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Abstract

A semi-implicit and semi-Lagrangian Discontinuous Galerkin me-
thod for the shallow water equations is proposed, for applications
to geophysical scale flows. A non conservative formulation of the
advection equation is employed, in order to achieve a more treat-
able form of the linear system to be solved at each time step. The
method is equipped with a simple p−adaptivity criterion, that al-
lows to adjust dynamically the number of local degrees of freedom
employed to the local structure of the solution. Numerical results
show that the method captures well the main features of gravity
and inertial gravity waves, as well as reproducing correct solutions
in nonlinear test cases with analytic solutions. The accuracy and
effectiveness of the method are also demonstrated by numerical re-
sults obtained at high Courant numbers and with automatic choice
of the local approximation degree.
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1 Introduction

The Discontinuous Galerkin (DG) method, after proving itself
a very valuable tool for applications to high Mach number aerody-
namics (see e.g. [2], [3], [7], [8], [9]), has also become increasingly
popular for applications to geophysical flows. Indeed, its appealing
combination of high order accuracy, local mass conservation and
ease of massively parallel implementation have turned it into one
of the possible choices for next generation climate and NWP dy-
namical cores, as well as for other environmental fluid dynamics
applications, see e.g. [13], [17], [26].

One of the main drawbacks of DG discretizations, however, is
that, when coupled to standard explicit time discretizations, they
imply rather severe stability restrictions. Denoting by C the Courant
number and by p the order of the polynomial basis employed, the
equivalent of the standard Courant-Friedrichs-Lewy stability con-
dition turns out to be C ≤ 1/(2p + 1), as proven e.g. in [7]. If
high order spatial discretizations are envisaged, this is quite restric-
tive and implies a serious computational burden, that may lead to
question the overall effectiveness of DG methods for real time, op-
erational NWP models or for long range climate simulations.

Traditionally, remarkable efficiency gains have been achieved in
NWP models by application of semi - implicit (SI) and semi - La-
grangian (SL) techniques. The combination of these two approaches,
starting with the seminal work by André Robert [34], has produced
a number of efficient SISL models for a number of environmental
applications, see e.g. [4], [11], [12], [33], [39], [42], [43], [44].

In previous work [30], [31], [32], we have presented the first at-
tempts at increasing the efficiency of DG methods by separate ap-
plication of either SL or SI techniques. The aim of this paper is to
present a complete semi - implicit and semi - Lagrangian Discon-
tinuous Galerkin (SISLDG) discretization approach for low Mach
number, compressible fluid dynamics problems. To further increase
the efficiency of the proposed method, the flexibility of DG dis-
cretization with respect to the local number of degrees of freedom
is fully exploited, by introducing a simple p−adaptivity strategy
that allows to change dynamically the number of degrees of free-
dom used in each element, without degrading the overall accuracy
of the method.

In section 2, the shallow water equations are introduced as a
model problem. In section 3, we define the finite element spaces
used then in section 4 to introduce the SISLDG discretization of
the shallow water equations. In section 5 the algorithm for p−
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adaptivity is presented. Numerical results are presented in section
6, while in section 7 we try to draw some conclusions and outline
the path towards application of the concepts introduced here in the
context of a complete multidimensional dynamical core.

2 The shallow water equations

We will consider as a model problem the two-dimensional shallow
water equations with rotation in cartesian coordinates,

∂η

∂t
+
∂(uh)

∂x
+
∂(vh)

∂y
= 0

Du

Dt
= −g ∂η

∂x
+ fv (1)

Dv

Dt
= −g∂η

∂y
− fu.

Here, D
Dt denotes the Lagrangian derivative

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
,

η is the free surface elevation, g is the acceleration of gravity, f is
the Coriolis parameter, h = η−b, where b is the bathymetry profile,
u is the velocity in the coordinate direction x and v is the velocity
in the coordinate direction y. These equations are a standard test
bed for numerical methods to be applied to the full equations of
motion of atmospheric or oceanic circulation models. It should be
observed that the continuity equation is kept in conservation form,
in order to obtain a mass conservative method, along the lines of
the approach pursued e.g. in [4],[5],[12].

3 Discontinuous finite element spaces

The discretization approach proposed in this work is independent
of the nature of the mesh and could also be implemented for fully
unstructured and even non conforming meshes. For simplicity, how-
ever, in this paper we only consider implementations on structured,
Cartesian meshes. Therefore, we assume that equations (1) are to
be solved on a rectangular domain Ω = (a, b)× (c, d) with appropri-
ate initial and boundary conditions. The domain Ω is partitioned in
N non overlapping quadrilateral elements KI , I = 1, . . . , N whose
width is denoted by (∆xI ,∆yI) and such that Ω =

⋃N
I=1KI . We
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denote the domain partition as Th = {KI : I = 1, . . . , N} , where
h = maxI(diamKI). The center of the generic element KI is de-
noted by (xI , yI), while (xI±1/2, yI±1/2) denote its corners. The
four edges of the element KI are labelled as eS,I , eE,I , eN,I , eW,I (see
figure 1). It is immediate that each KI is the image of the master
element K̂ = [−1, 1]× [−1, 1] via the affine local map FI , such that
x = FI,1(ξ1) = ξ1∆xI/2 + xI , y = FI,2(ξ2) = ξ2∆yI/2 + yI , where

(x, y) ∈ KI and (ξ1, ξ2) ∈ K̂. For a non-negative integer p, we de-
note by Qp the set of all polynomials of degree less or equal to p in
each coordinate on K̂. We will also define

Qp(KI) =
{

w : w = v ◦ F−1
I , v ∈ Qp

}

.

For each I, we denote by the non-negative integer pI the local poly-
nomial degree on KI and we set

p = {pI : I = 1, . . . , N} .

We then consider the finite element space:

Vh,p =
{

v ∈ L2(Ω) : v|KI
∈ QpI(KI ) I = 1, . . . , N

}

. (2)

We will denote by Eh the set of all element boundary edges, which
is naturally decomposed as Eh = Eh,int ∪ Eb, where Eh,int denotes
the element boundary edges that belong to the interior of Ω and Eb
denotes the element boundary edges that belong to ∂Ω. Functions in
Vh,p are in general discontinuous across element boundaries. Thus,
it is convenient to define jump and average operators on each inter-
element edge. For a given edge e ∈ Eh,int there exist two elements
K,K ′ ∈ Th such that e = ∂K ∩∂K ′, hence for each point x ∈ e and
vh ∈ Vh,p, being n∂K,e the restriction of n∂K on the edge e ⊂ ∂K,
we can define

{{vh}} (x) =
1

2

(

vh|K(x) + vh|K ′(x)
)

(3)

[[vh]] (x) = vh|K(x)n∂K,e + vh|K ′(x)n∂K ′,e. (4)

Notice that these definitions, following [1] and [8], are symmetric
with respect to the two elements K,K ′ sharing the boundary point
at which the jump is defined. If instead e ∈ Eh,b, then there exists a
unique K ∈ Th such that e ∈ ∂K and hence we set

{{vh}} (x) = vh|K(x) (5)

[[vh]] (x) = vh|K(x)n∂K,e. (6)
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We now consider the issue of defining a basis for Vh,p. Thanks
to the definition (2), this basis can be defined by first choosing a
basis forQp which induces a set of local bases on the spacesQpI (KI).
The basis of Vh,p is then obtained by collecting the extensions of the
latter functions to zero outside of their corresponding element. In
principle, either Lagrangian or hierarchical bases could be employed.
We will work mostly with hierarchical bases, because they provide
a natural environment for the implementation of a p−adaptation
algorithm, see for example [50].

