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Abstract

In this paper we present efficient quadrature rules for the numerical approximation
of integrals of polynomial functions over general polygonal/polyhedral elements that
do not require an explicit construction of a sub-tessellation into triangular/tetrahedral
elements. The method is based on successive application of Stokes’ theorem; thereby,
the underlying integral may be evaluated using only the values of the integrand at
the vertices of the polytopic domain, and hence leads to an exact cubature rule whose
quadrature points are the vertices of the polytope. We demonstrate the capabilities of
the proposed approach by efficiently computing the stiffness and mass matrices arising
from hp-version symmetric interior penalty discontinuous Galerkin discretizations of
second-order elliptic partial differential equations.

1 Introduction

In recent years the exploitation of computational meshes composed of polygonal and poly-
hedral elements has become very popular in the field of numerical methods for partial
differential equations. Indeed, the flexibility offered by polygonal/polyhedral elements
allows for the design of efficient computational grids when the underlying problem is
characterized by a strong complexity of the physical domain, such as, for example, in geo-
physical applications, fluid-structure interaction, or crack propagation problems. More-
over, the possibility to adopt computational meshes with hanging nodes is included in
this framework by observing that, for example, a classical quadrilateral element with a
hanging node on one of its edges can be treated as a pentagon with two aligned edges.
Several conforming numerical discretization methods which admit polygonal/polyhedral
meshes have been proposed within the current literature; here, we mention, for example,
∗Paola F. Antonietti and Giorgio Pennesi have been partially funded by by the SIR Project n.
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the Composite Finite Element Method [41, 40, 7], the Mimetic Finite Difference (MFD)
method [43, 20, 18, 19, 17, 6], the Polygonal Finite Element Method [60], the Extended
Finite Element Method [61, 36], the Virtual Element Method (VEM) [14, 15, 16, 3, 4]
and the Hybrid High-Order (HHO) method [34, 32, 33]. In the non-conforming setting,
we mention Discontinuous Galerkin (DG) methods [1, 8, 24, 13, 21, 24, 22, 2, 5, 10, 23],
Hybridizable DG methods [28, 29, 30, 31], the Non-conforming VEM [9, 12, 25], and the
Gradient Schemes [35]; here the possibility of defining local polynomial discrete spaces
follows naturally with the flexibility provided by polytopic meshes.

One of the key aspects concerning the development of efficient finite element discretizations
with polygonal/polyhedral grids is the construction of quadrature formulae for the approx-
imate computation of the terms appearing in the underlying weak formulation. Indeed,
the design of efficient quadrature rules for the numerical computation of integrals over
general shaped polytopes is far from being a trivial task. The classical and most widely
employed technique for the integration over polytopes is the Sub-Tessellation method, cf.
[50, 59, 37]; here, the domain of integration is subdivided into standard-shaped elements,
such as triangular/quadrilateral elements in 2D or tetrahedral/hexahedral elements in 3D,
whereby standard Gaussian quadrature rules are employed, cf. [57, 49, 67], and also [68]
and [47], for an interpolation technique based on the same idea. On the one hand this
technique is easy to implement, however, it is generally computationally expensive, par-
ticularly for high order polynomials, since the number of function evaluations may be very
large.

For this reason, the development of quadrature rules that avoid sub-tessellation is an
active research field. Several approaches have been proposed; in particular, we mention
[64, 42, 65, 53], for example. One interesting method in this direction is represented by
the Moment fitting equation technique, firstly proposed by Lyness and Monegato in [48],
for the construction of quadrature rules on polygons featuring by the same symmetry as
the regular hexagon. Generalization to convex and non-convex polygons and polyhedra
was then proposed by Mousavi, Xiao and Sukumar in [52]. Here, starting from an initial
quadrature rule, given, for example, by the sub-tessellation method described above, an
iterative node elimination algorithm is performed based on employing the least-squares
Newton’s method [66] in order to minimise the number of quadrature points while retain-
ing exact integration. Further improvements of the Moment Fitting Equation algorithm
can also be found in [51] and [58]. While this method is optimal with respect to the
number of function evaluations, the nodes and weights must be stored for every polygon,
thus affecting memory efficiency. An alternative approach designed to overcome the lim-
itations of the Sub-Tessellation approach is based on employing the generalized version
of Stokes’ theorem; here, the exploitation of Stokes’ theorem reduces the integral over a
polytope to an integration over its boundary; see [63] for details. For the two–dimensional
case, in [56], Sommariva and Vianello proposed a quadrature rule based on employing
Green’s theorem. In particular, if an x- or y-primitive of the integrand is available (as
for bivariate polynomial functions), the integral over the polygon is reduced to a sum of
line integrations over its edges. When the primitive is not known, this method does not
directly require a tessellation of the polygon, but a careful choice of the parameters re-
lated to the proposed formula leads to a cubature rule that can be viewed as a particular
sub-tessellation of the polygon itself. Moreover, it is not possible to guarantee that all
of the quadrature points lie inside the domain of integration. An alternative and very
efficient formula has been proposed by Lasserre in [46] for the integration of homogeneous
functions over convex polytopes. This technique has been recently extended to general
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convex and non-convex polytopes in [26]. The essential idea of this method is to exploit
the generalized Stokes’ theorem together with the Euler’s homogeneous function theorem,
cf. [55], in order to reduce the integration over a polytope only to boundary evaluations.
The main difference with respect to the work presented in [56] is the possibility to apply
the same idea recursively, leading to a quadrature formula which exactly evaluates inte-
grals over a polygon/polyhedron by employing only point-evaluations of the integrand and
its derivatives at the vertices of the polytope.

In this article we extend the approach of [26] to the efficient computation of the vol-
ume/face integral terms appearing in the discrete weak formulation of second-order el-
liptic problems, discretized by means of high-order DG methods. We point out that our
approach is completely general and can be directly applied to other discretization schemes
as VEM, HHO, Hybridisable DG, and MFD, for example. We focus on the DG approach
presented in [24], where the local polynomial discrete spaces are defined based on employ-
ing the bounded box technique [38]. We show that our integration approach leads to a
considerable improvement in the performance compared to classical quadrature algorithms
based on sub-tessellation, in both two– and three–dimensions.

The rest of the paper is organized as follows: in Section 2 we recall the work introduced
in [26], and outline how this approach can be utilized to efficiently compute the inte-
gral of d-variate polynomial functions over general polytopes. In Section 3 we introduce
the interior penalty DG formulation for the numerical approximation of a second-order
diffusion-reaction equation on general polytopic meshes. In Section 4 we outline the ex-
ploitation of the method presented in Section 2 for the assembly of the mass and stiffness
matrices appearing in the DG formulation. Several two– and three–dimensional numerical
results are presented in Section 5 in order to show the efficiency of the proposed approach.

2 Integrating polynomials over general polygons/polyhedra

In this section we review the procedure introduced by Chin, Lasserre, and Sukumar in
[26] for the integration of homogeneous functions over a polytopic domain. To this end,
we consider the numerical computation of

∫
P g(x)dx, where

• P ⊂ Rd, d = 2, 3, is a closed polytope, whose boundary ∂P is defined by m (d−1)–
dimensional faces Fi, i = 1, . . . ,m. Each face Fi lies in a hyperplane Hi identified
by a vector ai ∈ Rd and a scalar number bi, such that

x ∈ Hi ⇐⇒ ai · x = bi, i = 1, . . . ,m. (1)

We observe that ai, i = 1, . . . ,m, can be chosen as the unit outward normal vector
to Fi, i = 1, . . . ,m, respectively, relative to P, cf. Figures 1 and 2.

• g : P → R is a homogeneous function of degree q ∈ R, i.e.,

∀λ > 0, g(λx) = λqg(x) ∀x ∈P.

We recall that Euler’s homogeneous function theorem [55] states that, if g is a homogeneous
function of degree q ≥ 0, then the following identity holds:

q g(x) = ∇g(x) · x ∀x ∈ Rd. (2)
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Figure 1: Example of a two–dimensional polytope P and its face Fi. The variety Hi is
defined by the local origin x0,i and the vector ei1.
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Figure 2: The dodecahedron P with pentagonal faces and the face Fi ⊂ ∂P with unit
outward normal vector ni. Here, Fi has five edges Fij , j = 1, . . . , 5 and five unit outward
normal vectors nij , j = 1, . . . , 5, lying on the plane Hi. The variety Hi is identified by
the local origin x0,i and the orthonormal vectors ei1, ei2.

