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Abstract

Background

The novel coronavirus (SARS-CoV-2) pandemic spread rapidly worldwide increasing expo-

nentially in Italy. To date, there is lack of studies describing clinical characteristics of the

people at high risk of infection. Hence, we aimed (i) to identify clinical predictors of SARS-

CoV-2 infection risk, (ii) to develop and validate a score predicting SARS-CoV-2 infection

risk, and (iii) to compare it with unspecific scores.

Methods

Retrospective case-control study using administrative health-related database was carried

out in Southern Italy (Campania region) among beneficiaries of Regional Health Service

aged over than 30 years. For each person with SARS-CoV-2 confirmed infection (case),

up to five controls were randomly matched for gender, age and municipality of residence.

Odds ratios and 90% confidence intervals for associations between candidate predictors

and risk of infection were estimated by means of conditional logistic regression. SARS-CoV-

2 Infection Score (SIS) was developed by generating a total aggregate score obtained from

assignment of a weight at each selected covariate using coefficients estimated from the

model. Finally, the score was categorized by assigning increasing values from 1 to 4. Dis-

criminant power was used to compare SIS performance with that of other comorbidity

scores.
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Results

Subjects suffering from diabetes, anaemias, Parkinson’s disease, mental disorders, cardio-

vascular and inflammatory bowel and kidney diseases showed increased risk of SARS-

CoV-2 infection. Similar estimates were recorded for men and women and younger and

older than 65 years. Fifteen conditions significantly contributed to the SIS. As SIS value

increases, risk progressively increases, being odds of SARS-CoV-2 infection among people

with the highest SIS value (SIS = 4) 1.74 times higher than those unaffected by any SIS con-

tributing conditions (SIS = 1).

Conclusion

Conditions and diseases making people more vulnerable to SARS-CoV-2 infection were

identified by the current study. Our results support decision-makers in identifying high-risk

people and adopting of preventive measures to minimize the spread of further epidemic

waves.

Introduction

Since December 2019, the novel coronavirus (SARS-CoV-2) pandemic spread rapidly from

the Hubei province in China to 185 countries causing over 3,000,000 cases [1]. The epidemic

spread to and increased exponentially in Italy, earlier than in any other western Country, hav-

ing generated at the current time (June 15) over 236,000 confirmed SARS-CoV-2 infections

[2]. SARS-COV-2 causes a Coronavirus disease 2019 (Covid-19), for which minor symptoms

are anosmia, ageusia, gastrointestinal symptoms, headache, and cutaneous manifestations and

major symptoms are fever, cough, dyspnoea [3, 4]. Due to these major symptoms it may be

considered necessary to hospitalize patients for respiratory complications [5].

Several hospital-based studies [6–10], including a systematic review of literature and meta-

analysis [11], focused on the attempt for predicting the progression of the disease towards

developing critical manifestations or death. These studies are important for the clinical prac-

tice point of view for identifying patients at whom early treatment must be guaranteed. How-

ever, as most infections are not life-threatening [7], for the public health point of view it

becomes increasingly important stratifying population for identifying people at higher risk of

infection. Despite this, at our best knowledge, no studies on this topic have been still

published.

We therefore performed a large investigation based upon healthcare utilization database

from the Italian Region of Campania aimed (1) to identify clinical predictors of the risk of

SARS-CoV-2 infection, (2) to develop and validate a score overall predicting the risk of SARS-

CoV-2 infection, and (3) to compare discriminant power of such a score with that from unspe-

cific scores of clinical profile.

Methods

Target population and data source

Residents in Campania who were beneficiaries of the Regional Health Service (RHS) aged 30

years or older formed the target population (almost 3.9 million people, around 9% of the Ital-

ian population of that age group). Italian citizens have equal access to essential healthcare ser-

vices provided by the National Health Service [12]. An automated system of healthcare
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utilization (HCU) databases allows managing NHS within each Italian region, including Cam-

pania. HCU data report a variety of information drawn from services provided fully or in part

free of charge from NHS to beneficiaries of NHS (e.g. the ICD-CM-9 codes of inpatient diag-

noses and services supplied from public or private hospitals, the ATC codes of outpatient

drugs dispensed from pharmacies). This allowed to Campania Region of designing, building

and routinely managing the so-called Campania Region Database (CaReDB) which formed

the data source for the current study. Completeness and data validity of CaReDB being else-

where reported [13–21]. Selected characteristics of CaReDB are described in S1 Table.

