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Abstract

We analyze the most widely used formulations of sediment transport mod-
elling in the framework of one dimensional channel flow, thereby assessing the
impact of typical simplifying assumptions, such as low sediment concentration
and decoupling of hydrodynamics and bed evolution. As a result, the impor-
tance of using a quasi two-phase formulation is highlighted. Starting from the
a quasi two-phase model equations, under the hypothesis of quasi-steady free
surface and mixture flows, we derive a simplified equation for the bed evolution,
that is also valid in the large sediment concentration regime. The solution of
such a simplified equation provides a useful benchmark for numerical methods
aimed at computing approximate solutions of the quasi two-phase system. Fi-
nally, we propose and evaluate a highly efficient and accurate semi-implicit and
semi-Lagrangian numerical method for quasi two-phase mobile bed system.
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1 Introduction

Sediment transport modelling plays a key role in realistic river hydraulic simu-
lations. In order to simulate the sediment transport process, a variety of math-
ematical models have been proposed. These models differ in key aspects of
their mathematical formulation, such as the use of simplified conservation equa-
tions versus equations for the sediment-liquid mixture, the definition and use of
parameterized sediment transport functions, capacity or non capacity models
and mobile-bed resistance. In the most widely used models, applicable to large
rivers with relatively small bed slopes, the inertia and concentration associated
to the solid phase are assumed to be negligible, so that the momentum equation
for the solid mass is disregarded and the solid mass flux is assumed to be in
local equilibrium with the liquid mass flux. More specifically, the ratio between
liquid and solid discharges is assumed to be computable on the basis of various
parameters that characterize the flow and the transport regime. This approach
is widely used in modelling subcritical river flow (see e.g. [2]). The resulting
equations have been analyzed in [10], [21], [28] in the simplified case of sediment
transport in a rectangular channel. Modern numerical methods to solve these
equations have been proposed e.g. in [12], [16].

In this paper, we present a detailed analysis of the most widely used models
in the idealized framework of one dimensional flow in a channel with rectangular
cross section. More specifically, different formulations for sediment transport
modelling will be discussed, in which a total or partial decoupling of the liquid
and sediment motion is introduced, relying on the simplifying assumption of low
sediment concentration. The importance of using a quasi two-phase formulation
will be highlighted both by theoretical analysis and numerical experiments.

Starting from the quasi two-phase model equations, a simplified equation for
the bed evolution is then derived in the case of quasi-steady free surface and
mixture flows. The solution of such a simplified equation can be computed very
accurately by the method of characteristics and provides a useful benchmark
for numerical methods aimed at computing approximate solutions of the quasi
two-phase system. Similar equations have been derived in [16] in the limit of low
sediment concentration, but the present derivation also holds for large sediment
concentration regimes, in which the bed evolution and hydrodynamics are fully
coupled and strong nonlinearities of the typical sediment transport formulae
play a much larger role. As a consequence, a more interesting benchmark prob-
lem is obtained, that allows to compare the performance of different numerical
approaches in a physically more relevant context.

Finally, we propose a highly efficient and accurate semi-implicit and semi-
Lagrangian numerical method for the quasi two-phase mobile bed system, based
on the numerical method introduced in [24] for the fixed bed case. The pro-
posed method is linearly unconditionally stable and allows to employ much
longer time-steps than standard explicit discretizations, while still producing
accurate solutions. This property is extremely important for realistic appli-
cations to morphodynamic problems, where numerical simulation of very long
time intervals is necessary to study the long term impact of erosion and deposi-
tion processes. The quality of the numerical solutions obtained by the proposed
method is assessed by a number of numerical experiments presented in section
7, also on the basis of the newly introduced benchmark.
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Extensions of the present results to section averaged models that allow for
arbitrary section shapes and applications to natural rivers will be presented in
forthcoming papers, again following the approach introduced in [24].

2 A quasi two-phase sediment transport model

Morphodynamics and hydrodynamics in alluvial rivers can be described starting
from the equations of conservation of mass and momentum. In the case of strong
interaction between flow and morphodynamics, the aggradation and degradation
processes are strictly connected with the hydrodynamics. The conservation
equations for mass and momentum are then written for the water-sediment
mixture. In these quasi two-phase models QTP (see e.g. [6], [21], [26], [29],
[32]), the effects of the sediment concentration on the bulk-fluid density and on
the temporal variation of the bed elevation are considered. The model equations
were analyzed in the case of a rectangular channel by [22].

Figure 1: Control volumes for determination of shallow water equa-
tions with mobile-bed.

The mass and momentum conservation equations will be written for the con-
trol volume V ′, see figure (1). It is to be remarked that the momentum equation
for a quasi two-phase model should represent the momentum conservation law
for the mixture of sediment and fluid that is actually moving with the flow. The
unknown quantities of the model equations will be the depth h, the flow velocity
u and the bed level zb. Following e.g. [31], the concentration c is defined as the
volume of sediment present in the water-sediment volume V , see figure (1) and
figure (2):

c =
Vs

Vs + Vw

The volume occupied by water is then (1 − c)h, while the volume occupied by
the sediment is ch. In the control volume V ′ − V , the solid concentration cb is
defined as the ratio between the solid volume and the total volume, so that the
volume fractions of V ′ − V occupied by water and sediment are (1 − cb) zb and
cbzb, respectively.
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Figure 2: Sketch of the water and sediment mixture.

