
MOX-Report No. 03/2020

Compliance-stress constrained mass minimization for
topology optimization on anisotropic meshes

Ferro, N.; Micheletti, S.; Perotto, S.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



Compliance-stress constrained mass minimization

for topology optimization on anisotropic meshes

Nicola Ferro#, Stefano Micheletti#, Simona Perotto#

January 6, 2020

# MOX– Modellistica e Calcolo Scientifico
Dipartimento di Matematica, Politecnico di Milano

Piazza L. da Vinci 32, I-20133 Milano, Italy

{nicola.ferro,stefano.micheletti,simona.perotto}@polimi.it

Abstract

In this paper, we generalize the SIMPATY algorithm, which com-
bines the SIMP method with anisotropic mesh adaptation to solve the
minimum compliance problem with a mass costraint. In particular,
the mass of the final layout is now minimized and both a maximum
compliance and a maximum stress can be enforced as either mono- or
multi-constraints. The new algorithm, named MSC-SIMPATY, is able
to sharply detect the material-void interface, thanks to the anisotropic
mesh adaptation. The presented test cases deal with three different
scenarios, with a focus on the effect of the constraints on the final lay-
outs and on the performance of the algorithm.

Keywords: Topology optimization – Stress constraint – Anisotropic
mesh adaptation

1 Introduction

Topology optimization is of utmost interest in different branches of industrial
design, such as biomedical, space, automotive, mechanical, architecture (see,
e.g., [27, 37, 11, 54, 20]). Similar formulations can also be adopted for the op-
timization of structures in different contexts, from fluid-structure interaction
to the tailored design of magnetic or auxetic metamaterials [53, 33, 46, 23].

One aims at minimizing (or maximizing) a quantity of interest under
specific design constraints, which may be interchanged according to the
considered field of application. A standard context leads to minimize the
compliance of a structure for a given mass (to optimize the structure per-
formance at a given cost) or, vice versa, to minimize the weight under a
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prescribed compliance (to produce a lightweight structure characterized by
a desired stiffness).

Independently of the number of possible design specifications, we are
led to solve a constrained optimization problem, possibly in an efficient way
with a view to the manufacturing process. Several methods are available in
the literature driving topology optimization. Among these, we mention the
density-based approaches [6, 8, 45], the level-set methods [4, 38], topological
derivative procedures [48], phase field techniques [17, 10], evolutionary ap-
proaches [52], homogenization [7, 3], performance-based optimization [36].
We focus on the first class and, in particular, on the SIMP (Solid Isotropic
Material with Penalization) method [7, 8, 45] where the material distribu-
tion is modeled via an auxiliary scalar field, referred to as density, taking
values between zero (void) and one (material) in the design domain.

In some recent papers, a new algorithm, called SIMPATY (SIMP with
AdaptiviTY), has been proposed to offer an efficient design tool for 3D
printing [43, 42]. SIMPATY algorithm combines SIMP method with an ad-
vanced mesh adaptation technique based on an a posteriori recovery-based
error analysis [55, 56]. In particular, the authors employ anisotropic trian-
gular meshes [25, 24]. This choice leads to a very cost-effective procedure,
which alleviates the end user from most of the post-processing step, towards
the free-form design [43, 22, 23]. The setting considered in these papers
addresses the minimization of the compliance under a mass constraint.

In this paper, we move to a more general framework with a view to more
complex applications, by minimizing the structure mass given a maximum
stress and/or a maximum compliance as a mono- or multi-constraint. The
control on the stress takes into account a real requirement in many contexts,
since it allows us not to overcome a maximum limit for the mechanical re-
sistance of the material [12, 34]. The SIMPATY algorithm is here modified
into the MSC-SIMPATY (Mass-Stress-Compliance SIMPATY) procedure
to tackle the new optimization setting. The numerical verification, despite
preliminary, meets the expectation. The designed layouts do depend on the
considered constraints, and only a bound on both compliance and stress
delivers a structure that is sufficiently stiff as well as failure-free under the
applied loads. Moreover, the stress constraint turns out to be more hard
to deal with, since the nonlinearities involved in the corresponding defini-
tion make the convergence of SIMPATY slower. In all cases, however, the
predicted layouts are characterized by sharp interfaces between void and ma-
terial, with no jagged boundaries, thanks to the employment of anisotropic
meshes, which are tailored to the density profile. This also makes the final
layouts almost ready for 3D printing, as shown by the .STL files in Figure 8.

