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Abstract

Parametrized systems of Differential Algebraic Equations (DAEs) stand at the
base of several mathematical models in Microelectronics, Computational Fluid
Dynamics and other Engineering fields. Since the dimension of these systems can
be huge, high computational costs could occur, so efficient numerical methods are
needed in order to contain the computational cost of the simulations. In this field,
Model Order Reduction (MOR) methods represent a valid and efficient approach.
In particular, in this work we propose to use Reduced Basis (RB) methods for the
solution of parametrized systems of DAEs. Our starting point is the formulation
of the RB method for parametrized Partial Differential Equations (PDEs) and the
one for non-parametrized DAEs. We describe how to obtain a projection of the
solution of the original problem onto a parameter dependent reduced subspace and
we provide an a priori estimate for the approximation error. Numerical tests on
problems of interest for electronic circuit design highlight the effectiveness of the
proposed method. Comparison is made with the parametrized Proper Orthogonal
Decomposition (POD) method, which is a typical MOR method.

Keywords: Parametrized systems of Differential Algebraic Equations; Reduced Basis
method; a priori error estimation; circuits modeling.

Introduction

In this work we deal with the solution of parametrized systems of nonlinear Differential
Algebraic Equations (DAEs). DAEs typically arise from Engineering problems which
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are described by parametrized dynamical systems. However, DAEs are also obtained
after spatial discretization (e.g. by means of the Finite Element, Finite Volume, Finite
Difference methods) of parametrized, either parabolic or hyperbolic, Partial Differential
Equations (PDEs).
More specifically, we consider microelectronics applications for which the system of
DAEs describes circuits of resistors, conductors, diodes and transistors. Due to new
technologies in the field of microelectronics, the design of modern Integrated Circuits
(ICs) has become more complex and there is an increasing demand for new, effective
and efficient optimization tools, in order to avoid costly and repeated re-designs [22].
In particular, the following requirements ought be fulfilled while approximating the
original mathematical models: (i) feasible and accurate reproduction of the complete
models; (ii) reproduction of the dynamics of the system according to specific choices of
the design parameters (e.g. resistances, capacities and diodes’ characteristic currents
and voltages); (iii) saving of the computational costs. These challenges have prompted
to the development of the so called reduced order models, by means of a projection of
the continuous solution onto a parameter dependent reduced subspace.
Among reduced order models, Model Order Reduction (MOR) methods have proved
to be efficient for the solution of linear non-parametrized systems of DAEs [8, 9, 10,
11, 26]. They have been extended to the nonlinear case in the late ’80s in view of
applications to several fields of Microelectronics and Computational Fluid Dynamics
[1, 2, 3, 22, 24, 25], Chemical, Biological and Mechanical Engineering [22]. Some of
these methods were lately extended to a parametrized version [4, 5], as in the case of
the parametrized Proper Orthogonal Decomposition (PODµ) method [5]. Nevertheless,
as pointed out in [4], developing effective and efficient methods for parametrized DAEs
remains an open issue and constitutes an area of intense investigation, mainly because
the computational gain obtained by using such reduction methods for parametrized
problems not yet satisfactory.
In this work we propose a Reduced Basis (RB) approach, which, for the sake of simplic-
ity, we indicate as RBµ-DAEs method, for the reduction of the dimension of nonlinear
parametrized systems of DAEs in analogy with the RB method for parametrized PDEs
(RBµ-PDEs) [16, 23] and with the RB method for non-parametrized DAEs (RB-DAEs)
[14, 15, 17, 18]. A relevant feature that legitimate the use of the RBµ-DAEs method
is that the solution of a parametrized problem lies in a lower-dimensional subspace in-
duced by the parametric dependence; precisely, we consider the reduced solution as a
combination of some “truth” approximated solutions corresponding to certain values of
the parameter (the RBµ-PDEs contribute) which form a basis of the reduced subspace
as time evolves (the RB-DAEs contribute). Moving from these assumptions, we pro-
pose the RBµ-DAEs method for the solution of both linear and nonlinear parametrized
systems of DAEs; in its terms, the dependence of the parameters can be either linear or
nonlinear.