The water-sediment discharge is the volume rate of water flow, including any
suspended sediment that is transported per unit time through a given cross-
sectional area. It is therefore given by q = uh, where h the water layer thickness
and u is the mixture mean velocity. The solid and the liquid discharge are then

qs = cuh, qw = (1 − c)uh,

respectively. The fundamental equations of motion for a fluid system are the
continuity equation for the liquid phase, 1, the momentum equation for the
mixture, 2, and the continuity equation for the solid phase, written here in the
case of a channel with rectangular cross section and frictionless walls3:

∂

∂t
[(1 − c)h] +

∂

∂x
[(1 − c)uh] + (1 − cb)

∂zb

∂t
= 0, (1)

∂

∂t
[(1 + c∆)uh] +

∂

∂x

[
(1 + c∆)u2h

]
+ g

∂

∂x

[
(1 + c∆)

h2

2

]
+

+gh (1 + c∆)
∂zb

∂x
= − τ̄0

ρ
, (2)

∂ (ch)

∂t
+ cb

∂zb

∂t
+

∂(cuh)

∂x
= 0, (3)

Here, x is the axial coordinate along the channel and g denotes as usual the
gravity acceleration, while τ̄0 is the shear stress and ∆ = (ρs − ρw)/ρw is the
submerged relative density of the sediment, where ρs, ρw denote the sediment
and water densities, respectively. The friction term τ̄0/ρ and the concentration
c are expressed through empirical closure formulae

c = c(u, h, zb, ...) (4)
τ̄0

ρ
= −γ (u, h, d, ...)uh. (5)

In the fixed bed case, a closure formula for the friction term based on a rigorous
derivation from the three dimensional Reynolds averaged equations has been
proposed in [11]. Various choices are possible for the empirical relation defining
the solid concentration c, such as the Meyer-Peter Müller or monomial formula.
By summing the two conservation equations (1) and (3), the equation for the
water-sediment mass is obtained, which is most often used in numerical models,
so that the model equations (also referred to in the following as complete model)

4



read:

∂h

∂t
+

∂zb

∂t
+

∂

∂x
(uh) = 0. (6)

∂

∂t
[(1 + c∆)uh] +

∂

∂x

[
(1 + c∆)u2h

]
+ g

∂

∂x

[
(1 + c∆)

h2

2

]
+

+gh (1 + c∆)
∂zb

∂x
= −γ (u, h, d, ...)uh, (7)

∂ (ch)

∂t
+ cb

∂zb

∂t
+

∂(cuh)

∂x
= 0, (8)

On the other hand, in the most widely used models, the inertia and concen-
tration associated to the solid phase are assumed to be negligible, so that the
momentum equation for the solid mass is disregarded. The conservation equa-
tions for the solid and liquid mass are simplified under the assumption of low
sediment concentration. The formulation is the essentially mono-phase (EMP).
This approach is widely used in modelling river flow (see e.g. [2]). The resulting
equations have been analyzed in [10], [21], [28] in the simplified case of sediment
transport in a rectangular channel. However, different simplifications of equa-
tions (6)-(8) have been proposed by different authors (see e.g.[1], [4], [13], [16],
[17], [20], [30]) under the same assumptions. Consequently, these mathematical
models should be analyzed carefully in order to understand whether their (often
implicit) assumptions concerning the interactions between these processes are
coherent with the targeted application regimes.

3 Non-dimensional analysis of the quasi two-phase

equations

A non-dimensional analysis of equations (6)-(8) will now be carried out, in order
to clarify the importance of each term with respect the variation of solid concen-
tration in the water column and the coupling of the hydrodynamics to the bed
evolution. It should be remarked that two different time scales are employed for
the hydrodynamics and bed evolution, since, in general, bed variations occur on
a time scale significantly longer than that of typical hydrodynamic phenomena
(see e.g. [19]). The scale for the axial coordinate x, instead, is the same for
both the hydrodynamics and morphodynamics quantities, since, in the regimes
of interest for fluvial morphodynamics, the typical length scale of the bed profile
patterns has the same magnitude of the length scales of hydrodynamic profiles.
The following scaling factors are considered:

t =
l0
u0

t∗ for the free hydrodynamic quantities;

t =
l0

ǫu0
τ∗ for the bed evolution;

x = l0x
∗; h = h0h

∗; zb = h0z
∗

b ;

u = u0u
∗; q = h0u0q

∗; qs = c0h0u0q
∗;

c =
qs

q
= c0c

∗; γ =
u0

l0
γ∗.
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Here, h0 and u0 are the uniform flow depth and velocity (see e.g. [27]) and l0
is the length of the hydrodynamic wave; ǫ = τ∗/t∗ denotes the ratio between
the morphodynamic and the hydrodynamic time scales, respectively, and Fr0 =
u0/

√
gh0 will denote the Froude number.