Next we introduce the generalized Stokes’ theorem, which can be stated as follows (see
[63] for details): given a generic vector field X : P → Rd, the following identity holds∫

P
(∇ ·X(x))g(x)dx +

∫
P
∇g(x) ·X(x)dx =

∫
∂P

X(x) · n(x)g(x)dσ, (3)

where n is the unit outward normal vector to P. Selecting X = x in (3), and employ-
ing (2), we deduce that∫

P
g(x)dx = 1

d+ q

∫
∂P

x · n(x)g(x)dσ = 1
d+ q

m∑
i=1

bi

∫
Fi
g(x) dσ. (4)

Equation (4) states that if g is homogeneous, then the integral of g over a polytope P
can be evaluated by computing the integral of the same function over the boundary faces
Fi ⊂ ∂P, i = 1, . . . ,m. By applying Stokes’ theorem recursively, we can further reduce
each term

∫
Fi g(x)dσ, i = 1, . . . ,m, to the integration over ∂Fi, i = 1, . . . ,m, respectively.

To this end, Stokes’ theorem needs to be applied on the hyperplane Hi, i = 1, . . . ,m, in
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which each Fi, i = 1, . . . ,m, lies, respectively. In order to proceed, let γ : Rd−1 → Rd be
the function which expresses a generic point x̃ = (x̃1, . . . , x̃d−1)> ∈ Rd−1 as a point in Rd
that lies on Hi, i = 1, . . . ,m, i.e.,

x̃ 7−→ γ(x̃) = x0,i +
d−1∑
n=1

x̃nein, with ein ∈ Rd, ein · eim = δnm.

Here, x0,i ∈ Hi, i = 1, . . . ,m, is an arbitrary point which represents the origin of the
coordinate system on Hi, and {ein}d−1

n=1 is an orthonormal basis on Hi, i = 1, . . . ,m; see
Figures 1 and 2 for two– and three–dimensional examples, respectively. Notice that x0,i
does not have to lie inside Fi, i = 1, . . . ,m. Let F̃i ⊂ Rd−1 such that γ(F̃i) = Fi, i =
1, . . . ,m, then the following identity holds:∫

Fi
g(x)dσ =

∫
F̃i
g(γ(x̃))dx̃, i = 1, . . . ,m. (5)

Before outlining the details regarding the recursive application of the Stokes’ Theorem
to (4), we need to show the following lemma.
Lemma 2.1. Let Fij ⊂ ∂Fi j = 1, . . . ,mi, be the vertices/edges of Fi, i = 1, . . . ,m, for
d = 2, 3, respectively, and let nij be the unit outward normal vectors to Fij lying in Hi.
Moreover, let F̃ij ⊂ ∂F̃i be the preimage of Fij with respect to the map γ, and ñij be the
corresponding unit outward normal vector. Then, the following identity holds

ñij = E>nij , i = 1, . . . ,m, j = 1, . . . ,mi, (6)

where E ∈ Rd×(d−1), whose columns are the vectors {ein}d−1
n=1, i = 1, . . . ,m.

Proof. Before we begin, we first note that employing the definition of γ we have that

x = γ(x̃) = x0,i + Ex̃, i.e., x− x0,i = Ex̃. (7)

We distinguish between the two cases d = 2 and d = 3. If d = 2, then Fij , j = 1, 2, are
the two vertices of the edge Fi, i = 1, . . . ,m. In this case the vectors nij and ñij can be
defined as

ñi1 = F̃i1 − F̃i2
‖F̃i1 − F̃i2‖

, ni1 = Fi1 −Fi2
‖Fi1 −Fi2‖

, ñi2 = −ñi1, ni2 = −ni1.

Thereby, exploiting (7) and the identity E>E = I, where I denotes the identity matrix,
we observe that

F̃i1 − F̃i2 = E>(Fi1 − x0,i)−E>(Fi2 − x0,i) = E>(Fi1 −Fi2);

hence
‖F̃i1 − F̃i2‖ =

√
(Fi1 −Fi2)>EE>(Fi1 −Fi2) = ‖Fi1 −Fi2‖,

from which (6) follows immediately. If d = 3, then for a given pair i, j, i = 1, . . . ,m,
j = 1, . . . ,mi, let x̃a, x̃b ∈ Rd−1 be such that ñij = x̃b − x̃a, and let x̃1, x̃2 be the vertices
of F̃ij . Then, we note that

‖x̃b − x̃a‖ = ‖ñij‖ = 1, (x̃b − x̃a) · (x̃2 − x̃1) = 0. (8)
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Moreover, from the relation x� = x0,i + Ex̃�, where � ∈ {a, b, 1, 2}, we have that

ñij = E>(xb − xa), (xb − xa) = Eñij .

To complete the proof we must show that (xb − xa) = nij . To this end, we need to prove
that (xb − xa) has unitary norm and that it is normal to the face. Using the previous
relation together with (8), we have

‖xb − xa‖ = ‖Eñj‖ =
√

ñ>j E>Eñj =
√

ñ>j I ñj = 1,

and
(xb − xa) · (x2 − x1) = (x̃b − x̃a)E>E(x2 − x1) = 0,

from which (6) follows.

Given identity (5) and Lemma 2.1, we can prove the following result.
Proposition 2.2. Let Fi, i = 1, . . . ,m, be a face of the polytope P, and let Fij, j =
1, . . . ,mi be the planar/straight faces/edges such that ∂Fi = ∪mij=1Fij for some mi ∈ N.
Then, for any homogeneous function g, of degree q ≥ 0, the following identity holds

∫
Fi
g(x)dσ = 1

d− 1 + q

(mi∑
j=1

dij

∫
Fij

g(x)dν +
∫
Fi

x0,i · ∇g(x)dσ
)
,

where dij denotes the algebraic distance between Fij and x0,i, i = 1, . . . ,m, and x0,i ∈
Hi, i = 1, . . . ,m, is arbitrary.

Proof. If we denote by ∇i =
[
∂
∂x̃1

, . . . , ∂
∂x̃d−1

]> the gradient operator on the varietyHi, i =
1, . . . ,m, with respect to the coordinate system (x̃1, . . . , x̃d−1), then, upon application of
Stokes’ theorem, we have∫

F̃i
(∇i · X̃)g(γ(x̃))dx̃︸ ︷︷ ︸

1

+
∫
F̃i

X̃ · ∇ig(γ(x̃))dx̃︸ ︷︷ ︸
2

=
∫
∂F̃i

X̃ · ñ g(γ(x̃))dν(x̃)︸ ︷︷ ︸
3

, (9)

where ñ is the unit outward normal vector of F̃i and X̃ is a vector field on Rd−1. Next, we
transform (9) back to the original coordinate system. To this end, denoting E ∈ Rd×(d−1)

to be the matrix whose columns are the vectors {ein}d−1
n=1, we observe that, if we choose

X̃ = x̃, then its divergence is ∇i · X̃ = d − 1. Exploiting (7), the term ∇ig(γ(x̃)) can be
written as follows:

∇ig(γ(x̃)) =


∂γ1
∂x̃1

∂γ2
∂x̃1

· · · ∂γd
∂x̃1

∂γ1
∂x̃2

∂γ2
∂x̃2

· · · ∂γd
∂x̃2...

... . . . ...
∂γ1
∂x̃d−1

∂γ2
∂x̃d−1

· · · ∂γd
∂x̃d−1




∂g
∂x̃1
∂g
∂x̃2...
∂g
∂x̃d

 = (E>∇g)(γ(x̃)). (10)

Exploiting (7) and (10), we can write 1 and 2 as

1 = (d− 1)
∫
F̃i
g(γ(x̃))dx̃ = (d− 1)

∫
Fi
g(x)dσ, (11)
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2 =
∫
F̃i

x̃>E>∇g(γ(x̃))dx̃ =
∫
Fi

(x− x0,i) · ∇g(x)dσ (12)

= q

∫
Fi
g(x)dσ −

∫
Fi

x0,i · ∇g(x)dσ,

respectively. Employing Lemma 2.1, together with (7), we have that

3 =
mi∑
j=1

∫
F̃ij

x̃>ñijg(γ(x̃))dν(x̃) (13)

=
mi∑
j=1

∫
Fij

(x− x0,i)>EE>nijg(x)dν(x) =
mi∑
j=1

∫
Fij

(x− x0,i) · nijg(x)dν.

We observe that the term (x−x0,i) ·nij is constant for any x ∈ Fij , and that it represents
the algebraic distance between Fij and x0,i; thereby, we define dij = (x−x0,i) ·nij . From
the above identities (11), (12) and (13) we deduce the statement of the Proposition.

