual value, possibly overriding the default one;

� a documentation string;

� a global index.

All of these features, combined to a runtime check for the correctness of
each parameter, make the code syntactically and semantically robust with
respect to possible errors or typos introduced by mistake.

Listing of Parameters

subsection Fiber generation

subsection Mesh and space discretization

Specify whether the input mesh has hexahedral or

tetrahedral elements. Available options are: Hex | Tet.

set Element type = Hex

Number of global mesh refinement steps applied to the

initial grid (Hex only).

set Number of refinements = 0

subsection File

Mesh file.

set Filename =

Mesh scaling factor: 1e-3 => from [mm] to [m].

set Scaling factor = 1e-3

end

end

subsection Output

Enable/disable output.

set Enable output = true

Output file.

set Filename = fibers

end

end

Listing 1: PRM parameter �le format.

{

"Fiber_20generation ": {

"Mesh_20and_20space_20discretization ": {

"File": {

"Filename ": {

"value": "",

"default_value ": "",

8

"documentation ": "Mesh file.",

"pattern ": "0",

"pattern_description ": "[FileName (Type: input)]"

},

"Scaling_20factor ": {

"value": "1",

"default_value ": "1e-3",

"documentation ": "Mesh scaling factor: 1e-3 => from [

mm] to [m].",

"pattern ": "1",

"pattern_description ": "[Double 0... MAX_DOUBLE (

inclusive)]"

}

},

"Element_20type ": {

"value": "Hex",

"default_value ": "Hex",

"documentation ": "Specify whether the input mesh has

hexahedral or tetrahedral elements. Available options are:

Hex | Tet.",

"pattern ": "2",

"pattern_description ": "[Selection Hex|Tet]"

},

"Number_20of_20refinements ": {

"value": "0",

"default_value ": "0",

"documentation ": "Number of global mesh refinement

steps applied to the initial grid (Hex only).",

"pattern ": "3",

"pattern_description ": "[Integer range 0...2147483647 (

inclusive)]"

}

},

"Output ": {

"Enable_20output ": {

"value": "true",

"default_value ": "true",

"documentation ": "Enable \/ disable output.",

"pattern ": "4",

"pattern_description ": "[Bool]"

},

"Filename ": {

"value": "fibers",

"default_value ": "fibers",

"documentation ": "Output file.",

"pattern ": "5",

"pattern_description ": "[FileName (Type: output)]"

}

}

}

}

Listing 2: JSON parameter �le format.

9

<?xml version ="1.0" encoding ="utf -8"?>

<ParameterHandler >

<Fiber_20generation >

<Mesh_20and_20space_20discretization >

<File >

<Filename >

<value/>

<default_value/>

<documentation >Mesh file.</documentation >

<pattern >0</pattern >

<pattern_description >[FileName (Type: input)]</

pattern_description >

</Filename >

<Scaling_20factor >

<value >1</value >

<default_value >1</ default_value >

<documentation >Mesh scaling factor: 1e-3 => from [

mm] to [m].</ documentation >

<pattern >1</pattern >

<pattern_description >[Double 0... MAX_DOUBLE (

inclusive)]</ pattern_description >

</Scaling_20factor >

</File >

<Element_20type >

<value >Hex </value >

<default_value >Hex </ default_value >

<documentation >Specify whether the input mesh has

hexahedral or tetrahedral elements. Available options are:

Hex | Tet.</documentation >

<pattern >2</pattern >

<pattern_description >[Selection Hex|Tet]</

pattern_description >

</Element_20type >

<Number_20of_20refinements >

<value >0</value >

<default_value >0</ default_value >

<documentation >Number of global mesh refinement steps

applied to the initial grid (Hex only).</documentation >

<pattern >3</pattern >

<pattern_description >[Integer range 0...2147483647 (

inclusive)]</ pattern_description >

</Number_20of_20refinements >

</Mesh_20and_20space_20discretization >

<Output >

<Enable_20output >

<value >true </value >

<default_value >true </ default_value >

<documentation >Enable/disable output.</documentation >

<pattern >4</pattern >

<pattern_description >[Bool]</ pattern_description >

</Enable_20output >

<Filename >

<value >fibers </value >

10

<default_value >fibers </ default_value >

<documentation >Output file.</documentation >

<pattern >5</pattern >

<pattern_description >[FileName (Type: output)]</

pattern_description >

</Filename >

</Output >

</Fiber_20generation >

</ParameterHandler >

Listing 3: XML parameter �le format.

Once generated, the user can modify, copy, move or rename the parameter
�le depending on their needs.

3.3 Step 1 - Run

To run an executable, the -g �ag has simply to be omitted whereas the -f

option is used to specify the parameter �le to be read (as opposed to written,
in generation mode), e.g.:

./ executable_name -f custom_param_file.ext [option ...]

If no -f �ag is provided, a �le named executable_name.prm is assumed
to be available in the directory where the executable is run from.