Hierarchical bases can be defined starting with the one dimen-
sional case. More specifically, let K̂1D = [−1, 1] and consider, for
ξ ∈ K̂1D, the k-th Legendre polynomial, defined recursively by the
three-term recurrence relation:

Lk+1(ξ) =
2k + 1

k + 1
ξLk(ξ)−

k

k + 1
Lk−1(ξ), k = 1, 2, . . .

L0(ξ) = 1, L1(ξ) = ξ. (7)

The Legendre polynomials form an orthogonal basis for polynomials
on K̂1D, since

(Lp, Lq)L2 =

∫ 1

−1
Lp(ξ)Lq(ξ)dξ =

2

2p + 1
δpq.

Notice that this orthogonality property has important numerical
implications for Galerkin type methods, since it not only implies
that all the mass matrices are diagonal, but also gives in general
improved conditioning of the resulting discretizations (see e.g. [20]
or [50] for details). The extension to higher dimensions over quadri-
lateral regions is relatively straightforward, although rather more
involved than the one-dimensional case. Turning now to the two-
dimensional case, for (ξ1, ξ2) ∈ K̂, a hierarchical basis of Qp can be
constructed by taking tensor products of the Legendre polynomials
introduced for the one-dimensional case, so that our basis functions
are of the form Lk(ξ1)Ll(ξ2) for 0 ≤ k, l ≤ p. On regular Cartesian
meshes, the most natural and straightforward way to construct the
two-dimensional basis is by taking products of the one-dimensional
bases.

Finally, a central issue in finite element formulations for fluid
problems is the choice of appropriate approximation spaces for the
velocity and pressure variables. In the context of SWE, the role
of the pressure is played by the free surface elevation. Indeed, an
inconsistent choice of the two approximation spaces may result in
a solution that is polluted by spurious modes (see for example [47]
or [48] for the specific case of SWE or, as a general reference, [28]).
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Although no attempt is made here to analyze this issue at a theoret-
ical level, results available for incompressible flows (see for example
[45] and [38] for the Stokes problem) have shown that Qp − Qp−1

pairs are not only inf - sup stable with respect to the mesh-size, but
also uniformly stable with respect to the polynomial degree p. Since
the applications of interest for the present discretization approach
are essentially in the small Froude number regime, this element pair
will be chosen for the results presented in this paper, see also similar
recommendations in [21]. As a result, different polynomial degrees
will be assumed in each element for the representation of velocity
and pressure variables, specifically

puI = pηI + 1, I = 1, . . . , N (8)

and the notation {φI,l}
(pη

I
+1)2

l=1 , {ψI,m}(p
u
I +1)2

m=1 will be used to denote
the corresponding basis functions ofQpη

I
(KI),Qpu

I
(KI), respectively.

The corresponding global finite element spaces will be denoted by
Vh,pη , Vh,pu, respectively. A similar arrangement has been success-
fully used, investigated and analyzed in the context of continuous
Galerkin discretization of SWE in [49] in the case of low polynomial
degrees. It should be remarked, however, that we have implemented
the proposed model with the freedom to choose either (8) or puI = pηI
and that the model appears to produce correct results also if equal
degrees are employed for the velocity and free surface variables. As
it will be seen in the numerical tests reported in section 6, the ob-
served differences between the two versions of the model have been
marginal in all the tests carried out so far.

4 The semi-implicit, semi-Lagrangian

Discontinuous Galerkin discretization

The problem of a SISLDG discretization of (1) is now addressed.
Following the approach of [4], [5], [6], [32], a semi - implicit, semi -
Lagrangian discretization of (1) can be written as
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ηn+1 − ηn

∆t
= −θ

[∂(un+1hn)

∂x
+
∂(vn+1hn)

∂y

]

(9)

−(1− θ)
[∂(unhn)

∂x
+
∂(vnhn)

∂y

]

un+1 − E(tn,∆t)un

∆t
= −θg ∂η

∂x

n+1

+ θfvn+1 (10)

+(1− θ)gE(tn,∆t)
∂η

∂x

n

+(1− θ)E(tn,∆t)(fvn)

vn+1 − E(tn,∆t)vn

∆t
= −θg∂η

∂y

n+1

− θfun+1 (11)

+(1− θ)gE(tn,∆t)
∂η

∂y

n

−(1− θ)E(tn,∆t)(fun).

Here, the notation Gn(x) = G(x, tn) has been used throughout, θ ∈
[0, 1] is the fixed implicitness parameter of a two time-level averaged
semi-implicit discretization. E is a numerical evolution operator
that approximates the exact evolution operator associated to the
velocity field un = (un, vn) (see e.g. [23], [25]). More precisely, if
X(t, tn+1,x) denotes the solution of

dX(t, tn+1,x)

dt
= un(X(t, tn+1,x) (12)

with initial datumX(tn+1, tn+1,x) = x at time t = tn+1, E(tn,∆t)G
denotes a numerical approximation of G(X(tn, tn+1,x)). Different
methods can be employed to approximate equation (12); in this pa-
per, we have employed a simple Euler method with substepping, see
e.g. [16], [35].

The continuity equation is considered in its Eulerian flux form,
in order to endow the proposed scheme with the mass conservation
property, while the momentum equations are written in advective
form in order to replace the nonlinear advection operator with the
Lagrangian derivative.

We now discretize in space by taking the L2 projection against
the test functions on a given element KI . In particular, following
[18] or the Direct Characteristic Galerkin method proposed in [24],

we use as test functions the basis functions {ϕI,l(x)}
(pη

I
+1)2

l=1 and

{ψI,m(x)}(p
u
I
+1)2

m=1 .
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Notice that in the SISLDG formulation of the SWE system, we
have to consider the numerical evolution operator E(tn,∆t) applied
to the gradient of the free surface elevation η, which is a piece-
wise polynomial function with no global continuity constraints. To
compute this function, we follow the standard local discontinuous
Galerkin method and define first the discrete gradient operator DDDhη
as follows. Given η ∈ Vh,pη , its discrete gradient DDDhη is the unique
element of [Vh,pu]2 such that

∫

KI

DDDhη ·w dx = −
∫

KI

η∇∇∇ ·w dx+

∫

∂KI

η̂w ·n ds ∀w ∈ [Vh,pη ]2.

(13)
Notice that, by integration by parts, we also have

∫

KI

DDDhη·w dx =

∫

KI

∇∇∇η·w dx+

∫

∂KI

(η̂ − η)w·n ds ∀w ∈ [Vh,pη ]2.