Using Proposition 2.2, together with equation (4), we obtain the following identity∫
P
g(x)dx = 1

d+ q

m∑
i=1

bi
d− 1 + q

(mi∑
j=1

dij

∫
Fij

g(x)dν +
∫
Fi

x0,i · ∇g(x)dσ
)
, (14)

where we recall that ∂P = ∪mi=1Fi and ∂Fi = ∪mij=1Fij , for i = 1, . . . ,m.
Remark 1. If d = 2, then Fij is a point and (14) states that the integral of g on P
con be computed by vertex-evaluations of the integrand plus a line integration of the
partial derivative of g. If d = 3 we can apply Stokes’ Theorem recursively to

∫
Fij g(x)dν.

Proceeding as before, we get∫
Fij

g(x)dν = 1
d− 2 + q

(mij∑
k=1

dijk

∫
Fijk

g(x)dξ +
∫
Fij

x0,ij · ∇g(x)dν
)
,

where ∂Fij = ∪mijk=1Fijk, x0,ij ∈ Fij is arbitrarly chosen, and dijk is the algebraic distance
between Fijk and x0,ij .

In view of the application of Proposition 2.2 to finite element methods, we are inter-
ested in the integration of a particular class of homogeneous functions, namely polynomial
homogeneous functions of the form

g(x) = xk1
1 x

k2
2 · · ·x

kd
d , where kn ∈ N0 for n = 1, . . . , d.

In this case, g is a homogeneous function of degree q = k1 + · · · + kd, and the general
partial derivative ∂g

∂xn
is a homogeneous function of degree q− 1 = k1 + · · ·+ kd− 1. With

this in mind, it is possible to recursively apply formula (14) to the terms involving the
integration of the derivatives of g. To this end, we write E ⊂ Rd, d = 2, 3, be a N -polytopic
domain of integration, with N = 1, . . . , d, and let ∂E = ∪mi=1Ei, where each Ei ⊂ Rd is a
(N − 1)-polytopic domain. For d = 2, 3, Ei, i = 1, . . . ,m, will be an edge or a polygonal
face, respectively; see Table 1 for details. We define the function

I(N, E , k1, . . . , kd) =
∫
E
xk1

1 . . . xkdd dσN (x1, . . . , xd), (15)

that returns the integral of the polynomial xk1
1 . . . xkdd over E , where dσN is the N–

dimensional differential operator, N = 1, 2, . . . , d. According to Proposition 2.2, the
recursive definition of the function I is given in Algorithm 1.
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Algorithm 1 I(N, E , k1, . . . , kd) =
∫
E x

k1
1 . . . xkdd dσN (x1, . . . , xd)

if N = 0 (E = (v1, . . . , vd) ∈ Rd is a point)

return I(N, E , k1, . . . , kd) = vk1
1 · · · v

kd
d ;

else if 1 ≤ N ≤ d− 1 (E is a point if d = 1 or an edge if d = 2 or a face if d = 3)

I(N, E , k1, . . . , kd) = 1
N +

∑d
n=1 kn

( m∑
i=1

di I(N − 1, Ei, k1, . . . , kd)

+ x0i,1 k1 I(N, E , k1 − 1, k2, . . . , kd)

+ · · ·+ x0i,d kd I(N, E , k1, . . . , kd − 1)
)
;

else if N = d (E is an interval if d = 1 or a polygon if d = 2 or a polyhedron if d = 3)

I(N, E , k1, . . . , kd) = 1
N +

∑d
n=1 kn

( m∑
i=1

bi I(N − 1, Ei, k1, . . . , kd)
)
.

end if

Table 1 Polytopic domains of integration E considered in Algorithm 1 as a function of
the dimension d.

N = 3 N = 2 N = 1 N = 0

d = 3 E = P E = Fi ⊂ ∂P E = Fij ⊂ ∂Fi E = Fijk ⊂ ∂Fij
is a polyhedron is a polygon is an edge is a point

d = 2 E = P E = Fi ⊂ ∂P E = Fij ⊂ ∂Fi
is a polygon is an edge is a point

d = 1 E = P E = Fi ⊂ ∂P

is an interval is a point

Remark 2. When 1 ≤ N ≤ d − 1 the point x0,i = (x0i,1, . . . , x0i,d) ∈ E is arbitrarily
chosen and represents the origin of the coordinate system on Hi, whereas di represents
the algebraic distance between Ei and x0,i, i = 1, . . . ,m.
Remark 3. We remark that in Algorithm 1, bi, i = 1, . . . ,m, is the same constant appearing
in (1). Here it can be evaluated as bi = ni · v, where v is a vertex of Ei and ni is the unit
outward normal vector, i = 1, . . . ,m.
Remark 4. We point out that in formula (14), as well as in (15), the shape of the underlying
polytope can be general; for example convex/non convex simply-connected domains E are
allowed.

2.1 Integration of bivariate polynomials over polygonal domains

In order to test the performance of the method proposed in Algorithm 1, we consider the
integration of bivariate homogeneous functions on a given polygon P ⊂ R2 based on using
the three different approaches:
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Figure 3: Triangle (P1). Figure 4: Irregular polygon
with 5 faces (P2).

Figure 5: Irregular polygon
with 15 faces (P3).

Table 2 Coordinates of the polygons of Figures 3, 4, and 5.
vertex x-cordinates y-cordinates

P1

1 −1.000000000000000 −1.000000000000000
2 1.000000000000000 0.000000000000000
3 −1.000000000000000 1.000000000000000

P2

1 −0.666666666666667 −0.789473684210526
2 0.555555555555556 −1.000000000000000
3 1.000000000000000 −0.052631578947368
4 −0.555555555555556 1.000000000000000
5 −1.000000000000000 −0.157894736842105

P3

1 0.413048522141662 0.781696234443715
2 0.024879797655533 0.415324992429711
3 −0.082799691823524 0.688810136531751
4 −0.533191422779328 1.000000000000000
5 −0.553573605852999 0.580958514816226
6 −0.972432940212767 0.734117068746903
7 −1.000000000000000 0.238078507228890
8 −0.789986179147920 0.012425068086110
9 −0.627452906935866 −0.636532897516109
10 −0.452662174765764 −1.000000000000000
11 −0.069106265580153 −0.289054989277619
12 0.141448047807069 −0.464417038155806
13 1.000000000000000 −0.245698820584615
14 0.363704451489016 −0.134079689960635
15 0.627086024018283 −0.110940423607648

A.1 Recursive algorithm described in Section 2, based on the formula (15):∫
P
xk yldx = I(2,P, k, l),

cf. also Algorithm 1.

A.2 Use of the formula (4) together with numerical integration employed for the evalua-
tion of the face integrals with known one–dimensional Gaussian quadrature rule as
recently proposed in [27];

A.3 Exploiting sub-tessellation technique: the domain of integration P is firstly decom-
posed into triangles where classical Gaussian quadrature rules are then employed.

We test the three different approaches for integrating bivariate polynomials of different
polynomial degrees on the triangle depicted in Figure 3 and the two irregular polygons
shown in Figures 4 and 5, cf. Table 2 for the list of coordinates for each domain; the actual
values of the integrals are given in Table 3. In Table 4 we show the average CPU-time
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Table 3 The approximated values of the integral over the three polygons in Figures 3, 4
and 5 obtained with approach A.1.

E = P1 E = P2 E = P3∫
E x

5y5 0 −0.0020324991 −0.002589861∫
E x

10y10 0.0111339078 7.4274779926× 10−5 1.5738050178× 10−4∫
E x

20y20 0.0030396808 6.0738145408× 10−8 1.3793481020× 10−6∫
E x

40y40 7.9534562047× 10−4 2.2238524572× 10−12 4.2588831784× 10−10∫
E x

10y5 0 −2.0911953867× 10−4 0.0014996521∫
E x

20y5 0 −1.3797380205× 10−5 7.0356275077× 10−4∫
E x

40y5 0 −7.9203571311× 10−7 2.5065856538× 10−4∫
E x

5y20 −0.005890191 8.08469022058× 10−5 −1.330384913× 10−4∫
E x

5y40 −0.001868889 4.37593748009× 10−5 −3.963064075× 10−5

Table 4 CPU times as a function of the integrand and the integration domain P for the
three approaches A.1, A.2 and A.3.