The path to the directory where all the app output �les will be saved to
can be selected via the -o (or --output-directory) �ag:

./ executable_name -o ./ results/

If the speci�ed directory does not already exist, it will be created. By
default, the current working directory is used.

Absolute or relative paths can be speci�ed for both the input parameter
�le and the output directory.

3.3.1 Parallel run

To run an app in parallel, use the mpirun or mpiexec wrapper commands
(which may vary depending on the MPI implementation available on your
machine) e.g.:

mpirun -n <N_PROCS > ./ executable_name [option ...]

where <N_PROCS> is the desired number of parallel processes to run on.
As a rule of thumb, 10000 to 100000 degrees of freedom per process

should lead to the best performance.

11

3.3.2 Dry run and parameter �le conversion

Upon running, a parameter log �le is automatically generated in the output
directory, that can be used later to retrieve which parameters had been used
for a speci�c run.

By default, log_params.ext will be used as its �lename. This can be
changed via the -l (or --log-file) �ag, e.g.:

./ executable_name -l my_log_file.ext [option ...]

The extension is not mandatory: if unspeci�ed, the same extension as
the input parameter �le will be used.

If the dry run option is enabled via the -d (or --dry-run) �ag, the
execution terminates right after the parameter log �le generation. This has
a two-fold purpose:

1. checking the correctness of the parameters being declared and parsed
before running the actual simulation (if any of the parameters does
not match the speci�ed pattern or has a wrong name or has not been
declared in a given subsection then a runtime exception is thrown);

2. converting a parameter �le between two di�erent formats/extensions.
For example, the following command converts input.xml to
output.json:

./ executable_name -f input.xml -d -l output.json [option

...]

4 Input data

Additional input data (scripts, meshes and parameter �les) associated with
the guided examples described below can be downloaded from the release
archive https://doi.org/10.5281/zenodo.5810269.

lifex is designed to support both hexahedral and tetrahedral labelled
meshes in the widely used *.msh format, see �g. 2. This type of mesh can be
generated by a variety of mesh generation software (e.g. gmsh37, netgen38,
vmtk39 and meshtools40). Otherwise, other mesh-format types can be con-
verted in *.msh using for example the open-source library meshio41.

In this getting started guide, we provide di�erent ready-to-use meshes,
namely

37http://gmsh.info
38https://ngsolve.org/
39(http://www.vmtk.org)
40https://bitbucket.org/aneic/meshtool/src/master/
41https://pypi.org/project/meshio/

12

https://doi.org/10.5281/zenodo.5810269
http://gmsh.info
https://ngsolve.org/
http://www.vmtk.org
https://bitbucket.org/aneic/meshtool/src/master/
https://pypi.org/project/meshio/

� a set of four idealized geometries consisting of a ventricular slab, a
spherical slab, an idealized based left ventricle and an idealized left
atrium, see �g. 3(a-d);

� two realistic geometries composed by a left ventricle and a left atrium,
see �g. 3(e-f).

The idealized meshes have been generated using the built-in CAD engine
of gmsh, an open-source 3D �nite element mesh generator, starting from
the corresponding gmsh geometrical models (represented by *.geo �les, also
provided) de�ned using their boundary representation, where a volume is
bounded by a set of surfaces. For details about the geometrical de�nition of
a model geometry we refer to the online documentation of gmsh42.

In order to perform the mesh generation, starting from the geometri-
cal �les provided in this tutorial, the following command can be run in a
terminal:

gmsh geometry.geo -clscale s -o mesh.msh -save

where geometry.geo is the geometrical �le model, mesh.msh is the output
mesh �le, which will be provided as an input to a lifex app, and s ∈ (0, 1] is
the mesh element size factor. To produce a coarser (�ner) mesh the clscale
factor can be reduced (increased).

The realistic left ventricle and left atrium have been produced starting
from the open-source meshes adopted in [16] (for the left atrium43) and
in [17] (for the left ventricle44) and using the Vascular Modelling Toolkit
(vmtk) software [18] along with the semi-automatic meshing tools45 recently
proposed in [19].

5 Fiber generation

In this section, we describe the working principles of the �ber generation
application of lifex. First, we brie�y recall the LDRBMs that stand behind
the myocardial �ber generation (section 5.1) and then we present several
examples where we detail about the parameter settings (section 5.2).

5.1 Underlying methods

Rule-Based-Methods (RBMs) represent a commonly used strategy to include
cardiac �bers in computational models. A particular class of such methods
is known as LDRBMs since they rely on the solution of Laplace problems. In

42https://gmsh.info/doc/texinfo/gmsh.html
43https://doi.org/10.18742/RDM01-289
44https://doi.org/10.5281/zenodo.3890034
45https://github.com/marco-fedele/vmtk

13

https://gmsh.info/doc/texinfo/gmsh.html
https://doi.org/10.18742/RDM01-289
https://doi.org/10.5281/zenodo.3890034
https://github.com/marco-fedele/vmtk

Figure 2: (a) Hexahedral mesh of a ventricular slab; (b) Tetrahedral mesh
of a realistic left atrium [16].

this getting started guide, we present LDRBMs for (ventricular and spher-
ical) slabs, (based and complete) left ventricular and left atrial geometries.
For further details about the LDRBMs presented here see [15].

