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Abstract

During the larval stages of development, the imaginal disc of Drosphila Melanogaster is
composed by a monolayer of epithelial cells, which undergo a strain actively produced by
the cells themselves. The well–organized collective contraction produces a stress field that
seemingly has a double morphogenetic role: it orchestrates the cellular organization towards
the macroscopic shape emergence while simultaneously providing a local information on
the organ size. Here we perform numerical simulations of such a mechanical control on
morphogenesis at a continuum level, using a three-dimensional finite model that accounts
for the active cell contraction. The numerical model is able to reproduce the (few) known
qualitative characteristics of the tensional patterns within the imaginal disc of the fruit
fly. The computed stress components slightly deviate from planarity, thus confirming the
previous theoretical assumptions of a nonlinear elastic analytical model, and enforcing the
hypothesis that the mechanical stress may act as a size regulating signal that locally scales
with the global dimension of the domain.

1 Introduction

The Drosophila Melanogaster, commonly known as ”fruit fly”, has been extensively studied
over the last decades as a system model in developmental biology. During the larval stages of

1



development, it is composed by a monolayer of few tens of endothelial cells, also known as the
wing imaginal disc. Morphogenetic events later control cell division, death and rearrangement
in a spatially coordinated manner, giving rise to the three-dimensional (3D) adult wing, which
is a folded structure with a macroscopic size, eventually made of several thousands of epithelial
cells. The control in shape and size in the imaginal disc is still a very debated matter among
biologists. In particular, it has not yet been fully understood which communication mechanisms
locally convey the global information about the disc size, so that the individual cells can adjust
and coordinate their mitotic rate during the larval development.

Morphogens are soluble factors produced by the cells themselves which diffuse and degrade at
finite rates and many examples have been identified inside the imaginal disc. Such morphogens
have been considered as natural candidates for size control, since an abnormal growth pattern is
observed in the wing if their expression is somehow inhibited or unregulated. Notwithstanding,
their ability to convey the global information of the size of the wing is controversial: in fact,
they are characterized by a short–range action and, most importantly, in the observed reaction–
diffusion dynamics neither their concentration nor their concentration gradient invariably scale
with size.

A possible mechanism of size control that enforces the due scaling characteristics has been
proposed by Wartlick and coworkers [3], who have intensively focused on the distribution within
the wing imaginal disc of a particular morphogen, the Decapentaplegic (Dpp), in the third larval
stage. Wartlick’s model is based on two experimental evidences:

• The Dpp distribution is described by a reaction–diffusion equation and its spatial dynam-
ics is fast with respect to the growth of the disc: both diffusion and decay of Dpp can be
assumed to be always in mutual equilibrium so that the mass convection due to the ma-
terial displacement caused by the cell duplication process does not affect the morphogen
concentration field c(x, t).

• The cell duplication rate is homogeneous in space.

These experimental observations clearly highlight the conundrum to conciliate an inhomogeneous
morphogen distribution with a homogeneous growth: if the concentration of morphogen diffuses
with a constant diffusivity and decays at a fixed rate, it cannot scale with the organ size. Thus,
Wartlick and coworkers conjectured the existence of a non-degrading molecule that gets diluted
during the cell proliferation. If the degradation rate of Dpp depends linearly on this molecule,
the morphogen concentration might scale as the length of the domain and could possibly trigger
a homogeneous growth. Even if other growing control mechanisms have been proposed only
relying on the concentration of chemical species (as an example, see [5]), a complete explanation
of the size determination of the adult wing uniquely in terms of reactive–diffusive agents still
remains elusive.

Another possible control mechanism relies on the experimental evidence that the epithelial
cells are in a tensional mechanical state during this larval stage, which is generated not by
external loads but by some shape changes of the cells themselves. Hufnagel and coworkers [4]
argued that this mechanical stress might compensate the decay of morphogen concentration in
the periphery of the disc, so that a combination of morphogen diffusion and mechanical effects
might regulate the disc growth.