From the beginning of the Covid-19 epidemic, a surveillance system was implemented to

detect all cases identified by reverse transcription-polymerase chain reaction (RT-PCR) testing

for SARS-CoV-2. Diagnostic algorithm was based on the protocol released by the World

Health Organization (WHO) [22], i.e., on nasopharyngeal swab specimens tested with at least

two real-time RT PCT assays targeting different genes (E, RdRp and M) of SARS-CoV-2.

These various types of data (i.e., CaReDB and Covid-19 registry) can be interconnected,

since a single individual identification code is used by all databases for each citizen enrolled.

To preserve privacy, each identification code was automatically deidentified, the inverse pro-

cess being allowed only to the Regional Health Authority on request from judicial authorities.

Permission for using anonymized data for this study was granted to the researchers of the Cen-

tro di Ricerca in Farmacoeconomia e Farmacoutilizzazione (CIRFF) by the governance board

of Unità del Farmaco della Regione Campania. According with Italian Data protection

Authority, neither Ethical Committee approval, nor informed consent were required for carry-

ing out observational studies based on HCU data as the our [23]. Our research protocol

adhered to the tenets of the Declaration of Helsinki 1975 and its later amendments.

Cases and controls

The date of SARS-CoV-2 infection diagnosis was considered as the index date and patients

were extracted from the Covid-19 registry until June 10, 2020. A total of 4,629 subjects positive

to SARS-CoV-2 were identified. Among these, we excluded i) patients with missing demo-

graphic information (N = 469) and ii) patients younger than 30 years at the index date

(N = 663). Finally, 3,497 patients were included into the study as cases. Among them, 453

patients died during the observational period.

For each case, up to five controls were randomly selected from the target population to be

matched for gender, age at index date and municipality of residence. The density incidence

approach was used for selecting controls since patients who had a confirmed diagnosis of

SARS-CoV-2 infection were eligible as potential controls until they became cases, and all

matches had to be at risk of SARS-CoV-2 infection.

Identifying clinical predictors of SARS-CoV-2 infection

A list of 47 diseases and conditions potentially predicting the risk of SARS-CoV-2 infection

was developed starting from the lists included in several comorbidities scores, i.e., the Charlson

[24], Elixhauser [25], Chronic Disease Scores [26] and RxRiskV Index [27, 28], and in some

systematic reviews on Covid-19 risk factors [11, 29–31]. The algorithms for detecting patients

who suffer from each of them from the above-mentioned databases were carefully chosen

according to previously published papers on case-identification algorithms based on Italian

healthcare data [32–36]. Individuals were classified as having one of the conditions listed if

they received at least two consecutive dispensations of a drug for treatment of a specific class

of disease and/or one hospital discharge with the diagnoses coded with the specific ICD-9-CM

(S2 Table).

PLOS ONE SARS-CoV-2 Infection Score (SIS) to predict patients most at risk of Covid-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0237202 January 20, 2021 3 / 15

https://doi.org/10.1371/journal.pone.0237202


Conditional logistic regression was used to estimate odds ratios (ORs), with 90% confidence

intervals (CIs), for the association between candidate predictors and the odds of SARS-CoV-2

infection. Predictors entered as dichotomous covariates into the model, i.e., with value 0 or 1

according to whether the specific condition was not or was recorded at least once within two-

years prior baseline (2018–2019). Unadjusted and mutually adjusted models were fitted by

including one by one covariate, and all covariates together, respectively. Power considerations

suggested of excluding covariates with prevalence� 0.12% among controls, i.e., predictors for

which our sample size was not enough for detecting OR of at least 3, with a 0.80 power, and by

accepting a 0.10 two-sided first type error. In addition, some conditions were grouped together

when strong uncertainty of algorithm did not allow for distinguishing them.