The following common steps are the building block of all LDRBMs.

1. Labelled mesh: Provide a labelled mesh of the domain Ω to de�ne spe-
ci�c partition of the boundary ∂Ω as

∂Ω = Γepi ∪ Γendo ∪ Γbase ∪ Γapex,

where Γendo is the endocardium, Γepi is the epicardium, Γbase is the
basal plane and Γapex is the apex.

Epicardium and endocardium: for the ventricular slab geometry
Γendo and Γepi are the lateral walls of the slab, see �g. 3(a); for
the spherical slab, the ventricular and atrial geometries Γendo and
Γepi are the internal and external surfaces, see �g. 3(b-f).

Basal plane and apex: for the ventricular slab geometry Γbase and
Γapex are the top and bottom surfaces, respectively (see �g. 3(a));
for the spherical slab, Γbase and Γapex are selected as the north
and south pole points of the epicardial sphere (see �g. 3(b)); for
the based ventricular geometry Γbase is an arti�cial basal plane
located well below the cardiac valves (see �g. 3(d)), while for the
complete ventricular geometry Γbase is split into Γmv and Γav,

14

Figure 3: Labelled meshes. (a) Ventricular slab; (b) Spherical slab; (c)
Idealized left atrium; (d) Idealized based left ventricle; (e) Realistic complete
left ventricle; (f) Realistic left atrium.

representing the mitral and aortic valve rings, respectively (see
�g. 3(e)); for the ventricular geometries Γapex is selected as the
epicardial point furthest from the ventricular base (see �g. 3(d-
e)); for the atrial geometry Γbase is the mitral valve ring and Γapex

represents the apex of the left atrial appendage (see �g. 3(c-f));

Atrial pulmonary rings: the atrial geometry type also requires the
de�nition of the boundary labels for the left Γlpv and right Γrpv

pulmonary vein rings, see �g. 3(c-f).

2. Transmural direction: A transmural distance φ is de�ned to compute
the distance of the epicardium from the endocardium, by means of the
following Laplace-Dirichlet problem:

−∆φ = 0, in Ω,

φ = 1, on Γepi,

φ = 0, on Γendo,

∇φ · n = 0, on ∂Ω \ (Γendo ∪ Γepi).

(1)

Then, the transmural distance gradient ∇φ is used to build the unit

15

transmural direction:

êt =
∇φ
‖∇φ‖

.

3. Normal direction: A normal (or apico-basal) direction k (which is di-
rected from the apex towards the base) is introduced and used to build
the unit normal direction ên:

ên =
k − (k · êt)êt
‖k − (k · êt)êt‖

.

The normal direction k can be computed following one of these ap-
proaches (see also �g. 4):

Rossi-Lassila et al. (RL) approach [20]: k is de�ned as the vec-
tor nbase, i.e. the outward normal to the basal plane, that is
k = nbase.

Bayer-Trayanova et. al (BT) approach [21]: k is the gradient of
the solution ψ (k = ∇ψ), which can be obtained by solving the
following Laplace-Dirichlet problem:

−∆ψ = 0, in Ω,

ψ = 1, on Γbase,

ψ = 0, on Γapex,

∇ψ · n = 0, on ∂Ω \ (Γbase ∪ Γapex).

(2)

Doste et al. approach [22]: k is a weighted sum of the apico-basal
(∇ψab) and apico-out�ow-tract (∇ψot) directions, obtained using
an interpolation function w:

k = w∇ψab + (1− w)∇ψot,

where ψab and ψot are obtained by solving Laplace-Dirichlet prob-
lems in the form of (2) where Γbase = Γmv (for ψab) and Γbase =
Γav (for ψot), respectively. Moreover, the interpolation function
w is obtained by solving:

−∆ω = 0, in Ω,

ω = 1, on Γmv ∪ Γapex,

ω = 0, on Γav,

∇ω · n = 0, on ∂Ω \ (Γav ∪ Γmv ∪ Γapex).

16

Figure 4: Di�erent types of normal distances: (a) Bayer-Trayanova et al. ap-
proach [21]; (b) Doste et al. approach [22]; (c) Piersanti et al. approach [15].

Piersanti et al. approach [15]: for each point in Ω, a unique nor-
mal direction k is selected among the gradient of several normal
directions k = ∇ψi (i = ab, v, r), where ψi are obtained by solving
the following Laplace-Dirichlet problem

−∆ψi = 0, in Ω,

ψi = χa, on Γa,

ψi = χb, on Γb,

∇ψi · n = 0, on ∂Ω \ (Γa ∪ Γb).