After rescaling system (6)-(8) and performing some obvious algebraic ma-
nipulations, the following equations are obtained:

∂h∗

∂t∗
+ ǫ

∂z∗b
∂τ∗

+
∂

∂x∗
(u∗h∗) = 0, (9)

∂

∂t∗
[(1 + c0c

∗∆) u∗h∗] +
∂

∂x∗

[
(1 + c0c

∗∆)h∗u∗2
]
+ (10)

+
1

Fr2
0

∂

∂x∗

[
(1 + c0c

∗∆)
h∗2

2

]
+

1

Fr2
0

h∗ (1 + c0c
∗∆)

∂z∗b
∂x

= −γ∗u∗h∗,

ǫc0
∂

∂τ∗
(c∗h∗) + ǫcb

∂z∗b
∂τ∗

+ c0
∂

∂x∗
(c∗u∗h∗) = 0. (11)

Empirical evidence (see e.g. the ASCE committee report [8]) suggests that
topography changes are mainly due to the spatial variation in the sediment
flux. For this to be true, the second and third term of the solid mass continuity
equation should have the same magnitude, which implies the assumption:

ǫ =
c0

cb
(12)

Since, in general, the typical concentration c0 of the sediment in the water
column h is much smaller than the sediment concentration cb in the river bed,
the morphodynamic time scale is much longer than the hydrodynamic time
scale. However, if the concentration c0 increases, the two time scales become
comparable. Using this definition (12), the non-dimensional model equations
can finally be rewritten as

∂h∗

∂t∗
+ ǫ

∂z∗b
∂τ∗

+
∂

∂x∗
(u∗h∗) = 0, (13)

∂

∂t∗
[(1 + ǫcb∆c∗) u∗h∗] +

∂

∂x∗

[
(1 + ǫcb∆c∗)h∗u∗2

]
+ (14)

+
1

Fr2
0

∂

∂x∗

[
(1 + ǫcb∆c∗)

h∗2

2

]
+

1

Fr2
0

h∗ (1 + ǫcb∆c∗)
∂z∗b
∂x

= −γ∗u∗h∗,

ǫ
∂

∂τ∗
(c∗h∗) +

∂z∗b
∂τ∗

+
∂

∂x∗
(c∗u∗h∗) = 0. (15)

Several simplified equation sets can be derived from (6)-(8), see e.g. the
proposals and discussion in [5], [9], [33]. We will now present these simplified
models in the context of the non-dimensional equations (13)-(15). Some of the
approximations underlying these models can be rigorously justified on the basis
of the hypothesis of small sediment concentration ǫ ≪ 1.

A first common approximation in the ǫ ≪ 1 regime is to neglect the terms
proportional to the sediment concentration in the momentum equation, thus
obtaining

∂

∂t∗
(u∗h∗) +

∂

∂x∗

(
h∗u∗2 +

h∗2

2Fr2
0

)
+

h∗

Fr2
0

∂z∗b
∂x

= −γ∗u∗h∗. (16)
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In this way, the momentum equation reduces to that of the equation for clear
water and the contribution of the suspended sediment concentration to the
momentum flux is neglected. This formulation has been used, among others,
in [1], [4], [13], [16], [17], [20], [30] and it was employed also in the model
formulation comparison of [33]. This approximation was justified in [33] by
assuming that the momentum flux contribution due to the sediment was small
with respect to the usually large uncertainties in the data, that are usually
accounted for by tuning of the friction term.

Other approximations consist in neglecting the terms proportional to ǫ in
either the mixture or the sediment continuity equation. Models using the sim-
plified sediment mass equation

∂z∗b
∂τ∗

+
∂

∂x∗
(c∗u∗h∗) = 0, (17)

where the sediment storage in the water column has been neglected, have been
used e.g. in [33]. Alternatively, the bed variation in the continuity equation for
total mass can be neglected, yielding

∂h∗

∂t∗
+

∂

∂x∗
(u∗h∗) = 0. (18)

This equation set has been used e.g. in [13]. Our main criticism of all these par-
tially two-phase formulations, in which only some of the O(ǫ) terms are dropped,
is that they all introduce inconsistencies between the mass and momentum con-
servation equations. If the terms multiplied by ǫ are not neglected in either the
continuity equation for the total mass, eq. (13), or the solid mass, eq. (15), also
the momentum equation eq. (14) should be the complete one.

Finally, if all terms proportional to ǫ are dropped consistently, one obtains
the simplified, EMP formulation

∂h∗

∂t∗
+

∂

∂x∗
(u∗h∗) = 0, (19)

∂

∂t∗
(u∗h∗) +

∂

∂x∗

(
h∗u∗2 +

h∗2

2Fr2
0

)
+

h∗

Fr2
0

∂z∗b
∂x

= −γ∗u∗h∗, (20)

∂z∗b
∂τ∗

+
∂

∂x∗
(c∗u∗h∗) = 0. (21)

The EMP formulation is also widely used, see e.g. [16], [18], [20], [21], [25], [30]
and the well known HEC-RAS modelling software [4].

4 Eigenvalues analysis

The range of validity of some of the previous approximations has been dis-
cussed in [22] on the basis of the behavior of the eigenvalues of the hyperbolic
part of system (13)-(15). The eigenvalue analysis will be extended here to the
non-dimensional, QTP system. For simplicity, the symbol ∗ is dropped in the
following.