The paper is organized as follows. In Sec.1 we introduce the mathematical problem
and the application under consideration: an analogic circuit. In Sec.2 we present the
state of the art of the MOR methods for the solution of parametrized systems of DAEs
and we report the formulation of the PODµ method which will be used in comparison
with our RBµ-DAEs method. In Sec.3 we provide the mathematical formulation of the
RBµ-DAEs method. Firstly, we briefly describe both the RBµ-PDEs and the RB-DAEs
methods; then, we present the mathematical formulation of the RBµ-DAEs method
and we propose a procedure for the choice of the basis. Moreover, we propose an a
priori error estimate for the RBµ-DAEs approximation error. In Sec.4 we report some
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Figure 1: A simple diode chain.

numerical results showing the effectiveness of the proposed method in comparison with
the PODµ one.

1 The problem at hand

We consider the following N dimensional system of parametrized DAEs:

{
C

dy(t, µ)

dt
= f(t,y(t, µ); µ) t ∈ (0, T ],

y(0, µ) = y0,
(1)

where µ ∈ Dµ ⊂ R
P is the parameter vector, with Dµ the parameter set and P ∈ N,

C ∈ R
N×N is a parameter independent matrix, f(t,y; µ) : (0, T ] × R

N → R
N is a

sufficiently regular function w.r.t. t ∈ (0, T ] and a Lipschitz-continuous function w.r.t.
y, with a parameter independent Lipschitz constant L, and y0 ∈ R

N is the (parameter
independent) initial state condition. These assumptions ensure that Eq.(1) is well posed
on the time interval [0, T ].
As application, we consider the diode chain reported in Fig.1 (introduced in [26]), which
is composed by resistors, capacitors and diodes set in parallel. This device, depending
on the input signal, Uin(t), could highlight a strongly non linear dynamical response
due to the presence of the diodes.
By using the standard Kirkhhoff’s laws, the behavior of the diode chain can be modeled
by using Eq.(1) [26]. In particular, we assume the following expressions for the source
term f(t,y; µ) of Eq.(1): f(t,y; µ) = −R(µ) y in the case of a linear problem and
f(t,y; µ) = −R(µ) y+g(t,y; µ) for a nonlinear problem, being g(t,y; µ) : (0, T ]×R

N →
R

N a nonlinear function of y, ∀µ ∈ Dµ; if g(t,y; µ) = g(t,y) then, the dependece on the
parameter is linear, otherwise, it is nonlinear. More precisely, we choose the parameter
vector as µ = [µR, µV ] ∈ DµR × DµV ≡ Dµ, where µR ∈ DµR ⊂ R

k represents the
values of the resistances, while µV ∈ DµV ⊂ R

s those of the reference voltages of the
diodes, being k, s ∈ N s.t. k + s = P . Also, C ∈ R

N×N and R(µ) ∈ R
N×N are the
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diagonal singular matrices chosen as:

C = c diag(0, 1, 1, ..., 1),

R(µR) =




1 0 0 ... 0

0 −
1

(µR)1
Iz1

0 ... 0

0 0 −
1

(µR)2
Iz2

... 0

0 0 0
. . . 0

0 0 0 ... −
1

(µR)k
Izk




,
(2)

where c ∈ R ([F ]) represents the capacity of the conductors and Izi
∈ R

zi×zi , for

i = 1, ..., k, is the identity matrix; clearly,

k∑

i=1

zi = N − 1. The function g(t,y; µ) is

defined as:

g(t,y; µ) =




−Uin(t)
d(y2 − y1, µV ) − d(y3 − y2, µV )

...
d(yj − yj−1, µV ) − d(yj+1 − yj , µV )

...
d(yN − yN−1, µV )




, (3)

where, the scalar function d : R × R → R represents the constitutive equation of the
diode and it is defined as follows:

d(v, µV ) =

{
0 v < 0.5 V

Is(e
v/µV − 1) v ≥ 0.5 V,

(4)

being Is the diode current ([A]) and µV the characteristic voltage ([V ]); moreover, we
choose Uin(t) as:

Uin(t) =






20 t ∈ [0, 10] ns,
170 − 15(109 t) t ∈ (10, 11] ns,
5 t ∈ (11 ns, +∞).

