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Abstract

We analyze a free-surface problem described by time-dependent Navier-Stokes equations. Surface tension,
capillary e�ects and wall friction are taken into account in the evolution of the system, in�uencing the motion
of the contact line � where the free surface hits the wall � and of the dynamics of the contact angle. The
di�erential equations governing the phenomenon are �rst derived from the variational principle of minimum
reduced dissipation, and then discretized by means of the ALE approach. The numerical properties of the
resulting scheme are investigated, drawing a parallel with the physical properties holding at the continuous
level. Some instability issues are addressed in detail, in the case of an explicit treatment of the geometry,
and novel additional terms are introduced in the discrete formulation in order to damp the instabilities.
Numerical tests assess the suitability of the approach, the in�uence of the parameters, and the e�ectiveness
of the new stabilizing terms.

Keywords: capillary, Geometric Conservation Law, Arbitrary Lagrangian-Eulerian, generalized Navier
boundary condition, contact angle

1. Introduction

The simulation of free-boundary problems is of major relevance in many �uid-dynamics applications,
both at the large scale, like in the study of water waves [1] and the design of watercraft [2], and at the
microscopic scale, e.g. in the micro�uidics of capillary tubes [3, 4] or labs-on-a-chip [5, 6]. In these settings,
the �uid under inspection interacts with other �uids or solids, and thus it is fundamental to correctly track
the evolution of the interfaces between the di�erent phases. Di�erent approaches can be found, in the
literature, for the modeling and the simulation of multiphase problems, and they can be classi�ed in three
main categories, depending on their treatment of the interfaces: the di�use-interface models, the interface-
capturing methods and the interface-tracking techniques. The phase-�eld model [7, 8, 5] is representative of
the �rst category: regions occupied by di�erent phases are identi�ed by di�erent integer values of a scalar
function, and the interface has a �nite thickness, spanning the region where this function smoothly passes
from a level to another. This kind of smoothing of the interface allow an accurate physical characterization
(including phase transitions) and helps in the development and the proof of theoretical results, but does
not provide a sharp position of the interface. On the other hand, in interface-capturing methods, like the
level-set method [9, 10] or the volume-of-�uid method [11, 12], a precise description of the interface is given
at any time, as a codimension-1 manifold immersed in the domain. However, these methods require the
solution of both the �uid phases separated by the interface, and at the discrete level it is crucial to properly
handle the elements of the computational domain through which the interface passes, since the grid is not
conforming to the interface. Eventually, the third category of methods includes the techniques to track the
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interface as an actual boundary of the domain, which is thus moved accordingly. The computation of the
domain motion is a major point of these techniques, and the Arbitrary Lagrangian-Eulerian approach (ALE)
[13, 14] is widely adopted to this aim. Since the interface is not immersed in the domain, in many cases one
can actually restrict the computational domain to a single phase of interest.

When more than two phases simultaneously interact, particular attention has to be paid to triple lines,
where di�erent interfaces intersect. Indeed, the overall evolution of the system is highly in�uenced by the
physical relations occurring on these lines. In case one of the phases under consideration is a solid, the triple
line is called the contact line, and if a naïve approach is adopted, one may draw paradoxical conclusions on
the physical laws holding thereat. This issue is known as the moving-contact-line problem, and it has been
addressed in various ways, in the literature (see, e.g., [15, 6, 16, 17]).

In the present work, we analyze a free-surface problem for a Newtonian �uid inside a capillary tube,
described by time-dependent, incompressible Navier-Stokes equations and discretized via the Finite Element
method (FEM), with an ALE approach accounting fro the domain motion. At the free surface, the interaction
with a gas is included by means of a surface-tension condition, connecting the curvature of the interface and
the stress exchanged between the �uids. The e�ects of wall friction and contact line forces are gathered in
the generalized Navier boundary condition (GNBC), imposed on the solid wall. This condition includes the
imposition of an equilibrium contact angle, that is the angle between the free surface and the wall. Such an
angle is a primary feature of the shape of capillary menisci and resting droplets, and its imposition by the
GNBC has been widely adopted and motivated in the literature of the last decade [15, 17, 6].

The goal of this work is to investigate the properties of the discretization of the problem under inspection,
and to propose a solution to possible stability issues. To this aim, we deeply inspect the structure of the
problem, starting from the derivation of the equations at hand from the physical variational principles
governing it. This variational approach is shared by other works that can be found in the literature (see,
e.g., [18, 19]). Our contribution in this regard is the employment and a mild generalization of the Principle
of minimum reduced dissipation [20], which represents a general framework for the derivation of di�erential
problems, without resorting to any microscopical consideration. Keeping a parallel between the discrete
settings and the laws holding at the continuous level, we will be able to identify the possible sources of
instability, in the numerical scheme, and to propose a strategy to control them. This represents a novelty
with respect to the results obtained in [15].

The present paper is organized as follows. In Sec. 2, the physical phenomenon under inspection is
presented, together with the equations governing it. Domain motion is then addressed, and some shape
calculus de�nitions and results are stated. Then, in Sec. 3, the di�erential problem describing the system is
derived from physical variational principles, considering both the case of a closed system, and the possibility
of mass exchanges with the environment. Sec. 4 is devoted to the weak formulation of the problem and to
its ALE-FEM discretization. The numerical properties of the resulting scheme are investigated in Sec. 5,
in light of the results of Sec. 3. Some stability issues are addressed in detail, in the case of an explicit
treatment of the geometry, and a novel stabilization term is introduced. In Sec. 6, several tests assess the
suitability of the numerical scheme in reproducting the physical phenomena under consideration. Time
and space discretization are inspected, and their in�uence on the physical parameters of the model is
examined. Experimental data, taken from [4], are then employed to validate the numerical scheme. Finally,
the e�ectiveness of the proposed stabilization technique is veri�ed.

2. Preliminaries

We consider a �uid contained in a region Ω ⊂ Rd, d = 2, 3, as depicted in Fig. 1. The edge Σb is a
virtual boundary separating the domain Ω from the rest of the space occupied by the �uid, thus energy and
mass exchanges can occur through it. A solid wall is on the lateral side of the domain, and we denote by Σ
the part of the wall that is wetted by the �uid at hand, and by Σg the remaining part, in contact with an
other �uid, that we assume to be a gas. This gas is separated from the region Ω by the free surface Γ, and
we are not interested in studying the gaseous phase, unless for the in�uence that its presence has on the
�uid contained in Ω. The contact line where the three phases meet is denoted by ∂Γ = Γ ∩Σ. The tangent
vector of the line ∂Γ is denoted by τ ∂Γ and we denote by b and bs the unit vectors that are normal to the

2



bs

τ ∂Γ

Γ

Ω

Σ

Σb

Σg

∂Γ

θ

b
bs

⊗τ ∂Γ

Figure 1: Domain and geometric notation. On the right, a zoom near the contact line, in a plane orthogonal to τ∂Γ.

τ ∂Γ and aligned along the free surface Γ and the wall Σ, respectively (cf. Fig. 1, right). On the contact
line, we introduce also the function θ : ∂Γ→ R denoting the corresponding contact angle, that is such that
cos θ = b · bs.

The domain at time t is denoted by Ωt and it is identi�ed as the image of an initial domain Ω0 = Ω
through a map At : Ω → Rd. A similar notation will be used for all the other quantities, in the rest of the
paper: the superscript t indicates that the quantity is taken at time t. Assuming the family At of maps to
be smooth w.r.t. time, and each map invertible, we can de�ne the Lagrangian and Eulerian domain velocity
�elds as

V̂(t, x̂) = ∂tAt(x̂), ∀x̂ ∈ Ω,

V(t,x) = V̂(t,A−1
t (x)), ∀x ∈ Ωt,

(1)

respectively. Being the wall Σt impervious, and wanting to keep Σb �xed, at each time t the domain velocity
�eld V(t, ·) has to belong to the admissible set

Uad =
{
v : Ωt → Rd | v · ν = 0 on Σt, v = 0 on Σb

}
.

In the de�nition above, and throughout the paper, by ν we denote the normal vector de�ned almost every-
where on ∂Ωt. Indeed, for our purposes, we will not need a univocal de�nition of ν on the zero-measure
lines ∂Γt and Σt ∩ Σb.

Remark 1 (Shape kinematics). We point out that the actual evolution of the domain is governed by
the sole normal component V · ν of the domain velocity, at the boundary ∂Ωt of the domain. Therefore,
any variation of the tangential components or of the bulk distribution, that leaves V · ν una�ected, does
not impact on the domain evolution, whence some freedom is left in the de�nition of V. This freedom will
be exploited in the numerical formulation of the free boundary problem.

Assuming immiscibility between the di�erent phases involved in the physical system, and neglecting phase
transitions, the motion of the free surface Γt follows the movement of the particles of the �uid occupying
Ωt. Hence, according to Remark 1, the geometrical velocity V and the Eulerian velocity u of the �uid are
coupled by 1

V · ν = u · ν on Γt. (2)

Moreover, the �uid in Ωt is assumed to be Newtonian and incompressible, and the forces acting on it
are gravity, surface tension, and a possible external stress imposed at the open edge Σb. Hence, supposing

1For ease of notation, from now on we omit the explicit dependence on time or space, where no misunderstanding is possible.
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to know the initial con�guration Ω and �uid velocity �eld u0, the state of the �ow at time t is described
by the current domain Ωt, the �uid Eulerian velocity u and the pressure p. We remark that, thanks to
incompressibility, we can consider the rescaled pressure p = p̃/ρ, that is the ratio between the physical
pressure p̃ and the �uid density ρ. Analogously, the kinematic viscosity ν = µ/ρ is going to appear in the
di�erential model, in place of the dynamic viscosity µ. The state problem, solved by the couple (u, p) at
time t is, then, the following:

∂tu + (u · ∇)u− div σ = g in Ωt, t > 0,

divu = 0 in Ωt, t > 0,

σν · τ = 0, σν · ν + γH = 0 on Γt, t > 0, ∀τ ⊥ ν,
u · ν = V · ν on Γt, t > 0,

u · ν = 0, (σν + βu + γ(cos θ − cos θs)δ∂Γ bs) · τ = 0 on Σt, t > 0, ∀τ ⊥ ν,
σν = ζ on Σb, t > 0,

u = u0 in Ω0, t = 0,

(3)

where σ = ν
(
∇u +∇uT

)
− pI is the stress tensor, I being the identity tensor, g = −ged is the gravity

force, ed being the upwards vertical vector of the canonical basis {ei}di=1, γ is the surface tension coe�cient
on Γt, H is the total curvature of Γt, β is the friction coe�cient on Σt, and ζ is an external stress applied
on Σb. The distribution δ∂Γ is de�ned as

〈δ∂Γ, ϕ〉 =

∫
∂Γt

ϕdλ, for any smooth function ϕ,

with λ denoting the (d− 2)−dimensional Lebesgue measure on ∂Γt. 2 We notice that the equations depend
both on the current value of the time-dependent contact angle θ and on its static value θs. The latter is
de�ned in terms of the material properties of the three phases interacting around the contact line, through
the Young equation [21]

γ cos θs + γl − γg = 0, (4)

where γl and γg are the surface tension coe�cients on Σt and Σtg, respectively. The discrepancy of the
dynamic contact angle θ from θs induces the uncompensated Young stress

γ(cos θ − cos θs)τ · bs δ∂Γ,

a force which is concentrated on the contact line and oriented along the wall in the normal direction bs to
∂Γt (an upwards vertical force for d = 2). This force is responsible for the formation of the meniscus in
capillary tubes [21], as we will see in the numerical results of Sec. 6.