The layout of the paper is the following. Section 2 details the SIMP-
based topology optimization procedure, whereas Section 3 deals with the
corresponding numerical discretization. Section 4 focuses on the MSC-
SIMPATY algorithm, first by introducing the optimization algorithm and
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then the mesh adaptation procedure. Section 5 gathers some numerical tests,
which alternate mono- with multi-constrained problems. Finally, some con-
clusions are drawn in the last section.

2 The mathematical model

Several methods are available in the literature to identify the topologically
optimal structure, contained in the initial domain and subject to design
constraints. Among these, we cite approaches based on phase-field [15, 10,
17], level set [2, 13, 14], density-based methods [6, 8, 45], and more recent
techniques [50, 28, 44, 29]. In this paper, we adopt the SIMP (Solid Isotropic
Material with Penalization) formulation [8].

2.1 The SIMP linear elasticity equation

In a structure optimization setting, the standard mathematical model is
represented by the linear elasticity problem [30], i.e.,

−∇ · σ(u) = 0 in Ω

u = 0 on ΓD

σ(u)n = f on ΓN

σ(u)n = 0 on ΓF ,

(1)

where Ω ⊂ R2, u is the displacement, σ(u) = 2µε(u)+λI : ε(u) is the stress
tensor for an isotropic material, with ε(u) =

(
∇u + (∇u)T

)
/2 the small

displacement strain tensor,

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

the Lamé coefficients, with E the Young modulus, ν the Poisson ratio and I
the identity tensor, f : ΓN → R2, is the load applied to a portion ΓN of the
boundary, n is the unit outward normal vector to ∂Ω, ΓD is the portion of
the boundary where the structure is clamped, and ΓF is the normal stress-
free boundary, such that ΓD ∪ ΓN ∪ ΓF = ∂Ω.

The weak form of problem (1) is: find u ∈ U = {v ∈ [H1(Ω)]2 : v =
0 on ΓD}, s.t.

a(u,v) = G(v) ∀v ∈ U, (2)

with

a(u,v) =

∫
Ω
σ(u) : ε(v) dΩ, G(v) =

∫
ΓN

f · v dγ.

The SIMP method modifies the elasticity equation by weighting (2) via the
density function ρ, i.e., a continuous design variable, modeling the distri-
bution of material in the design domain. A priori, the density is assumed

3



to be a function in L∞(Ω), taking values in the interval [0, 1], with the
understanding that ρ = 0 represents the void and ρ = 1 the full mate-
rial. To avoid nonphysical intermediate densities, the SIMP formulation
actually resorts to a suitable power-law penalization on ρ, namely ρp with
p ≥ max

{
2/(1 − ν), 4/(1 + ν)

}
, which promotes the extreme values, 0 and

1 [8, 5].
The SIMP linear elasticity equation is thus: find u ∈ U s.t.

aρ(u,v) = G(v) ∀v ∈ U, (3)

with

aρ(u,v) =

∫
Ω
σρ(u) : ε(v) dΩ, (4)

and σρ(u) = ρp
[
2µε(u) + λI : ε(u)

]
. Notice that the penalization modifies

the material properties weighting the Lamé coefficients.

2.2 The topology optimization

To formalize the topology optimization, we have to introduce a cost func-
tional, J , to be minimized, as well as prescribed constraints. A standard
choice for J is the static compliance of the structure, or the total mass of
the final layout. Concerning the constraints, (3) can be used to take into
account the physical model at hand, whereas other constraints are added to
include design specifications, such as an upper bound on the local stresses
or on the fundamental frequency of vibration. According to the application
of interest, cost functional and constraints can become interchangeable.

