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Abstract

In this work we focus on a model reduction approach for the treatment of frac-
tures in a porous medium, represented as interfaces embedded in a n-dimensional
domain, in the form of a (n — 1)-dimensional manifold, to describe fluid flow and
transport in both domains. We employ a method that allows for non-matching
grids, thus very advantageous if the position of the fractures is uncertain and mul-
tiple simulations are required. To this purpose we adopt an XFEM approach to
represent discontinuities of the variables at the interfaces, which can arbitrarily
cut the elements of the grid. The method is applied to the numerical solution of
the Darcy problem, and advection-diffusion problems in porous media.

1 Introduction

Subsurface flows are strongly influenced by the heterogeneities of the porous medium
and in particular by the presence of fractures, faults and discontinuities between differ-
ent layers. While micro-fractures can be accounted for by means of homogenization,
large fractures and faults can act as preferential paths or barriers for the flow, and should
be resolved by the grid. Since the characteristic width of these features is usually very
small compared to the typical mesh size one possibility to address this problem in a
computationally efficient way is to use a reduced model in which the fractures are rep-
resented as interfaces immersed in the porous medium, with proper coupling conditions



between the fracture and the medium. The reduced model for the single phase Darcy
problem was first introduced in [1] and extended in [2, 8]. In [4, 6] the authors ex-
tended the work of [8] allowing for non matching grids between the porous domain
and the fracture, increasing the flexibility of the method: an important advantage of
non-matching grids is indeed the possibility to run multiple simulations with different
fractures configuration, without meshing each time the domain. In the present work
we derive, in the same framework, a reduced model for the problem of the advection
and diffusion of a tracer in a fractured porous medium, with the aim of providing a
flexible and efficient tool to simulate realistic problems such as groundwater contam-
ination. We obtain the advection field solving a Darcy problem, formulated as in [4],
and employ the same space discretization with non-matching grids to approximate the
transport problem.

The paper is structured as follows. In Section 2 the governing equations of single phase
Darcy flow and passive transport-diffusion in a porous medium are briefly presented.
In Section 3 the reduced model for the transport problem is derived, and its numerical
approximation is described in Section 4. In Section 5 two numerical test are illustrated.
Section 6 is devoted to conclusions.

2 Governing equations

We consider the problem of a passive scalar (tracer) transported by an external field u
in a porous medium. The external field is, in the case of our interest, obtained solving a
Darcy problem in the porous medium.

We are interested in the case of domains crossed by faults or large fractures character-
ized by a permeability tensor K that differs significantly from the porous matrix. Let
us consider a regular domain Q € R”, with boundary I = Ty UT'p and outward unit
normal nr, cut by a thin region Q¢ C Q of thickness d representing the fracture , as
shown in Figure 1, such that Q = Q; UQ;UQ, and QN fzj = ( for i # j. The Darcy

nr

Figure 1: Domain divided in two sub-domains Q and €, by a thin region Q.

flow is described by the following system fori = 1,2, f and j = 1,2

Ml Y (1)
u;=—K;(Vpi—q;) Pj=rf



where the subscript i denotes the quantity in each sub-domain i and y; € R"~! is the in-
terface between Q; and Q¢ with unit normal n;. We impose to (1) boundary conditions
pi=p;onI% andu;-nr =g, on ')

Moving to the advection-diffusion problem, we indicate with c the concentration of the
passive scalar, defined as the volume fraction of tracer in the porosity, the total flux
X := —DVc + uc and we denote with D € [L* (Q)]""" the molecular diffusion tensor
which is symmetric and positive definite. Introducing the interval of time %7 := (0, T')
and the domain Q; := Q; X Zr then the advection-diffusion problem in mixed form,
with suitable boundary and initial conditions for i = 1,2, f and j = 1,2 reads

dt
Xi= —D,'VCi “+u;c;

(96‘,' = j
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Here ®; € L (Q) denotes the porosity and g is a source term. We impose to (2) bound-
ary conditions ¢; = conI'§; x &7 and X, - nr on I'j, X Zr, furthermore we impose initial
condition ¢; = ¢g in Q; x {0}.