The equations (3) can be derived from physical principles, in particular employing the Principle of
minimum reduced dissipation [20]. We are going to devote Sec. 3 to this topic, but we want to mention since
now that this derivation is prompted by a suitable formulation of the First Law of Thermodynamics, which
reads

W = 2R, (5)

where W is the total power of the external forces, of the form

W =

∫
Ωt

B · u +

∫
∂Ωt

T · u,

for suitable choices of the generalized forces B = B (g, ρ, p̃,u) ,T = T(ζ,g, ρ, γ, θs, θ,H, p̃), whereas R is
the Rayleigh dissipation function, de�ned as

R =
1

2

∫
Ωt

2µ|D(u)|2 +
1

2

∫
Σt

β̃|u− u · ν ν|2, (6)

2In the rest of the paper, Lebesgue measure of any dimension will be understood in all the integrals.
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withD(u) = 1
2

(
∇u +∇uT

)
being the strain tensor of the �uid. This law is a fundamental relation governing

the physics of the phenomenon, and its discrete counterpart will be explored in Sec. 5. In order to actually
perform the hinted derivation, we need some technical tools, that we collect hereafter.

2.1. Technical tools

In this section, we recall some useful de�nitions and results that will be employed in the rest of the
paper. Herein, Γ denotes a generic smooth hypersurface of dimension d− 1, for simplicity immersed in Rd,
and ∂Γ indicates its boundary. The tangential gradients of a scalar di�erentiable function ψ : Γ→ R and a
vectorial di�erentiable function ψ : Γ→ Rd are de�ned via the projector ΠΓ = I − ν ⊗ ν:

∇Γψ = ΠΓ∇ψ, ∇Γψ = (∇ψΠΓ)
T

= ∇ψΠΓ.

Accordingly, the tangential divergence of ψ reads

div Γψ = tr∇Γψ = ΠΓ · ∇ψ.

It is possible to prove [22] that the total curvature H of Γ is related to its normal vector ν by

div Γν = H,

whence the following integration by parts formula for surfaces holds [22]: let ψ : Γ→ Rd be a di�erentiable
function; then, ∫

Γ

div Γψ =

∫
Γ

Hν ·ψ +

∫
∂Γ

ψ · b, (7)

where b is the unit vector directed tangentially to Γ and normally to ∂Γ (cf. Fig. 1).
Since we deal with moving domains, we also recall the Reynolds transport theorem for bulk and boundary

integrals:

Proposition 1 (Reynolds transport theorem). Let Γ be a part of the boundary of a domain Ω, and consider
two functionals

J1(Ω) =

∫
Ω

ϕ, J2(Γ) =

∫
Γ

ψ,

where ϕ : Ω → R and ψ : Γ → R are generic di�erentiable functions. If the domain Ω moves with velocity
V, the time derivatives of the functionals read as follows:

d

dt
J1(Ω) =

∫
Ω

[∂tϕ+ div (ϕV)],

d

dt
J2(Γ) =

∫
Γ

[∂tψ + div Γ(ψV)].

(8a)

(8b)

(8a)(8b)

Remark 2 (Two dimensional case). For d = 2, the contact line ∂Γ is actually the union of two points,
and b is the tangential direction prolonging the free surface Γ. The vector bs is aligned to the wall Σ (thus
simply vertical, in our case), and there is no need to de�ne τ ∂Γ.

3. Derivation of the di�erential problem from variational principles

The present section is devoted to the derivation of the system of equations (3) from physical variational
principles. To ease the presentation, we split the derivation into two steps: at �rst (Sec. 3.1), we will consider
Σb as an impervious wall (see Fig. 1), and subsequently (Sec. 3.2), mass exchange will be allowed through
this boundary. It is worth remarking that the result in Sec. 3.1 has an autonomous interest, e.g. in case
droplets on a substrate or sloshing �uid in a tank are regarded [23, 15],
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3.1. Step 1: derivation in the case without mass exchange

The kinematic conditions require the motion of the free surface Γt to be prescribed by the Eulerian
velocity u (cf. (2)). Moreover, Σb is a closed boundary, for this �rst step, thus we do not make any
distinction between the �uid velocity and the domain velocity, namely we consider V = u. Therefore, the
kinematic constraints directly apply on u, that is, for any time t,

u ∈ Uad =

{
u : Ωt → Rd | u · ν = 0 on Σt, u = 0 on Σb,

∫
Ωt

[(∂tρ+ div (ρu)] = 0

}
,

where ρ : Ωt → R is the mass density function. In the de�nition of the set of admissible velocities we
included also the conservation of mass, which can be rephrased locally as

ρ̇+ ρdivu = 0 in Ωt, (9)

with the usual notation ρ̇ = ∂tρ+ u · ∇ρ for the Lagrangian derivative.
Regarding dynamics, we assume that only gravity and surface tension act on the system. Being such

forces conservative, the system possesses a potential energy

V = −
∫

Ωt

ρg · x +

∫
Γt

γ +

∫
Σt

γl +

∫
Σt

g

γg, (10)

where the last three terms take into account the pairwise interactions between the �uid in Ωt, the gas above
and the solid wall. In the following, we denote by | · | the measure of a set. Combining Prop. 1 with (4),(7)
and (9), and since γ and g are constant and Σt and Σtg are �at, the active power that the environment
transfers to the system can be written as

Wa = −V̇ =

∫
Ωt

ρg · u + γ
d

dt
|Γt|+ (γl − γg)

d

dt
|Σt|

=

∫
Ωt

ρg · u−
∫

Γt

γHν · u−
∫
∂Γt

[γu · b + (γl − γg)u · bs]

=

∫
Ωt

ρg · u−
∫

Γt

γHν · u−
∫
∂Γt

γ(cos θ − cos θs)u · bs,

where in the last line we employed the decomposition u = (u · ν|Σt)ν|Σt + (u · τ ∂Γ)τ ∂Γ + (u · bs)bs on ∂Γt

and the identities u · ν|Σt = τ ∂Γ · bs = 0 and b · bs = cos θ.
The power transferWa a�ects di�erent forms of energy of the system. A part of it determines an increase

in the kinetic energy K of the �uid

K =
1

2

∫
Ωt

ρ|u|2,

another part is stored as free energy F with mass-speci�c density ψ = ψ(ρ), just depending on ρ [20],

F =

∫
Ωt

ρψ,

and, since the �uid is not perfect, a part of this energy is dissipated, resulting in a entropy production Ṡ.
The connection between the quantities de�ned above is given by the First Law of Thermodynamics that, in
the case of adiabatic, isothermal transformations, reads

T Ṡ =Wa − K̇ − Ḟ . (11)

In this identity, the left-hand side D = T Ṡ is called the total dissipation function, whereas the right-hand
side W =Wa − K̇ − Ḟ (called total power in [20]) represents the amount of power that the system receives
and does not transform in kinetic or free energy. From the Second Law of Thermodynamics, we know that
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it has to hold D ≥ 0, but in order to give this dissipation an explicit expression, we need to introduce a
suitable constitutive relation. For the system described in Sec. 2, it is quite natural to assume that the only
sources of dissipation are friction on the wall Σt and viscosity inside the �uid, thus we can give a consitituive
relation for D in terms of the following Rayleigh dissipation function:

R =
1

2

∫
Ωt

µ|D(u)|2 +
1

2

∫
Σt

β̃|ΠΣu|2,

by setting D = 2R.
Now, in order to write the First Law (11), we need an explicit expression of the total power W. In

particular, we are going to show that it has the following form:

W =

∫
Ωt

B · u +

∫
∂Ωt\Σb

T · u, (12)

where B : Ωt → Rd and T : ∂Ωt \ Σb → Rd are suitably de�ned generalized forces. The expressions for
these two quantities can be retrieved by computing the time derivatives of the kinetic and free energies,
and employing the de�nition of W. Indeed, using the equation of conservation of mass (9) and Reynolds
transport theorem (8a), one can �nd that

K̇ =

∫
Ωt

ρu · u̇, Ḟ =

∫
Ωt

ρψ̇ =

∫
Ωt

ρψ′ρ̇ = −
∫

Ωt

ρ2ψ′divu.

Concerning the free energy, it is commonly accepted (see, e.g., [20]) that pressure is related to the derivative
of the free energy density as

p̃ = ρ2ψ′.

Thence, after integration by parts of the pressure term, the expression (12) of the total power W can be
written in terms of the generalized forces

B = ρg − ρu̇−∇p̃, T =


(p̃− γH)ν on Γt,

p̃ν on Σt,

−γ(cos θ − cos θs)bs on ∂Γt.

At this point, we have all the ingredients to formulate a variational principle from which to derive the
equations of the motion for our physical system:

Principle of minimum constrained dissipation. [20, p.119] 3 For a deformable body undergoing a pro-
cess with total power W and Rayleigh dissipation function R, that obeys the Second Law of Thermodynamics
in the form D ≥ 0, with D = 2R, the true evolution u at time t is such that R attains its minimum w.r.t.
all virtual process rates û = u + δu, once W and the generalized forces B,T are held �xed.

From the formulation of this principle, we see that one should take into account the constraint of holding
both W and the generalized forces �xed, while varying the velocity �eld by a term δu. In order to do this,
it is useful to rewrite the principle in terms of a reduced dissipation functional. Following the ideas in [20],
we can introduce the Lagrangian functional

L = R+ λW,

where λ is the Lagrange multiplier for the imposition of the constraint over W, during the minimization
of R. Aiming at enforcing the variations of L to be equal to zero, we compute the variations of R and W

3In the present work, we are adopting the viewpoint of Continuum Mechanics, thus we talk about minimum dissipation.
In the literature of Statistical Mechanics, this principle is looked at as a maximum principle. However, for the purposes of the
present work, only the stationarity of the functional is considered, hence we avoid digging any further into this distinction.
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induced by a virtual velocity variation δu. Concerning the Rayleigh dissipation functional, it is enough to
compute the Gâteaux derivative

δR = ∂uR[δu] =

∫
Ωt

2µD(u) ·D(δu) +

∫
Σt

β̃ΠΣu ·ΠΣδu.

Dealing with the total power, the Principle requires to hold B and T �xed. Therefore, instead of using the
classical Gâteaux derivative, we de�ne the variation of W as

δW =

∫
Ωt

B · δu +

∫
∂Ωt\Σb

T · δu.