(3)

See [15] for further details about the selection procedure k = ∇ψi

and for the speci�c choices of χa, χb, Γa and Γb in problem (2)
made for ψi (i = ab, v, r).

The BT approach is used in the ventricular and spherical slab geometry
types, see also �g. 4(a). The RL and BT approaches can be adopted
in the based ventricular geometry (by setting either Algorithm type

equal to BT or RL in the parameter �le, respectively), while the Doste
approach is used in the complete ventricular geometry, see also �g. 4(b).
Finally, the Piersanti approach is employed for the atrial geometry, see
also �g. 4(c).

4. Local coordinate system: For each point of the domain an orthonor-
mal local coordinate axial system is de�ned by êt, ên and the unit
longitudinal direction êl (orthogonal to the previous ones), as shown

17

Figure 5: Representation of the three directions employed by a LDRBM
for an idealized ventricular domain. Only directions on the endocardium
Γendo are represented. In blue: unit transmural direction, êt ; In green: unit
normal direction, ên; In red: unit longitudinal direction, êl. Right: zoom on
a slab of the left ventricular myocardium showing the three �nal myo�bers
orientations f , s and n.

in �g. 5:

Q = [êl, ên, êt] =

êt =

∇φ
‖∇φ‖

,

ên =
k − (k · êt)êt
‖k − (k · êt)êt‖

,

êl = ên × êt.

(4)

5. Axis rotation: The reference frame is rotated with the purpose of de�n-
ing the myo�bers orientation: f the �ber direction, n the sheet-normal
direction and s the sheet direction. Speci�cally, êl rotates counter-
clockwise around êt by the helical angle α, whereas the transmural
direction êt is rotated counter-clockwise around êl by the sheetlet an-
gle β, see �g. 5:

[êl, ên, êt] −→ [f ,n, s] ,

The rotation angles follow the linear relationships:

α(φ) = αendo(1− φ) + αepiφ, β(φ) = βendo(1− φ) + βepiφ,

where αendo, αepi, βendo, βepi are suitable helical and sheetlet rotation
angles on the epicardium and endocardium (specifying in the param-
eter �le alpha epi, alpha endo, beta epi, beta endo). Moreover,

18

for the complete ventricular geometry it is possible to set speci�c �ber
and sheet angle rotations in the out�ow tract (OT) region (i.e. around
the aortic valve ring) by specifying alpha epi OT, alpha endo OT,
beta epi OT, beta endo OT). Finally, for the atrial geometry type,
no transmural variation in the myo�bers direction is prescribed and
the three unit directions correspond to the �nal myo�bers directions
[êl, ên, êt] = [f ,n, s].

5.2 Setting the parameter �les

A parameter �le for �ber generation is characterized by a common section
named Mesh and space discretization. Select Element type = Tet for
tetrahedral meshes or Element type = Hex for hexahedral meshes. Finally,
specify in FE space degree the degree of the (piecewise continuous) polyno-
mial FE space used to solve the Laplace-Dirichlet problems described above.
Finally, we remark that lifex internally treats all physical quantities as if
they are provided in SI units: therefore, a Scaling factor can be set in
order to convert the input mesh from a given unit of measurement (e.g. if
the mesh coordinates are provided in millimeters then Scaling factor must
be set equal to 1e-3).

The Geometry type parameters enables to specify the kind of geometry
provided in input, in order to apply the proper LDRBM algorithm among
the ones described above. Once speci�ed, parameters related to the speci�c
algorithm and geometry will be parsed from a subsection named after the
value of Geometry type.

All parameters missing from the parameter �le will take their default
value, which is hard-coded.

subsection Mesh and space discretization

set Element type = Tet

set FE space degree = 1

set Geometry type = Slab

subsection File

set Filename = /path/to/mesh/slab.msh

set Scaling factor = 1e-3

end

end

5.2.1 Slab �bers

Specify Geometry type = Slab to prescribe �bers in slab geometries and
the path of the input mesh �le in Filename.

Ventricular slab For a ventricular slab geometry Sphere slab = false

must be set. Specify the label for the top (Tags base up) and bottom

19

(Tags base down) surfaces of the slab, as well as the epicardium (Tags epi)
and endocardium (Tags endo) ones. Finally, prescribe the helical and sheet-
let rotation angles at the epicardium and endocardium using the correspond-
ing alpha epi, alpha endo, beta epi, beta endo parameters.

