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Abstract

In this work we focus on a model reduction approach for the treatment of frac-

tures in a porous medium, represented as interfaces embedded in a n-dimensional

domain, in the form of a (n−1)-dimensional manifold, to describe fluid flow and

transport in both domains. We employ a method that allows for non-matching

grids, thus very advantageous if the position of the fractures is uncertain and mul-

tiple simulations are required. To this purpose we adopt an XFEM approach to

represent discontinuities of the variables at the interfaces, which can arbitrarily

cut the elements of the grid. The method is applied to the numerical solution of

the Darcy problem, and advection-diffusion problems in porous media.

1 Introduction

Subsurface flows are strongly influenced by the heterogeneities of the porous medium

and in particular by the presence of fractures, faults and discontinuities between differ-

ent layers. While micro-fractures can be accounted for by means of homogenization,

large fractures and faults can act as preferential paths or barriers for the flow, and should

be resolved by the grid. Since the characteristic width of these features is usually very

small compared to the typical mesh size one possibility to address this problem in a

computationally efficient way is to use a reduced model in which the fractures are rep-

resented as interfaces immersed in the porous medium, with proper coupling conditions
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between the fracture and the medium. The reduced model for the single phase Darcy

problem was first introduced in [1] and extended in [2, 8]. In [4, 6] the authors ex-

tended the work of [8] allowing for non matching grids between the porous domain

and the fracture, increasing the flexibility of the method: an important advantage of

non-matching grids is indeed the possibility to run multiple simulations with different

fractures configuration, without meshing each time the domain. In the present work

we derive, in the same framework, a reduced model for the problem of the advection

and diffusion of a tracer in a fractured porous medium, with the aim of providing a

flexible and efficient tool to simulate realistic problems such as groundwater contam-

ination. We obtain the advection field solving a Darcy problem, formulated as in [4],

and employ the same space discretization with non-matching grids to approximate the

transport problem.

The paper is structured as follows. In Section 2 the governing equations of single phase

Darcy flow and passive transport-diffusion in a porous medium are briefly presented.

In Section 3 the reduced model for the transport problem is derived, and its numerical

approximation is described in Section 4. In Section 5 two numerical test are illustrated.

Section 6 is devoted to conclusions.

2 Governing equations

We consider the problem of a passive scalar (tracer) transported by an external field uuu

in a porous medium. The external field is, in the case of our interest, obtained solving a

Darcy problem in the porous medium.

We are interested in the case of domains crossed by faults or large fractures character-

ized by a permeability tensor KKK that differs significantly from the porous matrix. Let

us consider a regular domain Ω ∈ R
n, with boundary Γ = ΓN ∪ΓD and outward unit

normal nnnΓ, cut by a thin region Ω f ⊂ Ω of thickness d representing the fracture , as

shown in Figure 1, such that Ω = Ω1 ∪Ω f ∪Ω2 and Ω̊i ∩ Ω̊ j = /0 for i 6= j. The Darcy

d

Ω f

Ω2

nnn1

nnn2

nnnΓ

γ

γ2

Ω1

γ1

Figure 1: Domain divided in two sub-domains Ω1 and Ω2 by a thin region Ω f .

flow is described by the following system for i = 1,2, f and j = 1,2

{

∇ ·uuui = qi

uuui =−KKKi (∇pi −qqqi)
in Ωi ,

{

uuu j ·nnn j = uuu f ·nnn j

p j = p f

on γ j , (1)
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where the subscript i denotes the quantity in each sub-domain i and γ j ∈R
n−1 is the in-

terface between Ω j and Ω f with unit normal nnn j. We impose to (1) boundary conditions

pi = pi on Γ
p
N and uuui ·nnnΓ = gi on Γ

p
D.