In a more recent paper, Ambrosi and coworkers [15] proposed a mathematical model prov-
ing that the mechanical stress could convey local information on global size during the wing
morphogenesis. Since the epithelial cells are known to actively deform [7], the presence of an in-
homogeneous active contraction, spatially triggered by the morphogen concentration, was found
to give rise to a stress distribution embedding the key information about the size of the domain.
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According to such a mechanism, all the cells receive the same instructive signal, and therefore
they all display the same behavior and stop their duplication process simultaneously when a
certain threshold is reached.

In a mathematically formal way, let us state that a generic (chemical, mechanical) signal f
can orchestrate the cellular mitosis over a macroscopic affine transformation if it depends on the
principal spatial coordinate in the following form:

f(R, t) = f0(R0)f1(R/R0), (1)

where R and t denote the spatial and temporal variables respectively and R0 = R0(t) stands
for the macroscopic length of the domain. In this scenario, the scalar function f0 provides the
absolute information of the domain size, while the self–similar scalar function f1 is constant for
a given individual cell because of the homogeneous growth process.

Thus, using a nonlinear elastic model and assuming a two-dimensional (2D) plane strain–plane
stress assumption, it has been shown that prescribing an active contraction in an inner circular
portion of the imaginal disc (possibly dictated by the higher concentration of morphogens), the
elastic equilibrium imposes a stress distribution of the form given by (1). Since this active
contraction has been experimentally observed in the circumferential direction [8], the hoop stress
can be exactly expressed in the form (1), it is compressive and grows in each fixed spatial position
as the disc becomes larger. These qualitative results are in agreement with recent experimental
observations [6].

In this work we corroborate and extend this mechanical idea to the case of a fully 3D domain
by applying a novel numerical simulation tool. We adopt a finite element code to determine the
stress pattern induced by an inhomogeneous active contraction in a 3D disc. We consider both an
illustrative geometry, made of a thin circular plate, and the real shape of the wing imaginal disc.
The numerical simulations allow us to explore contractility patterns with increasing complexity:
both radial and biaxial configurations in the morphogens’ concentration can be set on the basis of
line sources possibly determining the active region. The flexibility of the proposed numerical tool
allows us to enforce different symmetries to take into account the experimental reports obtained
by different techniques. In particular, we address both the configuration considered by Nienhaus
et al. [6] and Mao et al. [8], who suggest a radial symmetry in the active strain, and the bilateral
configuration reported by Landsberg et al. [19]. In both cases, we validate numerically in a 3D
geometry the simplifying assumptions that are at the basis of the previous 2D analytical results.

The paper is organized as follows. Basic notions of continuum mechanics are resumed in
section 2. The well–posedness of the mathematical problem and the numerical method are illus-
trated in section 4. Sections 3 and 5 are devoted to the analytical determination and numerical
approximation of the mechanical signal which conveys the information about the length of the
domain in the case of a 2D and 3D domain, respectively. The three-dimensional geometries
considered in section 5 are a thin plane and then the real shape of the wing imaginal disc. The
numerical results on the strain and stress patterns obtained are finally collected and discussed
in section 6, together with some conclusive remarks.

2 Kinematic and constitutive assumptions

Let us consider the imaginal disc as a continuous body B initially occupying a spatial domain
Ω0 ⊆ R3 in the reference configuration. The position vector in the reference configuration
is indicated by the material vector X. Let ϕ denote the motion function that describes the
deformation between Ω0 and the current configuration Ω, so that the spatial position vector is
given by:

x = ϕ(X, t),
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therefore the displacement field reads:

u(X, t) = x−X = ϕ(X, t)−X.

The deformation gradient tensor F is the material gradient of the motion:

F(X, t) =
∂ϕ(X, t)
∂X

= Gradx(X, t) = I + Gradu,

where I is the identity matrix, and

J(X, t) = det F(X, t),

is the determinant Jacobian of the transformation, describing the change from the infinitesimal
volume dX in the reference configuration to the infinitesimal volume in the actual configura-
tion J(X, t) dx.

Since the epithelial cells are mainly composed by water, the incompressibility constraint
applies:

J = 1 for every X ∈ Ω0.

In nonlinear elasticity, it is useful to describe the deformation introducing the left Cauchy–Green
tensor C, the right Cauchy–Green tensor B and the Green strain tensor E, defined as:

C = FTF, B = FFT, E =
1
2

(C− I).