Hence, as observed also in [2], it is possible to recast the discrete
gradient operator as the sum of two contributions, the first one
taking into account the elementwise gradient of η, while the second
one taking into account its jumps across the element interfaces. As
a consequence, the discrete partial derivatives of η are defined as:

∫

KI

Dx
hη ψI,m dx = −

∫

KI

η
∂ψI,m

∂x
dx+

∫

∂KI

η̂ψI,mi · n ds (14)

=

∫

KI

∂η

∂x
ψI,m dx+

∫

∂KI

(η̂ − η)ψI,mi · n ds,

for m = 1, . . . (puI + 1)2 and

∫

KI

Dy
hη ψI,m dy = −

∫

KI

η
∂ψI,m

∂y
dx+

∫

∂KI

η̂ψI,mj · n ds (15)

=

∫

KI

∂η

∂y
ψI,m dx+

∫

∂KI

(η̂ − η)ψI,mj · n ds,

for m = 1, . . . (pηI + 1)2, where i, j are the unit vectors along the
coordinate axes, while n is the unit normal vector pointing outward
from ∂KI and η̂ is a numerical flux that will be defined in the fol-
lowing formula (19). The coefficients of the discrete partial deriva-
tives with respect to the chosen local polynomial basis are computed
via the solution of (14) and (15). If orthogonal hierarchical bases
{ψI,m}m are used, this only requires the inversion of diagonal local
mass matrices. Notice that DDDhη could in principle also be defined
as an element of [Vh,pη ]2. Numerical experiments have shown that
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this does not lead to significant changes in the results, so that we
adopted definition (13) for convenience.

We then obtain for each element KI , I = 1, . . . , N :

∫

KI

ϕI,l(x)η
n+1(x)dx =

∫

KI

ϕI,l(x)η
n(x)dx

−θ∆t
∫

KI

ϕI,l(x)∇ ·
(

un+1(x)hn(x)
)

dx

−(1− θ)∆t

∫

KI

ϕI,l(x)∇ ·
(

un(x)hn(x)
)

dx

∫

KI

ψI,m(x)un+1(x)dx = −θ∆tg
∫

KI

ψI,m(x)
[

Dx
hη

n+1
]

(x)dx

+θ∆tfI

∫

KI

ψI,m(x)vn+1(x)dx+

∫

KI

ψI,m(x)
[

E(tn,∆t)un
]

(x)dx

−g(1 − θ)∆t

∫

KI

ψI,m(x)
[

E(tn,∆t) [Dx
hη

n]
]

(x)dx

+(1− θ)∆t

∫

KI

ψI,m(x)
[

E(tn,∆t)fvn
]

(x)dx

∫

KI

ψI,m(x)vn+1(x)dx = −θ∆tg
∫

KI

ψI,m(x)
[

Dy
hη

n+1
]

(x)dx

−θ∆tfI
∫

KI

ψI,m(x)un+1(x)dx+

∫

KI

ψI,m(x)
[

E(tn,∆t)vn
]

(x)dx

−(1− θ)∆tg

∫

KI

ψI,m(x)
[

E(tn,∆t)
[

Dy
hη

n
] ]

(x)dx

−(1− θ)∆t

∫

KI

ψI,m(x)
[

E(tn,∆t)fun
]

(x)dx.

Notice that the Coriolis parameter constant f = fI has been taken
to be constant within a given element KI in order to simplify the
structure of the resulting implicit discretization. This is consistent
with the target of applying the method on relatively high resolution
meshes. After integration by parts in the continuity equation and
use of definitions (14) and (15) in the momentum equations, we
have:
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∫

KI

ϕI,l(x)η
n+1(x)dx− θ∆t

∫

KI

∇ϕI,l(x) · un+1(x)hn(x)dx

+θ∆t

∫

∂KI

ϕI,l(s)û
n+1(s) · n(s)ĥn(s)ds (16)

=

∫

KI

ϕI,l(x)η
n(x)dx+ (1− θ)∆t

∫

KI

∇ϕI,l(x) · un(x)hn(x)dx

−(1− θ)∆t

∫

∂KI

ϕI,l(s)û
n(s) · n(s)ĥn(s)ds,

∫

KI

ψI,m(x)un+1(x)dx− θ∆tg

∫

KI

∂ψI,m

∂x
(x)ηn+1(x)dx (17)

+θ∆tg

∫

∂KI

ψI,m(s)η̂n+1(s)i · n(s)ds− θ∆tfI

∫

KI

ψI,m(x)vn+1(x)dx

=

∫

KI

ψI,m(x)
[

E(tn,∆t)un
]

(x)dx

−(1− θ)∆tg

∫

KI

ψI,m(x)
[

E(tn,∆t) [Dx
hη

n]
]

(x)dx+

+(1− θ)∆t

∫

KI

ψI,m(x)
[

E(tn,∆t)fvn
]

(x)dx,

∫

KI

ψI,m(x)vn+1(x)dx− θ∆tg

∫

KI

∂ψI,m

∂y
(x)ηn+1(x)dx (18)

+θ∆tg

∫

∂KI

ψI,m(s)η̂n+1(s)j · n(s)ds+ θ∆tfI

∫

KI

ψI,m(x)un+1(x)dx

=

∫

KI

ψI,m(x)
[

E(tn,∆t)vn
]

(x)dx+

−(1− θ)∆tg

∫

KI

ψI,m(x)
[

E(tn,∆t)
[

Dy
hη

n
] ]

(x)dx+

−(1− θ)∆t

∫

KI

ψI,m(x)
[

E(tn,∆t)fun
]

(x)dx,

where i, j are the unit vectors along the coordinate axes, while n is
the unit normal vector outward from ∂KI .

Notice that elements of Vh,pη , Vh,pu are not defined on the ele-
ments of Eh,int. Therefore, the resulting boundary terms are indeed

replaced by appropriate numerical fluxes û, v̂, η̂ and ĥ which are
single valued functions of both interface states and thus introduce
the necessary coupling between the unknowns of neighboring ele-
ments. In this work, we will use centered fluxes as in [2]. Therefore,
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using the notation in (4), or each dependent variable a ∈ Vh,pη or
a ∈ Vh,pu we define:

â
∣

∣

e
= {{a}} , ∀e ∈ Eh,int. (19)

Expanding the dependent variables in terms of the basis functions
one has

ηn(x)
∣

∣

KI
=

(pη
I
+1)2
∑

r=1

ϕI,r(x)η
n
I,r, (20)

un(x)
∣

∣

KI
=

(pu
I
+1)2
∑

r=1

ψI,r(x)u
n
I,r vn(x)

∣

∣

KI
=

(pu
I
+1)2
∑

r=1

ψI,r(x)v
n
I,r.

The issue of the appropriate and solution-dependent choice of the
values pηI and puI is addressed in section 5, where a simple but effec-
tive p−adaptivity criterion will be introduced.