P1 P2 P3

A.1 A.2 A.3 A.1 A.2 A.3 A.1 A.2 A.3
x5y5 0.054 0.159 0.616 0.083 0.244 0.973 0.227 0.678 2.856
x10y10 0.078 0.221 1.359 0.123 0.328 2.321 0.351 0.939 7.301
x20y20 0.124 0.344 4.060 0.207 0.540 7.399 0.580 1.498 22.70
x40y40 0.208 0.578 14.79 0.377 0.934 27.24 1.073 2.671 86.63
x10y5 0.064 0.191 0.999 0.081 0.296 1.699 0.237 0.833 5.125
x20y5 0.078 0.240 1.955 0.089 0.412 3.690 0.274 1.093 10.99
x40y5 0.107 0.363 4.975 0.085 0.616 9.504 0.332 1.680 29.40
x5y20 0.052 0.244 1.971 0.085 0.412 3.662 0.243 1.117 11.07
x5y40 0.051 0.365 5.009 0.082 0.597 9.295 0.272 1.673 29.17

taken to evaluate the underlying integral using each method. We point out that, for each
integrand and each integration domain P, the relative errors between the output of the
three different approaches are of the order of machine precision; that is, all three algorithms
return the exact integral up to roundoff error. The results shown in Table 4 illustrate that
the sub-tessellation approach A.3 is the slowest while the proposed method A.1 is the
fastest for all of the considered cases; in particular, we highlight that, even for just a single
domain of integration, the former method is between one- to two-orders of magnitude
slower than the latter approach proposed in this article. Moreover, when the integration
domain consists of a triangle, our algorithm A.1 still outperforms classical quadrature
rules, cf. Algorithm A.3, even though in this case no subtessellation is undertaken. When
comparing A.1 and A.2, we observe that the former algorithm is again superior in terms
of CPU time in comparison with the latter approach; this difference seems to grow when
the exponents k and l of the integrand function xkyl are very different. This is because
in A.1 we made an optimal choice of the point x0,i = (x0i,1, x0i,2)> appearing in (14).
Indeed, performing the geometric reduction of the face of the domain of integration, we
then choose x0i,1 = 0 or x0i,2 = 0 if the exponents of the integrand function xkyl are k ≥ l
or k < l, respectively. The choice x0i,1 = 0 or x0i,2 = 0 allows us to avoid the recursive
calls to the function I related to the x– or y–partial derivatives, respectively. In this way
the approach A.1 is able to exploit the form of the integrand in order to optimize the
evaluation of the corresponding integral.
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3 Application to hp-version DG methods

We consider the following weak formulation of the diffusion-reaction model problem, sub-
ject to a homogeneous Dirichlet boundary condition, given by: find u ∈ V = H1

0 (Ω) such
that ∫

Ω
∇u · ∇v dx +

∫
Ω
uvdx =

∫
Ω
fv dx ∀v ∈ V, (16)

with Ω ⊂ Rd, d = 2, 3, a polygonal/polyhedral domain with Lipschitz boundary and f a
given function in L2(Ω).

In order to discretize problem (16), we introduce a partition Th of the domain Ω, which
consists of disjoint (possibly non-convex) open polygonal/polyhedral elements κ of diam-
eter hκ, such that Ω =

⋃
κ∈Th κ̄. We denote the mesh size of Th by h = maxκ∈Th hκ.

Furthermore, we define the faces of the mesh Th as the planar/straight intersections of the
(d − 1)–dimensional facets of neighbouring elements. This implies that, for d = 2, a face
consists of a line segment, while for d = 3, the faces of Th are general shaped polygons;
without loss of generality, for the definition of the proceeding DG method we assume that
the faces are (d − 1)-dimensional simplices, cf. [23, 24] for a discussion of this issue. In
order to introduce the DG formulation, it is helpful to distinguish between boundary and
interior element faces, denoted by FBh and FIh , respectively. In particular, we observe that
F ⊂ ∂Ω for F ∈ FBh , while for any F ∈ FIh we assume that F ⊂ ∂κ±, where κ± are
two adjacent elements in Th. Furthermore, we write Fh = FIh ∪ FBh to denote the set of
all mesh faces of Th. For simplicity of presentation we assume that each element κ ∈ Th
possesses a uniformly bounded number of faces under mesh refinement, cf. [23, 24].

We associate to Th the corresponding discontinuous finite element space Vh, defined by
Vh = {v ∈ L2(Ω) : v|κ ∈ Ppκ(κ), κ ∈ Th}, where Ppκ(κ) denotes the space of polynomials
of total degree at most pκ ≥ 1 on κ ∈ Th. We refer to [23, 24] for more details.

In order to define the DG method, we introduce the jump and average operators:

Jτ K = τ + · n+ + τ− · n−, {{τ}} = τ + + τ−

2 , F ∈ FIh , (17)

JvK = v+n+ + v−n−, {{v}} = v+ + v−

2 , F ∈ FIh ,

JvK = v+n+, {{τ}} = τ +, F ∈ FBh ,

where v± and τ± denote the traces of sufficiently smooth functions v and τ on F taken
from the interior of κ±, respectively, and n± are the unit outward normal vectors to ∂κ±,
respectively, cf. [11].

We then consider the bilinear form Ah(·, ·) : Vh×Vh → R, corresponding to the symmetric
interior penalty DG method, defined by

Ah(u, v) =
∑
κ∈Th

∫
κ
∇u · ∇v dx−

∑
F∈Fh

∫
F

({{∇hu}} · JvK + JuK · {{∇hv}}) ds

+
∑
F∈Fh

∫
F
αhJuK · JvK ds, (18)

where ∇h denotes the broken gradient operator, defined elementwise, and αh ∈ L∞(Fh)
denotes the interior penalty stabilization function, whose precise definition, based on the
analysis introduced in [23, 24], is given below. To this end, we first need the following
definition.
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Definition 3.1. Let T̃h be the subset of elements κ ∈ Th such that each κ ∈ T̃h can be
covered by at most nT shape-regular simplices Ki, i = 1, . . . , nT , such that

dist(κ, ∂Ki) < Cas
diam(Ki)

p2
κ

, and |Ki| ≥ cas|κ|

for all i = 1, . . . , nT , for some nT ∈ N, where Cas and cas are positive constants, indepen-
dent of κ and Th.

Given Definition 3.1, we recall the following inverse inequality; see [23, 24] for a detailed
proof.
Lemma 3.1. Let κ ∈ Th, F ⊂ ∂κ denote one of its faces, and T̃h be defined as in
Definition 3.1. Then, for each v ∈ Ppκ(κ), we have the inverse estimate

‖v‖2L2(F ) ≤ CINV (pκ, κ, F )p
2
κ|F |
|κ|
‖v‖2L2(κ),

where

CINV (pκ, κ, F ) := Cinv


min

{
|κ|

sup
κF
[
⊂κ |κ

F
[
| , p

2(d−1)
κ

}
, if κ ∈ T̃h,

|κ|
sup

κF
[
⊂κ |κ

F
[
| , if κ ∈ Th \ T̃h,

and κF[ denotes a d–dimensional simplex contained in κ which shares the face F with
κ ∈ Th. Furthermore, Cinv is a positive constant, which if κ ∈ T̃h depends on the
shape regularity of the covering of κ given in Definition 3.1, but is always independent
of |κ|/ supκF

[
⊂κ |κF[ |, pκ and v.

Based on Lemma 3.1, together with the analysis presented in [23, 24], the parameter αh
can be defined as follows.
Definition 3.2. Let αh : Fh → R+ be defined facewise by

αh(x) := Cα


max

κ∈{κ+,κ−}

{
CINV (pκ, κ, F )p

2
κ|F |
|κ|

}
, x ∈ F, F ∈ FIh , F ⊂ ∂κ±,

CINV (pκ, κ, F )p
2
κ|F |
|κ|

, x ∈ F, F ∈ FBh , F ⊂ ∂κ,

with Cα > Cminα , where Cminα is a sufficiently large lower bound.

The DG discretization of the problem (16) is given by: find uh ∈ Vh such that

Ah(uh, vh) +
∫

Ω
uhvh dx =

∫
Ω
fvh dx ∀vh ∈ Vh. (19)

By fixing a basis {φi}Nhi=1, Nh denoting the dimension of the discrete space Vh, (19) can be
rewritten as: find U ∈ RNh s.t.