Thus, a general topology optimization problem can be formulated as:
find ρ ∈ L∞(Ω) s.t.

min
ρ∈L∞(Ω)

J (u(ρ), ρ) :


aρ(u(ρ),v) = G(v) ∀v ∈ U
Ci(u(ρ), ρ) ≤ ci, i = 1, . . . , nC

ρmin ≤ ρ ≤ 1,

(5)

where Ci(u(ρ), ρ) ≤ ci enforces a generic inequality constraint, with ci the
corresponding upper bound and nC the total number of constraints, while
the two-sided inequality ensures the elasticity system in (3) to be well-
defined, with 0 < ρmin < 1.

In previous works, we focused on the minimization of the compliance, C,
subject to a maximum allowable mass [23, 22, 43], so that J = C, nC = 1,
C1 =M, with

C(u(ρ), ρ) = C(u(ρ)) =

∫
ΓN

f · u(ρ) dγ, (6)

M(u(ρ), ρ) =M(ρ) =
1

|Ω|

∫
Ω
ρ dΩ, (7)

4



the volume fraction set to a desired value c1.
The goal pursued in this paper is more challenging, since we are inter-

ested in solving a multi-constrained optimization problem. In particular, we
set in (5) J =M, nC = 2, C1 = S and C2 = C, where

S(u(ρ), ρ) = ||σVM (u(ρ), ρ)||Lγ(Ω) (8)

approximates the maximum density-weighted von Mises stress

σVM (u(ρ), ρ) = ρpsE
√
ε2

11 + ε2
22 − ε11ε22 + 3ε2

12,

being γ as large as possible [34], with εij the ij-th component of the strain
tensor, and ps an exponent penalizing intermediate densities, but possibly
different from p used in (4). Actually, several approaches are available in
the literature to formalize the dependence of the stress field on the design
variable, essentially adopting different penalizations [16, 15, 12]. The choice
in (8) is the most straightforward one in view of the employment of the
SIMP method. Thus, problem (5) becomes: find ρ ∈ L∞(Ω) s.t.

min
ρ∈L∞(Ω)

M(ρ) :


aρ(u(ρ),v) = G(v) ∀v ∈ U
S(u(ρ), ρ) ≤ Smax

C(u(ρ)) ≤ Cmax

ρmin ≤ ρ ≤ 1,

(9)

with Cmax and Smax a maximum upper bound on the compliance and stress,
respectively. Problem (9) amounts to minimizing the mass of the structure
while ensuring a certain stiffness and stress.

3 The numerical discretization

We resort to a standard finite element approximation in order to numerically
solve problem (9). This yields the discrete formulation: find ρh ∈ V r

h s.t.

min
ρh∈V rh

M(ρh) :


aρ(uh(ρh),vh) = G(vh) ∀vh ∈ U sh
S(uh(ρh), ρh) ≤ Smax

C(uh(ρh)) ≤ Cmax

ρmin ≤ ρh ≤ 1,

(10)

where it is understood that uh(ρh) ∈ U sh, and U sh and V r
h are the finite ele-

ment spaces of vector and scalar functions of degree s and r, respectively, as-
sociated with a conforming triangular tessellation, Th, of the domain Ω [19].

Formulation (10) usually exhibits some drawbacks, the two main being
the dependency of the optimal layout on the computational mesh and the
presence of checkerboards, namely, of alternating solid and void elements in
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a checkerboard pattern [8, 47]. The first issue is a consequence of the non-
uniqueness of the solution to the optimization problem, while the second
one depends on the two-field (density-displacement) formulation. Explicit
limitations and filtering of the density distribution mitigate these two con-
cerns [35, 9]. Another possible solution to checkerboards consists in using
higher order finite elements for the displacement with respect to the density
(i.e., we set s ≥ r in (10)). On the contrary, the non-uniqueness of the
solution remains an issue, whatever the selected discretization.

Other minor issues of formulation (10) are grayscale (presence of in-
termediate densities) and staircase (jagged boundaries at the void-material
interfaces) effects, and the geometric complexity of the final design (thin
struts hard to be 3D-printed).
In [43], a new method is proposed to tackle the two last issues. The authors
prove the effectiveness of SIMPATY algorithm, which merges the SIMP ap-
proach with an anisotropic mesh adaptation. SIMPATY provides a mesh
fitting the sharp gradients of the density, possibly without any filtering.
This allows us to drastically reduce any post-processing before manufactur-
ing [42], in contrast to standard topology optimization softwares. Moreover,
mesh adaptation admits the employment of linear finite elements for the
(u(ρ), ρ) pair, without giving rise to undesirable checkerboards. Finally,
this new design paradigm enables us to move towards a free-form design,
both at a macro- and at a micro-scale [43, 23, 22].