The local balance of the linear and angular momentum, in the actual configuration and in absence
of external forces and inertia, rewrites:

div T = 0, for x ∈ Ω,
T = TT ,

Tn = 0, on ΓN,

(2)

where div is the spatial divergence operator, T is the Cauchy stress tensor, ΓN is the traction–
free portion of boundary, and n is its outward normal. Using the Piola’s transformation, the
equilibrium equations (2) in the material configuration read:{

Div FS = 0, for X ∈ Ω0,

FSN = 0, for X ∈ ΓN,
(3)

where Div is the material divergence operator, N is the outward normal in the reference config-
uration, and S is the second Piola–Kirchhoff tensor, defined as:

S = JF−1TF−T.

The disc will be considered as an hyperelastic body, so that the second Piola–Kirchhoff tensor
can be described by the means of a scalar strain–energy density function W : Ω0 × Lin+ → R+,
such that:

S = 2
∂Ŵ
∂C

where Ŵ(X,C) = Ŵ(X,FTF) = W(X,F). We remark that for any choice of Ŵ(X,C), S is
always symmetric, since C is symmetric.
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3 The axial-symmetric 2D approximation: analytical re-
sults

The symmetric shape of the wing imaginal disc suggests to sketch it as a circular disc spanned
by a polar system of coordinates (R,Θ). The disc can be therefore modelled as a circle of radius
R0, so that the displacement field u has radial component only: u = u(R).

The force per unit surface actively produced by the cells is mathematically encoded in an ac-
tive strain formulation, formally corresponding to a multiplicative decomposition of the gradient
of deformation tensor into two contributions: a passive elastic term Fe and an active term Fa, so
that

F = FeFa. (4)

The active component Fa requires further constitutive assumptions, whilst the hyperelastic strain
energy uniquely depends on Fe = FF−1

a .
We assume that the wing imaginal disc is made of an incompressible isotropic neo–Hookean

material, characterized by the following strain–energy function:

Ŵ(Ce) =
µ

2
(
tr Ce − 3

)
=
µ

2
(
C : C−1

a − 3
)
, (5)

where µ is the shear modulus, Ce = FT
e Fe and Ca = FT

a Fa.
The active strain Fa can be spatially triggered by the morphogens’ concentration, which

evolves in time following a reaction–diffusion dynamics and typically generates a short-range sig-
nal. Let Ri � R0 be the distance from the center of the disc where the morphogen concentration
is not anymore detectable by the cells, we suppose that tissue actively deforms for R < Ri, while
it behaves like inert matter elsewhere. According to some recent experimental observations [2, 6],
we assume that Ri scales as R0, which implies that the ratio Ri

R0
remains a constant during the

whole developmental process. It follows that Fa = I for R > Ri, while it has to be prescribed in
a different way according to the observed cell shape distortion in the inner region, which we call
the active region.

On the basis of the reported observations [8], we assume that Fa in the active region is given
by

Fa =
[
δ 0
0 γ

]
where δ and γ account for microstructural active strain in the radial and circumferential direction,
respectively. Denoting by u = r(R)−R the radial displacement, we impose the incompressibility
constraint det Fe = 1, and the following interface and boundary conditions for the displacement:

u(0) = 0, u(r−i ) = u(r+
i )

Trr(r0) = 0, Trr(r−i ) = Trr(r+
i ).

Solving the stress balance equations (2), the radial and hoop components of the Cauchy stress
can be expressed as a function of the material coordinate R as:

Trr = Trr(R0) + µ

(
δ

γ
− γ

δ

)
log
(
R

R0

)
, (6)

Tθθ = µ

(
δ

γ
− γ

δ

)(
1 + log

(
R

Ri

))
+ Trr(R0), (7)

5



for R ∈ (0, R0) and

Trr =
µ

2

[
log
(

(R2
0 + 2κR2

i )(R
2 + κR2

i )
(R2 + 2κR2

i )(R
2
0 + κR2

i )

)
+ κR2

i

R2 −R2
0

(R2
0 + 2κR2

i )(R2 + 2κR2
i )

]
, (8)

Tθθ = µ

[
R2 + κR2

i

R2
− R2

R2 + κR2
i

+
κ

2
R2
i

R2 −R2
0

(R2
0 + 2κR2

i )(R2 + 2κR2
i )