(A + M)U = f , (20)
where fi =

∫
Ω fφidx ∀i = 1, . . . , Nh, A is the stiffness matrix, given by Aij = Ah(φj , φi)

∀i, j = 1, . . . , Nh, M is the mass matrix, and U contains the expansion coefficients of
uh ∈ Vh with respect to the chosen basis. In order to assemble (A + M) we need to
compute the following matrices:

Mi,j =
∫

Ω
φiφjdx, Vi,j =

∫
Ω
∇φi · ∇φj dx, (21)

Si,j =
∑
F∈Fh

∫
F
αhJφiK · JφjKdσ, Ii,j =

∑
F∈Fh

∫
F
{{∇φi}} · JφjKdσ, (22)
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for i, j = 1, . . . , Nh, where as before Nh denotes the dimension of the DG space Vh. In
particular, the stiffness matrix related to the DG approximation of problem (19) is defined
as

A = V− I> − I + S.

4 Elemental stiffness and mass matrices

In this section, we outline the application of Algorithm 1 for the efficient computation of
the mass and stiffness matrices appearing in (20).

4.1 Shape functions for the discrete space Vh

To construct the discrete space Vh we exploit the approach presented in [24], based on em-
ploying polynomial spaces defined over the bounding box of each element. More precisely,
given an element κ ∈ Th, we first construct the Cartesian bounding box Bκ, such that
κ ⊂ Bκ. Given Bκ, κ ∈ Th, it is easy to define a linear map between Bκ and the reference
element B̂ = (−1, 1)d as follow: Fκ : B̂ → Bκ such that Fκ : x̂ ∈ B̂ 7−→ Fκ(x̂) = Jκx̂+tκ,
where Jκ ∈ Rd×d is the Jacobi matrix of the transformation which describes the stretch-
ing in each direction, and tκ ∈ Rd is the translation between the point 0 ∈ B̂ and the
baricenter of the bounded box Bκ, see Figure 6.
Remark 5. If d = 2 we can define the map Fκ : B̂ → Bκ as follows: let vi = {(xi, yi)}4i=1
denote the coordinates of the four vertices of the box Bκ ⊂ R2, ordered in a counter
clock-wise orientation, see Figure 6. The map Fκ is then identified by

Jκ = 1
2

[
x2 − x1 0

0 y3 − y1

]
, tκ = 1

2

[
x1 + x2
y1 + y3

]
.

We point out that since Bκ has edges which are aligned with the principal axes, the Jacobi
matrix Jκ is diagonal, where (Jκ)1,1 and (Jκ)2,2 represent half of the size of base and the
height of the box, respectively.

Employing the map Fκ, κ ∈ Th, we may define a standard polynomial space Pp(Bκ) on
Bκ spanned by a set of basis functions {φi,κ} for i = 1, . . . , Npκ = dim(Pp(Bκ)). More
precisely, we denote by {Ln(x)}∞n=0 the family of one–dimensional and L2–orthonormal
Legendre polynomials, defined over L2(−1, 1), i.e.,

Ln(x) = Ln(x)
‖Ln‖L2(−1,1)

, with Ln(x) = 1
2nn!

d
dx
[
(x2 − 1)n

]
,

cf. [54, 39]. We then define the basis functions for the polynomial space Pp(B̂) as follows:
writing I = (i1, i2, . . . , id) to denote the multi-index used to identify each basis function
{φ̂I}0≤|I|≤p, where |I| = i1 + · · ·+ id, we have that

φ̂I(x̂) = φ̂I(x̂1, . . . , x̂d) = Li1(x̂1)Li2(x̂2) · · · Lid(x̂d).

Then, the basis functions for the polynomial space Ppκ(κ) are defined by using the map
Fκ, namely:

φI,κ(x) = φ̂I(F−1
κ (x)) ∀x ∈ κ ⊂ Bκ ∀I : 0 ≤ |I| ≤ pκ. (23)

The set {φI,κ : 0 ≤ |I| ≤ pκ, κ ∈ Th} forms a basis for the space Vh. On each element
κ ∈ Th we introduce a bijective relation between the set of multi-indices {I = (i1, . . . , id) :
0 ≤ |I| ≤ pκ} and the set {1, 2, . . . , Npκ}.
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x1 x2

x3

x4

x5

x̂1 x̂2

x̂3

x̂4

x̂5

v1
v2

v3
v4

Fκ

F−1
κ κ

κ̂

Bκ
Fi

F̂i

Figure 6: Example of a polygonal element κ ∈ Th, the relative bounded box Bκ, the map
Fκ and κ̂ = F−1

κ (κ).

4.2 Volume integrals over polytopic mesh elements

In the following we describe the application of Algorithm 1 to compute the entries in the
local mass and element-based stiffness matrices

Mκ
i,j =

∫
Ω
φi,κφj,κdx, Vκ

i,j =
∫

Ω
∇φi,κ · ∇φj,κdx i, j = 1, . . . , Npκ , (24)

respectively, ∀κ ∈ Th. For simplicity of presentation, we restrict ourselves to two–
dimensions, though we emphasize that the three–dimensional case is analogous, cf. Sec-
tion 5.2 below. Since the basis functions are supported only on one element, employing
the transformation Fκ, we have

Mκ
i,j =

∫
κ
φi,κ(x, y)φj,κ(x, y)dx =

∫
κ̂
φ̂i(x̂, ŷ)φ̂j(x̂, ŷ)|Jκ|dx̂, i, j = 1, . . . , Npκ ,

where in the last integral κ̂ = F−1
κ (κ) ⊂ B̂, see Figure 6. Here, the Jacobian of the

transformation Fκ is given by |Jκ| = (Jκ)1,1(Jκ)2,2, which is constant, due to the def-
inition of the map, cf. Remark 5. In order to employ the homogeneous function inte-
gration method described in the previous section, we need to identify the coefficients of
the homogeneous polynomial expansion for the function φ̂i(x̂, ŷ)φ̂j(x̂, ŷ). We observe that
φ̂i(x̂, ŷ) = Li1(x̂)Li2(ŷ), and each one–dimensional Legendre polynomial can be expanded
as

Li1(x̂) =
i1∑

m=0
Ci1,m x̂m, Li2(ŷ) =

i2∑
n=0

Ci2,n ŷ
n. (25)

Therefore, we have
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Mκ
i,j =

∫
κ̂

( i1∑
m=0

Ci1,mx̂
m
)( i2∑

n=0
Ci2,nŷ

n
)( j1∑

s=0
Cj1,sx̂

s
)( j2∑

r=0
Cj2,rŷ

r
)
|Jκ|dx̂

=
∫
κ̂

(i1+j1∑
k=0
Ci1,i2,kx̂k

)(i2+j2∑
l=0
Ci2,j2,lŷl

)
|Jκ|dx̂

=
i1+j1∑
k=0

i2+j2∑
l=0
Ci1,j1,k Ci2,j2,l |Jκ|

∫
κ̂
x̂kŷldx̂

=
i1+j1∑
k=0

i2+j2∑
l=0
Ci1,j1,k Ci2,j2,l |Jκ|I(2, κ̂, k, l),

where the last identity follows from Algorithm 1, cf. Section 2. Here, we have written

Ci,j,k =
∑

n+m=k

(
Ci,n Cj,m

)
, for 0 ≤ i, j ≤ pκ, 0 ≤ k ≤ i+ j. (26)

Notice that the coefficients Ci,j,k can be evaluated, once and for all, independently of
the polygonal element κ. We now consider the general element of the volume matrix Vi,j ,
cf. (24). Proceeding as before, let I, J be the two multi-indices corresponding respectively
to i and j, we have

Vκ
i,j =

∫
κ
∇φi · ∇φj dx =

∫
κ

∂φI,κ
∂x

∂φJ,κ
∂x

dx︸ ︷︷ ︸
1

+
∫
κ

∂φI,κ
∂y

∂φJ,κ
∂y

dx︸ ︷︷ ︸
2

. (27)

Proceeding as before, we apply a change of variables to the terms 1 and 2 with respect
to the map Fκ; thereby, we obtain

1 =
∫
κ̂

∂φI,κ
∂x

(Fκ(x̂))∂φJ,κ
∂x

(Fκ(x̂))|Jκ|dx̂,

2 =
∫
κ̂

∂φI,κ
∂y

(Fκ(x̂))∂φJ,κ
∂y

(Fκ(x̂))|Jκ|dx̂.

From the definition of Fκ, the inverse map is given by F−1
κ (x) = J−1

κ (x − tκ), cf. Re-
mark 5. Then, using the definition (23) of the basis functions, we have the following
characterization of the partial derivatives appearing in the terms 1 and 2 :

∂

∂x
φI,κ(x) = ∂φ̂I

∂x̂
(F−1

κ (x)) (J−1
κ )1,1,

∂

∂y
φI,κ(x) = ∂φ̂I

∂ŷ
(F−1

κ (x)) (J−1
κ )2,2

where we have used that (J−1
κ )2,1 = (J−1

κ )1,2 = 0 since Jκ is diagonal. Then, 1 can be
written as:

1 =
∫
κ̂

∂φ̂I
∂x̂

(x̂)∂φ̂J
∂x̂

(x̂) (J−1
κ )2

1,1|Jκ|dx̂.