Now we can compute the variations of the Lagrangian functional L induced by δu:

0 = δL = δR+ λδW = (∂uR+ λδuW) [δu], ∀δu,

where we have introduced the linear functional δuW : δu 7→ δW, with δW de�ned as above. Now, the value
of the Lagrange multiplier λ can be found by imposing the validity of the First Law of Thermodynamics
(11), which can be rewritten as

2R = D =W. (13)

Indeed, since ∂uR[u] = 2R and δuW[u] = W, combining (13) with (∂uR + λδuW)[u] = 0 yields λ = −1.
Therefore, the principle of minimum constrained dissipation can be equivalently formulated as follows:

Principle of minimum reduced dissipation. [20, p.137] For a deformable body undergoing a process
with total power W and Rayleigh dissipation function R, that obeys the Second Law of Thermodynamics in
the form D ≥ 0, with D = 2R, the true evolution u at time t is such that the reduced dissipation function
R̃ = R−W attains its minimum w.r.t. all virtual process rates û = u+ δu, once the generalized forces B,T
are held �xed. That is, the true evolution is characterized by the requirement that

δR = δW in any subregion ω ⊆ Ωt, (14)

where δR = ∂uR[δu], δW =
∫

Ωt B · δu +
∫

Γt T · δu.

Now we can apply this principle in our settings, in order to obtain the di�erential equations governing the
physical phenomenon at hand. We also assume that the �uid in Ωt is incompressible, hence we can divide
both sides of (14) by the constant density ρ, without losing generality. 4 Thus, rephrasing the optimality
condition (14) and writing explicitly the total derivative d

dtu = ∂tu + u · ∇u yield∫
ω

2νD(u) ·D(δu) +

∫
∂ω∩Σt

βΠΣu ·ΠΣδu

= −
∫
ω

[(∂tu + u · ∇u− g) · δu− pdiv δu]−
∫
∂ω∩Γt

γHδu · ν −
∫
∂ω∩∂Γt

γ(cos θ − cos θs)δu · bs,

where β = β̃/ρ. Integrating by parts and using the kinematic conditions u · ν = 0 on Σt, δu = 0 on Σb, we
obtain ∫

ω

(∂tu + u · ∇u− div (2νD(u)) +∇p− g) · δu +

∫
∂ω∩Γt

(γHν + 2νD(u)ν − pν) · δu

+

∫
∂ω∩∂Γt

γ(cos θ − cos θs)δu · bs +

∫
∂ω∩Σt

ΠΣ (βu− 2νD(u)ν + pν) ·ΠΣδu = 0.

(15)

4Keeping the density ρ explicit until the very end helped in keeping the presentation general and relatively simple. If we
had imposed the uniformity of ρ since the beginning, no free energy F would have appeared, and the rescaled pressure p would
have needed to be introduced as a Lagrange multiplier for the incompressibility constraint, rather complicating the argument.
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Since δu is arbitrary, as well as the subregion ω, from (15) we can derive the strong formulation of the
Navier-Stokes equations with moving contact line. Such equations, combined with the kinematic condition
V · ν = u · ν on ∂Ωt (see Remark 1) and the constraint V · ν = 0 on Σt (see Uad in Sec. 2), make up the
following di�erential problem:

∂tu + (u · ∇)u− div σ = g in Ωt,

divu = 0 in Ωt,

V · ν = u · ν on Γt

σν · τ = 0, σν · ν + γH = 0 on Γt,∀τ ⊥ ν,
u · ν = 0, (σν + βu + γ(cos θ − cos θs)δ∂Γ bs) · τ = 0 on Σt,∀τ ⊥ ν,

where σ = 2νD(u) − pI is the stress tensor. This problem is well de�ned for the whole time evolution as
soon as we know the initial condition u(t = 0) = u0.

Before passing to the second step of our derivation, we point out that, in the incompressible case, the
introduction of the free energy F occurs to be just instrumental to take into account the pressure p in the
equations (this will be true also in the next section). This is the reason why we will not introduce a discrete
free energy, in Sec. 5.

3.2. Step 2: allowing mass exchanges with the environment

So far, we have considered a closed physical system, in terms of mass exchange. However, taking into
account the possibility of having an in�ow/out�ow boundary is a necessity when modeling many phenomena.
In this section, we allow the �uid to pass through the boundary Σb (see Fig. 1). This part of the domain
boundary is going to be �xed in the domain evolution, but in order to �ow through it, the �uid may have a
nonzero normal velocity u · ν at Σb. Moreover, we account for a possible external surface load ζ, acting on
the open boundary.

In these new settings, we need to perform some modi�cations on the de�nition of the energetic quantities
managed above, and on their relationships. First of all, since our domain is not moving in a Lagrangian way
together with the particles it contains, the time variation of the physical quantities are not given anymore
by their Lagrangian derivative along the �uid velocity u. Therefore, we introduce a di�erent notation for
the total derivative along the domain velocity �eld V: for a scalar �eld like density we write

Dtρ = ∂tρ+ V · ∇ρ.

A similar notation is going to be used for integral quantities, like the free energy: the application of Prop. 1
yields

DtF =

∫
Ωt

[∂t(ρψ) + div (ρψV)] .

According to this de�nition for the time derivative, the active power Wa, including also the contribution
due to the external surface stress, is now of the form

Wa = −DtV +

∫
Ωt

ζ · u.

Eventually, the total power has to include also the energy �ux associated with the mass �owing through the
open boundary Σb, whence it has to be re-de�ned as

W = −DtV −DtK −DtF +

∫
Ωt

ζ · u−
∫

Σb

(
1

2
ρ|u|2 − g · x + ρψ

)
u · ν. (16)

Having these new de�nitions, we can perform all the steps followed in Sec. 3.1, up to formally writing
the principle of minimum reduced dissipation (14). The last ingredient we need, in order to obtain the
di�erential equation ruling the physical phenomenon at hand, is the de�nition of the generalized forces
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B,T. To this aim, we need to write explicitly all the quantities appearing in (16). For the sake of brevity,
let us compute explicitly only the total time derivative of the kinetic energy:

DtK =

∫
Ωt

[
1

2
|u|2 (∂tρ+ V · ∇ρ+ ρdivV) + ρu · ∂tρ+

1

2
ρV · ∇|u|2

]
.

Noticing that if V = u we would have the Lagrangian time derivative K̇, we can write the expression above
in terms of K̇ itself, as follows:

DtK = K̇ +

∫
Ωt

[
1

2
|u|2(V − u) · ∇ρ+

1

2
ρ(V − u) · ∇|u|2 +

1

2
ρ|u|2div (V − u)

]
= K̇ +

∫
Ωt

div

[
1

2
ρ|u|2(V − u)

]
= K̇ +

∫
Σb

1

2
ρ|u|2(V − u) · ν

= K̇ −
∫

Σb

1

2
ρ|u|2u · ν,

where we have used that V ·ν = u ·ν on Γt∪Σt. As we can see, the di�erence between the total derivative of
the kinetic energy contained in Ωt and its Lagrangian derivative is given by the opposite of the exiting �ux
through Σb. Analogous computations for the potential energy and the free energy lead to similar results,
thence the total power can be written also as

W = −V̇ − K̇ − Ḟ +

∫
Ωt

ζ · u,

where the �ux terms have been canceled out in the transition from Dt to the derivative ˙(·). Therefore, the
generalized forces B,T read as follows:

B = ρg − ρu̇−∇p̃, T =


(p̃− γH)ν on Γt,

p̃ν on Σt,

p̃ν + ζ on Σb,

−γ(cos θ − cos θs)bs on ∂Γt.

Using these expressions, and assuming incompressibility and a homogeneous �uid density, we can employ
the Principle of minimum reduced dissipation and eventually obtain system (3).

Remark 3. For the sake of clarity we remark that, although the �nal steps of the derivation formally
employ the Lagrangian derivatives of the energies along u, a physically consistent formulation of the First
Law of Thermodynamics for the domain Ωt considered here can be written only in terms of the material
derivatives along V: this is why the correct de�nition of the total power is actually (16).

Remark 4. In the applied mathematical literature, a variational principle named after Onsager has recently
gained some popularity, in the derivation of di�erential problems [8, 5, 19, 6]. The formulation of this
principle is quite similar to identity (14), but its justi�cation is ascribed to Onsager-Casimir reciprocal
relations [24, 25], a principle holding at the microscopic level, whereas the Principle of minimum reduced
dissipation is purely macroscopic. As pointed out in [20, from p.149], connecting the microscopic reciprocal
relations to the macroscopic principle used in the above-mentioned literature is not easy: �Though no
objection could be raised against the reversibility of microscopic motions, its reverberations on a macroscopic
scale are invariably the object of an assumption, in one fashion or another�. Therefore, in the present
work we decided to adopt the procedure developed in [20], in the frameworks of Analytic and Continuum
Mechanics, avoiding the need of microscopical considerations. This choice gave us a general work�ow that
could be used to treat both the closed-system case (Sec. 3.1) and the case with mass exchange (Sec. 3.2).
In this regard, it is worth pointing out that the latter case was not considered in [20].
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4. Discretization of the problem

After the introduction and justi�cation of the system (3), now we address its numerical solution, and
thence we introduce its discretization via the Finite Element Method (FEM). As usual, we �rst reformulate
the system in a suitable weak form, taking into account the domain motion. For the �rst part of this section,
the domain velocity V will be considered as known: the actual coupling of the physical and the geometrical
problem will be dealt with in Sec. 4.4.

4.1. Eulerian and ALE weak formulation

The state of the �uid at hand is represented by its static pressure p and its Eulerian velocity u. Due to
the presence of the wall Σt, the velocity has to comply a kinematic condition, so we introduce the following
Hilbert spaces, for the �uid state (u, p):

Ṽ t = {v ∈ [H1(Ωt)]d | v · ν = 0 on Σt},

P̃ t = L2(Ωt).

Testing problem (3) against some (v, π) ∈ Ṽ t× P̃ t, we can formally write the following weak formulation
of the problem: given u(t = 0) = u0, �nd (u, p) such that for all t > 0

(∂tu,v) + a(u,v) + b(v, p) + c(u,u,v) = F (v) ∀v ∈ Ṽ t,

b(u, π) = 0 ∀π ∈ P̃ t,
(17)

where
(·, ·) is the L2 inner product on Ωt,

a(u,v) =
(ν

2
(∇u +∇uT ),∇v +∇vT

)
+

∫
Σt

βu · v,

b(v, π) = −(div v, π),

c(w,u,v) = ((w · ∇)u,v),

F (v) = (g,v) +

∫
Σb

ζ · v −
∫

Γt

γdiv Γv +

∫
∂Γt

γv · bs cos θs.

Remark 5. The derivation of problem (17) from (3) is quite standard [26, 27]. Anyway, a smart use of
(7) and some other geometrical considerations � as done in [15] � prevent the curvature H and the current
angle θ from explicitly appearing in the formulation (17). This simpli�es the numerical treatment of the
equations, since the discrete approximation of angles and curvature is not straightforward (e.g., cf. [28]).

Problem (17) is written in Eulerian coordinates, and at a �xed time t. In a numerical discretization,
this would imply either keeping the mesh �xed during the time evolution � at the cost of introducing extra
theoretical di�culty to deal with the domain movement � or generating a completely new mesh at each time
step � thus bringing in a very high computational cost. A widely used technique to have a computationally
rather inexpensive mesh motion is to set the equations in an Arbitrary Lagrangian-Eulerian (ALE) framework
[13, 14], in which the domain velocity V, de�ned in (1) is considered separately from the �uid velocity u.
Associated to the domain velocity, we can de�ne the so called ALE derivative operator, which computes the
time derivative of a function ϕ : Ωt → R along the domain trajectory described by V:

∂ALEt ϕ = ∂tϕ+ V · ∇ϕ.