+
1
2

log
(

1 +
κR2

i (R
2 −R2

0)
(R2 + 2κR2

i )(R
2
0 + κR2

i )

)]
, (9)

for R ∈ (Ri, R0), where we have set κ = γδ − 1.
Since we assume that Ri � R0, the cells in R > Ri are subjected to a hoop stress given by

equation (9), that can be rewritten as:

Tθθ = R2
i f1

(
R

Ri

)
+ f2

(
R

Ri

)
. (10)

For a constant ratio Ri/R0, the hoop stress at each given material point provides an information
about Ri. Summarizing, the hoop stress produced by the cell contraction in an active region
that scales with the domain size: thus, it is a plausible candidate to orchestrate a homogeneous
growth of the disc.

The stress field solution of equations (6)–(9) is represented in figures 1 and 2. These results
are in agreement with experimental data [6], showing how high stress values arise in the central
region of the disc, which increase for each fixed position for a growing domain.

4 Variational formulation and numerical method

The determination of the 3D stress generated by the active cellular contraction in the real
geometry of the imaginal disc can be only tackled using a numerical procedure. In this section we
illustrate the basic ingredients of the numerical approximation; while the results of the numerical
simulations will be discussed in the following section.

For a hyperelastic material over a domain Ω0 in the reference configuration, the determination
of the elastic solution of the balance equations (3) is equivalent to minimize the strain–energy
functional that constitutively defines the material. The well–known results from the calculus
of variations state that, given a properly defined Sobolev space V , the problem of finding an
admissible displacement u such that the functional

F(u) :=
∫

Ω0

Ŵ(X,Ce) det Fa dX (11)

is stationary can be solved if the functional is quasi–convex [20]. A necessary condition for the
quasi–convexity of the functional is the rank–one convexity, which implies the strong ellipticity.

The strain–energy for the imaginal disc is assumed to be given by an incompressible neo–
Hookean law, as in equation (5), and the active contraction is transversely isotropic along the
principal direction defined by the unit vector f ,

Fa = γf f ⊗ f + γt
(
I− f ⊗ f),

where γf and γt are the distortion in the principal and transverse direction, respectively. Sub-
stituting the latter expression into (5) we obtain:

Ŵ(Ce) =
µ

2
(tr Ce − 3) =

µ

2

[
1

γ2
fγ

2
t

(
γ2
f tr C + (γ2

t − γ2
f ) Cf · f

)
− 3

]
.
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Rank–one convexity [10] and polyconvexity [14] can be easily shown for this type of strain–energy,
as long as γt ≥ γf > 0.

The incompressibility is handled by means of a Lagrangian multiplier p ∈ Q ⊂ L2(Ω0) which
enforces the constraint det Fe = 1. It is however numerically convenient to rewrite the strain–
energy in terms of the tensor

F̄e = (det Fe)−1/3Fe, C̄e = (det Ce)−1/3Ce,

so that the function the strain energy function is well defined also for compressible materials.
Although this redefinition has no substantial effect at a continuum level, it is crucial for the
numerical discretization, where in general is not possible to enforce the constraint pointwise, thus
ensuring that the strain–energy is correctly evaluated everywhere [11]. The modified functional
reads:

Finc(u, p) :=
∫

Ω0

We(X, C̄e) det Fa dX −
∫

Ω0

p (J − det Fa) dX. (12)

The characterization of the stationary point (u, p) ∈ V ×Q of (12) is obtained from the first
variation of the functional (12), which reads:∫

Ω0

S : sym(FT Gradη) dX −
∫

Ω0

q (J − Ja) dX = 0, for every (η, q) ∈ V ×Q, (13)

where Ja = det Fa, sym ◦ is the symmetric part of the argument and S is the second Piola–
Kirchhoff tensor. For the case of the imaginal disc, the Cauchy stress tensor is given by:

T =
J

5/3
a

J

µ

γ2
fγ

2
t

dev
[
γ2
f B̄ + (γ2

t − γ2
f ) B̄f ⊗ f

]
− p I, (14)

where dev(·) is the deviatoric operator, returning the trace–free part of its argument.
The numerical discretization of the variational problem (13) proceeds as prescribed by the

finite element method, by selecting finite dimensional subspaces Vh and Qh of V and Q, respec-
tively. The nonlinear problem is then solved by means of the Newton’s method, which requires
the linearized variational problem. We implemented the numerical code in the FEniCS frame-
work [16], with quadratic finite elements for the displacement and linear finite elements for the
pressure on a tetrahedral (or triangular) mesh.