Since (J−1
κ )2

1,1|Jκ| is constant, the integrand function of term 1 is a polynomial. Thereby,
we have the following relation:

∂φ̂I
∂x̂

(x̂) = L′i1(x̂) Li2(ŷ),

∂φ̂J
∂x̂

(x̂) = L′j1(x̂) Lj2(ŷ),

⇒
∂φ̂I
∂x̂

(x̂)∂φ̂J
∂x̂

(x̂) = L′i1(x̂) Li2(ŷ) L′j1(x̂) Lj2(ŷ).
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From the expansion (25) of the Legendre polynomials, we note that

L′0(x̂) = 0, L′i(x̂) =
i−1∑
m=0

(m+ 1)Ci,m+1 x̂
m =

i−1∑
m=0

C ′i,m x̂m, for i > 0; (28)

where the indices C ′i,m = (m+ 1)Ci,m+1 are the coefficients for the expansion of L′i(·). We
deduce that 1 = 0 if i1 = 0 or j1 = 0, and

1 =
i1+j1−2∑
k=0

i2+j2∑
l=0
C′i1,i2,k Ci2,j2,l (J−1

κ )2
1,1|Jκ|

∫
κ̂
x̂kŷldx̂, i1, j1 > 0,

where Ci2,j2,l is defined in (26), and

C′i,j,k =
∑

n+m=k
C ′i,n C

′
j,m, 1 ≤ i, j ≤ pκ, for 0 ≤ k ≤ i+ j − 2,

with C ′i,n = (n+1)Ci,n+1, C ′j,m = (m+1)Cj,m+1, cf. (28), is the expansion of the derivatives
of the Legendre polynomials which is computable independently of the element κ, κ ∈ Th.
Analogously, we deduce the following expression for the second term of equation (27):

2 =
i1+j1∑
k=0

i2+j2−2∑
l=0

Ci1,i2,k C′i2,j2,l (J−1
κ )2

2,2|Jκ|
∫
κ̂
x̂kŷldx̂.

4.3 Interface integrals over polytopic mesh elements

With regards the interface integrals appearing in the equation (18), we describe the method
by expanding the jump and average operators and computing each term separately, work-
ing, for simplicity, again in two–dimensions. Firstly, however, we discuss how to trans-
form the integral over a physical face F ⊂ ∂κ to the corresponding integral over the face
F̂ = F−1

κ (F ) ⊂ ∂κ̂ on the reference rectangular element κ̂. To this end, let F ⊂ ∂κ
be a face of the polygon κ, κ ∈ Th, and let x1 = (x1, y1) and x2 = (x2, y2) denote the
vertices of the face, based on counter clock-wise ordering of the polygon vertices. The
face F̂ = F−1

κ (F ) is identified by the two vertices x̂1 = F−1
κ (x) and x̂2 = F−1

κ (x2). For a
general integrable function g : κ→ R we have∫

F
g(x, y)dσ(x, y) =

∫
F̂
g(Fκ(x̂, ŷ)) dσ(Fκ(x̂, ŷ)),

where dσ(Fκ(x̂, ŷ)) = JF dσ̂ and JF is defined as JF = ‖J−>κ n̂F̂ ‖|Jκ|, where n̂F̂ is the
unit outward normal vector to F̂ .

We next describe how to compute the interface integrals. From the definition of the jump
and average operators, cf. (17), on each edge F ∈ FIh shared by the elements κ± we need
to assemble

S+/+
i,j =

∫
F
αh φi,κ+ φj,κ+ dσ, I+/+

i,j = 1
2

∫
F

(∇φi,κ+ · n+) φj,κ+ dσ,

S−/−i,j =
∫
F
αh φi,κ− φj,κ− dσ, I−/−i,j = 1

2

∫
F

(∇φi,κ− · n−) φj,κ− dσ,

S+/−
i,j = −

∫
F
αh φi,κ+ φj,κ− dσ, I+/−

i,j = −1
2

∫
F

(∇φi,κ+ · n+) φj,κ− dσ,

S−/+i,j = −
∫
F
αh φi,κ− φj,κ+ dσ, I−/+i,j = −1

2

∫
F

(∇φi,κ− · n−) φj,κ+ dσ,
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for i, j = 1, . . . , Npκ±
. Analogously, on the boundary face F ∈ FBh belonging to κ+ ∈ Th

we only have to compute

S+/+
i,j =

∫
F
αh φi,κ+ φj,κ+ dσ, I+/+

i,j =
∫
F

(∇φi,κ+ · n+) φj,κ+ dσ,

for i, j = 1, . . . , Npκ+ . We next show how to efficiently compute a term of the form

S+/+
i,j =

∫
F
αh φI,κ+(x, y) φJ,κ+(x, y)dσ,

where I, J are the suitable multi-indices associated to i, j = 1, . . . , Npκ+ , respectively.
Proceeding as before, we have

S+/+
i,j =

∫
F
αhφI,κ+(x, y)φJ,κ+(x, y)dσ(x, y) =

∫
F̂
αhφ̂I(x̂, ŷ)φ̂J(x̂, ŷ)JFdσ̂

=
i1+j1∑
k=0

i2+j2∑
l=0

αh Ci1,j1,k Ci2,j2,l JF
∫
F̂
x̂kŷldσ̂,

where the integral of bivariates is computed as
∫
F̂ x̂

kŷldσ̂ = I(1, F̂ , k, l). Analogously, we
have

S+/−
i,j = −

∫
F
αh φI,κ+(x, y)φJ,κ−(x, y)dσ(x, y) (29)

= −
∫

F−1
κ+ (F )

αh φI,κ+(Fκ+(x̂))︸ ︷︷ ︸
a

φJ,κ−(Fκ+(x̂))︸ ︷︷ ︸
b

JF+dσ.

For the term a , we directly apply the definition of the basis function, and obtain

a = φI,κ+(Fκ+(x̂)) = φ̂I(F−1
κ+(Fκ+(x̂))) = φ̂I(x̂) =

i1∑
k=0

i2∑
l=0

Ci1,k Ci2,l x̂
kŷl, (30)

while for the term b we have

b = φJ,κ−(Fκ+(x̂)) = φ̂J(F−1
κ−(Fκ+(x̂))).

In order to obtain a homogeneous polynomial expansion for b we have to write explicitly
the composite map F̃(x̂) = F−1

κ−(Fκ+(x̂)). That is

F̃(x̂) = J−1
κ−(Jκ+ x̂ + tκ+)− J−1

κ−tκ− = J−1
κ−Jκ+︸ ︷︷ ︸

J̃

x̂ + J−1
κ−(tκ+ − tκ−)︸ ︷︷ ︸

t̃

,

where the matrix J̃ is diagonal since J−1
κ− and Jκ+ are diagonal. We then have

b = φ̂J(F̂(x̂)) = φ̂J(J̃x̂ + t̃) = φ̂J(J̃1,1x̂+ t̃1, J̃2,2ŷ + t̃2) (31)

=
j1∑
k=0

j2∑
l=0

Cj1,k Cj2,l (J̃1,1x̂+ t̃1)k(J̃2,2ŷ + t̃2)l.

Combining (30) and (31), and denoting by F̂+ = F−1
κ+(F ), cf. Figure 7, from (29) we

obtain

S+/−
i,j = −

i1+j1∑
k=0

i2+j2∑
l=0
X̃i1,j1,k Ỹi2,j2,l JF+

∫
F̂+

x̂kŷldσ̂,
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Figure 7: Example of a polygonal elements κ± ∈ Th, together with the bounded boxes
Bκ± , and the local maps Fκ± : κ̂→ κ± for the common face F ⊂ κ±.

where X̃ and Ỹ are defined as

X̃i,j,k =
∑

n+m=k

(
Ci,n X̃j,m

)
Ỹi,j,k =

∑
n+m=k

(
Ci,n Ỹj,m

)
 for 0 ≤ i ≤ pκ+ , 0 ≤ j ≤ pκ− , 0 ≤ k ≤ i+ j.