It is worth pointing out that the domain velocity V occurs to be the ALE derivative of the position, i.e.
V = ∂ALEt x. Employing the de�nition of ∂ALEt , problem (17) can be formulated in the ALE framework as
follows [13, 15]:

(∂ALEt u,v) + a(u,v) + b(v, p) + cALE(u,V,u,v) = F (v) ∀v ∈ V t,
b(u, π) = 0 ∀π ∈ P t,

u(t = 0) = u0,

(18)
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where
V t = {v : Ωt → Rd | ∃v̂ ∈ Ṽ 0,v(x) = v̂(A−1

t (x))},

P t = {π : Ωt → R | ∃π̂ ∈ P̃ 0, π(x) = π̂(A−1
t (x))},

cALE(z,V,u,v) =

∫
Ωt

[(z−V) · ∇]u · v −
∫

Ωt

div (V)u · v.

4.2. Time discretization

In this section, we discretize the ALE formulation (18) w.r.t. time, using a uniform time discretization
made of time steps t(n) = n∆t, n = 0, 1, . . . , N = T

∆t . Such a semi-discretization also involves the domain
motion, thus we need to discretize the ALE map, introducing the application

An,n+1 : Ω(n) → Ω(n+1), An,n+1(x) = x + ∆tV(n)(x),

where the superscript (n) indicates the time step t(n) at which the quantity is taken (e.g. V(n)(x) =
V(t(n),x)): this notation will be used for all the other quantities involved in the problem. The discretization
of the ALE map directly induces the de�nition of a discrete sequence of domains Ω(n) = An−1,n(Ω(n−1)),
on which the following spaces are recursively de�ned as

V (n) = {v ∈ [H1(Ω(n))]d | v ◦ An−1,n ∈ V (n−1)},
P (n) = {p | p ◦ An−1,n ∈ P (n−1)},

(19)

where V (0), P (0) are assigned. Thus one reduces to building up a basis only for the initial spaces V (0)

and P (0), the bases for V (n) and P (n) being obtained via the maps Ai−1,i, i = 1, . . . , n. This represents a
remarkable computational saving in the numerical solution of the problem. It is worth noticing that having
each V(n) to belong to Uad, the kinematic constraints are preserved, and at each time t(n) the spaces actually
correspond to the usual de�nition, i.e.

V (n) = {v ∈ [H1(Ω(n))]d | v · ν = 0 on Σ(n)},
P (n) = L2(Ω(n)).

In view of the above discussion, the time-discretization of problem (3) reads as follows: given u(0), for
each n = 0, . . . , N − 1, �nd (u(n+1), p(n+1)) ∈ V (n+1) × P (n+1) such that, ∀(v, π) ∈ V (n) × P (n),

1

∆t
(u(n+1),v)Ω(n+1) + a(n+1)(u(n+1),v) + b(n+1)(v, p(n+1))

+c
(n+1)
ALE (u(n),V(n),u(n+1),v) + s(n+1)(V(n),u(n),u(n+1),v) =

1

∆t
(u(n),v)Ω(n) + F (n+1)(v),

b(n+1)(u(n+1), π) = 0,

(20)

where the superscript (n) in the spaces and forms indicates that the domain under consideration is Ω(n).
The additional form s(n+1)(·, ·, ·) arti�cially adds the following strongly consistent stabilization terms:

s(n+1)(V(n),u(n),u(n+1),v) =
1

2

∫
Ω(n+1)

div (u(n))u(n+1) · v − 1

2

∫
Γ(n+1)

(u(n) −V(n)) · ν u(n+1) · v,

whose presence is widely accepted in the ALE literature [29, 27] and whose role will be clear from the proof
of Thm. 1, in Sec. 5.

Remark 6. In the terms involved in (20), the domain of integration does not always coincide with the
domain of de�nition of the integrands, e.g. v is de�ned on Ω(n), but it appears in integrals over Ω(n+1) =
An,n+1(Ω(n)). In order to keep a light notation, a change of variables via ALE mapping is understood in
case this discordance occurs: e.g.

∫
Ω(n+1) v actually means

∫
Ω(n+1) v ◦ A−1

n,n+1.
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4.3. The fully discrete problem

In this section, we introduce the space discretization for the problem under inspection. To this aim,

let T (0)
h be a regular triangulation [30] of the initial domain Ω(0), with characteristic discretization step

h. The triangulation of Ω(n) is obtained through repeated applications of the discrete ALE map, i.e.

T (n)
h = An−1,n

(
T (n−1)
h

)
. In these settings, we can write the FEM approximation of problem (20) as

follows: given the FEM interpolation u
(0)
h of the initial velocity �eld u(0), for each n = 0, . . . , N − 1, �nd

(u
(n+1)
h , p

(n+1)
h ) ∈ V (n+1)

h × P (n+1)
h such that, ∀(vh, πh) ∈ V (n)

h × P (n)
h ,

1

∆t
(u

(n+1)
h ,vh)Ω(n+1) + a(n+1)(u

(n+1)
h ,vh) + b(n+1)(vh, p

(n+1)
h )− b(n+1)(u

(n+1)
h , πh)

+ c
(n+1)
ALE (u

(n)
h ,V

(n)
h ,u

(n+1)
h ,vh) + s(n+1)(V

(n)
h ,u

(n)
h ,u

(n+1)
h ,vh)

=
1

∆t
(u

(n)
h ,vh)Ω(n) + F (n+1)(vh),

(21)

where
V

(0)
h = V (0) ∩ [Xru

h (Ω)]
d
, P

(0)
h = P (0) ∩Xrp

h (Ω),

Xr
h(Ω) =

{
ϕ ∈ C0

(
Ω
)
| ϕ|K ∈ Pr(K) ∀K ∈ T (0)

h

}
,

and V
(n)
h , P

(n)
h are recursively de�ned in the same way as in (19).

Remark 7 (Variational crime). Here we do not make a distinction between the evolution of the domain
according to the continuous map At and the sequence of discrete maps An−1,n. This is related to the
well-known (and usually disregarded) variational crime [31].

In the formulation (21), the polynomial degrees ru, rp still need to be chosen. In the present work, we
focus on the P1 − P1 pair, namely the case ru = rp = 1: a comment on this choice will be made after
the introduction of the problem for the domain velocity V(n), at the end of Sec. 4.4. Hence, in order to
cope with the lack of validity of the LBB condition (cf. [32, 27]), we employ the classical Brezzi-Pitkäranta
pressure stabilization [33], replacing the form s(n+1) in problem (21) with the form

s(n+1)
p (V

(n)
h ,u

(n)
h ,u

(n+1)
h ,vh, p

(n+1)
h , πh) = s(n+1)(V

(n)
h ,u

(n)
h ,u

(n+1)
h ,vh)

+ Csh
2
∑

K∈T (n)
h

∫
K

∇p(n+1)
h · ∇πh.

(22)

So far we assumed the knowledge of the domain velocity V. However, this is part of the unknowns and
the following section addresses the construction of the (discrete) geometrical velocity V(n), which allows to
pass from Ω(n) to Ω(n+1).

4.4. Kinematic conditions

As anticipated in Sec. 2, the domain velocity V has to undergo some kinematic conditions, in order
to ensure a physically consistent evolution of the domain. In particular, being Σt a solid wall, and as the
motion of the �uid particles follows the free boundary Γt, the domain velocity must satisfy

V · ν = 0 on Σt,

V · ν = u · ν on Γt,

(23a)

(23b)

(23a)(23b)at any time t. Moreover, since Σb is held �xed, we also require V · ν = 0 on Σb. In view of the discussion
in Remark 1, these conditions are su�cient to determine the overall evolution of the domain Ωt. Therefore,

we require the same conditions for the discrete domain velocity V
(n)
h .
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We remark that, sinceV
(n)
h is used to move the mesh, we need an explicit knowledge of all its components

at the whole set of mesh nodes. However, conditions like (23) prescribe only one degree of freedom of the
boundary distribution of such velocity. Hence, we can �x all the other degrees of freedom by requiring

V
(n)
h to be vertical, namely V

(n)
h = v

(n)
h ed. This yields some useful properties, that will be displayed in

Prop. 2. Then, to determine the bulk distribution of the velocity, we consider a harmonic lifting, which is a
widely adopted choice in the ALE literature [34, 35, 15] since it generates a regular velocity �eld, whence
the mapped mesh preserves a certain degree of regularity.

Summarizing, the domain velocity V
(n)
h mapping T (n)

h to T (n+1)
h can be de�ned as the solution of the

following problem: prescribing V
(n)
h to be vertical, namely V

(n)
h = v

(n)
h ed, �nd v

(n)
h ∈ X1

h(Ω(n)) such that
∆v

(n)
h = 0 in Ω(n),

v
(n)
h = 0 on Σb,

∂νv
(n)
h = 0 on Σ(n),

v
(n)
h νd = u∗h · ν on Γ(n),

(24)

where u∗h : Γ(n) → Rd is some discrete counterpart of the �uid velocity u. Di�erent de�nitions can be given
for u∗h, and they have a nonnegligible e�ect on the stability of the numerical scheme as a whole (cf. Sec. 5).
In our numerical tests, we adopt the simplest choice for such a velocity, that is, we set

u∗h = u
(n)
h , (25)

which corresponds to an explicit treatment of the geometry. In the next section we will analyze its impact
on the scheme, and propose an original strategy to cure possible instabilities associated to it.

Another possibility, that is also considered in Sec. 5, is the implicit treatment of the geometry, determined
by

u∗h = u
(n+1)
h ◦ An,n+1. (26)

This choice, however, introduces a high nonlinearity in the system, due to the strong coupling between the
physical problem (18) and the geometrical problem (24). Thus, some nonlinear solver is required, and the
computational e�ort is much higher than in the explicit case. This may represent a serious obstruction in
case the state problem needs to be solved many times for di�erent parameter values (e.g., in optimal control
problems).

Other choices for u∗h can be straightforwardly introduced in the scheme, like the extrapolation proposed
in [15]:

u∗h = 2u(n) − u(n−1) ◦ A−1
n−1,n,

which bene�ts from the inexpensiveness of the explicit treatment and, in the numerical test cases considered
in [15], does not show stability issues. However, up to the authors' knowledge, no theoretical results are
known on the stability of the scheme characterized by this extrapolation.

Concluding this section, we comment on some implementation aspects. The choice of piecewise linear
elements for the �uid velocity was made in order to ease the implementation, by avoiding curvilinear elements

and thus isoparametric �nite elements. Eventually, we remark that the actual kinematic condition v
(n)
h νd =

u∗h · ν is imposed in a weak sense, by penalization. In this way, we just need the normal vector ν to be
de�ned on the faces (edges for d = 2) of the boundary, and not on the vertices of the mesh, where it is not
univocally determined.