3 Reduced model for the advection-diffusion problem

We want to derive a reduced model for advection and diffusion in the presence of frac-
tures, replacing the region € with a n— 1 dimensional interface y = y; with unit normal
n =~ n; ~ —ny, as shown in Figure 2. In [8] a reduced model for Darcy is derived yield-
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Figure 2: Left: domain cut by an 1D interface y that replaces Q. Right: the reducing
process.

ing two coupled problems for the flow in the fracture and in the porous matrix. We
report the main result for readers convenience. Given a functiona : Q — R"™, m =1 or
n, let us set

ay+ay . .
ith x)= lim a(x—¢€n).
2 W a( ) saoia( )

[[a]]Y ‘=a;—apy and {{a}}y =

We also define the projection matrix N := n®n. Indicating with * the reduced variables
defined in 7, following [8] we suppose K s = K¢ »N + K ¢ (I — N), then the Darcy prob-



lem for i = 1,2 can be written as

Voui=gq; in &, Vee=4+{u-n}}, iny,
ui=—K;(Vpi—q;) inQ, fi+Vip=q iny,

- R L .o
pi=D; on Iy, p=D on dyNTYy,
u;-nr=g; onI%, t-nr=3g on dyNTI?,

where f) :=d/Ky ¢ and, givena: Q — R and @ : Q@ — R”, we have defined
Vza:=Va—NVa, Vz-a:=V-a—N:Va.

The coupling conditions, derived in [8] for g = 0, become in the more general case

Sony[u-nfy+ - [[q ny={prlt,—p
nf{u-n}}, = [[Pﬂ +d{{q-n},

where &, € (0, 0.25] is a shape parameter and 1y := 1/ (dKy.»), see [5] for details.

We want to derive in an analogous way a reduced model for the time dependent problem
of the advection-diffusion of a tracer. To this purpose we define the reduced flux and
the mean concentration in the fracture, see Figure 2, as

ony,

d
xf,(r t)dr and /ch r,t)
Sd)y

N\& [SToW

X(s,1):=

with s € y and d = d (s). Note that, for a function a; : Q; — R" as 7 := ay — Nay.
Projecting the conservation equation on the tangential space of ¥ and integrating in
each section of the fracture, the reduced conservation equation becomes

2% o o
405+ Ve g =g+[x-nly onY, @

where ¢ is the reduced scalar source and Y := y x /7. We have assumed that ®
is constant in each transversal section of the fracture. Projecting the second equation
of (2) on the tangential space of y and integrating in each section of the fracture, the
reduced flux equation becomes

Bx+Vie—dBac=0 onY, (5)

where [§ :=d /Dy ¢ and with the assumptions

up-ncydr=0.
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We then integrate the second equation in (2) along the normal direction in €, apply
the trapezium quadrature rule and exploit the continuity on y; and 7> to obtain

Brl{x-n}, =lcly onY, (6)



where By :=1/(dDy). To close the reduced system we need another relation to model
the variation of the concentration and total flux across the fracture. From a Taylor
expansion in the centre of Q (see [5]) we find

¢ ={{chy—Bycolx-nly onY, ¥

where & € (0, 0.25] accounts for different concentration profiles in Q.
Using (4) and (5) we can now write a system for the advection-diffusion problem in the
porous matrix, for i = 1,2, and in the fracture

aC,‘ 86 ~
AL PV O, v, =ty

o T8 0 ‘ffaer o X g+ 1x-nly ny, (@8
X: = —DiVe; +ujc; BR+Vie—dBac=0

coupled with the interface conditions (6) and (7) on the fracture and complemented with
the initial and boundary conditions

A

Ci=2Cj OHI‘X,XJT, c= f OnamxtﬁT,
xi-nr:7i Onl—‘f)XfT, 2 7f in 8}/f)><ﬂT,
ci = Co,i in Q; x {0}, =20y on ¥ x {0}.
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4 Numerical Discretization

We choose to adopt the same space discretization for the Darcy problem and for the
advection-diffusion problem. In particular, we employ the mixed finite element method
with the lowest order Raviart-Thomas finite elements RT( while time stepping is per-
formed, for the time dependent problem, by the implicit Euler method, as in [10]. The
same discretization strategy is employed for the transport problem in the bulk medium
and in the fracture. Mixed finite element are a valuable choice in problems concerning
flow in porous media thanks to their local mass conservation property. Moreover, they
have been successfully applied to problems of transport in porous media, see [3, 10].

We are interested in the case of domains crossed by interfaces that are non-conforming
with the grid. More precisely, the triangulation .7, of the domain Q and that of the
interface y are completely independent and non-matching, as shown in Figure 3. To

N // //

N Z0N

NP ¥ ‘

NN N /
AN AT N1
N Q-

Y NN N

Figure 3: The triangulation of Q and 7. The mesh elements cut by 7y ad highlighted.



this purpose, we adopt an Extended Finite Element (XFEM) approach [9], enriching
the classical Raviart-Thomas finite element basis on the elements cut by the fracture
with discontinuous functions. In particular, we follow the approach proposed in [7],
and proceed, for the transport problem in the fractured medium, as proposed in [4] for
the Darcy problem. We consider discrete fluxes ¥, € V, and concentration ¢, € Qp
made of two components, associated to ;, for i = 1,2, where

Vii=ViyxVay, and Qp:=014%x0Qz; with
Vin:={vi € Hay (i) : vl € RTo(Ki),Ki € T},

Qin={an€L*(Q): anlg, €Po(Ki), Ki € T}

where, for any K; € 7, N Q;, RTy (K;) and Py (K;) are the restrictions to K; of the stan-
dard RT( and Py local functions. The discrete variables can thus be discontinuous on
7. being defined on each part K; of a cut element K by independent functions.