4 The MSC-SIMPATY algorithm

The MSC (Mass-Stress-Compliance) variant of the SIMPATY algorithm al-
ternates a minimization and a mesh adaptation step, separately detailed in
the next two sections.

4.1 The optimization procedure

Two recurrent numerical methods to tackle problem (10) are the Interior
Point OPTimizer (IPOPT) [51] and the MMA [49] algorithms. We choose
IPOPT, being directly embedded in the software FreeFem++[32], which is a
very handy tool both to discretize variational formulations and to efficiently
manage metric-based mesh adaptation procedures.

IPOPT is a large-scale nonlinear optimization package, which includes
both equality and inequality constraints via suitable slack variables. With
reference to the generic problem (5), the main parameters to be passed
to IPOPT are the functional J , the quantities, Ci, ci, ρmin, involved in
the constraints, the gradient of the functional and of the constraints with
respect to ρ, the initial guess, ρ0h, together with the maximum number, Mit,
of iterations and the tolerance, TOPT, for the built-in stopping criterion.
Actually, at this stage, all the involved functionals have to be meant as
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functions of ρ, and the SIMP linear elastic equation in (5)1 is taken into
account explicitly, so that ρ 7→ u(ρ) identifies the solution map. Moreover,
the gradients are computed via a standard Lagrangian approach [43, 8].
Thus, the basic command syntax for IPOPT is

IPOPT(J ,∇ρJ , Ci,∇ρCi, ρ0h, ρmin, ci, Mit, TOPT, ....).

Other parameters can be added to this basic call (we refer to [51] for further
details). The output of IPOPT is the optimal density.

4.2 The anisotropic mesh adaptation procedure

The adapted anisotropic mesh is generated by a metric-based procedure [26],
driven by an a posteriori error estimator [1]. In particular, we resort to
an anisotropic variant of the Zienkiewicz-Zhu estimator, η, to efficiently
estimate the H1-seminorm of the discretization error, ||∇ρ − ∇ρh||L2(Ω),
associated with the density [55]. The rationale behind this choice is that
we do expect large values for the H1-seminorm of such an error where the
density exhibits steep gradients, i.e., across the material-void interfaces. It
is well known that anisotropic meshes are an ideal tool to detect sharp
directional features [31, 18]. Moreover, recovery-based error estimators are
very cheap to implement and quite general, depending only on the density
and not on the target criteria.

Following [40], the error estimator coincides with η2 =
∑

K∈Th η
2
K , with

η2
K =

1

λ1,Kλ2,K

2∑
i=1

λ2
i,K

(
rTi,K G∆K

(
E∇
)
ri,K

)
, (11)

where λi,K and ri,K represent the anisotropic information required to build
the adapted mesh. In particular, λi,K , with λ1,K ≥ λ2,K , measure the
lengths of the semi-axes of the ellipse circumscribed to the generic element
K of Th, while ri,K provide the direction of the corresponding axes. The
lengths λi,K can be employed to measure the deformation of K, i.e., the
aspect ratio sK = λ1,K/λ2,K ≥ 1. Moreover, E∇ =

[
P (∇ρh) − ∇ρh

]
∆K

denotes the recovered error, i.e., the mismatch between the exact discrete
gradient, ∇ρh, and the recovered gradient,

P (∇ρh)|∆K
= |∆K |−1

∑
T∈∆K

|T |∇ρh|T ,

coinciding with the area-weighted average of the discrete gradient on the
patch ∆K of the elements sharing at least a vertex with K [40, 21, 41].
Finally, G∆K

(·) ∈ R2×2 is a symmetric positive semidefinite matrix with
entries

[G∆K
(w)]i,j =

∑
T∈∆K

∫
T
wiwj dT with i, j = 1, 2, (12)
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for any vector-valued function w = (w1, w2)T ∈ [L2(Ω)]2.
The local estimator, ηK , is now used in a predictive way to compute

an optimal metric, minimizing the cardinality, #Th, of the new mesh, and
satisfying an error equidistribution criterion,