(5)

In Eq.(1) each solution component yi, i = 1, ..., N , represents the electrical voltage in
each node of the circuit.
Since the number N of the components in modern ICs might be huge (e.g. N ∼= 106),
high computational costs could occur while solving numerically the problem. In Tab.1
we report the computational costs required for the numerical solution of system (1) by
the implicit Backward-Euler (BE) method for time discretization1. We choose a single
parameter dependence for which µ = µR = µ ∈ DµR ⊂ R represents the resistance
of all the resistors of the circuit. In particular, for the example considered, we choose
µ = 104 Ω and a discretization time-step ∆t = 0.1 ns. When addressing more relevant
circuits, alternative approaches, such as those based on model or dimensional reduction,
become therefore mandatory.

1The simulations are carried out on an Intel 2.20 GHz processor with 4 MB of cache memory and

2 GB of RAM.
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N 200 500 1000
CPU [sec] 10.84 58.17 245.6

Table 1: Computational costs (CPU times) required for solving the system of DAEs
induced by the electronic device described by Eq.s (2) and (3).

2 MOR methods for systems of parametrized DAEs:

state of the art

In this Section we give a brief account on the existing MOR techniques applied to
systems of parametrized DAEs; in particular, we focus on the so-called PODµ method.
MOR methods are the most widespread techniques used for the solution of (linear or
nonlinear) systems of DAEs [2, 22, 26]. These methods are based on a suitable projection
of the solution of the original system onto a lower dimensional state space in order to
obtain a new model of reduced dimension. Different projection strategies yield different
MOR methods.
The use of MOR techniques in the field of parametrized problems is less common. In
this respect, a typical approach consists in combining a non-parametrized MOR tech-
nique with a supplementary procedure for parametrized problems (e.g. interpolation or
moment matching). In particular, in this paper we consider the PODµ method (intro-
duced in [5]), which is described in details in Sec.2.1 in view of the comparison with the
RBµ-DAE method that we are going to introduce in Sec.3.3. Among MOR methods for
parametrized nonlinear systems we mention the Trajectory Piece-Wise Linear method
[4], in which the original system is linearized around suitably selected states, then it is
approximated by a weighted combination of such linearized models, each one reduced
by means of the Krylov-subspace technique [8, 9, 10]. The dependence on the parameter
is taken into account with a moment matching technique [4].

2.1 The parametrized Proper Orthogonal Decomposition method

In this Section we describe the PODµ method, firstly proposed for Aerodynamics appli-
cations [5], highlighting the decomposition of the procedure in an offline step (actually
the standard POD procedure) and in an online one (where the solution is evaluated
for a given value of the parameter µ ∈ Dµ). More precisely, this method consists in
performing at the offline step the non-parametrized POD procedure on a set of prob-
lems corresponding to selected values of the parameter. In this way a set of projectors
(matrices) onto a reduced subspace, one for each of the selected parameters, is obtained.
Once this set of projectors is given, the PODµ procedure combines the projection ma-
trices by means of an interpolation technique in order to obtain a parameter dependent
projector which is used at the online step to build the reduced model. Moreover, in
order to furtherly reduce the computational costs, we propose in this work to combine
the PODµ method with the Missing Point Estimation (MPE) technique. We notice
that this approach (POD-MPE) has been already introduced in [2, 24] even if in the
non-parametrized case.
We summarize firstly the offline step of the PODµ method.

Given a set of selected parameters D
µ

⊂ Dµ defined as D
µ

:= {µ1, µ2, ..., µD}, with
D ∈ N:

A perform the following steps of the non-parametrized POD procedure: for i =
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1, ..., D

(a) collect J ∈ N evaluations at different times of the unknowns of the system
(e.g. by measurements of the voltages of the system at some selected time-
steps), y(tj , µi), j = 1, ..., J , and assemble the snapshots matrix, say Y (µi) ∈
R

N×J , s.t.
Y (µi) = [y(t1, µi) ... y(tJ , µi)]; (6)

(b) solve the following eigenvalue problems:

H(µi)uj(µi) = λj(µi)uj(µi) ∀ j = 1, ..., J, (7)

where uj(µi) ∈ R
N and λj(µi) ∈ R, j = 1, ..., J , are respectively the

eigenvectors (which are assumed to be sufficiently regular w.r.t. each µi)
and the eigenvalues of the correlation matrix H(µi) ∈ R

N×N defined as

H(µi) :=
1

J
Y (µi)Y (µi)

T ;

(c) apply the total energy criterion (see [2]) taking into account for the 99% of the

total energy, for which compute Ej(µi) =
j∑

s=1
λs(µi)/

J∑
s=1

λs(µi), j = 1, ..., J ,

and set:
K(µi) := argmin

j=1,...,J
|Ej(µ) − 0.99|, K(µi) ∈ N; (8)

B set K := min
i=1,...,D

K(µi);

C for i = 1, ..., D, set Ũ(µi) := [u1(µi) ... uK(µi)] and perform the cubic spline
interpolation for each column vector obtaining, as described in [6], the interpolant
Πk(µ) : R

P → R
N , k = 1, ..., K s.t. Πk(µi) = uk(µi), ∀k = 1, ..., K, ∀i =

1, ..., D.