5. Stability and discrete minimum dissipation principle

In this section, we want to analyze the properties of the numerical scheme introduced above. In par-
ticular, we investigate how the discrete formulation (21) can reproduce, mutatis mutandis, the First Law
of Thermodynamics (5). This will give us information about the stability of our numerical scheme and it
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will shed light on the critical terms of the discrete formulation, that may give rise to numerical instabilities.
On this concern, Sec. 5.1 will be devoted to the introduction of a non-standard term to cure the onset of
spurious instabilities.

Aiming at writing the discrete counterpart of the power balance (5), with the total power W and the
Rayleigh dissipation function R de�ned as in (16) and (6), respectively, we need to introduce some discrete
energetic quantities that will take part in the equation. We de�ne the following quantities: 5

Potential energy V(n) = −
∫

Ω(n) g · x +
∫

Γ(n) γ +
∫

Σ(n) γl +
∫

Σ
(n)
g
γg,

Kinetic energy K(n) = 1
2

∫
Ω(n) |u(n)|2,

Dissipation function R(n) = 1
2

∫
Ω(n) 2ν|D(u(n))|2 + 1

2

∫
Σ(n) β|ΠΣ(n)u(n)|2 + 1

2Csh
2
∑
K∈T (n)

h

∫
K
|∇p(n)|2,

where, compared to its continuous counterpart R de�ned in (6), the discrete dissipation function contains

also the �viscous� contribution of the pressure stabilization term included in s
(n)
p (cf. (22)). With this

notation, we can write a discrete counterpart of the First Law of Thermodynamics (5), as stated in the
following result:

Theorem 1. Let (u(n), p(n)), n = 0, . . . , N be the solution of the discrete problem (21) � with the stabilization
term (22) � and let V(n), n = 0, . . . , N be the domain velocity de�ned by problem (24), with the explicit
choice (25), i.e. u∗ = u(n). Then, the following balance holds:∫

Σb

ζ · u(n+1) − V
(n+2) − V(n+1)

∆t
− K

(n+1) −K(n)

∆t
−
∫

Σb

(
1

2
|u(n+1)|2u(n) · ν − g · x u(n+1) · ν

)
= 2R(n+1) +

1

2∆t

∫
Ω(n)

|u(n+1) ◦ An,n+1 − u(n)|2

− ε(n+1)
g − ε(n+1)

Γ,expl + Φ
(n+1)
expl ,

(27)

where

ε(n+1)
g = −∆t

2

∫
∂Ω(n+1)

(v(n+1))2g · ν,

ε
(n+1)
Γ,expl =

γ

∆t

(
|Γ(n+2)| − |Γ(n+1)| −∆t

∫
Γ(n+1)

div ΓV
(n+1)

)
,

Φ
(n+1)
expl =

∫
Γ(n+1)

γ div Γ(u(n+1) −V(n+1)) +

∫
Ω(n+1)

g · x divu(n+1).

If, instead, the implicit kinematic condition (26) is chosen � namely u∗ = u(n+1) ◦ An,n+1 � the balance
reads∫

Σb

ζ · u(n+1) − V
(n+1) − V(n)

∆t
− K

(n+1) −K(n)

∆t
−
∫

Σb

(
1

2
|u(n+1)|2u(n) · ν − g · x u(n+1) · ν

)
= 2R(n+1) +

1

2∆t

∫
Ω(n)

|u(n+1) ◦ An,n+1 − u(n)|2

+ ε(n)
g + ε

(n)
Γ,impl + Φ

(n+1)
impl ,

(28)

where

ε(n)
g = −∆t

2

∫
∂Ω(n)

(v(n))2g · ν,

ε
(n)
Γ,impl = − γ

∆t

(
|Γ(n+1)| − |Γ(n)| −∆t

∫
Γ(n+1)

div Γ(V(n) ◦ A−1
n,n+1)

)
,

Φ
(n+1)
impl =

∫
Γ(n+1)

γ div Γ(u(n+1) −V(n) ◦ A−1
n,n+1) +

∫
Ω(n+1)

g · x divu(n+1).

5For simplicity, from now on the subscript h will be understood, though we will always refer to fully discrete quantities.
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The proof of these results employs some properties stemming from the particular choice for the domain
velocity V(n). We collect such properties in the following statement, whose proof for the 3D case can be
found in [15], and easily generalized to the case d = 2. 6

Proposition 2. Let V(n) : Ω(n) → Rd be the domain velocity at time t(n), such that Ω(n+1) = (I +
∆tV(n))(Ω(n)), and assume that there exists i ∈ {1, . . . , d} s.t. V(n) = v(n) ei. Then, for any function
ϕ : Ω(n+1) → R, the Geometric Conservation Law (GCL) holds, in the following two formulations:∫

Ω(n+1)

ϕ−
∫

Ω(n)

ϕ ◦ An,n+1 = ∆t

∫
Ω(n+1)

ϕdiv (V(n) ◦ A−1
n,n+1),∫

Ω(n+1)

ϕ−
∫

Ω(n)

ϕ ◦ An,n+1 = ∆t

∫
Ω(n)

ϕ ◦ An,n+1 divV(n).

(29a)

(29b)

(29a)(29b)Moreover, let ϕ be nonnegative, and ∆t su�ciently small, such that 1 + ∆tdiv ΓV
(n) ≥ 0 on Γ(n+1) and

1−∆tdiv Γ(V(n) ◦A−1
n,n+1) ≥ 0 on Γ(n+1). Then, the Surface Geometric Conservation Laws (SGCL) hold:∫

Γ(n+1)

ϕ−
∫

Γ(n)

ϕ ◦ An,n+1 ≥ ∆t

∫
Γ(n)

ϕ ◦ An,n+1 div ΓV
(n),∫

Γ(n+1)

ϕ−
∫

Γ(n)

ϕ ◦ An,n+1 ≤ ∆t

∫
Γ(n+1)

ϕ div Γ(V(n) ◦ A−1
n,n+1).

(30a)

(30b)

(30b)(30a)

Hinging upon these results, we can show how to derive the discrete balances of Thm. 1.

Proof of Theorem 1. Taking v = u(n+1) ◦ An,n+1, π = p(n+1) ◦ An,n+1 in (21), we get

2
K(n+1)

∆t
+

∫
Ω(n+1)

2ν|D(u(n+1))|2 +

∫
Σ(n+1)

β|u(n+1)|2 + Csh
2

∑
K∈T (n+1)

h

∫
K

|∇p(n+1)|2

+

∫
Ω(n+1)

[
1

2
(u(n) −V(n)) · ∇|u(n+1)|2 − |u(n+1)|2divV(n)

]
+

1

2

∫
Ω(n+1)

|u(n+1)|2divu(n) − 1

2

∫
Γ(n+1)

|u(n+1)|2(u(n) −V(n)) · ν

=
1

∆t

∫
Ω(n)

u(n) · u(n+1) +

∫
Ω(n+1)

g · u(n+1) +

∫
Σb

ζ · u(n+1)

−
∫

Γ(n+1)

γ div Γu
(n+1) +

∫
∂Γ(n+1)

γ cos θs u
(n+1) · bs,

(31)

where the bulk divergence terms canceled out due to the particular choice of the test functions. Now, for
the advection term we have

1

2

∫
Ω(n+1)

(u(n) −V(n)) · ∇|u(n+1)|2

= −1

2

∫
Ω(n+1)

|u(n+1)|2(divu(n) − divV(n)) +
1

2

∫
Γ(n+1)

|u(n+1)|2(u(n) −V(n)) · ν +
1

2

∫
Σb

|u(n+1)|2u(n) · ν,

6The results contained in Prop. 2 also hold if just the time discretization is considered. Indeed, the proof makes no use of
the space discretization.
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while for the explicit part of the Euler time derivative approximation we can write

1

∆t

∫
Ω(n)

u(n) · u(n+1) =
1

∆t

∫
Ω(n)

u(n) · u(n+1) ◦ An,n+1

=
K(n)

∆t
+

1

2∆t

∫
Ω(n)

|u(n+1) ◦ An,n+1|2 −
1

2∆t

∫
Ω(n)

|u(n+1) ◦ An,n+1 − u(n)|2

(GCL)
=
K(n)

∆t
+
K(n+1)

∆t
− 1

2

∫
Ω(n+1)

|u(n+1)|2divV(n) − 1

2∆t

∫
Ω(n)

|u(n+1) ◦ An,n+1 − u(n)|2,

where in the last line, we have used the GCL (29b). Being g = −ged = −g∇xd, we can also rewrite the
gravity term as follows:∫

Ω(n+1)

g · u(n+1) = −
∫

Ω(n+1)

g∇xd · u(n+1) = −
∫

Ω(n+1)

g · x divu(n+1) +

∫
∂Ω(n+1)

g · x u(n+1) · ν.

Combining all the relations developed so far in the proof, some terms of (31) cancel out, resulting in the
following intermediate identity:

K(n+1) −K(n)

∆t
+

∫
Ω(n+1)

2ν|D(u(n+1))|2 +

∫
Σ(n+1)

β|u(n+1)|2 + Csh
2

∑
K∈T (n+1)

h

∫
K

|∇p(n+1)|2

+
1

2

∫
Σb

|u(n+1)|2u(n) · ν +
1

2∆t

∫
Ω(n)

|u(n+1) ◦ An,n+1 − u(n)|2

= −
∫

Ω(n+1)

g · x divu(n+1) +

∫
∂Ω(n+1)

g · x u(n+1) · ν +

∫
Σb

ζ · u(n+1)

−
∫

Γ(n+1)

γ div Γu
(n+1) +

∫
∂Γ(n+1)

γ cos θs u
(n+1) · bs.

(32)

Now, we need to operate on the gravitational terms in (32). Aiming at connecting them with the discrete
time derivative of the gravitational potential energy, we initially consider the case in which the explicit choice
(25) is made for the kinematic condition on Γ(n+1). Under this choice, we can use the GCL (29b) to rewrite
the time increment of the gravity potential:

1

∆t

(∫
Ω(n+2)

g · x−
∫

Ω(n+1)

g · x
)

(GCL)
=

1

∆t

∫
Ω(n+1)

g · (x ◦ An+1,n+2 − x) +

∫
Ω(n+1)

g · x ◦ An+1,n+2 divV(n+1)

=

∫
Ω(n+1)

g ·V(n+1) +

∫
Ω(n+1)

g · x divV(n+1) + ∆t

∫
Ω(n+1)

g ·V(n+1) divV(n+1)

= −
∫

Ω(n+1)

g∂xd

(
xd v

(n+1)
)
− ∆t

2

∫
Ω(n+1)

g∂xd
(v(n+1))2

=

∫
∂Ω(n+1)

g · x V(n+1) · ν − ∆t

2

∫
∂Ω(n+1)

g(v(n+1))2νd.