subsection Slab

set Sphere slab = false

set Tags base up = 50

set Tags base down = 60

set Tags epi = 10

set Tags endo = 20

set alpha epi = -60

set alpha endo = 60

set beta epi = 45

set beta endo = -45

end

Spherical slab For a spherical slab geometry set Sphere slab = true.
Specify the epicardial coordinates (x, y, z) of the north (North pole) and
south (South pole) poles of the sphere of the slab, and the labels of the en-
docardium (Tags endo) and epicardium (Tags epi). Finally, prescribe the
helical and sheetlet rotation angles at the epicardium and endocardium in
alpha epi, alpha endo, beta epi, beta endo. A �ber architecture for the
sphere slab with radial �ber f can be prescribed by setting in the param-
eter �le Sphere with radial fibers = true. This consists of exchang-
ing the sheet direction s with the �ber direction f . Instead, a tangential
(to the epicardial and endocardial surfaces) �ber �eld f is assigned when
Sphere with radial fibers = false.

subsection Slab

set Sphere slab = true

set Sphere with radial fibers = true

set North pole = 0 0 0.025

set South pole = 0 0 -0.025

set Tags epi = 10

set Tags endo = 20

set alpha epi = 0

set alpha endo = 0

set beta epi = 0

set beta endo = 0

end

20

5.2.2 Left ventricular �bers

Specify Geometry type = Left ventricle to prescribe �bers in a based
left ventricular geometry, or Geometry type = Left ventricle complete

to prescribe �bers in complete left ventricular geometry. Other mesh-related
parameters have the same meaning as described above.

subsection Mesh and space discretization

set Element type = Tet

set FE space degree = 1

set Geometry type = Left ventricle complete

subsection File

set Filename = /path/to/mesh/ventricle.msh

set Scaling factor = 1e-3

end

end

Based left ventricle Specify the labels for the basal plane (Tags base),
the epicardium (Tags epi) and endocardium (Tags endo) of the ventricle.
Select RL or BT approach in Algorithm type. Prescribe the helical and
sheetlet rotation angles at the epicardium and endocardium in alpha epi,
alpha endo, beta epi, beta endo. Finally, for the RL approach specify the
outward normal vector to the basal plane in Normal to base, while for the
BT approach prescribe the apex epicardial coordinates (x, y, z) (Apex) of the
ventricle.

subsection Left ventricle

set Tags base = 50

set Tags epi = 10

set Tags endo = 20

set Algorithm type = BT

set alpha epi = -60

set alpha endo = 60

set beta epi = 20

set beta endo = -20

subsection RL

set Normal to base = 0 0 1

end

subsection BT

set Apex = 0 0 0.0601846

end

end

21

Complete left ventricle Specify the labels for the mitral (Tags MV) and
aortic (Tags AV) valve rings, the epicardium (Tags epi) and endocardium
(Tags endo) of the ventricle. Prescribe the apex epicardial coordinates
(x, y, z) in Apex. Finally, de�ne the helical and sheetlet rotation angles
at the epicardium and endocardium in alpha epi, alpha endo, beta epi,
beta endo. A speci�c helical and sheetlet rotation angles around the out-
�ow tract of the left ventricle (i.e. the mitral valve ring) can be speci�ed by
setting alpha epi OT, alpha endo OT, beta epi OT, beta endo OT.

subsection Left ventricle complete

set Tags MV = 50

set Tags AV = 60

set Tags epi = 10

set Tags endo = 20

set Apex = 0.0692 0.0710 0.3522

set alpha epi = -60

set alpha endo = 60

set beta epi = 20

set beta endo = -20

set alpha epi OT = 0

set alpha endo OT = 90

set beta epi OT = 0

set beta endo OT = 0

end

5.2.3 Left atrial �bers

Specify Geometry type = Left atrium to prescribe �bers in a left atrial ge-
ometry. Other mesh-related parameters have the same meaning as described
above.

subsection Mesh and space discretization

set Element type = Tet

set FE space degree = 1

set Geometry type = Left atrium

subsection File

set Filename = /path/to/mesh/atrium.msh

set Scaling factor = 1e-3

end

end

Idealized left atrium Select Appendage = false to prescribe �bers in
the hollow sphere geometry. Specify the labels for the mitral valve ring
(Tags MV), the right (Tags RPV) and left (Tags LPV) pulmonary veins rings,
the epicardium (Tags epi) and endocardium (Tags endo) of the idealized

22

atrium. Finally, select the dimension of the atrial bundles: Tau bundle MV

for the mitral valve bundle; Tau bundle LPV and Tau bundle RPV for the
left and right pulmonary valves rings bundle.

subsection Left atrium

set Appendage = false

set Tags epi = 30

set Tags endo = 10

set Tags RPV = 20

set Tags LPV = 50

set Tags MV = 40

set Tau bundle MV = 0.65

set Tau bundle LPV = 0.85

set Tau bundle RPV = 0.15

end

Realistic left atrium Select Appendage = true to prescribe �bers in a
realistic left atrial geometry. Specify the labels for the mitral valve ring
(Tags MV), the right (Tags RPV) and left (Tags LPV) pulmonary veins rings,
the epicardium (Tags epi) and endocardium (Tags endo) of the idealized
atrium. Prescribe in Apex the epicardial coordinates (x, y, z) for the apex
of the atrial appendage. Finally, select the dimension of the atrial bundles:
for the mitral valve bundle Tau bundle MV; for the left and right pulmonary
valves rings bundle Tau bundle LPV and Tau bundle RPV, respectively.