We conclude this section by mentioning that our implementation can take advance of possible
symmetries of the problem. For instance, in the case of the thin disk, described in the next section,
we restrict the problem to the set of axisymmetric solutions of the form:

r = R+ uR(R,Z),
z = Z + uZ(R,Z),
θ = Θ,

where (r, z, θ) ∈ Ω and (R,Z,Θ) ∈ Ω0. In this case, the physical components of the deformation
gradient tensor are:

F =


1 +

∂uR
∂R

∂uR
∂Z

0

∂uZ
∂R

1 +
∂uZ
∂Z

0

0 0
r

R

 ,
while the variational formulation is modified by substituting dX with 2πR dX and integrating
only over one section (R,Z) in Ω0.
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5 The 3D imaginal disc: geometry and experimental facts

The 2D stress fields analytically determined in section 3 qualitatively reproduce some key exper-
imental observations, thus providing a possible communication mechanism for size orchestration.
Nevertheless, the two dimensional approximation is to be validated by a quantitative comparison
with the results of the 3D numerical simulations. Here we consider different shapes of the active
region, with different active contraction in 3D domains: namely a thin cylinder and the real wing
imaginal disc shape.

Even if we are aware of the very complex signaling pathways that occur in the imaginal disc
during its development, here we do not address in details such a signaling dynamics. In our
work we are interested in the presence of soluble factors only in view of their mechanical role;
we therefore restrict the discussion on morphogenetic gradients at the minimum degree of detail
as necessary for our purpose. In the next paragraph, we start our analysis by summarizing the
main known features of the morphogens’ diffusive dynamics, with a particular focus on the shape
and position of the source lines of the soluble factors which generate the symmetries that we
exploit in our modeling approach.

5.1 Sources and patterns of morphogens in the wing imaginal disc

Three different regions can be identified within the wing imaginal disc: the notum (proximal),
the hinge (central) and the pouch (distal) (see figure 4). The notum will give rise to the torax
of the fruit fly, the pouch to the wing and the hinge to the flexible region between the two.

Among many others, two morphogens play a major role in the developmental biology litera-
ture: the Decapentaplegic (Dpp) and the Wingless (Wg). The Dpp source is located along the
anterior–posterior boundary, the longitudinal axis that divides the disc into two almost equal
parts, spreading within the monolayer from a thin central stripe. The production rate, the effec-
tive diffusion coefficient and the degradation rate of Dpp have been measured experimentally [1].
The spatial dynamics of Dpp is fast with respect to the growth of the disc: diffusion and decay
of Dpp can be assumed to be always in mutual equilibrium so that the mass convection due to
the material displacement caused by the cell duplication process does not distort the morphogen
concentration field c(x, t). According to recent studies, the Dpp profile scales in space with the
disc length and the morphogen concentration adapts to disc size [3, 2]. Notwithstanding, such
an experimental observation is criticized by other groups [4]. The biophysical properties of Wg
are less known. Like the Dpp, it is a molecule that diffuses away from a localized source to
directly instruct cell identity in a concentration–dependent manner, but its distribution in the
wing imaginal disc is not as regular as the one for Dpp. It is expressed in two ring–like domains
in the hinge region, along the dorsal–ventral line, which is orthogonal to the anterior–posterior
one and passes through the center of the pouch, and in a broad band in the dorsal part of the
disc.

According to several authors [12, 4, 18], the composition in the concentration of Dpp and
Wg in the wing pouch can be identified as the instructive signal that regulates the disc growth,
produced at the intersection of the two line sources.