(33)

Recalling the kinematic condition, it is possible to replace every instance of V(n+1) · ν on the free surface
Γ(n+1) with the �uid normal velocity u(n+1) · ν. Moreover, being V(n+1) · ν = 0, u(n+1) · ν = 0 on Σ(n+1),
and since the normal vector of Γ(n+1) and Σ(n+1) can be assumed linearly independent, we can also state

that V(n+1) ·bs = u(n+1) ·bs at ∂Γ(n+1) = Γ(n+1)∩Σ(n+1). Therefore, adding V
(n+2)−V(n+1)

∆t to both sides of

(32), employing (33) and rearranging the terms provides (27): the ε-terms and Φ
(n+1)
expl are originated simply

from this rearrangement.
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To conclude the proof, an analogous argument can be employed to show (28), stemming from the en-
forcement of the kinematic condition (26), which entails the following reformulation of the discrete time
derivative of the gravity potential:

1

∆t

(∫
Ω(n+1)

g · x−
∫

Ω(n)

g · x
)

(29a)
=

1

∆t

∫
Ω(n)

g · (x ◦ An,n+1 − x) +

∫
Ω(n+1)

g · x div (V(n) ◦ A−1
n,n+1)

=

∫
Ω(n)

g ·V(n) −
∫

Ω(n+1)

g · (V(n) ◦ A−1
n,n+1) +

∫
∂Ω(n+1)

g · x (V(n) ◦ A−1
n,n+1) · ν

(29b)
= −∆t

∫
Ω(n)

g ·V(n) divV(n) +

∫
∂Ω(n+1)

g · x (V(n) ◦ A−1
n,n+1) · ν

=
∆t

2

∫
Ω(n)

g∂xd
(v(n))2 +

∫
∂Ω(n+1)

g · x (V(n) ◦ A−1
n,n+1) · ν

=
∆t

2

∫
∂Ω(n)

g(v(n))2νd +

∫
∂Ω(n+1)

g · x (V(n) ◦ A−1
n,n+1) · ν.

�

Some remarks are now due in order to interpret the results of Thm. 1.

• The left-hand sides of both (27) and (28) are discrete versions of the total power W as written in
(16): they contain the contribution of the external stress ζ and the time variations of the potential
and kinetic energy, together with their �ux through the open boundary Σb.

• The right-hand sides of the balances (27) and (28) contain the discrete counterpart R(n+1) of the
Rayleigh dissipation function R introduced in (6). However, some additional terms are also present,
whose origin is strictly numerical: the next points intend to discuss them.

• The Euler dissipation term 1
2∆t

∫
Ω(n) |u(n+1) ◦An,n+1−u(n)|2 is generated by the discretization of the

time derivative. Being it nonnegative, it is a further source of dissipation, so it does not bring spurious
power into the system and does not need to be controlled by any stabilization term.

• Employing (30) with ϕ = 1, we see that both ε
(n+1)
Γ,expl and ε

(n)
Γ,impl are positive, for ∆t su�ciently

small. Hence, further numerical dissipation is introduced in the balance (28), whereas spurious power

is generated in (27), where ε
(n+1)
Γ,expl appears with the opposite sign. In this latter case, instabilities may

arise, and in Sec. 5.1 we will show a way to cope with them.

• Being the normal component of the domain velocity zero on ∂Ω(n) \ Γ(n), the gravity spurious power

can be rewritten as ε
(n)
g = −∆t

2

∫
Γ(n)(v

(n+1))2g · ν. Therefore, ε
(n)
g is positive at any time t(n) if,

e.g., the free surface is the graph of a function, so that g · ν < 0 on Γ(n). In such a situation, we
can comment the contribution of this term in a similar way to the previous point: the term under
inspection is another dissipation source in (28), whereas it brings spurious power generation in the
balance (27).

• Unfortunately, we cannot say anything about the sign of Φ
(n)
expl and Φ

(n)
impl. However, in Sec. 6 we will

show that these two terms do not practically spoil the evolution of the simulated phenomenon, neither
they a�ect the stabilizing e�ect of the additional term that we are going to introduce in Sec. 5.1.

5.1. A remedy to surface instabilities

Motivated by the considerations drawn after Thm. 1, the present section is devoted to the introduction
of a stabilization term that can compensate the instable contributions of the spurious terms that appear
in the balance (27). Indeed, we saw that this issue characterizes the explicit treatment of the geometry,
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u · ν = 0
σν · ν = 0

x3

Σb x1

Σg

Σ

Γ

Ω

0

Figure 2: Axisymmetric computational domain Ω (gray area).

resulting from the choice (25) in the kinematic condition. In particular, we focus on the stabilization of

ε
(n+1)
Γ,expl.

Remark 8. Referring to the considerations of the previous section, in principle one should look also for

a stabilization of the gravity term ε
(n+1)
g . However, we will see in the numerical results of Sec. 6.2.2 that

the actual source of instabilities is only the free-surface term ε
(n+1)
Γ,expl. This is in line with the results of

[15], where numerical results showed that the instable contribution of the gravity spurious term is generally
compensated by the Euler dissipation term. Anyway, for the sake of completeness, we remark that adding
the form

∆t S(n+1)
g (u(n+1),v) = −∆t

2

∫
Γ(n+1)

u(n+1) · ν
νd

v · ν
νd

g · ν

to the left-hand side of (21) would result in an asymptotically consistent stabilization of the scheme, which

would remove ε
(n+1)
g from balance (27).

For the ease of presentation, in the present section we consider an axisymmetric domain. That is, we
refer to the shaded 2D domain depicted in Fig. 2, with the third axis x1 = x2 = 0 as the symmetry axis. On
the central axis x1 = x2 = 0, the boundary conditions are prescribed by symmetry: u · ν = 0, σν · ν = 0.

Our search path moves from a deeper look into the proof of the SGCL (30a), from which it is possible
to derive the following result:

Corollary 1. Let Ω(n) ⊂ R3 be such that we can assume cylindrical symmetry for the problem, with the
symmetry axis along the third dimension, and let V(n) = v(n) e3. For any su�ciently regular function
ϕ : Γ(n) → R and for ∆t→ 0, it holds∫

Γ(n+1)

ϕ ◦ A−1
n,n+1 −

∫
Γ(n)

ϕ =∆t

∫
Γ(n)

ϕ div ΓV
(n) +

∆t2

2

∫
Γ(n)

ϕ ν2
3(ν1∂3v

(n) − ν3∂1v
(n))2

− ∆t3

2

∫
Γ(n)

ϕν1ν
2
3(ν1∂3v

(n) − ν3∂1v
(n))3 +O(∆t4).

(34)

Proof. Taking a generic ϕ, we can write∫
Γ(n+1)

ϕ ◦ A−1
n,n+1 =

∫
Γ(n)

ϕ|cof(∇An,n+1)ν|,

19



where cof(·) denotes the cofactor matrix. Assuming cylindrical symmetry, we have that ν2 = ν · e2 = 0, and
∂2V

(n) = ∂2v
(n) e3 = 0, whence∫

Γ(n+1)

ϕ ◦ A−1
n,n+1 =

∫
Γ(n)

ϕ|(ν1 + ∆t(ν1∂3v
(n) − ν3∂1v

(n)), ν2 + ∆t(ν2∂3v
(n) − ν3∂2v

(n)), ν3)|

=

∫
Γ(n)

ϕ
√

1 + 2∆t ν1(ν1∂3v(n) − ν3∂1v(n)) + ∆t2(ν1∂3v(n) − ν3∂1v(n))2.

Then, we employ Taylor expansion around ∆t = 0, exploiting |ν|2 = ν2
1 + ν2

3 = 1. Separating the di�erent
terms of the expansion and noticing that in the axisymmetric case

div ΓV
(n) = ν1(ν1∂3v

(n) − ν3∂1v
(n))

yield the thesis.
�

Since the identity (34) comes from Taylor expansion, we can state that the terms on the right-hand side
give indeed the �rst, second, and third time derivatives of the integral of ϕ, about the time t(n), from the
right. Inspired by the second order term of (34), we introduce the following form:

S
(n)
Γ (u(n),v) =

1

2

∫
Γ(n)

γ ν2
3

(
ν1∂3

u(n) · ν
ν3

− ν3∂1
u(n) · ν
ν3

)(
ν1∂3

v · ν
ν3
− ν3∂1

v · ν
ν3

)
, (35)

where the choice of the arguments of the partial derivatives is inspired by the kinematic condition as written
in (24). Including this form in the formulation (21) yields the following problem: given u(0), for each

n = 0, . . . , N − 1, �nd (u(n+1), p(n+1)) ∈ V (n+1)
h × P (n+1)

h such that, for all (v, π) ∈ V (n)
h × P (n)

h ,

1

∆t
(u(n+1),v)Ω(n+1) + a(n+1)(u(n+1),v) + b(n+1)(v, p(n+1))− b(n+1)(u(n+1), π)

+ c
(n+1)
ALE (u(n),V(n),u(n+1),v) + s(n+1)

p (V(n),u(n),u(n+1),v, p(n+1), π)

+ α∆t S
(n+1)
Γ (V(n+1),v) =

1

∆t
(u(n),v)Ω(n) + F (n+1)(v).

(36)

In this formulation, the term (35) is weighted by ∆t, whence it is asymptotically consistent, for ∆t → 0.
Moreover, we introduced the parameter α so that the new problem (36) reduces to the former, non-stabilized
problem (21), when α = 0.

At this point, we can restate the balance (27) as follows:

Theorem 2. Let (u(n), p(n)), n = 0, . . . , N be the solution of the discrete problem (36), and let V(n), n =
0, . . . , N be the domain velocity deriving from problem (24). Then, the following balance holds:∫

Σb

ζ · u(n+1) − V
(n+2) − V(n+1)

∆t
− K

(n+1) −K(n)

∆t
−
∫

Σb

(
1

2
|u(n+1)|2u(n) · ν − g · x u(n+1) · ν

)
= 2R(n+1) +

1

2∆t

∫
Ω(n)

|u(n+1) ◦ An,n+1 − u(n)|2

− ε(n+1)
g − (1− α)ε

(n+1)
Γ,expl − ε

(n+1)
∂Γ,expl + Φ

(n+1)
expl + α∆t2 Φ

(n+1)
S + αO(∆t3),

(37)

where

Φ
(n+1)
S = −1

2

∫
Γ(n+1)

γν1ν
2
3(ν1∂3v

(n+1) − ν3∂1v
(n+1))3,

and ε
(n+1)
g , ε

(n+1)
Γ,expl, ε

(n+1)
∂Γ,expl,Φ

(n+1)
expl are de�ned as in Thm. 1.
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Proof. Considering the expression (35) of S
(n)
Γ and the explicit kinematic condition v(n)ν3 = u(n) · ν on

Γ(n), we can see that choosing u(n+1) as a test function in S
(n+1)
Γ yields

S
(n+1)
Γ (u(n+1),u(n+1)) =

1

2

∫
Γ(n+1)

γ ν2
3

(
ν1∂3

u(n+1) · ν
ν3

− ν3∂1
u(n+1) · ν

ν3

)2

=
1

2

∫
Γ(n+1)

γ ν2
3

(
ν1∂3v

(n+1) − ν3∂1v
(n+1)

)2

.

Thence, if we take v = u(n+1) in (36), like we did in the proof of Thm. 1, and we collect all the free-surface
terms on the same side, the following expression appears:∫

Γ(n+1)

γdiv Γu
(n+1) + α

∆t

2

∫
Γ(n+1)

γ ν2
3

(
ν1∂3v

(n+1) − ν3∂1v
(n+1)

)2

. (38)

Eventually, subtracting (38) from the discrete time derivative |Γ
(n+2)|−|Γ(n+1)|

∆t of the free surface measure,
multiplied by γ, we can employ Cor. 1 � with ϕ = 1 � to obtain the thesis.