With the aim of testing the hypothesis that predictors may affect severity of clinical mani-

festations of SARS-CoV-2 infection, rather than infection per se, analyses were restricted to

strata having fatal infection. Stratifications for sex and age categories (<65 years,�65 years)

were performed as secondary analyses.

Developing and validating a score to predict SARS-CoV-2 infection

Seven out of ten of the 3,497 1:5 case-control sets were randomly selected to form the so-called

training (derivation) set. The conditional logistic regression model was fitted to compute the

ORs as above described. The least absolute shrinkage and selection operator (LASSO) method

was applied for selecting the diseases / conditions able to independently predict the SARS--

CoV-2 infection [37]. The coefficients estimated from the model were used for assigning a

weight at each selected covariate. A weight was assigned to each coefficient by multiplying it

by 10 and rounding it to the nearest whole number [38]. The weights thus obtained were then

summed to generate a total aggregate score. To simplify the system, i.e., with the aim of

accounting for excessive heterogeneity of the total aggregate score, the latter was categorized

by assigning increasing values of 1, 2, 3 and 4 to the categories of the aggregate score of 0, 1–2,

3–4,� 5, respectively. The so obtained index was denoted SARS-CoV-2 Infection Score (SIS).

Performance of SIS was explored by applying the corresponding weights to the so-called

validation set consisting of the 1,048 1:5 case-control sets who did not enter the training set.

To evaluate the clinical utility of SIS for predicting infection, we considered the receiver oper-

ating characteristic (ROC) curve analysis and used area under the ROC curve (AUC) as a

global summary of the discriminatory capacity of the scores [39].

Comparing specific and unspecific predictors of SARS-CoV-2 infection

Some unspecific scores surrogating general clinical profile of each case and control included into

the study were considered. In particular, the number of drugs with different 3rd level ATC dis-

pensed to, and comorbidities with different ICD-9-CM experienced by each case and control

within two-years prior baseline (2018–2019) were recorded. Categorization was made by assigning

increasing values of 1, 2, 3 and 4 to 0, 1–4, 5–9 and�10 drugs (comedication score) and 1, 2, 3 and

4 to 0, 1–2 and�3 comorbidities (comorbidity score). In addition, cases and controls were catego-

rized according to the Multisource Comorbidity Score (MCS), a new index of patients’ clinical sta-

tus derived from inpatients diagnostic information and outpatient drug prescriptions provided by

the regional Italian data and validated for outcome prediction [40, 41]. To simplify comparisons,

the original five categories of worsening clinical profile (0, 1, 2, 3 and 4) as defined by MCS, were

reduced to milder (MCS = 0), middle (1�MCS�3) and severe (MCS�4) categories.

With the aim of comparing discriminatory ability of specific (SIS) and unspecific (comedi-

cations, comorbidities and MCS) predictors of SARS-CoV-2 infection, ROC curves and corre-

sponding AUCs were again used.
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All analyses were performed using SAS 9.4 (Cary, NC). A 2-sided p-value of 0.10 or less was

considered significant.

Results

Clinical predictors of SARS-CoV-2 infection

Owing to their low prevalence, fourteen conditions were excluded from this analysis (tubercu-

losis, weight loss, disorders involving the immune mechanisms, disorders of fluid, electrolyte

and acid-base balance, coagulation defects, bipolar disorders, alcohol abuse, drug addiction,

multiple sclerosis, cystic fibrosis, chronic and acute pancreatitis, anchylosing spondylitis, sys-

temic sclerosis, systemic sclerosis). Among the 33 remaining conditions, two were grouped,

i.e., chronic pulmonary obstructive disease with asthma (chronic respiratory disease), and

chronic renal disease with or without dialysis.

The characteristics of the cohort members are shown in Table 1. Among the 31 remaining

conditions, 23 (74%) showed significant association with the risk of SARS-CoV-2 infection

from univariate regression.

Table 2 reports multivariate association between the considered diseases/conditions and

the risk of SARS-CoV-2 infection which results significant for 12 conditions (39%).