Moving to the advection-diffusion problem, we indicate with c the concentration of the

passive scalar, defined as the volume fraction of tracer in the porosity, the total flux

χχχ := −DDD∇c+ uuuc and we denote with DDD ∈ [L∞ (Ω)]n×n
the molecular diffusion tensor

which is symmetric and positive definite. Introducing the interval of time IT := (0, T )
and the domain Qi := Ωi ×IT then the advection-diffusion problem in mixed form,

with suitable boundary and initial conditions for i = 1,2, f and j = 1,2 reads







Φi

∂ci

∂ t
+∇·χχχ i = g

χχχ i =−DDDi∇ci +uuuici

in Qi ,

{

χχχ j ·nnn j = χχχ f ·nnn j

c j = c f

on γ j ×IT . (2)

Here Φi ∈ L∞ (Ω) denotes the porosity and g is a source term. We impose to (2) bound-

ary conditions ci = c on Γ
c
N ×IT and χχχ i ·nnnΓ on Γ

c
D×IT , furthermore we impose initial

condition ci = c0 in Ωi ×{0}.

3 Reduced model for the advection-diffusion problem

We want to derive a reduced model for advection and diffusion in the presence of frac-

tures, replacing the region Ω f with a n−1 dimensional interface γ ≈ γ j with unit normal

nnn ≈ nnn1 ≈−nnn2, as shown in Figure 2. In [8] a reduced model for Darcy is derived yield-

nnn2
Ω1

nnn

nnn1

Ω2

γnnnΓ

Ω2t = t∗

Ω1

nnn1

nnn2

γ

sss∗
Ω f

d (sss∗)/2

−d (sss∗)/2

Figure 2: Left: domain cut by an 1D interface γ that replaces Ω f . Right: the reducing

process.

ing two coupled problems for the flow in the fracture and in the porous matrix. We

report the main result for readers convenience. Given a function a : Ω → R
m, m = 1 or

n, let us set

JaKγ := a1 −a2 and {{a}}γ :=
a1 +a2

2
with a(xxx) = lim

ε→0±
a(xxx− εnnn) .

We also define the projection matrix NNN := nnn⊗nnn. Indicating with ·̂ the reduced variables

defined in γ , following [8] we suppose KKK f =K f ,nnnNNN+K f ,τττ (III −NNN), then the Darcy prob-
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lem for i = 1,2 can be written as



















∇·uuui = qi in Ωi,

uuui =−KKKi (∇pi −qqqi) in Ωi,

pi = pi on Γ
p
N ,

uuui ·nnnΓ = gi on Γ
p
D,























∇τττ · ûuu = q̂+{{uuu ·nnn}}γ in γ ,

η̂ ûuu+∇τττ p̂ = q̂qq in γ ,

p̂ = p̂ on ∂γ ∩Γ
p
N ,

ûuu ·nnnΓ = ĝ on ∂γ ∩Γ
p
D,

(3)

where η̂ := d/K f ,τττ and, given a : Ω → R and aaa : Ω → R
n, we have defined

∇τττa :=∇a−NNN∇a , ∇τττ ·aaa :=∇·aaa−NNN : ∇aaa .

The coupling conditions, derived in [8] for qqq ≡ 0, become in the more general case






ξ0ηγJuuu ·nnnKγ +
d

4
Jqqq ·nnnKγ = {{p}}γ − p̂

ηγ{{uuu ·nnn}}γ = JpKγ +d{{qqq ·nnn}}γ

on γ ,

where ξ0 ∈ (0, 0.25] is a shape parameter and ηγ := 1/(dK f ,nnn), see [5] for details.

We want to derive in an analogous way a reduced model for the time dependent problem

of the advection-diffusion of a tracer. To this purpose we define the reduced flux and

the mean concentration in the fracture, see Figure 2, as

χ̂χχ (sss , t) :=
∫ d

2

− d
2

χχχ f ,τττ (rrr, t) drrr and ĉ(sss, t) :=
1

d

∫ d
2

− d
2

c f (rrr, t) drrr ,

with sss ∈ γ and d = d (sss). Note that, for a function aaa f : Ω f → R
n aaa f ,τττ := aaa f −NNNaaa f .