Substituting now expressions (20) into the numerical fluxes def-
initions (19) and then also into equations (16)-(18), one obtains the
full space and time discretization of system (1), that can be conve-
niently presented employing a vector notation. We denote by

ηn
I = (ηnI,j)

(pη
I
+1)2

j=1 , un
I = (unm,j)

(puI +1)2

j=1 , vn
I = (vnm,j)

(puI+1)2

j=1

the vectors collecting all the discrete degrees of freedom associated
to element KI . Furthermore, we introduce the local mass matrices
associated to η, u, v, denoted by Mη

I ,M
u
I ,M

v
I respectively. If hier-

archical basis functions are used, these matrices are diagonal and
their entries are given by

(Mη
I )l,r =

∫

KI

ϕI,l(x)ϕI,r(x)dx, (21)

(Mu
I )m,r = (Mv

I )m,r =

∫

KI

ψI,m(x)ψI,r(x)dx,

were obviously one has l, r = 1, . . . , (pηI + 1)2 for η and m, r =
1, . . . , (puI + 1)2 for u, v.

If we consider the partition ∂KI = eS,I ∪eE,I ∪eN,I ∪eW,I , I =
1, . . . , N according to the convention of figure 1, we also define a
number of auxiliary matrices. Specifically, for the continuity equa-
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tion we set:

(Lηu
I )l,r = −1

2

∫

eW,I

ϕI,lĥ
nψIW ,rdy, (Lηv

I )l,r = −1

2

∫

eS,I

ϕI,lĥ
nψIS ,rdx, (22)

(Dηu
I )l,r =

∫

KI

∂ϕI,l

∂x
hnψI,rdx− 1

2

∫

eW,I

ϕI,lĥ
nψI,rdy +

1

2

∫

eE,I

ϕI,lĥ
nψI,rdy,

(Dηv
I )l,r =

∫

KI

∂ϕI,l

∂y
hnψI,rdx− 1

2

∫

eS,I

ϕI,lĥ
nψI,rdx+

1

2

∫

eN,I

ϕI,lĥ
nψI,rdx,

(Uηu
I )l,r =

1

2

∫

eE,I

ϕI,lĥ
nψIE ,rdy, (Uηv

I )l,r =
1

2

∫

eN,I

ϕI,lĥ
nψIN ,rdx;

for the momentum equation along x:

(Luη
I )m,r = −1

2

∫

eW,I

ψI,mϕIW ,rdy, (Uuη
I )m,r =

1

2

∫

eE,I

ψI,mϕIE ,rdy,(23)

(Duη
I )m,r =

∫

KI

∂ψI,m

∂y
ϕI,rdx− 1

2

∫

eS,I

ψI,mϕI,rdx+
1

2

∫

eN,I

ψI,mϕI,rdx,

(Un
I )m =

∫

KI

ψI,m(x)
[

E(tn,∆t)un
]

(x)dx+ (24)

−(1− θ)∆tg

∫

KI

ψI,m(x)
[

E(tn,∆t) [Dx
hη

n]
]

(x)dx+

+(1− θ)∆t

∫

KI

ψI,m(x)
[

E(tn,∆t)fvn
]

(x)dx,

and for the momentum equation along y:

(Lvη
I )m,r = −1

2

∫

eS,I

ψI,mϕIS ,rdx, (Uvη
I )m,r =

1

2

∫

eN,I

ψI,mϕIN ,rdx, (25)

(Duη
I )m,r =

∫

KI

∂ψI,m

∂x
ϕI,rdx− 1

2

∫

eW,I

ψI,mϕI,rdy +
1

2

∫

eE,I

ψI,mϕI,rdy,

(Vn
I )m =

∫

KI

ψI,m(x)
[

E(tn,∆t)vn
]

(x)dx+ (26)

−(1− θ)∆tg

∫

KI

ψI,m(x)
[

E(tn,∆t)
[

Dy
hη

n
] ]

(x)dx+

−(1− θ)∆t

∫

KI

ψI,m(x)
[

E(tn,∆t)fun
]

(x)dx.

Notice that all the local matrices defined in (22), (23) and (25)
are in general rectangular, of dimensions (pηI +1)2×(puJ +1)2, where
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Figure 1: The geometry of the mapping on the reference element K̂ =
[−1, 1]2 and the associated metric information.

J ∈ {I, IS , IE , IN , IW } for matrices defined in (22), while of dimen-
sion (puI + 1)2 × (pηJ + 1)2, where J ∈ {I, IS , IE , IN , IW } for the
matrices defined in (23) and (25). Furthermore, all the matrices
defined in (23) and (25) are time-independent and can be computed
once for all at the beginning of the computation.

After the definitions (22)-(26), the equations (16)-(18) defining
the SISLDG method for the system (1) read in matrix form:

Mη
I η

n+1
I − θ∆t

(

Lηu
I un+1

IW
+Dηu

I un+1
I + Uηu

I un+1
IE

+ Lηv
I vn+1

IS
+Dηv

I vn+1
I + Uηv

I vn+1
IN

)

(27)

=Mη
I η

n
I − (1− θ)∆t

(

Lηu
I un

IW +Dηu
I un

I + Uηu
I un

IE

+ Lηv
I vn

IS +Dηv
I vn

I + Uηv
I vn

IN

)

,

Mu
I u

n+1 − θ∆tg
(

Luη
I ηn+1

IW
+Duη

I ηn+1
I + Uuη

I ηn+1
IE

)

− θ∆fIM
v
I v

n+1
I = Un

I , (28)

Mv
I v

n+1 − θ∆tg
(

Lvη
I ηn+1

IS
+Dvη

I ηn+1
I + Uvη

I ηn+1
IN

)

+ θ∆fIM
u
I u

n+1
I = Vn

I . (29)

As customary in semi-implicit methods, see e.g. [4], [5], [6], [32],
[40], [43], un+1 and vn+1 are expressed in terms of ηn+1 and the
resulting expressions substituted into the continuity equation (27),
in order to obtain a discrete (vector) Helmholtz equation in the
ηn+1 unknown only. If the elements surrounding KI are labeled as
E,N,W,S in counterclockwise order (see figure 2), this equation can
be rewritten as follows:
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KWW
I ηn+1

IWW
+KSW

I ηn+1
ISW

+KW
I ηn+1

IW
+KNW

I ηn+1
INW

+KSS
I ηn+1

ISS
+ KS

I η
n+1
IS

+KIη
n+1
I +KN

I ηn+1
IN

+KNNηn+1
INN +

+KSE
I ηn+1

ISE
+KE

I ηn+1
IE

+KNE
I ηn+1

INE
+KEE

I ηn+1
IEE

= N n
I . (30)

Figure 2: The computational stencil for the semi-implicit step of SISLDG
and the names of the elements surrounding the elements KI .