Here, as before, Ci,n are the coefficients of the homogeneous function expansion of the
Legendre polynomials in (−1, 1), while X̃j,m and Ỹj,m are defined by

X̃j,m =
j∑

r=m
Cj,r

(
r

m

)
(J̃1,1)m (t̃1)r−m

Ỹj,m =
j∑

r=m
Cj,r

(
r

m

)
(J̃2,2)m (t̃2)r−m


for 0 ≤ j ≤ pκ− , j ≤ m ≤ pκ− ;

here, we have exploited the Newton-binomial expansion of the terms (J̃1,1x̂ + t̃1)k and
(J̃2,2ŷ + t̃2)l appearing in equation (31).

Similar considerations allow us to compute

I+/+
i,j = 1

2
(∫

F

∂φI,κ+

∂x
(x, y)φJ,κ+(x, y)n+

x +
∫
F

∂φI,κ+

∂y
(x, y)φJ,κ+(x, y)n+

y

)
= 1

2
(∫

F̂
(J−1
κ+)1,1

∂φ̂I
∂x̂

φ̂Jn
+
x JFdσ̂ +

∫
F̂

(J−1
κ+)2,2

∂φ̂I
∂ŷ

φ̂Jn
+
y JFdσ̂

)
= 1

2JF
(
(J−1
κ+)1,1n

+
x

i1+j1−1∑
k=0

i2+j2∑
l=0
C′′i1,i2,kCi2,j2,l

∫
F̂
x̂kŷldσ̂ + . . .

. . . + (J−1
κ+)2,2n

+
y

i1+j1∑
k=0

i2+j2−1∑
l=0

Ci1,i2,k C′′i2,j2,l
∫
F̂
x̂kŷldσ̂

)
,

where C′′i,j,k are defined as

{
C′′0,j,k = 0 ∀j, ∀k,
C′′i,j,k =

∑
n+m=k C

′
i,nCj,m, 1 ≤ i ≤ pκ+ , 0 ≤ j ≤ pκ+ , 0 ≤ k ≤ i+ j − 1,

and where n+ = [n+
x , n

+
y ]> is the unit outward normal vector to the physical face F from
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κ+. Similarly,

I+/−
i,j = −1

2

∫
F

(∇φI,κ+ · n+)φJ,κ−dσ

= −1
2
(∫

F

∂φI,κ+

∂x
φJ,κ−n

+
x dσ +

∫
F

∂φI,κ+

∂y
φJ,κ−n

+
y dσ

)
= −1

2JF
(
(J−1
κ )1,1

i1+j1−1∑
k=0

i2+j2∑
l=0
X̃ ′i1,i2,kỸi2,j2,l

∫
F̂+

x̂kŷldσ̂ + . . .

. . . + (J−1
κ )2,2

i1+j1∑
k=0

i2+j2−1∑
l=0

X̃i1,i2,k Ỹ ′i2,j2,l
∫
F̂+

x̂kŷldσ̂
)
,

where we have also introduced X̃ ′ and Ỹ ′ defined as

X̃ ′i,j,k =
∑

n+m=k

(
C ′i,n X̃j,m

)
,

Ỹ ′i,j,k =
∑

n+m=k

(
C ′i,n Ỹj,m

)
,

 for 1 ≤ i ≤ pκ+ , 0 ≤ j ≤ pκ− , 0 ≤ k ≤ i+ j − 1.

Remark 6. The coefficients X̃ and Ỹ depend on the maps Fκ+ and Fκ− , as well as X̃ , X̃ ′, Ỹ
and Ỹ ′; thereby, they must be computed for each element κ in the mesh Th.
Remark 7. With regards the computation of the forcing term

fi =
∫

Ω
f(x)φi(x)dx, ∀i = 1, . . . , Nh, (32)

we point out that the quadrature method proposed in this paper allows to exactly eval-
uate (32) when f is a constant or a polynomial function. If f is a general function, an
explicit polynomial approximation of f is required.

5 Numerical experiments

We present some two– and three–dimensional numerical experiments to test the practical
performance of the proposed approach. Here, the results are compared with standard
assembly algorithms based on employing Gaussian quadrature rules on a sub-tessellation.

5.1 Two–dimensional test case

We test the performance of the algorithm outlined in Section 4 for the computation of
the elemental mass and stiffness matrices resulting from the DG discretization (19) on
Voronoi decompositions as shown in Fig. 8. In particular, we compare the CPU-time
needed to assemble the local and global elemental matrices using Agorithm 1, cf. Sec-
tion 4, with classical Gaussian Quadrature Integration over polygonal domains, based on
the Sub-tessellation method on polygons and Gaussian line integration for the related in-
terface terms. More precisely, given κ ∈ Th, the Sub-Tessellation scheme on κ is performed
by constructing a non-overlapping sub-tessellation κS = {τκ} consisting of standard tri-
angular elements; in particular, as, for our tests, we consider Voronoi numerical grids, we
exploit the convexity of κ and define κS by connecting the centre of mass of κ with its

19



(a) 50 elements. (b) 250 elements. (c) 1000 elements.

Figure 8: Example of Voronoi mesh on Ω = (0, 1)2.

vertices. As an example, if we consider computing the elemental mass matrix Mκ
i,j , we

have that

Mκ
i,j =

∫
κ
φiφjdx ≈

∑
τκ∈κS

qτκ∑
r=1

φi(Fτκ(ξr))φj(Fτκ(ξr))|Jτκ |ωr,

where Fτκ : τ̂ → τκ is the mapping from the reference simplex τ̂ to τκ, with Jacobian
|Jτκ |, and {(ξr, ωr)}

qκ
r=1 denotes the quadrature rule defined on τ̂ . The construction of

quadrature rules on τ̂ may be computed based on employing the Duffy transformation,
whereby the reference tensor-product element (−1, 1)2 is mapped to the reference simplex.
As the algorithm outlined in Section 4 does not require the definition of quadrature nodes
and weights, in the following we will refer to it as the Quadrature Free Method. Consider
the problem (19) introduced in Section 3 with d = 2 and Ω = (0, 1)2, where we select the
set of basis functions {φi}Nhi=1 for Vh as described in Section 4. In order to quantify the
performance of the proposed approach, we consider a series of numerical tests obtained by
varying the polynomial degree pκ = p for all κ ∈ Th, between 1 and 6 and by employing
a series of uniform polygonal meshes of different granularity, cf. Figure 8. The numerical
grids are constructed based on employing PolyMesher, cf. [62]. Here, we are interested in
the CPU time needed to assemble the matrices (21) and (22).

In the first test case, we consider the CPU time needed to assemble the matrices M
and V. As pointed out in Section 4, these matrices are block diagonal and each block
consists of an integral over each polygonal element κ ∈ Th. In Figure 9 we present the
comparison between the CPU times needed to assemble the global matrices M and V
based on employing the Quadrature Free Method and Gaussian Quadrature Integration
when varying the number of elements Ne ∈ {64, 256, 1024, 4094, 16384, 65536} and the
polynomial degree p ∈ {1, 2, 3} (left), and p ∈ {4, 5, 6} (right). Clearly, our approach
outperforms the classical Sub-tessellation method leading to substantial gains in efficiency.
For a more detailed comparison, we have presented in Figure 11(a) the logarithmic-scaled
graphs of each computation: from the results of Figure 11(a) we observe that the CPU
time grows like O(Ne), as Ne increases, as expected.

We have repeated the same set of numerical experiments measuring the CPU times needed
to assemble the face terms appearing in the matrices S and I; these results are reported in
Figure 10. Here, the domains of integration of the integrals involved are the edges of the
polygonal elements, which are simply line segments in the plane R2. Here, we compare
the Quadrature Free Method method described in Section 4.3 with classical Gaussian
Line Integration, where the integrating function is pointwise evaluated on the physical
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(a) Comparison for p ∈ {1, 2, 3}.
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(b) Comparison for p ∈ {4, 5, 6}.

Figure 9: Comparison of the CPU time needed to assemble the global matrices M and
V for a two–dimensional problem by using the proposed Quadrature Free Method and
the classical Sub-Tessellation scheme. For each algorithm, each line is obtained by fixing
the polynomial approximation degree p ∈ {1, 2, 3} (left) and p ∈ {4, 5, 6} (right), and
measuring the CPU time by varying the number of elements in the underlying mesh.
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(a) Comparison for p ∈ {1, 2, 3}.
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(b) Comparison for p ∈ {4, 5, 6}.