subsection Left atrium

set Appendage = true

set Apex = 83.868 16.369 45.989

set Tags epi = 30

set Tags endo = 10

set Tags RPV = 20

set Tags LPV = 50

set Tags MV = 40

set Tau bundle MV = 0.60

set Tau bundle LPV = 0.90

set Tau bundle RPV = 0.10

end

6 Output and visualization

To enable the output select Enable output = true and specify the corre-
sponding output �lename in Filename. This produces a XDMF schema �le
output_filename.xdmf (wrapped around a same-named HDF5 output �le

23

Figure 6: Fiber �eld f visualized in streamlines. (a) Ventricular slab; (b)
Spherical slab with circumferential �bers; (c) Idealized left atrium; (d) Ide-
alized based left ventricle; (e) Realistic complete left ventricle; (f) Realistic
left atrium.

24

output_filename.h5) that can be visualized in ParaView46, an open-source
multi-platform data analysis and visualization application. Speci�cally, the
streamtracer and the tube ParaView �lters can be applied in sequence to
visualize the �ber �elds, see �g. 6.

subsection Output

set Enable output = true

set Filename = fibers

end

Moreover, the HDF5 �le format guarantees that the output can easily be
further post-processed, not only for visualization purposes but rather to be
fed as an input to more sophisticated computational pipelines.

7 Future perspectives

The content of this release is published on the o�cial website https://

lifex.gitlab.io/: we encourage users to interact with the lifex develop-
ment community via the issue tracker47 of our public website repository.
Any kind of curiosity, question, bug report or suggestion is welcome!

As anticipated in section 1, the development of lifex has been initially
oriented towards a heartmodule incorporating packages for the simulation of
cardiac electrophysiology, mechanics, electromechanics, blood �uid dynamics
and myocardial perfusion models.

In the near future, the deployment of lifex will follow two lines:

� more packages and modules will be successively published in binary
form, starting from an advanced solver for cardiac electrophysiology
and other solvers from the heart module;

� in the meantime, the source code associated with lifex core and with
previous binary releases will be gradually made publicly available under
an open-source license.

In the long run, also additional modules unrelated to the cardiac function
are expected to be included within lifex.

News and announcements about lifex will be posted to the o�cial web-
site https://lifex.gitlab.io/. Stay tuned!

8 Acknowledgments

This project has received funding from the European Research Council (ERC)
under the European Union's Horizon 2020 research and innovation pro-

46https://www.paraview.org
47https://gitlab.com/lifex/lifex.gitlab.io/-/issues

25

https://lifex.gitlab.io/
https://lifex.gitlab.io/
https://lifex.gitlab.io/
https://www.paraview.org
https://gitlab.com/lifex/lifex.gitlab.io/-/issues

gramme (grant agreement No 740132, iHEART - An Integrated Heart Model
for the simulation of the cardiac function, P.I. Prof. A. Quarteroni).

References

[1] D. Groen, S. J. Zasada, and P. V. Coveney. �Survey of Multiscale
and Multiphysics Applications and Communities�. In: Computing in
Science Engineering 16.2 (2014), pp. 34�43. issn: 1558-366X. doi: 10.
1109/MCSE.2013.47.

[2] A. Quarteroni, L. Dede', A. Manzoni, and C. Vergara. Mathematical
Modelling of the Human Cardiovascular System: Data, Numerical Ap-
proximation, Clinical Applications. Cambridge Monographs on Applied
and Computational Mathematics. Cambridge University Press, 2019.
doi: 10.1017/9781108616096.

[3] A. Quarteroni, T. Lassila, S. Rossi, and R. Ruiz-Baier. �Integrated
Heart�Coupling multiscale and multiphysics models for the simula-
tion of the cardiac function�. In: Computer Methods in Applied Me-
chanics and Engineering 314 (2017). Special Issue on Biological Sys-
tems Dedicated to William S. Klug, pp. 345�407. issn: 0045-7825. doi:
https://doi.org/10.1016/j.cma.2016.05.031.

[4] D. Arndt, W. Bangerth, B. Blais, M. Fehling, R. Gassmöller, T. Heis-
ter, L. Heltai, U. Köcher, M. Kronbichler, M. Maier, P. Munch, J. P.
Pelteret, S. Proell, S. Konrad, B. Turcksin, D. Wells, and J. Zhang.
�The deal.II Library, Version 9.3�. In: Journal of Numerical Mathe-
matics 29.3 (2021), pp. 171�186. doi: 10.1515/jnma-2021-0081.

[5] F. Regazzoni, M. Salvador, P. C. Africa, M. Fedele, L. Dede', and A.
Quarteroni. A cardiac electromechanics model coupled with a lumped
parameters model for closed-loop blood circulation. Part I: model deriva-
tion. 2020. arXiv: 2011.15040 [math.NA].