Neglecting friction, the non-dimensional model equations can be rewritten
in matrix notation as:

∂U

∂t
+

∂F

∂x
+ H

∂z

∂x
= 0, (22)
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where

U =




h + zb

uh (1 + cbǫ∆c)
ch + ǫ−1zb



 ,F =





uh

(1 + ǫcb∆c)

(
u2h +

h2

2Fr2
0

)

cuh



 ,

H =





0
h

Fr2
0

(1 + cbǫ∆c)

0



 . (23)

Notice that also the bed evolution has been expressed in terms of the free surface
time variable t. System (22) can then be rewritten in quasi-linear form as

B (W)
∂W

∂t
+ A (W)

∂W

∂x
= 0, (24)

where

W =




h
u
zb



 , B =





1 0 1

u

(
α + ξh

∂c

∂h

)
h

(
α + ξu

∂c

∂u

)
uhξ

∂c

∂z

ǫ

(
c + h

∂c

∂h

)
ǫh

∂c

∂u
1 + ǫh

∂c

∂z





A =





u h 0

α

(
u2 +

h

Fr2
0

)
+ ξhr

∂c

∂h
2uhα + ξhr

∂c

∂u
α

h

Fr2
0

+ ξhr
∂c

∂z

ǫu

(
c + h

∂c

∂h

)
ǫh

(
c + u

∂c

∂u

)
ǫhu

∂c

∂z





where

ξ = ǫcb∆, α = 1 + ξc, r = u2 +
h

2Fr2
0

.

The eigenvalues of system (24) can be computed by imposing the condition
det (A− λB) = 0, which yields the the characteristic polynomial

α3λ
3 + α2λ

2 + α1λ + α0 = 0, (25)

where

α0 = ǫhuαb1, (26)

α1 = α

(
−u2 +

h

Fr2
0

)
+ ǫαb2 + ξrb3 (1 − ǫc) , (27)

α2 = uα (2 + ǫb4) + ξb5 (1 − ǫc) , (28)

α3 = −α (1 − ǫb6) − ξu
∂c

∂u
(1 − ǫc) , (29)
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with

b1 =
h

Fr2
0

(
h

∂c

∂h
− u

∂c

∂u
− h

∂c

∂z

)
+ u2 ∂c

∂z
,

b2 = − h

Fr2
0

(
c + h

∂c

∂h
− u

∂c

∂u
− h

∂c

∂z

)
+ u2

(
c + 2h

∂c

∂h
− u

∂c

∂u
− 3h

∂c

∂z

)
,

b3 = h
∂c

∂h
− u

∂c

∂u
,

b4 = −2c− 3h
∂c

∂h
+ 2u

∂c

∂u
+ 3h

∂c

∂z
,

b5 =
(
r + u2

) ∂c

∂u
− hu

∂c

∂h
,

b6 = c + h
∂c

∂h
− u

∂c

∂u
− h

∂c

∂z
.

In the case of fixed bed, equation (25) reduces to:

α̂3λ
3 + α̂2λ

2 + α̂1λ = 0, (30)

with

α̂1 =

(
−u2 +

h

Fr2
0

)
, (31)

α̂2 = 2u, (32)

α̂3 = −1. (33)

The solutions of equation (30) are the two well-known relative celerities of the
free-water surface:

λ1 = u +

√
h

Fr0
, (34)

λ2 = u −
√

h

Fr0
. (35)

In this case, the eigenvalue λ3 associated with the propagation of the bed dis-
turbance is equal to zero.

Instead, in the case of mobile-bed flow, the three solutions, fig. (3), depend
on the choice of the closure relation, since the solid concentration c should be
expressed as a function of the other unknowns by a closure formula. In this
case, following e.g. [26], we have chosen the closure formula:

c = βFr2. (36)

The eigenvalues of the system have been compared with the eigenvalues of the
EMP system derived e.g. in [2] and [10]. In the case of the EMP model, the
quasi-linear system (24) has the form:

W =




h
u
zb



 , B =




1 0 0
u h 0
0 0 1
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Figure 3: Eigenvalues for the QTP system. Sediment concentration
c0 increasing from 0.000002 to 0.045. The lines are dashed for small
values of the Froude number, because high concentrations with small
Froude number are not physically meaningful.

A =





u h 0(
u2 +

h

Fr2
0

)
2uh

h

Fr2
0

ǫu

(
c + h

∂c

∂h

)
ǫh

(
c + u

∂c

∂u

)
ǫhu

∂c

∂z





and the coefficients of the characteristic polynomial are

α0 = ǫhub1, (37)

α1 =

(
h

Fr2
0

− u2

)
+ ǫh

[
1

Fr2
0

(
c + u

∂c

∂u

)
− 2u2 ∂c

∂z

]
, (38)

α2 = 2u

(
1 + ǫ

h

2

∂c

∂z

)
, (39)

α3 = −1. (40)

The eigenvalues of this system, as a function of the Froude number Fr0 and
the sediment concentration c0, have been compared with the eigenvalues of the
QTP model as shown in figure (4). It can be seen that the differences between
the respective eigenvalues become significant for non negligible values of the
sediment concentration.

5 A simplified equation for bed evolution

In this section, an evolution equation for the unknown zb describing bed evolu-
tion will be derived under the hypothesis of low Froude number and of approx-
imately steady free surface and discharge profiles. Similar equations have been
proposed also in [16] for the low sediment concentration case. Our derivation,
however, holds independently of the mixture-bed concentration ratio, thus pro-
viding a much more interesting and severe benchmark for numerical methods.
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(a) (b)

(c)

Figure 4: Comparison between the QTP and the EMP system eigen-
values with c0 = 0.03.