�

The present result shows that setting α = 1 in (36) implies the substitution of the spurious, instabilizing

term ε
(n+1)
Γ,expl with new terms, in the balance. Employing Cor. 1 � with ϕ = 1 � we can also notice that ε

(n+1)
Γ,expl

is order one in time, while the new terms are higher order. We will see in Sec. 6.2.2 that such a modi�cation
of the scheme is actually very e�ective, since much larger time steps can be employed, for α = 1, avoiding

the numerical oscillation that the term ε
(n+1)
Γ,expl would generate.

First Law of Thermodynamics and stabilization. The aptness of the proposed stabilization term
can be motivated further in terms of the ability of the numerical scheme to reproduce the First Law of
Thermodynamics, at the discrete level. Looking at the de�nitions (10) and (16) of the potential energy and
the total power, we can see that the free surface appears in the First Law of Thermodynamics (13) only
through the time derivative of its measure, in a term that, thanks to (8b), can be written as

Dt (γ|Γ|) =

∫
Γ

γdiv ΓV.

In the discrete total power at the left-hand side of (37), this terms appears as γ |Γ
(n+2)|−|Γ(n+1)|

∆t , and the
right-hand side thus contains

γ
|Γ(n+2)| − |Γ(n+1)|

∆t
−
∫

Γ(n+1)

γdiv ΓV
(n+1) − α∆t S

(n+1)
Γ (V(n+1),V(n+1)), (39)

which equals (1−α)ε
(n+1)
Γ,expl +α[∆t2Φ

(n+1)
S +O(∆t3)] after the application of Cor. 1. In expression (39), the

�rst term is the �rst-order approximation of the time derivative of γ|Γ| from the right, whereas the second one
is the exact value of such a derivative, as the domain map An+1,n+2 is linear in time for t ∈ [t(n+1), t(n+2)].

Therefore, in the case α = 0, this discrepancy gives rise to the spurious power ε
(n+1)
Γ,expl. When we switch on

the stabilization by setting α = 1, instead, we are correcting the approximation of the time derivative by

means of ∆tS
(n+1)
Γ (V(n+1),V(n+1)). Indeed, comparing (35) with the Taylor expansion of Cor. 1, we notice

that we are actually adding γ∆t2

2 times the second derivative of the measure of |Γ(n+1)|, which is exactly

the correction that we need in order to get a higher approximation order of the time derivative of γ|Γ(n+1)|.
Thence, we can say that introducing the stabilizing form S

(n+1)
Γ makes the numerical scheme more closely

related to the continuous problem.
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µ 2.081 · 10−2 Pa·s
ρ 1115 kg/m3

γ 4.36 · 10−5 N/m
β 66 m/s
θs 69.8◦

radius 4.6 · 10−4 m
initial height 4.6 · 10−4 m

N1, N3 32, 32
∆t 1 · 10−5 s
Cs 0.4

Table 1: Reference physical and numerical settings for Sec. 6.1.

6. Numerical results

In this section, we present some results obtained by means of the numerical scheme described and
discussed in the previous sections. In particular, we adopt an explicit treatment of the domain motion,
expressed by the choice (25) in the kinematic condition. The software implementation is based on the C++

DOLFIN interface of the FEniCS project [36, 37]. We are going to consider two di�erent settings, in order to
show the properties of the code and the numerical scheme itself, and to inspect the role of the di�erent terms
appearing in Thm. 1-2. Both these settings pertain to an axisymmetric 3D domain, whence we practically
solve the equation � in cylindrical coordinates � in the computational domain considered in Sec. 5 and
depicted in Fig. 2. In this geometry, the contact line is represented by a single point, therefore, we will be
able to talk about the evolution of ∂Γ in terms of its height and vertical velocity, which are going to be
denoted by ZCL and vCL, respectively.

6.1. Sloshing in a capillary basin

This section is devoted to inspecting the dependence of the model on the space and time discretization.
Moreover, we are going to study how the mass conservation properties of the scheme and the e�ect of the
wall friction coe�cient β are a�ected by the discretization. Throughout this section, we will present results
for the unstabilized scheme, namely for α = 0 in (36), but the same conclusions (not reported here) can be
drawn for α = 1. Indeed, in this test case, we are going to employ su�ciently small time steps, so that the
stabilization term introduced in Sec. 5.1 is not necessary, and we can focus on other features of the numerical
scheme: we postpone the numerical assessment of our stabilization and of its e�ectiveness to Sec. 6.2.2.

For simplicity, in this section we set an impervious wall at the boundary Σb, and being it distant from
the free surface, we can impose no-slip boundary conditions

u = 0 on Σb, (40)

instead of imposing the stress ζ as in the previous sections. The case with Σb open will be the subject of
Sec. 6.2.

We start with an illustrative simulation, whose physical and numerical settings are collected in Tab. 1,
where N1, N3 denote the number of elements in the radial and axial direction, respectively. In Fig. 3 we
display the evolution of the domain and the �uid velocity and pressure. The enforcement of the generalized
Navier boundary condition sets a Dirac delta force at the contact line, pulling the domain upwards. Incom-
pressibility and surface tension, then, interact with this singular load, until the equilibrium con�guration of
Fig. 3c is reached, with the current contact angle θ assuming the static value θs.

Since in the current framework mass exchange between the �uid and the environment should be prevented
(cf. (40)), an interesting point to study is mass conservation. In Fig. 4a, the time evolution of the 2D
computational domain area is plotted in order to display the conservation properties of the scheme. We
shall recall that the ALE formulation (18) of the problem is in its non-conservative form, and moreover,
the incompressibility constraint is not strongly enforced, due to the pressure stabilization introduced for the
P1 − P1 FE choice.

Another characteristic feature of the �ow at hand is the presence of the contact line ∂Γ; thus, for the
rest of the section we focus on the contact line position ZCL and velocity vCL. Concerning their overall time
evolution, from Fig. 4b we can see an exponential convergence towards the equilibrium level, at which the
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(a) initial mesh (b) t = 0.01 s

(c) t = 0.1 s

Figure 3: Evolution of domain, velocity and pressure.
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Figure 4: Time evolution of global properties.

domain halts, and the �nal height is determined by the formation of the meniscus induced by the contact
angle θs.

After the illustration of the general evolution of the system under inspection, now we want to investigate
the in�uence of the discretization on the numerical solution. Concerning time discretization, the discussion
on the stability of the scheme (cf. Sec. 5) has pointed out that there might be an upper bound for the time
step ∆t. This is due to the explicit treatment of the geometry (cf. (25)), whence conditional stability takes
place even though implicit Euler is employed in the approximation of the �uid velocity time derivative.
Indeed, performing numerical experiments we noticed that the time step has to be reduced if �ner meshes
are considered, in order to prevent the simulation from blowing up. Aiming at having a quantitative insight
on the relation between the accuracy of the solution and the time step, we performed the simulation for
di�erent values of ∆t, and we compared the �nal values of the contact line height (denoted by Z∞CL) and
the transient values attained at t = 0.006s (denoted by ZCL). Employing Richardson extrapolation [38],

we can compute the guesses Z̃∞CL, Z̃CL of the exact values of Z∞CL, ZCL, respectively, and then draw the

convergence plots for the relative errors E∞ = |Z∞CL−Z̃∞CL|/Z̃∞CL, E = |ZCL−Z̃CL|/Z̃CL, w.r.t. ∆t. A mesh
with N1 = N3 = 16 elements in each direction is �ne enough to obtain such convergence plots, reported
in Fig. 5. We can see a linear order with respect to the time step, for both the �nal con�guration and the
transient. Anyway, in all the cases, the errors are so small that drawing the plots of Fig. 4b for the di�erent
values of ∆t would result in having practically overlapping lines. For this reason, we decide not to report
those plots.

Now, we turn towards the investigation of the e�ects of space discretization. As one can see in advance,
by comparing the convergence plots of Fig. 5 with those of Fig. 7, the error due to time discretization is
smaller than the one introduced by space discretization, in particular for the transient values. Hence we are
going to �x ∆t = 5 · 10−6s for the rest of the present section, while di�erent space re�nement strategies are
going to be examined. At �rst, we consider a uniform space re�nement, that is we perform the simulation
on a sequence of meshes where the number N1 of elements along the radial direction x1 (cf. Fig. 2) and
the number N3 of elements along the axial direction x3 are held equal. The time evolutions of ZCL for
di�erent discretization levels are reported in Fig. 6a. We can see that the mesh has a major e�ect on the
characteristic time of the transient: �ner meshes cause a faster achievement of the equilibrium state. This
suggests that the mesh has an actual e�ect on the physics governing the phenomenon. In order to further
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Figure 5: Convergence plots for ZCL w.r.t. time discretization.

inspect this issue, we can turn back to the model equations (3): all the quantities and parameters of the
model have a precise and uniquely de�ned physical meaning, except for the friction coe�cient β. This
observation was done also in [4], where an adimensional, mesh-independent parameter χ was introduced,
related to the friction coe�cient by β = µ

χh3
, where h3 is the discretization step in the axial direction.

Therefore, we may look for the same relationship also in our scheme, holding χ constant while re�ning along
the sole axial direction. The results of such an anisotropic re�nement strategy, where we held N1 = 32 �xed,
are reported in Fig. 6b: indeed, scaling β with 1/h3 makes the di�erent evolution plots shown therein very
similar to one another. For completeness, we also checked that the e�ective friction coe�cient β is unrelated
to the radial discretization step. In Fig. 6c, we report the results for a sequence of meshes with di�erent
numbers N1 of radial elements, but with N3 and hence β held �xed. Indeed, an essential independence of
the contact line evolution w.r.t. N1 is evident. After these considerations, we can take into account uniform
re�nements once again, this time with a proper correction of the friction coe�cient, in order to validate
the scaling introduced for the friction coe�cient (cf. Fig. 6d). Indeed, di�erently from Fig. 6a, the results
reported in Fig. 6d show that the physics governing the phenomenon is substantially independent of the
mesh, when β is properly scaled.

Analogously to the case of time discretization, also convergence w.r.t. the space discretization has been
studied. Fig. 7 shows the convergence plots of Z∞CL and ZCL towards their Richardson extrapolations, in the
case of the uniform re�nement of Fig. 6d. In Fig. 7a we can see a quadratic convergence for the numerical
error E∞, whilst in Fig. 7b a sublinear order is observed for the error E. This discrepancy can be related
to the fact that Z∞CL is physically prescribed by the contact angle θs, thus independently of β, whereas the
transient values are a�ected by the choice of the friction coe�cient. Therefore, the adopted scaling of β may
not be su�cient to completely remove the modeling error, that seems to spoil the convergence behavior of
E.
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Figure 6: Dependence of ZCL time evolution w.r.t. β and the space discretization parameters.
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6.2. Filling of a capillary pipe

In this section, we want to continue the validation of our numerical scheme, through the comparison
with the experimental results reported in [4]. To this aim, a proper calibration of the friction coe�cient β
will be addressed. Moreover, we are going to inspect the role of the terms in the balances (27) and (37),

including the e�ects of the stabilization term of the form S
(n)
Γ , de�ned in (35). In order to highlight the

role of such a stabilization term, at �rst (Sec. 6.2.1) we present the results that can be obtained without it,
namely with α = 0 in (36); afterwards (Sec. 6.2.2), we discuss the bene�ts of its introduction. The physical
and numerical settings of the simulations are collected in Tab. 2.