η2
k '

TAD2

#Th
, (13)

with TAD the desired accuracy on the global estimator η. These two require-
ments lead to solve an elementwise constrained optimization problem, which
admits a unique explicit solution [40, 41],

λopt1,K = g
−1/2
2

(
TAD2

2#Th |∆̂K |

)1/2

,

λopt2,K = g
−1/2
1

(
TAD2

2#Th |∆̂K |

)1/2

,

ropt1,K = g2, ropt2,K = g1,

(14)

with |∆̂K | = |∆K |/(λ1,Kλ2,K), {gi,gi}i=1,2 the eigen-pairs associated with
the scaled matrix G∆K

(E∇)/|∆K |, with g1 ≥ g2 > 0, {gi}i=1,2 orthonormal

vectors. The optimal quantities, λopti,K and ropti,K with i = 1, 2, represent the
input to a metric-based mesh generator since they describe the distribu-
tion of lengths and directions (i.e., the metric) of the new adapted mesh.
FreeFem++ turns out to be an ideal tool for this purpose [32].

Thus, in general, we distinguish two phases, i.e., the metric computation,

[λopt1 , λopt2 , ropt1 , ropt2 ] = metric(Th, ρh, TAD);

and the mesh adaptation

T opth = adaptmesh(Th, λopt1 , λopt2 , ropt1 , ropt2 ).

Function metric computes elementwise the optimal quantities in (14), so
that λopti

∣∣
K

= λopti,K and ropti

∣∣
K

= ropti,K , while function adaptmesh generates
the adapted mesh matching the metric just computed [39, 26].

4.3 The whole algorithm

The MSC-SIMPATY algorithm combines, in a sequential manner, the opti-
mization with the anisotropic mesh adaptation. This algorithm represents
a variant of the one proposed in [43] and filed in the pending patent [42].
Algorithm 1 shows the pseudo code of MSC-SIMPATY. The main input
parameters are: the tolerance for the optimization, TOPT, and for the mesh
adaptation, TAD; the tolerance CTOL and the maximum number of itera-
tions, kmax, to stop the whole algorithm when the mesh cardinality does
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Algorithm 1 MSC-SIMPATY algorithm

Input : TOPT, TAD, CTOL, kmax, Cmax, Smax ρmin, T 0
h

1: Set: ρ0
h = 1, k = 0, errM = 1+CTOL

2: while (errM > CTOL & k < kmax) do
3: ρk+1

h = IPOPT(M,∇ρM, C,S,∇ρC,∇ρS, ρkh,
ρmin, Cmax, Smax, Mit

k,TOPT, .... );
4: [λk+1

1,K , λ
k+1
2,K , r

k+1
1,K , r

k+1
2,K ] = metric(T k

h , ρ
k+1
h , TAD);

5: T k+1
h = adaptmesh(T k

h , λ
k+1
1,K , λ

k+1
2,K , r

k+1
1,K , r

k+1
2,K );

6: errM = |#T k+1
h −#T k

h |/#T k
h ;

7: k = k + 1;

not change appreciably or the maximum number of iterations is reached;
the upper bounds for the compliance and the stress, Cmax and Smax, re-
spectively; the minimum value, ρmin, for the density, and the initial mesh
T 0
h . We observe that parameter Mitk may change throughout the iterations.

In particular, in the next section, Mitk is set to a large value only on the
first iteration so that IPOPT gets very close to the optimal solution on the
initial mesh. On the contrary, a smaller value is expected to suffice for the
successive iterations to strike a balance between quality of the solution and
non-optimality of the mesh.