We start considering the non-dimensional equations (13)-(15), where the
stars have been dropped again for simplicity, and the hydrodynamic time scale
has been used in the continuity equation for the total mass:

∂h

∂t
+

∂zb

∂t
+

∂

∂x
(uh) = 0, (41)

Fr2
0

∂

∂t
[(1 + ǫcb∆c)uh] + Fr2

0

∂

∂x

[
(1 + ǫcb∆c) hu2

]
(42)

+
∂

∂x

[
(1 + ǫcb∆c)

h2

2

]
+ h (1 + ǫcb∆c)

∂zb

∂x
= −Fr2

0γuh,

ǫ
∂

∂τ
(ch) +

∂zb

∂τ
+

∂

∂x
(cuh) = 0. (43)

In order to derive a simplified equation for bed evolution, it is convenient to
express some terms in these equations as functions of the free surface height
η = h + zb and of the mixture discharge q = hu. Furthermore, we will look for
solutions of this system in the case of quasi-steady flow such that:

η = η̄(x) + δη′(x, t), q = q̄(x) + δq′(x, t).

The mean flow quantities η̄, q̄ are time independent and

∣∣∣η′

∣∣∣ ≈
∣∣∣
∂η′

∂t

∣∣∣ ≈
∣∣∣
∂η′

∂x

∣∣∣ ≈
∣∣∣q′

∣∣∣ ≈
∣∣∣
∂q′

∂t

∣∣∣ ≈
∣∣∣
∂q′

∂x

∣∣∣ ≈ δ,
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where now δ is a small parameter that is independent of ǫ = c0/cb, which is
not required to be small. In particular, without losing any generality, it can be
assumed that the sediment concentration formula is a function c = c(η, zb, q).
This implies that the derivatives of c with respect to time and space have to be
computed by the chain rule as

∂c

∂x
=

∂c

∂η

∂η

∂x
+

∂c

∂zb

∂zb

∂x
+

∂c

∂q

∂q

∂x
, (44)

∂c

∂τ
=

∂c

∂η

∂η

∂τ
+

∂c

∂zb

∂zb

∂τ
+

∂c

∂q

∂q

∂τ
(45)

Rewriting now also equation (43) in terms of η and zb, neglecting terms of order
δ and expressing the free surface gradients in terms of zb, one obtains

ǫhc̄z
∂zb

∂τ
− ǫc̄

∂zb

∂τ
+

∂zb

∂τ
+ q̄c̄z

∂zb

∂x
= 0

where now c̄ = c(η̄, zb, q̄)and

c̄z =
∂c

∂zb
(η̄, zb, q̄).

The approximate evolution equation for the bed profile is

∂zb

∂τ
+

q̄c̄z

1 + ǫhc̄z − ǫc̄

∂zb

∂x
= 0. (46)

This nonlinear equation can be solved very accurately by the method of char-
acteristics, thus providing a convenient benchmark for numerical methods for
sediment transport. It is to be remarked that the whole derivation is indepen-
dent of ǫ ratio, so that this equation can be considered to yield a good first
approximation for the bed evolution also in regimes of quasi-steady flow with
high sediment concentration. If the concentration decrease and the ǫ ratio is
small, the simplified solution used by [16] for the EMP model is still obtained.

6 A semi-implicit and semi-Lagrangian numeri-

cal method for the QTP system

In order to introduce an efficient semi-implicit and semi-Lagrangian technique
to the discretization of the momentum equation, the complete set of non-
dimensional model equations (13) -(15) is rewritten using η, q as unknowns and
reformulating the momentum equation in non conservative form, so as to obtain:

∂η

∂t
+

∂q

∂x
= 0 (47)

D

Dt
[(1 + c∆)q] + gh (1 + c∆)

∂η

∂x
= −αq − g∆

h2

2

∂c

∂x
(48)

∂(ch)

∂t
+ cb

∂zb

∂t
+

∂ (cq)

∂x
= 0. (49)

The effective friction coefficient is now defined as

α = γ + (1 + c∆)
∂u

∂x
,
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where γ is expressed for example by the Gauckler-Strickler formula:

γ = g
|u|

h4/3k2
s

,

where ks is the Strickler friction coefficient.
Following the approach proposed in [24] for the fixed bed open channel

equations, the computational domain is then discretized by a staggered com-
putational grid, where the fluid thickness h and the free surface elevation η
are defined at the integer nodes xi, i = 1, . . . , N, while the discharge q is de-
fined at the half integer nodes xi+1/2 = (xi + xi+1)/2. The node distribution
is arbitrary and the node spacings are defined as ∆xi = xi+1/2 − xi−1/2 and
∆xi+1/2 = xi+1 − xi, respectively.