6.2.1. Results without the stabilization term SΓ

In order to give a qualitative description of the �uid evolution, Fig. 8 displays the con�guration of the
domain section at di�erent time steps, together with the �uid velocity and pressure �elds, for the parameters
set reported in Tab. 2. As one can see, in the present settings, the �uid column is pulled upwards at the
contact line ∂Γ, due to the current contact angle θ being larger than the static value θs, while the gravity �eld
opposes to this motion. During the evolution, the domain stretches signi�cantly in the vertical direction:
this is why we employed a number N3 of axial elements that is larger than N1. Eventually, the static
con�guration is approached without oscillations, due to the high value of β.

As already pointed out in Sec. 6.1, the friction coe�cient is not rigorously de�ned in terms of the physical
properties of the system at hand, and hence the �rst issue we address is the calibration of β, in order to adjust
the model to the physical phenomenon that we want to simulate. In Fig. 9, we report the di�erent histories

µ 2.081 · 10−2 Pa·s
ρ 1115 kg/m3

γ 4.36 · 10−5 N/m
β 66 m/s
θs 69.8◦

|ζ| = ζ · e3 4.51 · 10−3 m2/s2

radius 4.6 · 10−4 m
initial height 4.6 · 10−4 m

N1, N3 16, 80
∆t 2 · 10−5 s
Cs 0.4

Table 2: Physical and numerical settings for Sec. 6.2.
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(a) initial mesh

(b) t = 0.04 s

(c) t = 1 s (d) t = 6 s

Figure 8: Evolution of domain, velocity and pressure.

28



0 2 4 6
0

1

2

3
·10−2

t [s]

Z
C

L
[m

]

β=6.6e-4

β=6.6e-3

β=0.66

β=66

0 2 4 6
−0.4

−0.2

0

0.2

0.4

t [s]

v
C

L
[m

/
s]

β=6.6e-4

β=6.6e-3

β=0.66

β=66

Figure 9: Contact line height (left) and �uid velocity (right) evolution for di�erent values of β.

of the contact line height and velocity for very di�erent values of the friction coe�cient. As anticipated,
a monotonic rise of the capillary height occurs if the friction is strong, whereas low values of β allow the
system to oscillate around the equilibrium con�guration, before achieving it. We were able to simulate very
di�erent evolutions, making β vary in a very wide range, thence we can state that our scheme is robust
w.r.t. strong variations in this parameter.

Now, we move on and compare the numerical results with experimental data. Concerning the equilibrium
state of the system, the results of Fig. 9 show that the �nal con�guration is independent of the friction
coe�cient. This is in accordance with the established capillary action identity [21], by which the equilibrium
height is determined in terms of the surface tension coe�cients and the action of gravity:

Z∞CL =
2γ cos θs
ρgr

,

where r is the radius of the capillary tube, i.e. the horizontal width of our computational domain.
In order to assess the whole time evolution of the system, in Fig. 10 we display the time-plots of the contact

line height and velocity, together with the experimental observations reported in [4]: we can see a rather
good agreement between the two evolutions. 7 To obtain these results, the index 1/χ = βh3 was calibrated,
as anticipated above. The outcome of our calibration is a value χ = 0.0095 for the mesh-independent friction
parameter, that is quite close to the value χ = 0.015 employed in [4], though not completely matching it.
Anyway, this discrepancy does not spoil the validity of the results, since our scheme presents some di�erences
w.r.t. the one used in the cited work. First, we adopt a single-phase perspective, simulating only the liquid
phase, whereas in [4] also the equations for the air are explicitly solved. Therefore, our parameters also
condense the contributions of the gas lying above the free surface. Furthermore, a di�erent discretization
technique is employed in the cited work, and we already saw in the previous section that the discretization
has a strong impact on the actual value of the friction coe�cient.

So far, we have analyzed the overall dynamics of the numerical solution, focusing on the evolution of the
contact line. Now we want to inspect the contributions of the various terms appearing in the balance (27),
in order to understand their e�ects on the system. Looking at the plots of Fig. 11a-11b, it can be noticed
that the main physical quantities involved in the phenomenon have comparable magnitudes. Therefore, we
can infer that the physical considerations made during the derivation of the model (Sec. 3) were free of
redundant attention to negligible quantities.

7One can notice a slight disagreement in the velocity, in the time span (0.5s, 1s). However, this non-smooth segment of the
experimental data is quite probably a�ected by noise: indeed, it is not �tted by the numerical method in [4] either, where the
data are taken from.
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Figure 10: Height (left) and �uid velocity (right) time evolution at the contact line.

Focusing on Fig. 11b, we can observe that the purely numerical terms stemming from the implicit Euler
method and the pressure stabilization are actually always positive, thus they have a dissipative e�ect, as
expected. Anyway, such arti�cial contributions are quite negligible w.r.t. the overall dissipation function
R(n+1), thus they do not alter the evolution of the actual phenomenon.

A deeper comment is due on the behavior of the spurious terms, displayed in Fig. 11c. Regarding

Φ
(n+1)
expl � which in principle has undetermined sign � we see that it occurs to be always positive, in the

present simulation, thus not spawning any instabilizing contribution. Concerning ε
(n+1)
g , ε

(n+1)
Γ,expl, instead,

they introduce a spurious, instabilizing power into the system, being they positive as foreseen in the remarks
after Thm. 1. Yet, all these terms are at least two order of magnitudes smaller than the main terms discussed
above, and hence they a�ect only marginally the evolution of the system.

In the results presented so far, we have shown the suitability of our scheme and its robustness w.r.t.
the wall friction coe�cient. Nevertheless, the situation can become troublesome if larger time steps are
considered. This topic is going to be addressed in the following section.
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6.2.2. E�ects of the stabilization term

So far we have employed a rather small time step (∆t = 2 · 10−5s), if compared to the physical char-
acteristic time of the evolution we are simulating. Indeed, as one can see from Fig. 12, choosing a larger
time step (∆t = 4 · 10−5s) is enough to make spurious oscillations appear in the velocity, pressure, and then
in the geometry, after just �fteen time steps. Therefore, aiming at employing larger time steps, we need

to compensate the spurious power introduced by ε
(n+1)
g , ε

(n+1)
Γ,expl. As anticipated in Sec. 5.1, we concentrate

on the stabilization of the free surface term, by adding S
(n+1)
Γ to the formulation, cf. (36). This choice is

justi�ed by the fact that the spurious oscillations displayed in Fig. 12b are mainly located on the free surface
and far from the contact line. Indeed, in Fig. 12c it is possible to observe that the addition of this single

term S
(n+1)
Γ is su�cient to completely prevent numerical oscillations, even for large time steps.

We can �nd more evidence of the aptness of our stabilization by looking at how the behavior of the

spurious terms ε
(n+1)
g , ε

(n+1)
Γ,expl,Φ

(n+1)
expl change for di�erent choices of ∆t, near the stability threshold ∆t =

2·10−5. In Fig. 13, we focus on the �rst part of the time span, before the time t = 0.001s when the oscillations
shown in Fig. 12b become too severe. As it is foreseeable, in the cases with α = 0, all the spurious terms

rapidly increase when larger time steps are chosen. However, the values of ε
(n+1)
g ,Φ

(n+1)
expl shown in Fig. 13c

remain two orders of magnitude smaller than the order of 10−11 of the physically consistent power terms

of Fig. 11a-11b. Hence, their e�ect on the system is limited. On the contrary, ε
(n+1)
Γ achieves much higher

values in the unstabilized cases, becoming the prevailing term in the balance (27). If the stabilization is
switched on by setting α = 1 in (36), instead, this dominance is remarkably deadened (see also (37)). Indeed,

in Fig. 13d we can see that the term Φ
(n+1)
S , that basically replaces ε

(n+1)
Γ when α = 1, remains much smaller

than 10−11. For the sake of completeness, we point out that also the other spurious terms are brought back
to the values assumed for small time steps, as one can see from Fig. 13e, so no further stabilization terms
are actually needed.

As stated above, the stabilizing e�ect of S
(n+1)
Γ can be exploited further, considering a time step ∆t =

2 · 10−3, that is 100 times larger than the previous stability threshold, saving a signi�cant amount of
computational e�ort. In Fig. 14 we can see the evolution of the di�erent terms composing the power balance
(37) in such settings. Comparing them with the results of Fig. 11 (obtained with ∆t = 2 · 10−5), practically
no di�erence can be noticed. Indeed, our stabilization does not substantially modify the equations of the

system, as it can be seen by Fig. 14c, where also the evolution of S
(n+1)
Γ is shown.

Concluding this section, we want to remark that even larger time steps are actually employable without
the onset of spurious oscillations. Nevertheless, choosing ∆t larger than the order of milliseconds yields a
major loss in accuracy, as we cannot correctly capture the fast evolution of the physical system.
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(a) ∆t = 2 · 10−5, α = 0:
no oscillations

(b) ∆t = 4 · 10−5, α = 0:
oscillations arise

(c) ∆t = 2 · 10−3, α = 1:
the stabilization damps out the os-
cillations

Figure 12: Velocity and pressure �elds at t = 6 · 10−4s. Spurious oscillations occur in the unstabilized case (α = 0) if the time
step is not small enough (b).
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35



7. Conclusions

In the present paper, we studied a free surface problem with moving contact line for an incompressible
�ow inside a capillary tube. The equations governing the phenomenon, namely Navier-Stokes equations
with surface tension and wall friction, have been derived from the variational Principle of minimum reduced
dissipation [20]. Such a derivation was carried out in both the cases without and with mass exchange with
the environment, having both of them autonomous interest in the applications; the latter was an original
extension by the authors. As a result, a physical justi�cation of the generalized Navier boundary conditions,
connecting the wall friction to the imposition of a contact angle, was given, without resorting to microscopic
considerations.

Then, the stabilized P1 − P1 FEM discretization of the di�erential problem was introduced, in the Arbi-
trary Lagrangian-Eulerian framework, and the stability of the resulting scheme was analyzed. In particular,
we investigated the ability of the numerical scheme to reproduce the First Law of Thermodynamics at the
discrete level. Some purely numerical terms were isolated in the power balance of the discrete First Law,
and their dissipative or instabilizing nature was determined. Then, we focused on the introduction of a
novel asymptotically consistent term, aiming at correcting the discrete approximation of the surface tension
power, and consequently damping the spurious instabilities that such an approximation introduces in the
numerical method.

The scheme was assessed by means of di�erent numerical tests. The mass conservation properties and
the robustness of the method w.r.t. variations of physical parameters were veri�ed. Particular attention has
been paid to the wall friction coe�cient and to its strong connection with the discretization parameters. The
suitability of the scheme was further con�rmed by the comparison with experimental results. Finally, the
numerical tests demonstrated the e�ectiveness of the novel stabilization term in damping spurious oscillations
and allowing the use of much greater time steps, yielding to signi�cant savings in the computational e�ort.
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