5.2 Inhomogeneous active strain in a circular disc

We first consider a simplified model of the imaginal wing disc as a thin circular disc composed
by a soft elastic material. The domain Ω0 is therefore initially characterized by radius R0 and
thickness h, respectively, where from experiments that h/Ro ≈ 0.04. A cylindrical material
coordinate system (R,Z,Θ) is consistently used. In the following, two different symmetries for
the morphogenetic control will be discussed.
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5.2.1 Central point source of morphogenetic control

An active region with cylindrical symmetry is generated by a central point source, possibly
located at the intersection between the line sources of Dpp and Wg, as depicted in figure 4.
The assumption of a radial symmetry is also corroborated by the distribution of the cells in the
wing imaginal disc [9] and by the presence of Dachs. In fact, according to [8], the localization
of the atypical myosin Dachs correlates with the orientation of cell division and tissue growth in
the developing fly wing. Being localized at the distal side of each cell’s apical surface, the cells
consequently tend to grow preferentially along the P–D axis, forming elongated shapes before
dividing (see figure 3).

In the wing of the adult Drosophila, the P–D axis is perpendicular to the anterior–posterior
axis, but during the larval stages it can be approximated as a line that goes from the center
to the periphery of the wing imaginal disc, as established by the combined action of signals
emanating from the anterior–posterior and the dorsal–ventral compartments [17]. In our frame
of reference, the P–D line is described by the radial axis, therefore the elongation along P–D,
in the presence of an incompressible material, is compatible with a circumferential contraction.
Therefore, we impose that cells actively contract in the circumferential direction within the region
R < Ri < R0, where we employ a multiplicative decomposition of the deformation gradient tensor
F, whose active part in cylindrical coordinates rewrites

Fa = I + (γ − 1) eΘ ⊗ eΘ, (15)

with γ ∈ (0, 1] and eΘ is the spatial unit vector in the circumferential direction. For this case,
owning that J = det Fa = γ, the Cauchy stress tensor (14) reads:

T = µdev(B) + µ
1− γ2

γ2
dev(B) eΘ ⊗ eΘ − p I.

For R > Ri the material only produces a passive elastic response, i.e. γ = 1, while for R < Ri
the material is subjected to an active contraction with γ < 1. In R = Ri a discontinuity in the
material parameters is present. To overcome numerical issues around this sharp interface, we
adopt a smoothed γ of the form:

γ(R) =
1− γ

2

[
1 + tanh

(
R−Ri

ε

)]
+ γ

and we refine the mesh around R = Ri in order to correctly solve the boundary layer.
The deformation and stress fields resulting from numerical simulation, performed with γ =

0.85, Ri = 150 µm, Ro = 3Ri, and h = 30 µm, are shown in figure 5 and 6, respectively. We
remark that even if the assumption Ri � R0 still remains valid, in the following figures we have
reduced the difference between Ri and R0 with respect to the real one in order to provide a
better graphical representation of the results.

The radial and hoop stress components in numerical simulations are depicted in figure 7, and
they strongly resemble the corresponding ones in the 2D case. In fact, they are both compressive
in the active region, where their magnitude is higher than in the rest of the domain, the axial
stress is much smaller than the other components, and none of them changes significantly along
z. These numerical results corroborate the assumptions at the basis of our 2D previous planar
model.

In every fixed point of the material framework, compression (tension) grows as far as the
domain grows. This is in agreement with the calculations carried out with the planar model and,
most important, with the experimental observations [6] (see figure 7).
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5.2.2 Line source of morphogenetic control

Even if we are not able to identify the specific morphogens triggering the active contraction, we
know something about their patterns, since some of them are produced along lines that have
been identified in the wing imaginal disc. These source lines can break the axial symmetry of
the problem, so that the concentration field becomes genuinely 3D. This scenario, which is hard
if not impossible to tackle by analytical tools, can be investigated using the results of the nu-
merical simulations. We therefore further assume that the activating morphogen (possibly Dpp)
regulates the tissue growth and concentrates in a thin stripe centered in the anterior–posterior
axis, which corresponds to the active region. This setting is supported by the experimental
results of Landsberg and coworkers [19]. Starting from the observation that cells which belong
to the anterior (posterior) compartment do not mix with the ones of the posterior (anterior)
compartment, they argue that the tension along the anterior–posterior boundary is higher than
in the other regions of the disc. Using a laser to cut the disc along different lines and observing
the tissue displacement, they estimated that the mechanical tension along the anterior–posterior
boundary is approximately 2-5 times bigger than in the rest of the tissue. Using a Cartesian
frame of reference (x, y, z) with origin in the center of the disc, such that the disc is symmetric
about the plane z = 0, and representing the anterior–posterior axis by the y–axis, the active
region is defined by |x| < Lc, with Lc � R0. Within this region we impose an active contraction
along the y–axis. In this case, the tensor that describes the active contraction is expressed in a
Cartesian basis and reads

Fa = I + (γ − 1) e2 ⊗ e2.