In particular, patients suffering from diabetes, anaemias, mental disorders (dementia / Alz-

heimer’s disease, psychosis and anxiety), Parkinson’s disease, glaucoma, diseases of the circula-

tory system (heart failure and hypertension), chronic respiratory, inflammatory bowel, and

rheumatologic conditions showed statistical evidence of increased risk of infection with

respect to patients who did not suffer from them. Likely because of low power, only 7 condi-

tions resulted significantly associated with the risk of fatal Covid-19 disease, but there was no

relevant difference in the estimates with respect to the risk of SARS-CoV-2 infection (Table 2).

Anaemias, dementia/Alzheimer, psychosis, anxiety, epilepsy, heart failure, kidney diseases

and particularly cystic fibrosis increased the risk of SARS-CoV-2 infection among women,

whereas higher risk of infection was observed among men suffering from diabetes, psychosis,

anxiety, Parkinson, arrhythmia, chronic pulmonary disease, inflammatory bowel diseases and

particularly dementia/Alzheimer and rheumatologic conditions (S3 Table).

Estimates were similar for Covid-19 patients younger and older than 65 years. Among the

former group, a significant higher risk of infection was observed for diabetes, anxiety, Parkin-

son’s disease, arrhythmia, inflammatory bowel and chronic pulmonary diseases, particularly

dementia/Alzheimer, whereas patients older than 65 years suffering from thyroid disorders,

anaemias, dementia/Alzheimer, psychosis, anxiety, epilepsy and heart failure showed a signifi-

cant higher risk infection (S4 Table).

SARS-CoV-2 Infection Score (SIS)

Fifteen conditions significantly contributed to the SIS, the corresponding weights being

reported in Table 3. Factors which most contributed to the total aggregate score were demen-

tia / Alzheimer’s disease, kidney disease, psychosis, inflammatory bowel disease and rheumato-

logic conditions, while diabetes, anaemias, anxiety, Parkinson’s disease, glaucoma, heart

failure, hypertension, arrhythmia, thyroid disorders and chronic respiratory disease provided

small, although significant, contributions. Fig 1 shows that, as the SIS value increases, the OR

progressively increases, being the odds of SARS-CoV-2 infection among people with the high-

est SIS value (SIS = IV), 1.74 times higher than those unaffected by any SIS contributing condi-

tions (SIS = I). The prevalence of controls stratified according to the SIS score gradually

decreases from 50% (SIS = I) to 12% (SIS = IV).
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Table 1. Baseline characteristics of cohort members (Covid-19 cases and related controls), individual (one by one, univariate) Odds Ratio (OR), and 90% Confi-

dence Intervals (CI), for the relationship between selected diseases/conditions and the risk of SARS-CoV-2 infection.

Cases (N = 3,497) Controls (N = 17,358) Individual OR (90% CI)

Male gender 1,945 (55.6%) 9,640 (55.5%) MV

Age (years)

30–64 2,375 (67.9%) 11,829 (68.1%) MV

�65 1,122 (32.1%) 5,538 (31.9%)

Infectious and parasitic diseases

HIV infection 68 (1.9%) 301 (1.7%) 1.12 (0.90 to 1.41)

Neoplasms

Malignant neoplasms 155 (4.4%) 661 (3.8%) 1.18 (1.01 to 1.37)

Endocrine, nutritional and metabolic diseases, and immunity disorders

Thyroid disorders 225 (6.4%) 920 (5.3%) 1.25 (1.10 to 1.42)

Diabetes 411 (11.8%) 1732 (10%) 1.22 (1.10 to 1.35)

Hyperlipidaemia 729 (20.8%) 3708 (21.4%) 0.97 (0.89 to 1.05)

Obesity 48 (1.4%) 153 (0.9%) 1.58 (1.20 to 2.08)

Hyperuricemia/Gout 180 (5.1%) 711 (4.1%) 1.28 (1.11 to 1.48)

Diseases of the blood and blood-forming organs

Anaemias 265 (7.6%) 927 (5.3%) 1.48 (1.31 to 1.67)

Mental disorders

Dementia / Alzheimer 48 (1.4%) 89 (0.5%) 2.79 (2.06 to 3.79)