5 Verification of MSC-SIMPATY

We focus on a benchmark test case to assess Algorithm 1. We consider the
topology optimization of the L-shaped bracket in Figure 1. In particular,
with reference to problem (1), we have Ω = (0, 10]2\[6, 10]2, ΓD = {(x, y) :
x ∈ [0, 4], y = 10}, ΓN = {(x, y) : x = 10, |y−2| ≤ 0.5}, ΓF = ∂Ω\(ΓD∪ΓN )
and f = [0,−1]T . The elastic parameters are set to E = 1 and ν = 0.3,
whereas we choose p = 3 in (4), and γ = 10 and ps = 0.5 in (8).

f

Figure 1: L-shaped bracket domain.
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We consider three different scenarios:
i) only the compliance constraint in (10) is active;
ii) only the stress constraint in (10) is switched on;
iii) both the constraints in (10) are considered.
The next sections are devoted to analyze these three settings, separately.
Obviously, the input parameters as well as the IPOPT syntax will be mod-
ified accordingly in the case of a mono-constrained problem.

5.1 Compliance-constrained topology optimization

We run MSC-SIMPATY algorithm, with the following input parameters:
TOPT = 10−4, TAD = 0.15, CTOL = 0.10, kmax = 10, Cmax = 2C0, C0 = 106
being the compliance associated with the full structure (i.e., ρ = 1 for any
x ∈ Ω), ρmin = 10−3 and selecting an initial uniform mesh, T 0

h , consisting
of 9546 triangles. Moreover, the parameter Mitk in IPOPT is set to 100 for
k = 0 and to 15 for k > 0.

MSC-SIMPATY algorithm converges after 5 iterations, with errM= 0.077
and a final adapted mesh with 19304 elements. Figure 2 shows the corre-
sponding density, ρ5h, which exhibits the expected layout, characterized by
several struts hinged at the inner corner [12, 34]. This is standard for a
minimum-compliance problem, where the stiffness of the configuration is
increased with the introduction of substructures. The optimal layout is
characterized by a remarkable mass reduction, the volume fraction being
M = 0.372, and the compliance constraint is satisfied, being C = 201.4 ≤
Cmax.

The benefits due to the anisotropic mesh adaptation are evident from the
sharp material/void interface. Figure 3, left, shows the final adapted mesh,
characterized by a maximum aspect ratio smax

K = maxK∈Th sK = 105.83.
Finally, in Figure 3, right, we show the results of a structural analysis,

based on the von Mises yield criterion. It is evident that the maximum stress
is attained around the inner corner. Notice that, in this and, analogously, in
Figures 5 and 7, right panels, the values are scaled to the maximum pointwise
value, σmax

VM , over the three scenarios, provided in Table 1. We consider as
reference, the value for S associated with the full structure, i.e., S0 = 1.34.
The value for S on the optimized structure is 20.10. This suggests that the
introduction of a stress-constraint is advisable with a view to a resistant
structure.

5.2 Stress-constrained topology optimization

The input parameters to MSC-SIMPATY are now: TOPT = 10−4, TAD = 15,
CTOL = 0.10, kmax = 10, Smax = 5S0, with S0 defined as in the previous
section, ρmin = 10−3, and T 0

h as in the previous scenario. Parameter Mitk is
set to Mit0 = 320, and Mitk = 15 for k > 0. The initial large value for this
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Figure 2: Compliance-constrained optimization: density distribution.

Figure 3: Compliance-constrained optimization: anisotropic adapted mesh
(left) and von Mises stress distribution (right).

parameter is justified by the much slower convergence of the algorithm with
respect to a compliance-constrained optimization, due to the nonlinearity
associated with the stress definition.

Convergence of Algorithm 1 is achieved after 4 iterations, with the final
layout characterized by a volume fraction,M, equal to 0.369 (see Figure 4).
Although this value is fully comparable with the one in the compliance-
constrained case, we remark the different material distribution in the design
domain. In particular, this new structure is characterized by less and thicker
struts and some material removal around the inner corner.

The left panel of Figure 5 shows the anisotropic adapted mesh consisting
of 17483 elements, with a maximum aspect ratio smax

K = 120.43, and a
corresponding stagnation error errM= 0.097, while Figure 5, right, displays
the von Mises stress distribution. On comparing the right panels of Figures 3
and 5, we can appreciate the reduction of the stress in correspondence with
point (4, 4), together with a general more homogeneous stress distribution
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around this corner.
From a quantitative viewpoint, the value for S is 6.16, which is clearly

to within the specified bound, 6.70. Concerning the compliance, we have
that C = 258.64.
A cross-comparison between a compliance-constrained and a stress-constrained
settings confirms that to design a structure sufficiently resistant and stiff the
two constrained have to be enforced simultaneously.