The computed stress distribution for γ = 0.85 is shown in figure 8. This result partially contrasts
with photoelasticity measurements where the stress distribution in the disc does not exhibit such
a bilateral symmetry. While further experimental data are needed to characterize the stress
pattern, we remark that the flexibility of the numerical method is in the ability to incorporate
different active region: a central stripe of the disc or with a radially symmetric area in the wing
pouch.

5.3 Real geometry of the wing imaginal disc

Finally, we consider the real 3D geometry of the wing imaginal disc, with a cylindrical active
region centered in the pouch bounded by the material coordinate R < Ri. The wing imaginal
disc is a thin 3-D structure, whose thickness h is much smaller that the length of the anterior–
posterior and dorsal–ventral axes. The origin of the cylindrical system of coordinates is located at
the intersection between the anterior–posterior and the dorsal–ventral axes, so that the domain
is symmetric above the plane z = 0. In the region delimited by a radius Ri � R0 we impose an
active contraction as defined in equation (15), while Fa = I for R > Ri. As previously assumed,
the material is neo–Hookean and incompressible. We impose in numerical simulations that the
material point in the origin has zero displacement, also fixing null rotation and no load applied
at the boundary. We have run our finite element solver to find the solution of the stress balance
equation. The results are reported in figures 8 and 9.

As expected, the magnitude of the stress is considerably higher in the center than in the
periphery of the disc and for small values of R the disc is under compression both in radial and
hoop components; moreover the magnitude of the z–component of the stress is negligible with
respect to the others. We can conclude that the results we had obtained with a 2–D domain are
able to qualitatively capture the essential stress behavior of a realistic 3D geometry. The results
of our numerical simulations are reported in figures 9, and can be compared with the existing
stress measures reported from photoelasticity experiments, which are reproduced in figure 10. We
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can notice that the pattern of the stress obtained experimentally can be qualitatively reproduced
by our numerical simulations.

6 Final remarks

The 3D stress field produced by the cells contractility in a wing imaginal disc of the fruit fly
has been computed using a finite element code under the assumption that the cell monolayer
behaves elastically on the time scale of interest.

The first result of this work is a validation of analytical results previously obtained on the
basis of an assumption of plane strain. Our simulations confirm that the planar components
of the stress in the fully 3D setting strongly resemble the ones obtained in the 2D case, thus
confirming that the planar axialsymmetric approximation is able to catch the relevant features
of the stress distribution. Moreover, the z–components of the computed stress is much smaller
than the other components and do not significantly vary along the thickness, thus supporting
the simplifying 2D assumptions. The quasi planarity of the solution therefore confirms that the
stress or its gradient can be a mechanical signal that provides information to the cells about
the growth of the wing imaginal disc, thus providing a suitable control mechanism on its final
size. This signal is compatible with the experimentally observed homogeneous growth, since it
changes in time for each individual cell as a function of the domain length: when the proper
domain size is reached, all the cell receive the same signal and they simultaneously slow down
their duplication, eventually stopping.

In our 3D numerical simulations the wing imaginal disc is first modeled by a thin cylinder
and then represented by its real shape. In both cases the axial stress is negligible compared to
the other components and this result validates the analytical solutions obtained in the plane.

The second result of this work is that the numerical simulations reproduce a stress pattern
in qualitative agreement with recent experimental observations. The adopted radial symmetry
seems to be the most suitable choice at the light of some experimental results [6, 8], supporting
the strategy to approximate analytically te imaginal disks as circles of radii R0 and Ri < R0,
respectively. Moreover, the flexibility of the numerical framework allows us to manage different
shapes of the active region. In contrast with works that report a stress magnitude that decreases
as the distance from the center of the domain increases [6], some studies suggest a bilateral stress
distribution because they reproduce a tension that is maximum along the anterior–posterior
boundary [19].