Projecting the conservation equation on the tangential space of γ and integrating in

each section of the fracture, the reduced conservation equation becomes

dΦ f

∂ ĉ

∂ t
+∇τττ · χ̂χχ = ĝ+ Jχχχ ·nnnKγ on Y , (4)

where ĝ is the reduced scalar source and Y := γ ×IT . We have assumed that Φ f

is constant in each transversal section of the fracture. Projecting the second equation

of (2) on the tangential space of γ and integrating in each section of the fracture, the

reduced flux equation becomes

β̂ χ̂χχ +∇τττ ĉ−dβ̂ ûuuĉ = 000 on Y , (5)

where β̂ := d/D f ,τττ and with the assumptions

∫ d
2

− d
2

uuu f ,τττc f drrr ≈ dûuuĉ and

∫ d
2

− d
2

uuu f ·nnnc f drrr ≈ 0 .

We then integrate the second equation in (2) along the normal direction in Ω f , apply

the trapezium quadrature rule and exploit the continuity on γ1 and γ2 to obtain

βγ{{χχχ ·nnn}}γ = JcKγ on Y , (6)
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this purpose, we adopt an Extended Finite Element (XFEM) approach [9], enriching

the classical Raviart-Thomas finite element basis on the elements cut by the fracture

with discontinuous functions. In particular, we follow the approach proposed in [7],

and proceed, for the transport problem in the fractured medium, as proposed in [4] for

the Darcy problem. We consider discrete fluxes χχχh ∈ VVV h and concentration ch ∈ Qh

made of two components, associated to Ωi, for i = 1,2, where

VVV h :=VVV 1,h ×VVV 2,h and Qh := Q1,h ×Q2,h with

VVV i,h :=
{

vvvh ∈ HHHdiv (Ωi) : vvvh|Ki
∈ RT0 (Ki) , Ki ∈ Th

}

,

Qi,h :=
{

qh ∈ L2 (Ωi) : qh|Ki
∈ P0 (Ki) , Ki ∈ Th

}

,

where, for any Ki ∈ Th ∩Ωi, RT0 (Ki) and P0 (Ki) are the restrictions to Ki of the stan-

dard RT0 and P0 local functions. The discrete variables can thus be discontinuous on

γ , being defined on each part Ki of a cut element K by independent functions.

The global coupled system, discretized in space and time, reads











AAA BBB⊤ 000 EEE

BBB MMM 000 000

000 000 ÂAA B̂BB
⊤

EEE⊤ 000 B̂BB M̂MM



















χχχh

ccck+1
h

χ̂χχh

ĉcck+1
h









=









000

−ggg+MMMccck

000

−ĝgg+ M̂MMĉcck









where the blocks EEE and EEE⊤ account for the coupling between the two problems and for

the interpolation between the bulk mesh and the fracture mesh, furthermore MMM and M̂MM

are the mass matrices which include the time step ∆t. We point out that in the relevant

case of advection dominated problems a stabilization has to be applied, see [11, 10] for

stabilization techniques in mixed finite elements.

5 Results

5.1 Test case 1

Let Ω = [0,1]2, Γ = {(x,y) ∈ Ω : y = 2x−0.4}, ΓD = {0,1}× [0,1], and ΓN = [0,1]×
{0,1}. The bulk flow and the flow in the fracture are described by equations (3), with

q = q̂ = 0, qqq = q̂qq = 0, p = 1− y, and d = 0.01. We consider full Neumann boundary

conditions p̂ = 1− y on ∂γN , coupled by the interface conditions with ξ0 = 1/8. The

permeability tensor of the medium is isotropic, KKKm = III while the fracture is character-

ized by a high permeability in the normal and tangential directions, KKK f = 100III. We

want to solve (2) where the advection field is the computed Darcy velocity which is

higher in the fracture than in the porous matrix. We set c = 0, χ = 0 and c0(x,y) = 1 if

(x−0.5)2+(y−0.2)2 < 0.03. The diffusion tensor is isotropic and constant, DDD = 0.05III

everywhere. We first solve this test case with the standard mixed FEM and a refined

mesh that is able to resolve the fracture and compare the results with the reduced model

and the XFEM approach. The time step is ∆t = 5 · 10−3 and T = 0.2. In Figure 4 the
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