[6] F. Regazzoni, M. Salvador, P. C. Africa, M. Fedele, L. Dede', and A.
Quarteroni. A cardiac electromechanics model coupled with a lumped
parameters model for closed-loop blood circulation. Part II: numerical
approximation. 2020. arXiv: 2011.15051 [math.NA].

[7] M. Salvador, M. Fedele, P. C. Africa, E. Sung, L. Dede', A. Prakosa, J.
Chrispin, N. Trayanova, and A. Quarteroni. �Electromechanical mod-
eling of human ventricles with ischemic cardiomyopathy: numerical
simulations in sinus rhythm and under arrhythmia�. In: Computers
in Biology and Medicine 136 (2021), p. 104674. issn: 0010-4825. doi:
https://doi.org/10.1016/j.compbiomed.2021.104674.

26

https://doi.org/10.1109/MCSE.2013.47
https://doi.org/10.1109/MCSE.2013.47
https://doi.org/10.1017/9781108616096
https://doi.org/https://doi.org/10.1016/j.cma.2016.05.031
https://doi.org/10.1515/jnma-2021-0081
https://arxiv.org/abs/2011.15040
https://arxiv.org/abs/2011.15051
https://doi.org/https://doi.org/10.1016/j.compbiomed.2021.104674

[8] F. Regazzoni and A. Quarteroni. �Accelerating the convergence to
a limit cycle in 3D cardiac electromechanical simulations through a
data-driven 0D emulator�. In: Computers in Biology and Medicine 135
(2021), p. 104641. issn: 0010-4825. doi: https://doi.org/10.1016/
j.compbiomed.2021.104641.

[9] A. Zingaro, I. Fumagalli, L. Dede', M. Fedele, P. C. Africa, A. F. Corno,
and A. Quarteroni. A multiscale CFD model of blood �ow in the human
left heart coupled with a lumped-parameter model of the cardiovascular
system. 2021. arXiv: 2110.02114 [math.NA].

[10] M. Salvador, F. Regazzoni, S. Pagani, L. Dede', N. Trayanova, and
A. Quarteroni. �The role of mechano-electric feedbacks and hemody-
namic coupling in scar-related ventricular tachycardia�. In: Computers
in Biology and Medicine (2022), p. 105203.

[11] I. Fumagalli, P. Vitullo, R. Scrofani, and C. Vergara. �Image-based
computational hemodynamics analysis of systolic obstruction in hy-
pertrophic cardiomyopathy�. In: medRxiv (2021). doi: 10.1101/2021.
06.02.21258207.

[12] S. Stella, C. Vergara, M. Maines, D. Catanzariti, P. C. Africa, C. De-
mattè, M. Centonze, F. Nobile, M. Del Greco, and A. Quarteroni.
�Integration of activation maps of epicardial veins in computational
cardiac electrophysiology�. In: Computers in Biology and Medicine 127
(2020), p. 104047. issn: 0010-4825. doi: https://doi.org/10.1016/
j.compbiomed.2020.104047.

[13] L. Dede', F. Regazzoni, C. Vergara, P. Zunino, M. Guglielmo, R. Scro-
fani, L. Fusini, C. Cogliati, G. Pontone, and A. Quarteroni. �Mod-
eling the cardiac response to hemodynamic changes associated with
COVID-19: a computational study�. In: Mathematical Biosciences and
Engineering 18.4 (2021), pp. 3364�3383.

[14] R. Piersanti, F. Regazzoni, M. Salvador, A. Corno, L. Dede', C. Ver-
gara, and A. Quarteroni. 3D-0D closed-loop model for the simulation
of cardiac biventricular electromechanics. 2021. arXiv: 2108 . 01907

[math.NA].

[15] R. Piersanti, P. C. Africa, M. Fedele, C. Vergara, L. Dede', A. F. Corno,
and A. Quarteroni. �Modeling cardiac muscle �bers in ventricular and
atrial electrophysiology simulations�. In: Computer Methods in Applied
Mechanics and Engineering 373 (2021), p. 113468.

[16] T. E. Fastl, C. Tobon-Gomez, A. Crozier, J. Whitaker, R. Rajani, K. P.
McCarthy, D. Sanchez-Quintana, S. Y. Ho, M. D. O'Neill, G. Plank,
et al. �Personalized computational modeling of left atrial geometry and
transmural myo�ber architecture�. In: Medical Image Analysis (2018).