Figure 10: Comparison of the CPU time needed to assemble the global matrices S and
I for a two–dimensional problem by using the proposed Quadrature Free Method and the
classical Gauss Line Integration scheme. For each approach, each line is obtained by
fixing the polynomial approximation degree p ∈ {1, 2, 3} (left) and p ∈ {4, 5, 6} (right),
and measuring the CPU time by varying the number of elements in the underlying mesh.
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(a) CPU time comparison needed to assemble M
and V in log-log scale.
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(b) CPU time comparison needed to assemble S
and I in log-log scale.

Figure 11: Comparison between the CPU time needed by the two method to assemble
the global matrices M and V (left) and S and I (right) for a three–dimensional problem,
versus the number of elements and for different choices of p = 3, . . . , 6 (log-log scale).

numerical nodes lying on each face. The graphs in Figure 10(a) and 10(b) show the
comparison between the CPU time taken for the two different approaches. Here, we again
observe that significant computational savings are made when the proposed Quadrature
Free Method is employed, though the increase in efficiency is less than that attained for
the computation of the volume integrals. In Figure 11(b) we plot the logarithmic-scaled
time growing with respect to the number of mesh elements; again the CPU time grows as
O(Ne) as Ne increases.

Referring to Figures 9 and 10, we observe that the cost of assembly of the matrices M and
V, which involve volume integrals over each element κ in the computational mesh Th, is
more expensive than the time it takes to assemble the face-baced matrices S and I, when
the classical Gaussian Line Integration method is employed. This is, of course, due to the
greater number of function evaluations required to compute M and V on the underlying
sub-tessellation; note that in two–dimensions, a sub-tesellation of the faces is not necessary,
since they simply consist of line segments. However, the opposite behaviour is observed
when the Quadrature Free Method is employed; in this case, the volume integrals can be
very efficiently computed since the coefficients Ci,j,k and C′i,j,k only need to be computed
once, cf. Section 4.2. On the other hand, computing the face integrals present in S and I
requires the evaluation of the coefficients X̃b,m, X̃a,b,k, X̃ ′a,b,k, Ỹb,m, Ỹa,b,k, and Ỹ ′a,b,k, cf.
Section 4.3, which must be computed for each face F ∈ Fh.

5.2 Three–dimensional test case

We now consider the diffusion-reaction problem (19) with d = 3 and Ω = (0, 1)3. The
polyhedral grids employed for this test case are defined by agglomeration: starting from
a fine partition Tfine of Ω consisting of Nfine disjoint tetrahedrons {κif}

Nfine
i=1 , such that

Ω = ∪Nfinei=1 κif , a coarse mesh Th of Ω consisting of disjoint polyhedral elements κ can be
defined such that

κ = ∪κ′
f
∈Sκ

κ′f ∀κ ∈ Th, (33)
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(a) Element κ1. (b) Element κ2. (c) Element κ3.

Figure 12: Example of polyhedral elements κ ∈ Th obtained by agglomeration of tetra-
hedrons. κ1 has 18 triangular faces, κ2 has 20 triangular faces and κ3 has 22 triangular
faces.
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(a) Comparison for p ∈ {1, 2, 3}.
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(b) Comparison for p ∈ {4, 5, 6}.

Figure 13: Comparison of the CPU time needed to assemble the global matrices M and
V for a three–dimensional problem by using the proposed Quadrature Free Method and
the classical Sub-Tessellation method. For each approach, each line is obtained by fixing
the polynomial approximation degree p ∈ {1, 2, 3} (left) and p ∈ {4, 5, 6} (right), and
measuring the CPU time by varying the number of elements of the underlying mesh.

where Sκ ⊂ T fineh denotes the set of fine elements which forms κ. Here, the agglomeration
of fine tetrahedral elements is performed based on employing the METIS library for graph
partitioning, cf., for example, [44, 45]. With this definition each polyhedral element is
typically non-convex. For simplicity, we have considered only the case of simply connected
elements. In this particular case, the faces of the mesh Th are the triangular intersections
of two–dimensional facets of neighbouring elements. Figure 12 shows three examples of
the polyhedral elements resulting from agglomeration.

We perform a similar set of experiments as the ones outlined in Section 5.2 for the two–
dimensional case. Again, we compare the CPU time required by the proposed Quadrature
Free Mehod with the classical Gaussian Quadrature Integration approach to assemble the
stiffness and mass matrices resulting from the DG discretization of problem (19). Numer-
ical integration over a polyhedral domain is required to assemble the matrices M and V,
cf. (21), whereas for the computation of S and I, cf. (22), a cubature rule over polygonal
faces (here triangular shaped) is needed. In general, for three–dimensional problems the
classical Gaussian Quadrature Integration approach consists in the application of the Sub-
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(a) Comparison for p ∈ {1, 2, 3}.
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(b) Comparison for p ∈ {4, 5, 6}.

Figure 14: Comparison of the CPU time needed to assemble the global matrices S and
I for a three–dimensional problem by using the proposed Quadrature Free Method and
the classical Sub-Tessellation method. For each approach, each line is obtained by fixing
the polynomial approximation degree p ∈ {1, 2, 3} (left) and p ∈ {4, 5, 6} (right), and
measuring the CPU time by varying the number of elements of the underlying mesh.
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(a) CPU time comparison needed to assemble M
and V in log-log scale.
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(b) CPU time comparison needed to assemble S
and I in log-log scale.

Figure 15: Comparison between the CPU time needed by the two method to assemble
the global matrices M and V (left) and S and I (right) for a three–dimensional problem,
versus the number of elements and for different choices of p = 3, . . . , 6 (log-log scale).
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Tessellation method both for volume and face integrals, although in this particular case no
sub-tessellation is required for the face integrals, since they simply consist of triangular do-
mains. Moreover, as in this case a sub-tessellation into tetrahedral domains is already given
by the definition of the polyhedral mesh, the Gaussian Quadrature Integration for volume
integrals on a general agglomerated polyhedral element κ = ∪κ′

f
∈Sκ

κ′f is realized by apply-
ing an exact Gaussian quadrature rule on each tetrahedron κ′f ∈ Sκ. The comparison of
the CPU times for the two methods outlined here are presented for a set of agglomerated
polyhedral grids where we vary the number of elements Ne ∈ {5, 40, 320, 2560, 20480}, and
the polynomial degree p ∈ {1, 2, 3, 4, 5, 6}. For each agglomerated polyhedral grid Th we
have chosen the corresponding fine tetrahedral grid Tfine such that the cardinality of the
set Sκ appearing in (33) is |Sκ| ∼ 10 ∀κ ∈ Th. The results are shown in Figure 13 for the
computation of the matrices M and V, and in Figure 14 for the computation of matrices
S and I. Here, we observe analogous behaviour to the two–dimensional case: the Quadra-
ture Free Method substantially outperforms the Gaussian Quadrature Integration both for
the computation of the volume and face integrals. We also have reported in Figure 15
the logarithmic-scaled graphs of each computation, showing that, as expected, the gain in
terms of CPU time given by the use of the proposed method is more evident here, with
respect of two–dimensional case, also for the face integrals.

Conclusions

We have proposed a new approach for the numerical evaluation of the integrals required to
assemble the mass and stiffness matrices arising from the DG discretization of diffusion-
reaction problems, where the underlying mesh is composed by polygonal/polyhedral ele-
ments. Starting from the idea proposed in [26] for the integration of homogeneous func-
tions, we have developed a cubature method which does not require the definition of a set
of nodes and weights on the domain of integration, and allows for the exact integration of
polynomial functions based on evaluating the integrand only at the vertices of the poly-
topal integration domain. This approach shows a remarkable gain in terms of CPU time
with respect to classical quadrature rules, maintaining the same degree of accuracy. On
the one hand, the number of computations is optimized, with respect to the polynomial
degree of the integrand, and moreover less memory storage is required as no sub-partition
and quadrature nodes and weights are required. With regards the three–dimensional tests
presented Section 5.2, we note that more substantial gains in terms of CPU time, with
respect to classical approaches, can be obtained if the underlying grid is composed of pure
(not agglomerated) polyhedral elements: firstly, this is because a sub-partition should
be defined on the fly for each element, and secondly, as faces are not only triangles but
possibly polygons of general shape, a sub-tessellation is needed also for surface integrals.
The proposed technique is completely general and can be extended to several numerical
methods based on discrete spaces defined on polygonal/polyhedral meshes, such as Virtual
Element Method, Mimetic Finite Difference, Hybrid High-Order, Hybridizable Discontinu-
ous Galerkin, Polygonal Finite Element Method, for example. We stress that for moderate
polynomial degrees, the proposed integration technique, which involves exact integration
of bivariate and trivariate functions in two- and three–dimensions, respectively, has been
observed to be numerically stable.
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