Psychosis 124 (3.5%) 303 (1.7%) 2.10 (1.75 to 2.52)

Depression 233 (6.7%) 1,003 (5.8%) 1.17 (1.03 to 1.33)

Anxiety 1,369 (39.1%) 5,615 (32.3%) 1.37 (1.29 to 1.47)

Diseases of the nervous system and sense organs

Parkinson’s disease 67 (1.9%) 188 (1.1%) 1.78 (1.40 to 2.26)

Epilepsy 176 (5%) 660 (3.8%) 1.35 (1.17 to 1.55)

Glaucoma 119 (3.4%) 482 (2.8%) 1.25 (1.05 to 1.48)

Diseases of the circulatory system

Ischaemic Heart Disease/Angina 213 (6.1%) 841 (4.8%) 1.29 (1.12 to 1.47)

Heart failure 281 (8%) 1,005 (5.8%) 1.49 (1.31 to 1.69)

Arrhythmia 196 (5.6%) 738 (4.3%) 1.36 (1.18 to 1.57)

Valvular diseases 43 (1.2%) 180 (1%) 1.18 (0.88 to 1.57)

Vascular diseases 52 (1.5%) 186 (1.1%) 1.41 (1.08 to 1.84)

Cerebrovascular diseases 127 (3.6%) 445 (2.6%) 1.46 (1.22 to 1.74)

Hypertension 826 (23.6%) 3,731 (21.5%) 1.15 (1.07 to 1.25)

Diseases of the respiratory system

Chronic respiratory diseases (COPD and asthma together) 244 (7%) 908 (5.2%) 1.37 (1.21 to 1.56)

Diseases of the digestive system

Liver cirrhosis and other liver chronic diseases 54 (1.5%) 216 (1.2%) 1.23 (0.96 to 1.59)

Inflammatory bowel diseases 54 (1.5%) 169 (1%) 1.60 (1.23 to 2.07)

Diseases of the genitourinary system

Kidney disease with or without dialysis 67 (1.9%) 210 (1.2%) 1.60 (1.26 to 2.03)

Diseases of the skin and subcutaneous tissues

Psoriasis 23 (0.7%) 113 (0.7%) 1.02 (0.70 to 1.48)

Diseases of the musculoskeletal system and connective tissue

Rheumatologic conditions 28 (0.8%) 79 (0.5%) 1.77 (1.23 to 2.56)

Other conditions

Transplantation 13 (0.4%) 59 (0.3%) 1.10 (0.66 to 1.82)

(Continued)
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Comparing with unspecific predictors of SARS-CoV-2 infection

Generic/unspecific scores surrogating clinical profile showed to be associated with the risk of

SARS-CoV-2 infection, showing patients with� 10 drug treatments, those with� 3 comor-

bidities, and those with MCS value� 4, increased risk of 65%, 36% and 45% with respect to

patients cotreatments, comorbidities and MCS value = I, respectively (Table 4).

AUC (90% CI) of SIS, cotreatment and comorbidity scores and MCS respectively had val-

ues of 0.54 (0.52 to 0.56), 0.52 (0.50 to 0.54), 0.53 (0.51 to 0.55), and 0.53 (0.51 to 0.55) (Fig 2).

There was no evidence that specific and unspecific scores had different discriminatory ability.

Discussion

Our study shows that several diseases and conditions are significantly and independently asso-

ciated with the risk of SARS-CoV-2 infection. Beyond conditions making particularly vulnera-

ble the respiratory system (e.g., chronic obstructive pulmonary disease and asthma),

comorbidities positively associated with the infection practically included all diagnostic cate-

gories. Predictors belonging to nutritional and metabolic (diabetes), cardiovascular (heart fail-

ure and hypertension) and renal diseases were widely expected, since it has accepted that