The continuity equation for the fluid is discretized in space by a simple finite
volume approach and in time by the θ method, so as to obtain

ηn+1
i − ηn

i + ϑ∆t
(
qn+1
i+1/2 − qn+1

i−1/2

)
+ (1 − ϑ)∆t

(
qn
i+1/2 − qn

i−1/2

)
= 0 (50)

where as usual θ ∈ [1/2, 1] for stability.
In the momentum equation, the material derivative is approximated in a

semi-Lagrangian fashion (see e.g. [24]) as

Dq

Dt

∣∣∣∣
i+1/2

=
qn+1
i+1/2 − qn

∗

∆t
(51)

where qn
∗

is the discharge value at the foot of the trajectory, determined by
backward integration of dx/dt = un(x), where un is the velocity field at time
level n. Details of the methods that can be used in to approximate the trajectory
can be found e.g. in [23]. Also the free surface gradient in the momentum
equation is discretized in time by the θ method, while the the terms involving
the sediment concentration value are approximated by using their values at the
previous time step. As a result, one obtains for the momentum equation the
discrete form

(
1 + cn

i+1/2∆
)

qn+1
i+1/2 + ϑ∆tghn

i+1/2

(
1 + cn

i+1/2∆
) ηn+1

i+1 − ηn+1
i

∆xi+1/2

+ϑ∆tγn
i+1/2q

n+1
i+1/2 = Fn

i+1/2

(52)

where all the explicit terms have been summarized as Fn
i+1/2, that is defined by:

Fn
i+1/2 =

[(
1 + cn

i+1/2∆
)

qn
i+1/2

−(1 − ϑ)∆tghn
i+1/2

(
1 + cn

i+1/2∆
) ηn

i+1 − ηn
i

∆xi+1/2

−
g∆(hn

i+1/2)
2

2

cn
i+1 − cn

i

∆xi+1/2
− (1 − ϑ)∆tαn

i+1/2q
n
i+1/2

]

∗

and ∗ denotes quantities interpolated at the foot of the trajectory.
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The sediment continuity equation is also discretized by a finite volume ap-
proach. As in the momentum equation, the concentration values are kept con-
stant within each timestep, which is consistent with the local equilibrium hy-
potheses justifying the use of a transport closure formula. Using the fact that
h = η − zb, the resulting discrete equation is

cn
i ηn+1

i − cn−1
i ηn

i −
[
cn
i (zb)

n+1
i − cn

i (zb)
n
i

]

+cb

[
(zb)

n+1
i − (zb)

n
i

]
+ ϑ∆t

(
cn
i+1/2q

n+1
i+1/2 − cn

i−1/2q
n+1
i−1/2

)

+(1 − ϑ)∆t
(
cn
i+1/2q

n
i+1/2 − cn

i−1/2q
n
i−1/2

)
= 0 .

(53)

Equations (50)-(53) constitute a system of equations whose unknowns are the
discrete values ηn+1

i , qn+1
i+1/2, (zb)

n+1
i . It can be solved conveniently by the follow-

ing steps:

• firstly, an expression for qn+1
i+1/2 in terms of ηn+1

i is derived from equation

(52), thus obtaining

qn+1
i+1/2 =

Fn
i+1/2

(1 + cn
1+1/2∆ + ϑ∆tαn

i+1/2)

− ϑ∆t

∆xi+1/2

ghn
i+1/2

(
1 + cn

i+1/2∆
)

(1 + cn
1+1/2∆ + ϑ∆tαn

i+1/2)

(
ηn+1

i+1 − ηn+1
i

)
.

(54)

• equation (54) is then substituted in equation(50), to yield a linear sys-
tem for the ηn+1

i unknowns, whose matrix is tridiagonal, symmetric and
positive definite and can be easily solved by a fast direct method;

• the discrete free surface values ηn+1
i is used in equation (54) in order to

compute the discharges values qn+1
i+1/2;

• through a closure relation, the solid concentration cn+1
i+1/2 is calculated in

function of qn+1
i+1/2 and ηn+1

i ;

• the discrete free surface values ηn+1
i , the discharge values qn+1

i+1/2 and the

solid concentrations cn+1
i+1/2 are used in equation (53) in order to compute

the updated bed elevation values.

The method conserves the fluid and sediment mass. Although no explicit
stability analysis is available in the nonlinear case, it is linearly unconditionally
stable and the use of high order interpolation in the semi-Lagrangian scheme
greatly reduces numerical diffusion. The analogous method for the fixed bed
case, introduced in [24], has been employed at large Courant number in a wide
range of numerical tests and practical applications. As it will be shown in
the next section by numerical experiment, the same holds for this mobile bed
extension.

An essentially mono-phase model is also proposed and the numerical solu-
tions of both systems are compared in the next section. The coupling terms are
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neglected in the momentum equation, eq. (48), and in the conservation equa-
tion for the solid mass, eq. (49) while, in order to have a system with the free
surface as unknown, the temporal derivative of the bed level in equation (47) is
taken into account. We obtain the following system:

∂η

∂t
+

∂q

∂x
= 0 (55)

Dq

Dt
+ gh

∂η

∂x
= −αq (56)

cb
∂zb

∂t
+

∂ (cq)

∂x
= 0. (57)

The solution procedure is the same as proposed for the QTP system. Conse-
quently, equation (54) is rewritten consistently with the non-dimensional anal-
ysis as:

qn+1
i+1/2 =

Fn
i+1/2

(1 + ϑ∆tαn
i+1/2)

− ϑ∆t

∆xi+1/2

ghn
i+1/2

(1 + ϑ∆tαn
i+1/2)

(
ηn+1

i+1 − ηn+1
i

)
.