27

https://doi.org/https://doi.org/10.1016/j.compbiomed.2021.104641
https://doi.org/https://doi.org/10.1016/j.compbiomed.2021.104641
https://arxiv.org/abs/2110.02114
https://doi.org/10.1101/2021.06.02.21258207
https://doi.org/10.1101/2021.06.02.21258207
https://doi.org/https://doi.org/10.1016/j.compbiomed.2020.104047
https://doi.org/https://doi.org/10.1016/j.compbiomed.2020.104047
https://arxiv.org/abs/2108.01907
https://arxiv.org/abs/2108.01907

[17] M. Strocchi, C. M. Augustin, M. A. F. Gsell, E. Karabelas, A. Neic,
K. Gillette, O. Razeghi, A. J. Prassl, E. J. Vigmond, J. M. Behar, J.
Gould, B. Sidhu, C. A. Rinaldi, M. J. Bishop, G. Plank, and S. A.
Niederer. �A publicly available virtual cohort of four-chamber heart
meshes for cardiac electro-mechanics simulations�. In: PLOS ONE 15
(June 2020), pp. 1�26. doi: 10.1371/journal.pone.0235145.

[18] L. Antiga and D. A. Steinman. �The vascular modeling toolkit�. In:
(2008). url: http://www.vmtk.org.

[19] M. Fedele and A. Quarteroni. �Polygonal surface processing and mesh
generation tools for the numerical simulation of the cardiac function�.
In: International Journal for Numerical Methods in Biomedical Engi-
neering 37.4 (2021), e3435.

[20] S. Rossi, T. Lassila, R. Ruiz-Baier, A. Sequeira, and A. Quarteroni.
�Thermodynamically consistent orthotropic activation model captur-
ing ventricular systolic wall thickening in cardiac electromechanics�.
In: European Journal of Mechanics-A/Solids 48 (2014), pp. 129�142.

[21] J. D. Bayer, R. C. Blake, G. Plank, and N. Trayanova. �A novel rule-
based algorithm for assigning myocardial �ber orientation to compu-
tational heart models�. In: Annals of Biomedical Engineering 40.10
(2012), pp. 2243�2254.

[22] R. Doste, D. Soto-Iglesias, G. Bernardino, A. Alcaine, R. Sebastian,
S. Gi�ard-Roisin, M. Sermesant, A. Berruezo, D. Sanchez-Quintana,
and O. Camara. �A rule-based method to model myocardial �ber ori-
entation in cardiac biventricular geometries with out�ow tracts�. In:
International Journal for Numerical Methods in Biomedical Engineer-
ing 35.4 (2019), e3185.

28

https://doi.org/10.1371/journal.pone.0235145
http://www.vmtk.org

MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

02/2022 Antonietti, P.F.; Scacchi, S.; Vacca, G.; Verani, M.
C^1-VEM for some variants of the Cahn-Hilliard equation: a numerical
exploration

03/2022 Giacomini, M.; Perotto, S.
Anisotropic mesh adaptation for region-based segmentation accounting for
image spatial information

01/2022 Gavazzoni, M.; Ferro, N.; Perotto, S.; Foletti, S.
Multi-physics inverse homogenization for the design of innovative cellular
materials: application to thermo-mechanical problems

95/2021 Di Gregorio, S.; Vergara, C.; Montino Pelagi, G.; Baggiano, A.; Zunino, P.; Guglielmo, M.; Fusini, L.; Muscogiuri, G.; Rossi, A.; Rabbat, M.G.; Quarteroni, A.; Pontone, G.
Prediction of myocardial blood flow under stress conditions by means of a
computational model

93/2021 Parolini, N.; Dede', L; Ardenghi, G.; Quarteroni, A.
Modelling the COVID-19 epidemic and the vaccination campaign in Italy by
the SUIHTER model

92/2021 Antonietti, P.F.; Manzini, G.; Scacchi, S.; Verani, M.
On arbitrarily regular conforming virtual element methods for elliptic partial
differential equations

94/2021 Antonietti, P.F.; Berrone, S.; Busetto, M.; Verani, M.
Agglomeration-based geometric multigrid schemes for the Virtual Element
Method

90/2021 Hernandez, V.M.; Paolucci, R.; Mazzieri, I.
3D numerical modeling of ground motion in the Valley of Mexico: a case
study from the Mw3.2 earthquake of July 17, 2019

87/2021 Both, J.W.; Barnafi, N.A.; Radu, F.A.; Zunino, P.; Quarteroni, A.
Iterative splitting schemes for a soft material poromechanics model

84/2021 Torti, A.; Galvani, M.; Urbano, V.; Arena, M.; Azzone, G.; Secchi, P.; Vantini, S.
Analysing transportation system reliability: the case study of the metro system
of Milan

	qmox04-copertina
	mox-202211111582
	Introduction
	Technical specifications
	Package content
	License and third-party software
	Software and hardware requirements

	How to run lifex executables
	Quick start
	Step 0 - Set the parameter file
	Step 1 - Run
	Parallel run
	Dry run and parameter file conversion

	Input data
	Fiber generation
	Underlying methods
	Setting the parameter files
	Slab fibers
	Left ventricular fibers
	Left atrial fibers

	Output and visualization
	Future perspectives
	Acknowledgments
	References

	qmox04-terza_di_copertina