These offline steps are performed just once and, hence, they are allowed to be compu-
tationally expensive.
At the online step we aim at rapidly computing the reduced solution for a given value of
the parameter µ ∈ Dµ. In particular, we assemble the matrix V (µ) := [Π1(µ) ... ΠK(µ)]
and we perform the projection returning the reduced system. In practise, we project
the solution of the original system (1) onto the reduced subspace and we replace y(t, µ)
in Eq.(1) by the reduced solution yR(t, µ) := V (µ)z(t, µ), being z(t, µ) ∈ R

K . Finally,
we solve the reduced system obtained by multiplying both the r.h.s. and the l.h.s. of
Eq.(1) by V (µ)T :

{
CR(µ)

dz(t, µ)

dt
= fR(t, z(t, µ); µ) t ∈ (0, T ],

z(0, µ) = z0;
(9)

where CR(µ) := V (µ)T C V (µ), fR(t, z(t, µ); µ) := V (µ)T f(t, V (µ)z(t, µ); µ) and z0 ∈
R

K is chosen such that V (µ)z0 = y0.

3 The Reduced Basis method for systems of parametrized

DAEs

In this Section we describe the mathematical formulation of the RBµ-DAEs method,
which we propose for solving parametrized nonlinear systems of DAEs. In particular,

6



we specify the choices of approximation schemes and linear solvers and we propose a
procedure for the generation of the basis; finally, we present an a priori error estimate
for the approximation error associated with the method.
In order to make straightforward the presentation of the method, we briefly recall the
RB-DAEs and the RBµ-PDEs methods from which the basic idea of the RBµ-DAEs
method stems out.

3.1 The RB-DAEs method

We report the mathematical formulation of the RB-DAEs method introduced by Porsching
and Lee [13, 17, 18]; for further details see also [14, 15].
The RB-DAEs method has been firstly introduced in the context of parameterized non-
linear systems of Algebraic (i.e. stationary) Equations, say RBµ-AEs method, where a
projection of the solution of the original system onto a parameter dependent manifold
is performed. In [18] Porsching and Lee proposed an approach adapting the RBµ-AEs
method to non-parametrized nonlinear systems of DAEs, say the RB-DAEs method,
where the time variable of the dynamical system is chosen as the parameter used to
perform the projection. The basic idea of the method consists in partitioning the time
interval and then performing a projection of the solution of the original system onto
a lower-dimensional subspace in each subinterval. The complete reduced solution is
obtained by assembling the reduced solutions computed into every subinterval.
In particular, we divide the time interval [0, T ] in J ∈ N subintervals Ij = (tj−1, tj ]

s.t. 0 = t0 < ... < tJ = T and
J⋃

j=1

Ij = (0, T ]. Then, the RB-DAEs method consists

in finding a reduced solution, let say yR,j(t), in each subinterval Ij , j = 1, ..., J ; the
complete reduced solution is given by yR(t) = yR,j(t), tj < t ≤ tj+1, j = 0, 1, ..., J − 1,
provided that yR(t0) = y0.
In the following steps we describe the procedure for the computation of yR,j , for j =
1, ..., J :

1. choose the reduced subspace Sj ⊂ R
N , ∀ j = 1, ..., J , which the reduced solution

belongs to, which is defined as

Sj = span{u1
j ,u

2
j , ...,u

Mj

j }, Mj ∈ N, (10)

for some {u1
j , ...,u

Mj

j } ⊂ R
N which can be chosen in different ways (see [18] for

more details) and depend on the exact solution or on the r.h.s. of Eq.(1);

2. assemble the projection matrix Yj ∈ R
N×Mj defined as Yj =

[
u1

j u2
j ... u

Mj

j

]
;

3. write the reduced solution as:

yR,j(t) = Yj zj(t) + yR,j−1(tj), (11)

for some zj(t) ∈ R
Mj to be determined;