(58)

The definitions of the coefficient α and the explicit terms F are thus different :

α = γ +
∂u

∂x
,

Fn
i+1/2 =

[
qn
i+1/2 − (1 − ϑ)∆tghn

i+1/2

ηn
i+1 − ηn

i

∆xi+1/2
− (1 − ϑ)∆tαn

i+1/2q
n
i+1/2

]

∗

Finally, the continuity equation for the solid mass is:

cb

[
(zb)

n+1
i − (zb)

n
i

]
+ ϑ∆t

(
cn
i+1/2q

n+1
i+1/2 − cn

i−1/2q
n+1
i−1/2

)

+(1 − ϑ)∆t
(
cn
i+1/2q

n
i+1/2 − cn

i−1/2q
n
i−1/2

)
= 0 .

(59)

The resulting algorithm is the same for the two models. In several methods
(see e.g. [8], [16], [33]) the momentum equation and the continuity equation
for the mixture are firstly solved under the hypothesis of fixed bed flow, where
the bed profile is given by the values at the previous time step. This procedure
solution is denoted as asynchronous. In the algorithm proposed here, the only
approximation is the explicit discretization of the depth h, the term γ and the
concentration c in the momentum equations, eq. (52). This solution procedure
can then be described as quasi-synchronous.

7 Numerical results

Selected numerical results obtained with the methods presented in section 6
will be presented here. We will concentrate exclusively on the movable bed
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case, since a complete set of tests in various regimes of fixed bed flows are
presented in [24]. A comparison of numerical results with experimental data in
the movable bed case is carried out instead in [15]. More specifically, we will
focus here on the comparison of the two possible approaches, employing either
the essentially mono-phase model (EMP) or the quasi two-phase model (QTP)
model solved by a quasi synchronous procedure (CM), in order to highlight the
significant differences arising in the case of high sediment concentration. In all
the following test cases the θ parameter is set to 0.6 and the time discretization
step ∆t it is chosen so as to yield an assigned value of the maximum Courant
number based on the velocity Cvel = max |u|∆t/∆x and of the maximum value
of the Courant number based on the celerity Ccel = max(|u|+√

gh)∆t/∆x. The
method performs well at Courant numbers larger than one, as expected, thus
displaying a major efficiency of this solution procedure with respect to explicit
schemes.

7.1 Comparison with solutions of simplified equation

In the first test, the numerical solution of both the QTP and EMP systems has
been compared with the solution of the simplified equation (46). A frictionless
channel with rectangular cross section and unit width is considered. The initial
bathymetry is given by:

zb (x, 0) =





0.2 sin2

(
x − 200

400
π

)
if 220m < x < 400m

0 otherwise

The channel is 5000 m long and discretized with 2000 cells. The efficiency
of the scheme allows the use of a large time step (∆t = 32 s) that corresponds
to Courant number Cvel = equal to 1.3. The maximum Courant number based
on the celerity Ccel is equal to 288. In fact, the scheme is linearly stable as
shown in [7, 14] and no significant stability restrictions limit the choice of the
time step, especially in the case of subcritical flow. The solid concentration is
written as a function of the Froude number Fr =

√
gh/U as c = βFr2, (see e.g.

[26]). The coefficient values for the closure formula and the initial and boundary
conditions are reported in table (1).

test case η q Fr β ǫ
[m] [m3s−1] [−] [−] [−]

a) 50 5 0.0045 200 0.006
b) 50 5 0.0045 2000 0.06

Table 1: Initial and boundary condition

The flow can be considered quasi-steady. If the Froude number tends to zero,
the simplified model for the bed evolution is valid. Indeed, if ǫ is negligible, test
case a) in table 1, equation (46) reduces to the simplified equation proposed in
[16]. The numerical solution of both the models, QTP and EMP, strictly agree,
as shown in figure 5 ,with the simplified solution, eq. (46), for very small values
of the ration ǫ.
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x [m]
z 

b 
[m

]
200 400 600 800 1000 1200 1400

0

0.05

0.1

0.15

0.2 Initial condition

Simplified solution

Numerical solution, EMP

Numerical solution, QTP

Figure 5: Comparison between the approximate and the numerical
solutions in the case a), ǫ = 0.006, at time t = 300000s.

In the case b), the solution of the simplified equation for non negligible
values of the ǫ ratio agree with the numerical solution of the QTP model, but
not with the numerical solution of the EMP model, see fig. (6). Since now
ǫ = 0.062, if the two numerical solutions are compared, a significant difference
in the propagation velocity of the bed perturbation arises. The shape of the

x [m]

z 
b 

[m
]

200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15

0.2 Initial condition

Simplified solution

Numerical solution, EMP

Numerical solution, QTP

Figure 6: Comparison between the approximate and the numerical
solutions in the case b), ǫ = 0.06, at time t = 30000s.

numerical solution is slightly different from the solution of the simplified model
because of the simplification in eq. (22). Nevertheless, the numerical solution
of the QTP system shows a lower propagation velocity of the bed perturbation
with respect the model with ǫ = 0, which justifies the conclusion that if the
parameter ǫ is not negligible, a QTP model should be employed.