Here, we have set :

KWW
I = c1,IL

ηu
I (Mu

IW )−1Luη
IW
,

KSW
I = c2,IL

ηu
I (Mu

IW )−1Lvη
IW

− c2,ISL
ηv
I (Mu

IS )
−1Luη

IS
,

KW
I = c1,I

[

Lηu
I (Mu

IW
)−1

(

Duη
IW

+ cID
vη
IW

)

+
(

Dηu
I − cID

ηv
I

)

(Mu
I )

−1Luη
I

]

,

KNW
I = c2,IL

ηu
I (Mu

IW )−1Uvη
IW

− c2,INU
ηv
I (Mu

IN )
−1Luη

IN
,

KSS
I = c1,ISL

ηv
I (Mv

IS
)−1Lvη

IS
,

KS
I = c1,I

(

cID
ηu
I +Dηv

I

)

(Mu
I )

−1Lvη
I + c1,ISL

ηv
I (Mu

IS
)−1(−cISD

uη
IS

+Dvη
IS
),

KI = Mη
I ++c1,IsL

ηv
I (Mv

IS )
−1Uvη

IS
+ c1,I [L

ηu
I (Mu

IW )−1Uuη
IW

+(Dηu
I − cID

ηv
I )(Mu

I )
−1Duη

I + (cID
ηu
I +Dηv

I )(Mu
I )

−1Dvη
I

+Uηu
I (Mu

IE )
−1Luη

IE
] + c1,INU

ηv
I (Mv

IN )
−1Lvη

IN
,

KN
I = c1,I(cID

ηu
I +Dηv

I )(Mu
I )

−1Uvη
I + c1,INU

ηv
I (Mu

IN )
−1(−cIND

uη
IN

+Dvη
IN

),

KNN
I = c1,INU

ηv
I (Mv

IN )
−1Uvη

IN
,

KSE
I = c2,IU

ηu
I (Mu

IE)
−1Lvη

IE
− c2,ISL

ηv
I (Mu

IS)
−1Uuη

IS
,

KE
I = c1,I

[

(Dηu
I − cID

ηv
I )(Mu

I )
−1Uuη

I + Uηu
I (Mu

IE
)−1

(

Duη
IE

+ cIED
vη
IE

)]

,

KNE
I = c2,IU

ηu
I (Mu

IE
)−1Uvη

IE
− c2,INU

ηv
I (Mu

IN
)−1Uuη

IN
,

KEE
I = c1,IU

ηu
I (Mu

IE
)−1Uuη

IE
,
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and defined the right hand side as:

N I = ηn
I +

−∆tLηu
I

[

θc3,IW (Mu
IW

)−1
(

Un
IW

+ cIWVn
IW

)

+ (1− θ)un
IW

]

+

−∆tDηu
I

[

θc3,I(M
u
I )

−1 (Un
I + cIV

n
I ) + (1− θ)un

I

]

+

−∆tUηu
I

[

θc3,IE(M
u
IE
)−1

(

Un
IE

+ cIEV
n
IE

)

+ (1− θ)un
IE

]

+

−∆tLηv
I

[

θc3,IS(M
u
IS
)−1

(

−cISUn
IS

+ Vn
IS

)

+ (1− θ)vn
IS

]

+

−∆tDηv
I

[

θc3,I(M
u
I )

−1 (−cIUn
I + Vn

I ) + (1− θ)vn
I

]

+

−∆tUηv
I

[

θc3,IN (M
u
IN

)−1
(

−cINUn
IN

+ Vn
IN

)

+ (1− θ)vn
IN

]

while constants c1,I , . . . , c5,I are defined by

cI = θ∆tfI, c1,I =
− (θ∆t)2 g

1 + (θ∆tfI)2
, c2,I = cIc1,I ,

c3,I =
1

1 + (θ∆tfI)2
, c4,I =

− (θ∆t) g

1 + (θ∆tfI)2
, c5,I = cIc4,I .

The non-symmetric linear system (30) can be solved using e.g.
the GMRES method [37]. In the preliminary implementation avail-
able so far, only a simple diagonal preconditioning was employed.
Once ηn+1 is known, un+1 and vn+1 can be recovered by substitut-
ing ηn+1 back into equations (28) and (29), respectively.

All the integrals appearing in the elemental equations are eval-
uated by means of Gaussian numerical quadrature formulae with a
number of quadrature nodes consistent with the local polynomial
degree being used. In particular, notice that integrals of terms in
the image of the evolution operator E, i.e. functions evaluated at
the departure points of the trajectories arriving at the quadrature
nodes, cannot be computed exactly (see e.g. [24], [27]), since such
functions are not polynomials. Therefore, a sufficiently accurate ap-
proximation of these integrals is needed, which may entail the need
to employ numerical quadrature formulae with more nodes than the
minimal requirement implied by the local polynomial degree.

5 A simple p−adaptivity criterion

The numerical method described in section 4 can be implemented
taking a constant value for the degree of the polynomials defining
the local basis on each element. However, our aim is to exploit
the great flexibility of the DG spatial discretization by supplying
the method with an automatic criterion to adapt the local number
of degrees of freedom to the nature of the numerical solution. This
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approach to adaptivity is not only quite convenient from the compu-
tational viewpoint, but has in our opinion some specific advantages
for realistic environmental applications. Indeed, in NWP, climate or
ocean models, h−adaptivity approaches (that is, local mesh coars-
ening or refinement in which the size of some elements changes in
time) can be cumbersome in practice, since a great amount of infor-
mation that is necessary to carry out realistic simulations, such as
for example orography/bathymetry profiles, data on land use and
soil type, land-sea masks is (as a rule, painfully) reconstructed on
the computational mesh and has to be re-interpolated each time the
mesh is changed. Furthermore, many physical parameterizations are
highly sensitive to the mesh size. Although devising better parame-
terizations that require less mesh-dependent tuning is an important
research goal, more conventional parameterizations will still be in
use for quite some time. As a consequence, it would be useful to
improve the accuracy locally by adding supplementary degrees of
freedom where necessary, without having to change the underlying
computational mesh. This is exactly what p−adaptivity does. Fur-
thermore, if simulations with a large number of reacting chemical
species are envisaged, as increasingly common in environmental ap-
plications, h−adaptivity approaches may lead to mesh refinement
for all species due to the necessity of greater accuracy for just a few
of them. In p−adaptive approaches, on the other hand, the increase
in the number of degrees of freedom is totally independent for each
species, thus allowing to increase the accuracy for some specific vari-
able without increasing the computational cost for other variables
that do not need refinement.

Various approaches for p−adaptivity have been proposed in the
literature, see e.g. [14], [15], [19], [29]. The technique we employ
is extremely simple and relies on the use of orthogonal hierarchical
tensor-product basis functions. Consider the local ( to the element
KI ) representation of some dependent variable a(x):

a(x)
∣

∣

KI
=

(pα
I
+1)2
∑

j=1

aI,jψI,j(x) (31)

=

paI+1
∑

k=1

pαI +1
∑

l=1

aI,k,lψIx,k(x)ψIy ,l(y),

where I = (Ix, Iy) is a suitable multi-index, relabelling the two-
dimensional elements in terms of the one-dimensional ones and j =
(k, l) is a suitable multi-index relabelling the two-dimensional de-
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grees of freedom in terms of the one-dimensional ones, so that we
can write aI,j = aI,k,l and ψI,j(x) = ψIx,k(x)ψIy ,l(y).

Notice that paI will have different values for each different depen-
dent variable a. Due to the choice of finite element spaces for the
SISLDG discretization, one will have puI = pηI + 1, while the local
degree of the polynomials used for the tracers can in principle be
chosen independently for each different tracer.