SARS-CoV-2 has major implications for the cardiovascular system. Indeed, patients with heart

failure [42], diabetes [43–45], hypertension [12] and kidney disease [46–48] have been consis-

tently identified as particularly vulnerable populations, and these findings were consistently

found in our study. In addition, we confirmed that people with weakened immune systems

from a medical condition or treatment are at a higher risk. Among these, those living with hae-

moglobin disorders [49], inflammatory bowel disease [50] and immune-rheumatological dis-

eases [51] must be considered vulnerable groups for SARS-CoV-2 infection. Mental health

and cognitive function might have independent utility in understanding the burden of respira-

tory disease, since they may influence the risk of contracting the infection, at least in part by

impairing innate or adaptive immunity [52] and diminishing the precautions taken to mini-

mize risk. Another explanation of our findings is that people with history of depression [53],

psychosis [54] and stress disorders [55] could experience elevated rates of an array of respira-

tory infections because these conditions often require treatment in a psychiatric care facility,

and the risk of infection can be particularly high in these structures. Finally, our study adds

evidence regarding the impact of diseases and conditions on the risk of SARS-CoV-2 infection

between men and women. As pointed out by a recent study [56], sex and age disaggregated

data are essential for understanding the distributions of risk infection in the population and

the extent to which they affect clinical outcomes.

Despite our results confirm that a wide range of diseases and conditions likely increase vul-

nerability to SARS-CoV-2 infection, and probably its more severe clinical manifestations, we

have not been able to develop a score that accurately may predict the risk of infection. In addi-

tion, we found that predictive ability of the score obtained by weighting risk factors of SARS--

CoV-2 infection did not overcome that of some generic scores of comorbidities and

comedications. This expands upon previous findings of individual comorbidities as

Table 1. (Continued)

Cases (N = 3,497) Controls (N = 17,358) Individual OR (90% CI)

Chronic pain 89 (2.5%) 378 (2.2%) 1.19 (0.97 to 1.45)

Inflammation, not elsewhere specified 410 (11.7%) 2,244 (12.9%) 0.89 (0.81 to 0.98)

Abbreviation: MV, matching variable.

https://doi.org/10.1371/journal.pone.0237202.t001
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Table 2. Independent (all together, multivariate) Odds Ratio (OR), and 90% Confidence Intervals (CI), for the relationship between selected diseases/conditions

and the risk of SARS-CoV-2 infection as a whole (3,497 cases and corresponding 17,358 controls), as well as the risk of fatal SARS-CoV-2 infection (435 cases and

corresponding 2,154 controls).

All Covid-19 cases Fatal Covid-19 cases

Cases / Controls OR (90% CI) Cases / Controls OR (90% CI)

Infectious and parasitic diseases

HIV infection 68 / 301 1.07 (0.85 to 1.34) 11 / 47 1.04 (0.58 to 1.86)

Neoplasms

Malignant neoplasms 155 / 661 0.99 (0.85 to 1.16) 35 / 147 0.99 (0.70 to 1.42)

Endocrine, nutritional and metabolic diseases, and immunity disorders

Thyroid disorders 225 / 920 1.13 (0.99 to 1.29) 31 / 133 0.93 (0.64 to 1.37)

Diabetes 411 / 1,732 1.15 (1.03 to 1.28) 88 / 327 1.30 (1.01 to 1.67)

Hyperlipidaemia 729 / 3,708 0.86 (0.79 to 0.94) 131 / 703 0.69 (0.55 to 0.86)

Obesity 48 / 153 1.18 (0.89 to 1.57) 6 / 18 1.08 (0.46 to 2.56)

Hyperuricemia/Gout 180 / 711 1.08 (0.93 to 1.27) 56 / 175 1.29 (0.95 to 1.76)

Diseases of the blood and blood-forming organs

Anaemias 265 / 927 1.24 (1.09 to 1.41) 63 / 184 1.45 (1.07 to 1.95)

Mental disorders

Dementia / Alzheimer 48 / 89 2.14 (1.55 to 2.96) 14 / 27 1.92 (1.02 to 3.63)

Psychosis 124 / 303 1.71 (1.40 to 2.08) 35 / 57 2.68 (1.76 to 4.08)

Depression 233 / 1,003 0.98 (0.86 to 1.12) 49 / 149 1.21 (0.88 to 1.67)

Anxiety 1,369 / 5,615 1.26 (1.17 to 1.36) 217 7,824 1.33 (1.07 to 1.65)