The mathematical model contains a very limited number of material and biological param-
eters (the shear modulus, the micro-strain ratio, the radius of the active region). More experi-
mental data are definitely needed to determine the values of the stress components in the wing
imaginal disc, however our model seems encouraging for its flexibility in incorporating further
mechanobiological information as soon as available.
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Figure 1: Plot of the radial, circumferential and axial Cauchy stress components (in kPa) versus
the actual radial coordinate r at different domain size obtained using a neoHookean strain energy.
Material parameters are µ = 30 kPa, δ = 1 and γ = 0.85. As expected, the radial stress is
continuous, while the hoop stress jumps across the interface ri and changes sign (from compressive
to tensional.)
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Figure 2: Plot of the radial and circumferential Cauchy stress components (in kPa) versus the
actual radial coordinate r at different values of the parameter γ, corresponding to different
intensity of the cell contraction. Material parameters are µ = 30 kPa and δ = 1. The lower the
value of γ, the higher the opaqueness of the curve. Notice that the interface is located at fixed
Ri = 100, but the spatial coordinate ri(Ri) moves to the left for growing contractility

Figure 3: Cell growth, shape, and division in an isotropic (top) and polarized (P–D axis) fashion,
generated by Dachs gradient (bottom). Figure adapted with permission from [8].

Figure 4: Schematic of a portion of the wing imaginal disc. The proximal and the distal regions
are specified by the blue and grey colors, respectively. The Dpp source along the anterior–
posterior boundary is marked by the yellow line, while the Wg source along the dorsal–ventral
boundary by the red line. Figure adapted with permission from [17].
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Figure 5: Reference and deformed configuration of a section of the imaginal disc. The red
shaded area is the active zone, while the grey area is the purely passive one. The total length is
roughly the same, and the displacement in the Z direction is small with the respect to the radial
deformation. Geometrical and material parameters are Ri = 150 µm, Ro = 3Ri, h = 30 µm,
µ = 30 kPa and γ = 0.85.

Trr

Tθθ

Tzz

Trz

−4.3 −3.7 −3.0 −2.3 −1.7 −1.0 −0.3 +0.3 +1.0 +1.7 +2.3 +3.0 +3.7 +4.3

Figure 6: Contour plot of the stress components (in kPa) in a radial section of the imaginal
disc. In the active region, the stress magnitude is higher than in the passive zone, where it
rapidly approaches zero while getting closer to the outer boundary. Geometrical and material
parameters are Ri = 150 µm, Ro = 3Ri, h = 30 µm, µ = 30 kPa and γ = 0.85.
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Figure 7: Plot of the Cauchy stress tensor components Trr, Trz, Tθθ and Tzz along the radial
coordinate at θ = 0 and z = 0. All these components are negative at the origin, where they are
unbounded at the origin. Tθθ moves from compressive to tensile within the active region and it
reaches the maximum at R = Ri, where it is discontinuous and drops to a negative value. In
the passive region, its magnitude is considerably lower then in the active one. Trr is a negative
increasing function of the radius and its first derivative with respect to r approaches zero after
R = Ri. The magnitude of Tzz is everywhere much smaller than the magnitudes of Tθθ and Trr.
Geometrical and material parameters are the same as in Figure 6.
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Figure 8: Color plot of the stress distribution (in kPa) computed with active contraction triggered
by a Dpp concentration threshold. The active region corresponds to a stripe centered in the
anterior–posterior axes and whose thickness is taken to be one tenth of the disc diameter. A
bilateral symmetry is found in the stress distribution. The disc diameter is 300 µm and its
thickness is h = 15 µm. Material parameters are µ = 30 kPa and γ = 0.85.
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Figure 9: Colour plot of the stress distribution (in kPa) for a slice at z = 0 of a wing–shaped
domain. The active contraction occurs in a region with a diameter of 300 µm. In the active
region, the stress magnitude is higher than in the passive one, where it approaches zero. Material
parameters are µ = 30 kPa and γ = 0.85.
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Figure 10: Distribution of retardance in a normal, late stage third instar wing disc. The retar-
dance is highest in the centre of the imaginal wing disc, showing that this region is subjected to
the highest compression. Figure taken from [6].
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