If a normalized hierarchical basis is employed, by Parseval’s iden-
tity one will have

E tot = ‖Pa‖2 =

(pa
I
+1)2
∑

j=1

a2I,j =

pa
I
+1

∑

k,l=1

a2I,k,l, (32)

where P is the L2 projector onto the local polynomial subspace.
Combining (32) with the hierarchical property of the basis, for any
integer r = 0, . . . , pa we can define the quantity

Er =
∑

max(k,l)=r

a2I,k,l, (33)

that can be interpreted as the energy associated to the r−th degree
modal components of a

∣

∣

KI
for a given element KI ∈ Th. The degrees

of freedom associated with Er are highlighted in figure 3 in the
plane px−py, where px, py denote the polynomial degrees associated
to the one dimensionals degrees of freedom in the x, y directions,
respectively. Therefore, for any integer r = 0, . . . , paI , the quantity

wr =

√

Er

E tot

will measure the relative weight of the r−th degree modal compo-
nents of a with respect to the best approximation available for the
L2 norm of a. Assuming that a denotes a generic model variable at
the beginning of the computation of a generic time step, the pro-
posed adaptation criterion can be described as follows:

Given an error tolerance ǫI > 0 for each element I = 1, . . . , N, :

1) compute wpI

2.1) if wpI ≥ ǫI , then

2.1.1) set pI(a) := pI(a) + 1

2.1.2) set aI,pI = 0, exit the loop and go the next element

2.2) if instead wpI < ǫI , then

2.2.1) compute wpI−1

18



2.2.2) if wpI−1 ≥ ǫI , exit the loop and go the next element

2.2.3) else if wpI−1 < ǫI , set pI(a) := pI(a) − 1 and go back to
2.2.1.

At the beginning of the simulation, all the variables are initial-
ized with the maximum possible number of local degrees of freedom.
The adaptation algorithm then runs preliminary to any computation
in each new time step, including the first.

As a result, from the first time step only the degrees of freedom
up to the local maximum value are updated. In our simulations, the
tolerance has been kept fixed for all elements and variables, but the
method could be refined by choosing different values for particular
purposes. Although this adaptation criterion is purely heuristic, the
numerical tests reported in section 6 show that it is effective in re-
ducing the computational cost with no essential loss in the accuracy
of the computed solutions. Indeed, in all the test a computational
cost reduction of at least 40% was observed (actually, the reduction
was much larger in some of the tests), while the relative error with
respect to the solution computed employing a fixed number of de-
grees of freedom equal to the maximum allowed value was always
consistent with the value chosen for the error tolerance ǫ.

Figure 3: The region on the px − py plane of the degree of freedom which
contributes to Er.

6 Numerical experiments

The numerical method introduced in section 4 has been imple-
mented and tested on a number of relevant test cases, in order
to assess its accuracy and stability properties and to analyse the
impact of the p−adaptivity strategy on its efficiency. Whenever a
reference solution was available, the relative errors were computed
in the L1, L2 and L∞ norms at the final time T of the simulation as
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Eζ
1 =

‖ζ(·, T )− ζref (·, T )‖L1

‖ζref (·, T )‖L1

, Eζ
2 =

‖ζ(·, T )− ζref(·, T )‖L2

‖ζref (·, T )‖L2

,

Eζ
∞ =

‖ζ(·, T )− ζref(·, T )‖L∞

‖ζref (·, T )‖L∞

,

where ζref denotes the reference solution and the integral norms
are computed by appropriate numerical quadrature rules. In all the
tests reported below, we have used pu = pη + 1, but as remarked
previously only marginal differences were observed if the same num-
ber of degrees of freedom was employed for both velocity and free
surface.

For tests on a closed domain, mass conservation has been checked
by computing at each time level tn the following measure of devia-
tion from the initial mass value:

En
mass =

∣

∣

∫

Ω h
ndx−

∫

Ω h
0dx

∣

∣

∫

Ω h
0dx

.

Values just above the order of machine precision were obtained in
all such tests.

Since we have focused on low Mach/Froude number flows, where
the typical velocity is much smaller than that of the fastest prop-
agating waves (this being also the motivation for the use of semi-
implicit methods), a distinction has been made between the maxi-
mum Courant number based on the velocity the maximum Courant
number based on the celerity, defined as

Cvel = max
|u|∆t
∆x/p

Ccel = max
(|u±

√
gh|)∆t

∆x/p
.

We have taken p = pu in all tests reported in this paper. In order
to assess the efficiency gain given by the the adaptivity strategy, for
each model variable and for each time level tn, the computational
effort reduction has been measured as:

∆n
dof =

∑N
I=1(p

n
I + 1)2

N(pmax + 1)2
,

where N is the total number of elements.
A first accuracy assessment of the proposed scheme has been

carried out in the framework of two non trivial one-dimensional
benchmarks, for which exact solutions are available. Two dimensio-
nal flows on geophysical scale have then been simulated.
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6.1 Riemann problem with continuous solu-

tion

Due to the nature of the semi-Lagrangian method, strong non
stationary shocks cannot be approximated properly. Indeed, it is
well known that an accurate computation of the shock wave speed
can only be achieved if the numerical method is based on the con-
servative form of the momentum equation, while the non conser-
vative formulation is used in the present approach. Therefore, it
is to be expected that discontinuous solutions such as those aris-
ing in the dam break Riemann problem will be reproduced with
incorrect propagation speed, which indeed happens also with our
method. On the other hand, as highlighted in the introduction,
the present kind of numerical technique is aimed at achieving high
computational efficiency for low Mach/Froude number problems,
as those encountered in many typical environmental applications.
Therefore, we consider the Riemann problem for equations (1) with
f = 0 and with initial values yielding an all rarefaction wave so-
lution, specifically h(x, 0) = 2 m, u(x, 0) = −0.5 m/s, x < 0 and
u(x, 0) = 0.5 m/s, x ≥ 0. An expression for the exact solution is
derived e.g. in [22]. This one dimensional problem was solved using
the two dimensional implementation of our method on the domain
[−Lx, Lx] × [0, Ly ] with Lx = 70 m and Ly = 1 m. The initial da-
tum was taken to be equal to the analytical solution of the Riemann
problem at time t = 12 s and the errors were computed at t = 14 s.

Two convergence tests for the spatial discretization were per-
formed. Firstly, the local number of degrees of freedom and the
Courant number were kept constant at Ccel = 0.02, pη = 1, pu = 2
and the number of elements Nx in the x direction was increased pro-
gressively, while the number of elements in the transversal direction
was kept constant at Ny = 5 in all cases.