Diseases of the nervous system and sense organs

Parkinson’s disease 67 / 188 1.32 (1.02 to 1.70) 18 / 47 1.32 (0.80 to 2.18)

Epilepsy 176 / 660 1.10 (0.94 to 1.28) 44 / 99 1.57 (1.11 to 2.22)

Glaucoma 119 / 482 1.22 (1.03 to 1.46) 27 / 95 1.32 (0.89 to 1.97)

Diseases of the circulatory system

Ischaemic Heart Disease/Angina 213 / 841 0.99 (0.84 to 1.15) 58 / 186 1.24 (0.88 to 1.76)

Heart failure 281 / 1,005 1.24 (1.07 to 1.44) 86 / 268 1.41 (1.04 to 1.90)

Arrhythmia 196 / 738 1.14 (0.98 to 1.33) 51 / 198 0.95 (0.68 to 1.31)

Valvular diseases 43 / 180 0.80 (0.59 to 1.09) 11 / 42 0.84 (0.44 to 1.60)

Vascular diseases 52 / 186 1.00 (0.75 to 1.32) 9 / 40 0.69 (0.36 to 1.33)

Cerebrovascular diseases 127 / 445 1.00 (0.83 to 1.21) 37 / 108 1.06 (0.72 to 1.56)

Hypertension 826 / 3,731 1.12 (1.01 to 1.24) 167 / 712 1.16 (0.94 to 1.43)

Diseases of the respiratory system

Chronic respiratory diseases (COPD and asthma together) 244 / 908 1.18 (1.03 to 1.35) 50 / 178 1.14 (0.83 to 1.55)

Diseases of the digestive system

Liver cirrhosis and other liver chronic diseases 54 / 216 0.93 (0.71 to 1.21) 14 / 35 1.42 (0.79 to 2.56)

Inflammatory bowel diseases 54 / 169 1.47 (1.13 to 1.91) 6 / 32 0.72 (0.33 to 1.56)

Diseases of the genitourinary system

Kidney disease with or without dialysis 67 / 210 1.10 (0.84 to 1.42) 23 / 60 1.07 (0.60 to 1.90)

Diseases of the skin and subcutaneous tissues

Psoriasis 23 / 113 0.93 (0.63 to 1.36) 2 / 19 0.39 (0.11 to 1.44)

Diseases of the musculoskeletal system and connective tissue

Rheumatologic conditions 28 / 79 1.54 (1.06 to 2.23) 5 / 18 1.21 (0.50 to 2.91)

Other conditions

Transplantation 13 / 59 0.87 (0.52 to 1.46) 3 / 8 1.45 (0.42 to 4.97)

Chronic pain 89 / 378 1.06 (0.86 to 1.31) 21 / 78 1.08 (0.69 to 1.70)

Inflammation, not elsewhere specified 410 / 2,244 0.85 (0.77 to 0.93) 74 / 316 1.12 (0.87 to 1.45)

https://doi.org/10.1371/journal.pone.0237202.t002
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independent risk factors for SARS-CoV-2 infection [57, 58], and confirms our substantial

inability to predict the risk of SARS-CoV-2 infection. This can be explained by several limita-

tions of our approach, which generate estimates biased towards the null. First, exposure mis-

classification regards our inability to careful capturing conditions and diseases through

algorithms based on healthcare utilization databases [59]. Second, it is well known that out-

come misclassification can bias epidemiologic results. For Covid-19, suboptimal test

Table 3. Weights, assigned to diseases that were significantly associated with the risk of Covid-19 disease, used to

construct the SARS-CoV-2 Infection Score (SIS).