Figure 4: Stress-constrained optimization: density distribution.

Figure 5: Stress-constrained optimization: anisotropic adapted mesh (left)
and von Mises stress distribution (right).

5.3 Compliance- and stress-constrained topology optimiza-
tion

We perform the last run of Algorithm 1 by selecting the following input
data: TOPT = 10−4, TAD = 0.15, CTOL = 0.10, kmax = 10, Cmax = 2C0,
Smax = 5S0, with C0 and S0 defined as above, ρmin = 10−3, and the same
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initial mesh, T 0
h , as in the two previous sections. Parameter Mitk for IPOPT

is fixed to 140 and 10 for the first and the successive iterations, respectively.
The presence of the compliance constraint makes convergence faster with
respect to the case in Section 5.2 so that we can decrease the value for Mit0.

MSC-SIMPATY algorithm converges after 5 iterations with errM =
0.084. The optimized layout shown in Figure 6 is characterized by a volume
fraction M equal to 0.371, which essentially coincides with the values ob-
tained in the two single-constrained cases. This structure exhibits an inter-
mediate topology compared with the ones in Figures 2 and 4. In particular,
the material near the inner corner is less than the compliance-constrained
case but more than the stress-constrained setting.

Both the constraints are satisfied, being C = 201.40 ≤ 212 and S =
6.69 ≤ 6.70, which confirms the reliability of the proposed procedure.

Figure 6: Compliance- and stress-constrained optimization: density distri-
bution.

Figure 7, left, shows the final anisotropic adapted mesh, which is charac-
terized by 12567 elements and by a maximum aspect ratio smax

K = 102.66.
We observe that, for the same accuracy, TAD, the mesh associated with the
multiple-constrained problem requires about 35% and 28% less elements
than the single compliance-constrained and stress-constrained case, respec-
tively.

Finally, the stress distribution in Figure 7, right, shows that the current
structure supports a larger stress with respect to the one in Figure 4, due to
the enforcement of the additional constraint on the compliance. Actually,
the structure is pushed to work at its resistance limit.
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Figure 7: Compliance- and stress-constrained optimization: anisotropic
adapted mesh (left) and von Mises stress distribution (right).

6 Conclusions

SIMPATY algorithm has been challenged on more realistic settings with re-
spect to the ones in [43, 22], where the structure mass is minimized under a
single- as well as a multi-constrained context. In particular, we have selected
the compliance and the von Mises stress as the quantities to be controlled.
This generalization led to the new MSC-SIMPATY algorithm, which pre-
serves the advantages characterizing the original procedure. Among these,
we cite the capability to sharply and smoothly capture the material/void
interface and the possibility to avoid any post-processing and filtering.

As far as the structural analysis is concerned, the proposed algorithm
is capable of delivering mechanically reliable structures, which make the
topology more complex to meet the requirements on the compliance and
properly displace the material to avoid the failure of the structure. Table 1
gathers the most meaningful quantities characterizing MSC-SIMPATY, in
terms of both mechanical and algorithmic performances.

Next steps include the generalization to a 3D setting together with an
extensive validation. As a preliminary attempt towards a 3D-printing pro-
cess, we show in Figure 8 the 3D structures obtained by extrusion starting
from the density distribution in Figure 2, 4 and 6, respectively and saved in
an STL file, which is the standard format required by 3D printers. Although
these are very preliminary results, we can appreciate the high smoothness
of the structures and the sharp definition of their boundaries.

14



Figure 8: MSC-SIMPATY algorithm: extruded 3D structures converted in
the STL file format.

C S C + S
M 0.372 0.369 0.371

C 201.40 258.64 201.40

S 20.10 6.16 6.69

σmax
VM 15.77 9.84 10.73

iterations 5 4 5

#Th 19304 17483 12567

smax
K 105.83 120.43 102.66

Table 1: MSC-SIMPATY algorithm: quantitative comparison among the
three optimization procedures.
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