Results are reported in table 1 , showing that theoretical con-
vergence rates are achieved at low spatial resolution, although the
first order time discretization error dominates as the spatial resolu-
tion increases. The test was then repeated keeping mesh size and
Courant number constant at Nx = 8 and Ccel = 0.02, respectively,
while increasing the degree of the local polynomial spaces. Results
are reported in table 2, showing that the method is convergent,
although the achieved convergence rates are heavily influenced by
the low order time discretization and by the low regularity of the
solution.
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Nx Eη
2 Eη

1 Eη
∞

8 1.91e-2 9.55e-2 7.81e-2
16 5.00e-3 2.59e-2 2.20e-2
32 2.18e-3 9.16e-3 1.22e-2
64 1.12e-3 4.67e-3 6.29e-3
128 5.32e-4 1.99e-3 3.52e-3
256 3.93e-4 1.47e-3 2.49e-3

Table 1: Relative errors on the free surface elevation at fixed Ccel =
0.02, pη = 1, pu = 2 and for increasing number of elements.

pη pu Eη
2 Eη

1 Eη
∞

0 1 3.62e-2 1.73e-1 9.04e-2
1 2 1.92e-2 9.51e-2 7.70e-2
2 3 8.97e-3 5.45e-2 2.57e-2
3 4 4.13e-3 2.58e-2 1.74e-2
4 5 3.21e-3 1.79e-2 1.43e-2

Table 2: Relative error norms on the free surface elevation at fixed ∆x =
2Lx/Nx, Nx = 8, Ccel = 0.02 and for increasing polynomial degree.

6.2 River hydraulics benchmark

To check the performance of the method in a case with non constant
bathymetry, we have considered the open channel flow problem with
a parabolic obstacle placed in the middle described e.g. in [46] and
[36]. An analytic steady state solution can be easily obtained from
the Bernoulli equation. The spatial domain is given by the interval
[0, L] × [0, 1], with L = 25 m, covered with 100 elements of equal
size in the x direction, while again 5 elements were employed in the
y direction. The profile of the parabolic bump is given by:

b(x) =

{

−H + 0.2− 0.05(x − 10)2, if 8 < x < 10

−H, otherwise

The sub-critical steady state regime was considered, achieved by
imposing as inflow boundary condition a discharge Qin = 4.42 m3/s
and as outflow boundary condition a total fluid depth h = 1 m.

The relative errors on the free surface elevation and on the dis-
charge have been computed at time T = 300 s, when the departure
from steady state measured by

Estd
2 =

∥

∥ηn+1 − ηn
∥

∥

L2

‖ηn+1‖L2
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was seen to yield negligible values. The errors were computed for
different time-step sizes that cover a wide range of Courant numbers,
see table 3. It is apparent how the proposed scheme is able to
reproduce correctly the steady state solution even for very large
Courant numbers.

For this configuration, the canonical still water test case has
also been successfully performed over very long integration times,
assuming no flux boundary conditions and taking even very large
time steps. As discussed in [36], methods employing the non conser-
vative formulation of the momentum equation satisfy automatically
the so called C-property and are naturally well balanced, so that
no problems arise due to the variable bathymetry in the still water
case.

∆t Cvel Ccel Estd
2 Eη

∞
Eη

2 EQ
∞

EQ
2

0.00625 0.20 0.33 2.38e-14 2.61e-4 1.58e-4 1.91e-5 1.33e-6
0.0125 0.40 0.66 2.56e-13 3.44e-4 1.83e-4 6.36e-4 3.85e-5
0.025 0.80 1.32 3.13e-12 5.66e-4 1.31e-4 1.23e-3 7.41e-5
0.05 1.56 2.64 6.25e-14 1.28e-3 2.54e-4 5.15e-3 3.75e-4
0.1 3.10 5.31 5.79e-14 3.03e-3 5.07e-4 7.46e-4 5.85e-5
0.2 6.20 10.60 4.88e-14 6.14e-3 1.17e-3 2.89e-3 2.18e-4

Table 3: Relative errors at steady state on free surface elevation and dis-
charge with different time step values.

Finally, we show that even transcritical regimes can be correctly
reproduced by the proposed method. Considering for example a
reference depth H = 0.66 m in the bathymetry profile, the constant
exact value of discharge is Qex = hexuex = 1.53 m3/s and the obsta-
cle maximum height is hd = 2.0m (see e.g. [36]). The relative errors
for the computed discharge are for this case E∞

Q = 1.559 × 10−3,

E2
Q = 5.68× 10−5, respectively, and a plot of the free surface eleva-

tion is shown in figure 4.

6.3 Propagation of pure gravity waves

As a first two dimensional test case, the propagation of pure
gravity waves is considered, i.e. we assume that f = 0. For this case,
a rectangular [0, L]× [0, L] domain with L = 107 m was considered,
for which the initial mean water depth H was set to 103 m and no-
flux boundary conditions were assumed. Initially, the fluid is at rest
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and the free surface elevation is given by the following expression:

η0(x, y) = 5 exp

[

−(x− L/2)2 + (y − L/2)2

2(L/20)2

]

. (34)

The computed solution is observed at t = 36000s, so that the dis-
tance covered by the wave crest in the radial direction can be esti-
mated by the linear theory as ∆r =

√
gH(tf − ti) = 3.5656 × 106

m. The method was applied on a structured mesh composed by
2500 rectangles and elements of degree pη = 5 were employed. The
test is repeated at different Courant numbers. A snapshot of the
solution at t = 36000 s is shown in figure 5, while relative errors on
the celerity of the gravity wave, measured as

Ecel =

(rf
peak

−ri
peak

)

(tf−ti)
−√

gH
√
gH

,

are summarized in table 4. It can be observed that the solution
is reproduced correctly, up to the precision allowed by this rather
rough indicator. At very large Courant numbers, as expected, the
well known distortion of the wave pattern due to the semi-implicit
discretization is observed.

The test is then repeated using the automatic adaptation cri-
terion of the local polynomial degree described in section 5. The
tolerance in the adaptation criterion was set to ǫ = 5× 10−3 for all
elements. The same value was used also in all subsequent adaptive
tests. The method appears to be effective in reducing the computa-
tional cost without affecting the accuracy of the solution, as it can
be observed from the plots of the solution at time t = 36000 s shown
in figure 6. More precisely, the L2 relative error between the adapt-
ive and nonadaptive solution at t = 36000 s has been measured,
obtaining the value 3.3 × 10−3 for the free surface in the adaptive
solution reported in figures 5 and 6. A plot of the error contours
is also shown in figure 8. Indeed, in this case we observe values of
Ecel entirely analogous to those of the non adaptive case for all the
values of the Courant number that were considered. For this test
of the adaptivity criterion, the time evolution of the computational
cost reduction ∆n

dof is reported in figure 7, showing that a saving of
more than 50% was achieved. On the other hand, for the present im-
plementation of the adaptation criterion an increase in the number
of local degrees of freedom can be triggered by very small amplitude
perturbations, as it can be seen comparing figures 6(a), 6(b).
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Ccel 0.53 1.07 2.14 4.30 8.55
Ecel 6.90e-2 6.37e-2 4.90e-2 2.88e-2 2.91e-2

Table 4: Error on the gravity wave propagation speed at different Courant
numbers.

6.4 Geostrophic adjustment and preservation

of geostrophic equilibrium

In presence of the Coriolis force, we have tested the ability of
the proposed method to reproduce the process of geostrophic ad-
justment and to maintain an initially balanced solution for a long
time. In this case, the so called f−plane approximation is consid-
ered, assuming the constant value f = 10−4 s−1 for the Coriolis
parameter. Departure from geostrophic equilibrium at time tn has
been measured by the error indicator

En
geo =

∫ β
α

∫ δ
γ

[
∣

∣

∣
g ∂η
∂x − fv + (u · ∇)u

∣

∣

∣
+

∣

∣

∣
g ∂η∂y + fu+ (u · ∇)v

∣

∣

∣

]

dxdy

(β − α)(δ − γ)
.