7.2 Impact of model simplifications

A relation for the concentration c can be obtained by employing some classical
expression for the transport capacity, for example the Meyer-Peter and Müller
formula [26]:

c = Fr2β, (60)
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with

β =
8

∆

(
g

k2
sh1/3

− g∆d

U2
θc

)3/2

, (61)

θc = 0.22D−1
∗

+ 0.06 exp
(
−17.77D−1

∗

)
, (62)

D∗ = d

(
g∆

ν2

)1/3

. (63)

Here, θc is the critical Shields parameter calculated through the Brownlie for-
mula (see equation 62 in [3]), d is the diameter of the sediment and ks is the
Strickler coefficient. The test case consists of a channel with unit width and two
changes in the bed slope i, Figure 7:

i =






0.02 x < 1000 m,
0.04 1000 m ≤ x ≤ 1300 m,
0.02 x > 1300 m.

x [m]

z b
[m

]

0 500 1000 1500

60

70

80

90

100

Figure 7: Initial bed elevation.

The friction coefficient is constant along the channel and depends on the
diameter of the sediment through the Meyer-Peter Müller formula as:

ks =
26

d1/6
(64)

Three different sediment diameters have been considered, in order to achieve
different solid concentration values. In table (2) the initial and boundary con-
dition for the three test cases are reported.

Test Cases

Initial Condition Upstream b.c. Downstream b.c.
d ǫ h q q η

[m] [−] [m] [m2s] [m2s] [m]

a) 0.0007 0.003 8 40.9 40.9 68
b) 0.001 0.002 8 38.6 38.6 68
c) 0.006 0.0002 8 28.6 28.6 68

Table 2: Initial and boundary conditions for test

The channel is discretized with 401 cells and the time step is ∆t = 1.2 s,
thus yielding Courant numbers Cvel = 1.2 and Ccel = 3.6. In agreement with

18



the non-dimensional analysis, by decreasing the diameter d of the sediment
and, consequently, increasing the sediment concentration c, the differences in
the two models become more relevant and the two solutions, shown in figure
(8), demonstrate the importance of the coupling terms.

x [m]

z b 
[m

]

1250 1300 1350 1400 1450
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70

72
EMP model
QTP model

(a)

x [m]

z b 
[m

]

1250 1300 1350 1400 1450

66

68

70

72
EMP model
QTP model

(b)

x [m]

z b 
[m

]

1250 1300 1350 1400 1450

66

68

70

72

EMP model
QTP model

(c)

Figure 8: Comparison between the QTP and the EMP model of the
bed evolution (time = 450s) in the case a) c0 = 0.002 and ǫ = 0.003,
b) c0 = 0.0012 and ǫ = 0.002, c) c0 = 0.00012 and ǫ = 0.0002

x [m]

c
[-

]

0 500 1000 1500 2000

0

0.002

0.004

0.006

0.008 test case a)
test case b)
test case c)

Figure 9: Solid concentration at the time 450s for the three test cases.

The stationary state of the two systems is generally different, even if the
same initial and boundary conditions are imposed. The difference is mainly due
to the absence of the term (1 + c∆) in equation (56) with respect to equation
(48). For the QTP model the stationary profile is given by

gh (1 + c∆)
∂zb

∂x
= −αq (65)
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If the boundary conditions are constant in time, the flow becomes stationary
and the bed level is in equilibrium with the flow. As a result, the bed profiles
computed by QTP model has a slope coherent with equation (65). Instead, the
solution of the EMP model differs according to the non-dimensional analysis
from the numerical solution of the QTP system where the concentrations are
higher and in the transient phase, Figure 9. In conclusion, the use of the sim-
plified equations can lead to significantly different results where the bed level
changes, the flow is unsteady and the concentration c increases.

8 Conclusions and future developments

We have carried out a detailed analysis of the most widely used models for
mobile bed river dynamics, in the idealized framework of one dimensional flow
in a channel with rectangular cross section. More specifically, quasi two-phase
model and essentially mono-phase approaches have been compared, showing
that several partly mono-phase formulation are inconsistent with a rigorous
scaling analysis and to which extent they can be justified on the basis of the
simplifying assumption of low sediment concentration.

Starting from the quasi two-phase model equations, a simplified equation for
the bed evolution has been derived in the case of quasi-steady free surface and
mixture flows. The solution of such a simplified equation can be computed very
accurately by the method of characteristics and provides a useful benchmark
for numerical methods aimed at computing approximate solutions of the quasi
two phase system. Since the present derivation also holds for large sediment
concentration regimes, in which the bed evolution and hydrodynamics are fully
coupled and strong nonlinearities of the typical sediment transport formulae play
a much larger role, this benchmark problem allows to compare the performance
of different numerical approaches in a physically more relevant context.

Finally, a highly efficient and accurate semi-implicit and semi-Lagrangian nu-
merical method for the quasi two-phase mobile bed system is proposed, based
on the numerical method proposed in [24] for the fixed bed case. The proposed
method is linearly unconditionally stable and allows to employ much longer
time-steps than standard explicit discretizations, while still producing accurate
solutions. This property is extremely important for realistic applications to mor-
phodynamic problems, where numerical simulation of very long time intervals
is necessary to study the long term impact of erosion and deposition processes.
The quality of the numerical solutions obtained by the proposed method is
assessed by a number of numerical experiments presented in section 7, also em-
ploying the newly introduced benchmark. Numerical results show that, with the
proposed numerical method, the quasi two-phase models can be used without
any loss in efficiency with respect to the essentially mono-phase or fixed bed
case. Extensions of the present results to section averaged models that allow for
arbitrary section shapes, again following the approach proposed in [24], will be
presented in forthcoming papers, along with applications to realistic problems
in natural rivers.
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