The global coupled system, discretized in space and time, reads

A B" 0 E x4 0
B M 0 0 k1 _ | —gt+Mct
0 0 A B || z 0
ET 0 B M |L&" ~g+ Mt

where the blocks E and E " account for the coupling between the two problems and for
the interpolation between the bulk mesh and the fracture mesh, furthermore M and M
are the mass matrices which include the time step Ar. We point out that in the relevant
case of advection dominated problems a stabilization has to be applied, see [11, 10] for
stabilization techniques in mixed finite elements.

5 Results

5.1 Testcasel

Let Q=[0,12, T = {(x,y) €Q: y=2x—0.4},Tp={0,1} x [0,1],and Ty = [0, 1] x
{0,1}. The bulk flow and the flow in the fracture are described by equations (3), with
q=4=0,9g=qg=0,p=1—y, and d = 0.01. We consider full Neumann boundary
conditions p =1 —y on dyy, coupled by the interface conditions with §y = 1/8. The
permeability tensor of the medium is isotropic, K,, = I while the fracture is character-
ized by a high permeability in the normal and tangential directions, K = 100I. We
want to solve (2) where the advection field is the computed Darcy velocity which is
higher in the fracture than in the porous matrix. We set ¢ =0, ¥ = 0 and co(x,y) = 1 if
(x—0.5)2+ (y—0.2)? < 0.03. The diffusion tensor is isotropic and constant, D = 0.051
everywhere. We first solve this test case with the standard mixed FEM and a refined
mesh that is able to resolve the fracture and compare the results with the reduced model
and the XFEM approach. The time step is At = 5-1073 and T = 0.2. In Figure 4 the
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Figure 4: In al), a2) the concentration of the tracer computed with the standard FEM
and the fine grid at time r = 0.1 and ¢ = 0.2 respectively. In bl) and b2) the solution
obtained at the same time with the reduced approach and a coarse grid. The black line
represents the concentration along 7.

solutions are compared at two different times. In both cases the tracer is advected up-
wards and flows preferably along the fracture where the fluid velocity is higher. The
two methods produce results that are qualitatively in good agreement, even if a grid of
only 3200 triangles and 100 segments for the fracture is used with the XFEM method
and a much more refined grid ~13000 triangles is needed with the standard approach.

5.2 Test case 2

We now present a realistic example for the flow and transport problem. The domain,
cut by a fracture, is sketched in Figure 5 and has spatial dimensions 6Km x 3Km while
the end time is T = 105 ~ 0.95Ma.

P3 Ki=10"Pm? | K=10"%m? | K3=10""m?
Jon X o | Ke=10"5m | K= 10"7m? | p, = 34.53MPa
. - K; i Py =29.53MPa | P3=0.1MPa | q=—99le,
= \ k.| d=10m & =0.25 q=0
7 ) At =5-10"0s co=0.3 D=10"3%m?/s

Figure 5: Left: computational domain showing. Right: data for problems (3) and (8).

The data for (3) and (8) are reported in Table 5. Note that the permeability is isotropic




in the medium while the fracture acts as a preferential path for the flux in the tangential
direction and as a barrier in the normal direction. The molecular diffusion of the tracer is
homogeneous and isotropic in the whole domain, thus in the fracture we set D¢, = Dd
and Dy = D/d. We impose homogeneous essential conditions on the left and the
right part of I" and natural conditions on the top and the bottom of I". In Figure 6
we present the concentration of the tracer at two different times comparing the results
obtained accounting for the fracture and neglecting it. We can notice that the solutions
are extremely different confirming the necessity to handle the fractures in an efficient
and accurate way .

Time: 0018700 My . Time: 0,110500 My

Figure 6: Comparison, at two different times, between the solution obtained without
the fracture, (top), and the solution with the fracture and the reduced model (bottom).

6 Conclusions

In this paper we presented an original model for transport problems in fractured porous
media. Following the approach present in literature for the single phase Darcy flow
we derived a numerical model for the coupled problem of advection and diffusion in
the porous medium and in the fractures, and compared the results with the traditional
approach. Thanks to its moderate computational cost the method proves to be effective
for cases with realistic parameters. Our future work will focus on the assessment of
the theoretical properties of the method and the inclusion in this framework of suitable
stabilization techniques for advection dominated problems.
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