The average is computed either on the whole domain, in the test
on preservation of an initially balanced datum, or on a smaller area
containing the balanced part of the solution, for the geostrophic
adjustment test case.

In the adjustment test case, we have considered again the same
initial datum (34) with the same spatial domain and boundary con-
ditions as in the non rotating pure gravity wave case. The test was
then repeated using the automatic adaptation criterion of the local
polynomial degree described in section 5, again with ǫ = 5 × 10−3.
Since the results were entirely analogous, we only show those ob-
tained with the adaptive method.

More precisely, the distance between the adaptive and nonadap-
tive solution at t = 36000 s has been measured again by the relative
L2 error between the adaptive and nonadaptive case , obtaining a
value 1.2e − 3 for the solution shown in figure 10.

In table 5, deviations from geostrophic equilibrium in the inte-
rior part of the domain are reported for different Courant numbers
at t = 36000 s, while a snapshot of the solution at the same time
is shown in figures 10. It can be observed that the solution is ac-
curately reproduced and the geostrophic component of the flow was
found to be insensitive to the value of the Courant number. The
time evolution of the ageostrophy indicator is reported in figure 9.
Furthermore, also in this case the adaptation criterion appears to be
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effective in reducing the computational as it can be observed from
the plots of the time evolution of the computational cost reduction
∆n

dof reported in figure 11.

Ccel 0.53 1.07 2.14 4.30 8.55
Egeo 4.7e-7 4.68e-7 4.7e-7 4.75e-7 5.8e-7

Table 5: Geostrophic adjustment: final deviation from geostrophic equilib-
rium at different Courant numbers.

In the second test, a balanced initial datum was considered, in
order to check the ability of the proposed scheme to maintain a
geostrophic equilibrium solution. A balanced initial datum is com-
puted assuming the profile (34) for the free suface. The initial
velocity profiles were obtained by fixed point iteration applied to
the equations of nonlinear geostrophic equilibrium, using the linear
equilibrium solutions as an initial guess. Different spatial resolutions
have been considered and results are summarized in table 6.

Nelem Egeo Eη
2 Eη

1 Eη
∞

252 6.80e-8 3.16e-7 8.85e-8 1.59e-5
502 2.16e-10 2.16e-9 1.04e-9 4.93e-8
1002 9.95e-12 2.14e-10 6.81e-11 5.38e-9

Table 6: Geostrophic equilibrium preservation at fixed pη = 4, ∆t = 100s
with increasing spatial resolution.

6.5 Stommel gyre

Finally, the numerical simulation of a Stommel gyre, see e.g. [41],
was considered, in order to perform a test on longer time scales and
to allow for non constant values of the Coriolis coefficient. The so
called β-plane approximation was assumed, the Coriolis parameter is
given by f = f0+βy, with f0 = 10−4 s−1 and β = 2×10−11 m−1s−1,
corresponding to mid-latitudes in the northern hemisphere. For
this test, a rectangular [0, L] × [0, L] domain with L = 106 m was
considered, for which the initial mean water depth H was set to
103 m and no-flux boundary conditions were assumed. According
to Stommel’s model, the flow is forced by a wind stress and a linear
dissipation term. For these terms, we employed the same form and
coefficient values proposed in [10]. More specifically, terms τ s, τ b

are added to the right hand side of the momentum equation, defined
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as:

τ s =
10−4

h
sin

(

π
(y − L/2)

L

)

ex, τ b = −γu,

with γ = 10−6 s−1. The sinusoidal wind stress induces a a clock-
wise circulation, while the linear dissipation term balances the wind
stress forcing.

An initial condition of rest with zero surface elevation is assumed
and the flow is simulated for a total of three months, after which
a steady state is approximately reached. The solution obtained
after three months, with pη,max = 4, θ = 0.65 and ǫ = 5 × 10−4

is reported in figure 13, for which Ccel ≈ 2. Notice that, in this
nonlinear Stommel problem, the magnitude of the advection terms
along the western boundary is quite large, which then does not
allow the wind stress and the rotation to turn the flow around the
top-left corner of the basin. For this reason, the solution of the
nonlinear problem shows an accumulation of fluid along the top-
left corner of the basin. However, the extrema of the free surface
height of the linear and nonlinear problem remain similar. The
result obtained are in good qualitative and quantitative agreement
with the reference solutions presented in [10]. The computational
saving achieved by the adaptation algorithm is shown in figure 14
to be around 40% throughout most of the simulation.

7 Conclusions and future perspectives

A full semi - implicit, semi - Lagrangian discretization approach
based on p−adaptive discontinuous finite elements has been intro-
duced. The proposed technique is aimed at applications to low
Mach/Froude number compressible regimes, typical of environmen-
tal flows. The SISLDG time discretization method allows to improve
substantially the efficiency of DG schemes for environmental appli-
cations and to extend previous results in this direction discussed in
[31], [30], [32]. Indeed, an approach to SISL discretization which is
by now standard for finite difference and continuous finite element
methods was proven here to be feasible also for discontinuous finite
element methods. To further increase the efficiency of the proposed
DG method, the flexibility of DG discretization with respect to the
local number of degrees of freedom is fully exploited, by introducing
a simple p−adaptivity approach that allows to change dynamically
the number of degrees of freedom used in each element, without de-
grading the overall accuracy of the method. Numerical results in a
number of relevant test cases have shown that the proposed method

27



indeed allows to use much longer timesteps than standard explicit
schemes with no loss in accuracy. Furthermore, the p−adaptation
algorithm reduces the computational cost by at least 40% in all the
tests performed. These results are quite encouraging and motivate
the further extension of the present model to full three dimensional
models of atmospheric flow.
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Figure 4: Steady flow over a parabolic bump, free surface elevation in
transcritical case, Cvel = 0.62, Ccel = 1.13.
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(a) Initial free surface elevation. (b) Free surface elevation.

(c) Zonal velocity. (d) Meridional velocity.

Figure 5: Pure gravity wave propagation test: pηmax = 5, Ccel ≈ 0.25.
Solution at t = 36000 s.
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(d) Meridional velocity.

Figure 6: Pure gravity wave propagation test: pη and pu adaptively chosen,
Ccel ≈ 0.25. Solution at t = 36000 s.
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Figure 7: Time evolution of ∆n
dof for the adaptive gravity wave propagation

test.
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Figure 8: Pure gravity wave test: absolute difference between adaptive and
non adaptive solution (free surface) at t = 36000 s.
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Figure 9: Time evolution of Egeo in geostrophic adjustment test case
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Figure 10: Geostrophic adjustment test: pη and pu adaptively chosen,
Ccel ≈ 0.25. Solution at t = 36000 s.
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Figure 11: Time evolution of ∆n
dof in geostrophic adjustment test case.
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Figure 12: Geostrophic adjustment test: absolute difference between ad-
aptive and non adaptive solution at t = 36000 s.
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Figure 13: Stommel test solutions after three months simulations at Ccel ≈
2.
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