Disease / Condition Log (OR) Weights

Thyroid disorders 0.08 1

Diabetes 0.08 1

Anaemias 0.23 2

Dementia / Alzheimer 0.98 10

Psychosis 0.46 5

Anxiety 0.23 2

Parkinson’s disease 0.27 3

Glaucoma 0.15 2

Heart failure 0.27 3

Arrhythmia 0.12 1

Hypertension 0.12 1

Chronic Pulmonary disease 0.15 2

Inflammatory bowel diseases 0.40 4

Kidney dialysis 0.75 8

Rheumatologic conditions 0.55 6

https://doi.org/10.1371/journal.pone.0237202.t003

Fig 1. SARS-CoV-2 Infection Score (SIS) distribution among controls, and corresponding trend in odds ratios

(and 90% confidence intervals) along categories of SIS. SARS-CoV-2 Infection Score: I, II, III and IV to 0, 1–2, 3–4

and�5.

https://doi.org/10.1371/journal.pone.0237202.g001
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sensitivity, despite excellent specificity, results in an overestimation of cases in the early stages

of an outbreak, and substantial underestimation of cases as prevalence increases [60]. It should

be noticed, however, that both, exposure and outcome misclassification likely drew estimates

Table 4. Relationship between selected score and the risk of SARS-CoV-2 infection.

Scores OR (90% CI)

SARS-CoV-2 Infection Score (SIS)

I (0) 1.00 (Ref.)

II (1–2) 1.19 (1.03 to 1.36)

III (3–4) 1.32 (1.10 to 1.58)

IV (�5) 1.74 (1.44 to 2.10)

Number of comedications

I (0) 1.00 (Ref.)

II (1–4) 1.05 (0.91 to 1.21)

III (5–9) 1.17 (0.97 to 1.41)

IV (�10) 1.65 (1.25 to 2.19)

Number of comorbidities

I (0) 1.00 (Ref.)

II (1–2) 1.21 (1.05 to 1.38)

III (�3) 1.36 (1.15 to 1.60)

Multisource Comorbidity Score (MCS)

I (0) 1.00 (Ref.)

II (1–3) 1.21 (1.03 to 1.41)

III (�4) 1.45 (1.23 to 1.70)

https://doi.org/10.1371/journal.pone.0237202.t004

Fig 2. Receiver Operating Characteristics (ROC) curves comparing discriminant power of SARS-CoV-2 Infection Score

(SIS), and selected unspecific score surrogating clinical profile (cotreatments, comorbidities and Multisource Comorbidity

Score).

https://doi.org/10.1371/journal.pone.0237202.g002
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towards the null (i.e., underestimate the strength of the association between their presence and

the outcome risk) so generating uncertainty for the weighting approach of score developing.

Third, the lack of information on biologic markers potentially able to predict infection, and

severity of its clinical manifestations, is another limitation of our study. For example, accord-

ing to the current literature, some laboratory hallmarks have been shown to predict infection,

particularly in more severe cases [61]. Finally, our choice of accepting a 0.10 first type error,

and of consequently reporting 90% confidence intervals, is justified by the exploratory nature

of our study, but at the same time likely generate false positive signals, so limiting discriminant

power of the score.

Three other elements of weakness should be acknowledged. First, the lack of data regarding

the clinical outcome experienced by SARS-CoV-2 positive patients in terms of home isolation,

hospitalization and admission in intensive care. Second, because few people aged less than 30

years were diagnosed to be affected by SARS-CoV-2 infection during the investigated period,

and few of them suffered from chronic conditions such as those considered in our study,

patients with less than 30 years were excluded from the analysis. Although this reduced the

uncertainty of the results, the generalisability of our findings requires extreme caution. Finally,

because data on stays in long-term facilities are not recorded in our database, we cannot

exclude that the higher risks associated with mental disorders observed in our study could be

explained by confounding, i.e., patients who suffered from these conditions are often hospital-

ized in these structures where the risk of infection can be particularly high.

In conclusion, taking the limitations we discussed into account, we identified conditions

and diseases that make people more vulnerable to SARS-CoV-2 infection. These findings con-

tribute to inform public health, and clinical decisions regarding risk stratifying. However, fur-

ther research is need for developing a score reliably predicting the risk, possibly by integrating

healthcare utilization with clinical and biological data.

Our results can be an important tool supporting all clinical and political stakeholders

allowing the identification of the population most at risk of contracting SARS-CoV-2 infection

and facilitating the provision of appropriate preventive/therapeutic measures, especially with

the hypothetic prediction of a new autumn outbreak. Adopting preventive measures can

help to minimize the damage generated by a potential new relapse that the health systems will

face.
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