4. rewrite system (1) over the time subinterval Ij by replacing the exact solution y

with the reduced one yR,j as follows:

{
Y T

j

dyR,j

dt
= Y T

j f(t,yR,j) t ∈ Ij ,

yR,j(tj) = yR,j−1(tj);
(12)
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or equivalently:

{
Y T

j Yj
dzj

dt
= Y T

j f(t, Yjzj + yR,j−1(tj)) t ∈ Ij ,

zj(tj) = 0;
(13)

5. solve the Mj dimensional system (13) and get yR,j , for j = 1, ..., J .

Finally, by assembling the J reduced solutions yR,j , we obtain the complete reduced
solution yR(t), t ∈ [0, T ].

3.2 The RBµ-PDEs method

We briefly report the mathematical formulation of the RBµ-PDEs. For an in-depth
insight, we refer the reader to, e.g, [16].
The basic idea of the RBµ-PDEs method consists in “assembling” a reduced parametrized
problem, starting from the original parametrized PDEs, which allows to reproduce ac-
curately the original solution while containing the computational costs. The solution
of such reduced problem lies in a lower-dimensional space, whose basis is composed by
M solutions of the original problem corresponding to selected values of the parameters.
The main feature of the method consists in splitting the whole procedure in an of-
fline step (computationally expensive) and an online step (rapid) in which the reduced
parametrized problem is solved for a given value of the parameter. The RBµ-PDEs
method has been proved to be convenient, accurate and reliable for the solution of
parametrized PDEs and systems of PDEs on a broad range of Engineering applications
[16, 23].
Let Y be a Hilbert space, Y ′ its dual space and Y′〈·, ·〉Y ≡ 〈·, ·〉 the associated duality
pair. Then, we define, for any µ ∈ Dµ ⊂ R

P , where, once again, Dµ is the parameter
set and P ∈ N is the corresponding dimension, a parametrized linear operator A(µ) :
Y → Y ′. We assume that A(µ) could be affinely decomposed as a combination of Q ∈ N

linear parameter independent operators, Aq : Y → Y ′, weighed by parameter dependent
functions Θq(µ) : Dµ → R, q = 1, ..., Q, s.t:

A(µ) =

Q∑

q=1

Θq(µ)Aq . (14)

We aim at finding the parameter dependent solution y(µ) ∈ Y of the following problem:

find y(µ) ∈ Y s.t 〈A(µ)y(µ), v〉 = 〈F, v〉 ∀ v ∈ Y, ∀ µ ∈ Dµ, (15)

where F ∈ Y ′. As the exact solution of Eq.(15) is not always available, we require a
finite-dimensional “truth” approximation of the infinite-dimensional space Y, let say
Yh, an N dimensional subspace of Y (in general we expect N to be very large). The
approximated “truth” solution yh(µ) lies in the space Yh which is typically defined as a
Finite Element (FE) subspace of V [16]. Hence, the approximated Galerkin-FE problem
reads:

find yh(µ) ∈ Yh s.t 〈A(µ)yh(µ), vh〉 = 〈F, vh〉 ∀ vh ∈ Yh, ∀ µ ∈ Dµ. (16)

It is convenient to express the solution of Eq.(16) in terms of the basis of the space
Yh; we let φi ∈ Yh be the generic characteristic Lagrangian basis function, such that
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φi(xi) = δij , with i, j = 1, ..., N , being xj the coordinate of the j-th node of the
triangulation, and δij the Kronecher delta. Hence, Eq.(16) reads as:

find yh(µ) ∈ R
N s.t. Ah(µ)yh(µ) = Fh, (17)

where yh(µ) =

N∑

i=1

(yh)i(µ)φi, the matrix Ah(µ) ∈ R
N×N is [Ah(µ)]ij := 〈A(µ)φj , φi〉,

with i, j = 1, ..., N and Fh ∈ R
N is [Fh]i = 〈F, φi〉, i = 1, ..., N . We observe that the

affine decomposition hypothesis (14) allows us to write:

Ah(µ) =

Q∑

q=1

Θq(µ)Ah,q, (18)

being [Ah,q(µ)]ij := 〈Aq(µ)φj , φi〉, i, j = 1, ..., N .
The FE approach could lead to high computational costs, if N is huge, especially in the
many-query contest. Even if we can decompose the computation of the solution in an
offline step and an online one, “too” high computational costs are still required at the
online step, hence the RBµ-PDEs method can conveniently be considered.
In the RBµ-PDEs method the solution of the parametrized problem lies on a low-
dimensional subspace YM of Yh. The elements of the basis of the reduced space YM

are the Galerkin-FE solutions, say ζm = yh(µm), corresponding to some values of the
parameter µm ∈ Dµ. More precisely:

YM := span{ζm : m = 1, ..., M} M ∈ N, (19)

where M ≪ N . Hence, the reduced solution solves the following problem:

find yM (µ) ∈ YM s.t 〈A(µ)yM (µ), v〉 = 〈F, v〉, ∀ v ∈ YM , ∀ µ ∈ Dµ. (20)

Once again, it is possible to rewrite Eq.(20) in terms of the basis functions {ζm}M
m=1,

which, in a matricial notation, reads:

find yM (µ) ∈ R
M s.t. AM (µ)yM (µ) = FM , (21)

where yM (µ) :=
M∑

m=1
(yM )m(µ)ζm, the matrix AM (µ) ∈ R

M×M is [AM (µ)]ij := 〈A(µ)ζj , ζi〉,

with i, j = 1, ..., M and FM ∈ R
M is [FM ]i = 〈F, ζi〉, i = 1, ..., M . We observe that

AM (µ) can be affinely decomposed similarly to Eq.(14), as:

AM (µ) =

Q∑

q=1

Θq(µ)AMq
, (22)

being [AMq
(µ)]ij := 〈Aq(µ)ζj , ζi〉, i, j = 1, ..., M .

Due to the affine decomposition assumption the RBµ-PDEs method can be divided in
two steps:

• at the offline step the reduced space YM is built, the parameter independent
matrices AMq

are assembled (this step typically requires high computational costs,
even if is performed just once);

• at the online step given µ ∈ Dµ, the matrix AM (µ) is assembled and the linear
system (21) solved (the solution is typycally very rapid, being M ≪ N .
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Remark 3.1 At the online step we are actually looking for the combination of some
“truth” FE solutions. From an algebraic point of view the unknowns of our problem are
the weights of the linear combination, i.e. (yM (µ))m, for m = 1, ..., M .

3.3 The RBµ-DAEs method

In this Section we mathematically formulate our RBµ-DAEs method for the solution of
parametrized systems of DAEs.
At the basis of the RBµ-DAEs method there is the assumption that the solution of
a parametrized problem is not an arbitrary member of an infinite-dimensional solution
space, but it resides (evolves) on a lower-dimensional subspace induced by the parameter
dependence. In particular, we are interested in solving the system of parametrized DAEs
defined in Eq.(1). The idea, which arises from the considerations reported in Remark 3.1,
consists in looking for the reduced solution as the projection of the true solution onto
a lower-dimension subspace, let say SR, whose basis is defined by some FE solutions
(called “truth” solutions) corresponding to some values of the parameters. We write
the reduced solution in a form similar to the one used for the PDEs case, i.e. as a
combination of M non-reduced solutions:

yR(t, µ) = Y (t) a(t, µ), (23)

where the components of a(t, µ) ∈ R
M represent the weights ((yM (µ))m, m = 1, ..., M ,

in the PDEs case) associated with the basis (the “truth” solutions ζm in the PDEs
case), which are the vectors contained in the time-independent matrix Y (t) ∈ R

N×M ,
∀ t ∈ [0, T ]. We point out that, as in the RB-DAEs method, the reduced subspace is a
function of the time, hence we write SR = SR(t).
Two approaches, associated with two different choices of the reduced subspace SR(t),
can be implemented: the Reduce-and-Discretize (RD) approach and the Discretize-and-
Reduce (DR) one.
The RD approach is similar to the one proposed by Porsching in [18]: i.e. given a set
of parameters {µ1, µ2, ..., µM} ⊂ Dµ, we define the reduced subspace SR(t) as:

SR(t) := span{y(t, µ1),y(t, µ2), ...,y(t, µM )} ∀ t ∈ [0, T ], (24)

where y(t, µm) is the exact solution of Eq.(1) corresponding to µm, with m = 1, 2, ..., M ,.
By substituting yR(t, µ) (see Eq.(23)) in place of y(t, µ) in Eq.(1), we obtain a reduced
continuous model of dimension M . Then, by means of a time discretization scheme we
discretize the reduced model and we get the approximated non-reduced solution.
In the DR approach, for a given partition of the whole time interval [0, T ] (t0, t1, ..., tF ,
with F ∈ N, s.t. tF = T ), we apply, first of all, a time discretization scheme to Eq.(1),
yielding a nonlinear system of algebraic equations at each time-step tn, n = 0, ..., F . We
define the reduced subspace at each time-step as:

SR(tn) := span{yh(tn, µ1),yh(tn, µ2), ...,yh(tn, µM )} ∀ n = 1, ..., F, (25)

where yh(tn, µm), for m = 1, ..., M and n = 1, ..., F , is the non-reduced approximate
solution obtained in correspondence of µm. By means of Eq.(23) we perform the pro-
jection onto the reduced subspace at each time-step and we get the reduced solution
yR(tn, µ) by solving the M -dimensional algebraic system for n = 1, ..., F .
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Remark 3.2 Numerical tests carried out by means of the RBµ-DAEs method have re-
vealed that the DR approach is more efficient w.r.t. the RD one in terms of computa-
tional costs for a prescribed accuracy [7]. For this reason, in this work we detail the
RBµ-DAEs method according to the DR approach.

3.3.1 The DR approach

The first step of the DR approach consists in choosing the time discretization scheme.
The corresponding approximate solution will be regarded as the “truth” solution. For
the sake of comparison, it is advisable to use the same discretization scheme when solving
both the non-reduced and reduced problems, in order to better appreciate the effective-
ness of the reduction. In this work we will use the Backward-Euler (BE) method, an
implicit one-step method [21], in order to skip stability troubles both for the reduced
and the non-reduced problems. We present here the formulation of the method in
the case of a linear parametric dependence of the nonlinear function g (i.e. we define
f(t,y; µ) = −R(µ)y + g(t,y), see Sec.1). In the case of a nonlinear parametric depen-
dence we move from the same formulation. Then, let yn

h(µ) denote the non-reduced BE
approximation of the exact solution y(tn, µ) at time step tn, for n = 0, ..., F , which is
the solution of the following problem:

C(yn+1
h − yn

h) = −∆t R(µ)yn+1
h + ∆t g(tn+1,yn+1

h ) ∀ n = 0, ..., F − 1, (26)

being y0
h = y0. In order to perform a projection, at each time-step of the discretization

scheme, we have to compute the vectors of the basis of the reduced subspace; given
a suitable set of M parameters {µ1, µ2, ..., µM} ⊂ Dµ, SR(tn) assumes the following
form SR(tn) := span{yh(tn, µ1), . . . ,yh(tn, µM )}, for n = 1, . . . , F . Then, we write the
reduced solution as a combination of the basis vectors, s.t. yR(tn, µ) = Y (tn)a(tn, µ),
where the matrix Y (tn) is formed by the basis vectors of the reduced subspace and we
substitute this expression in Eq.(26). We obtain a N × M dimensional system at each
time-step:

C(Y n+1an+1(µ) − Y nan(µ)) = −∆t R(µ)Y n+1an+1(µ) + ∆t g(Y n+1an+1(µ), tn+1)

∀ n = 0, . . . , F − 1,
(27)

where an(µ) ∈ R
M is defined as an(µ) := a(tn, µ) ∀n = 0, . . . , F . We can rewrite

Eq.(26) as:

An+1(µ)an+1(µ) − ∆t g(tn+1, Y n+1an+1(µ)) = fn(µ) ∀ n = 0, ..., F − 1, (28)

where An(µ) ∈ R
N×M is An(µ) := [CY n + ∆t R(µ)Y n], while fn(µ) ∈ R

N reads
fn(µ) := CY nan(µ), n = 1, ..., F .
Firstly, we consider the linear case, i.e. g(t,y) ≡ 0, and we discuss a suitable technique
for the solution of the rectangular system (28).
We multiply both sides by (An+1(µ))T , thus getting the squared linear system:

Dn+1(µ)an+1(µ) = Fn+1(µ), (29)

where Dn+1(µ) = (An(µ))T An+1(µ) and Fn+1 = (An(µ))T fn(µ). We notice that
for any given n the vectors of the basis could be linearly dependent and, as a conse-
quence, rank(Dn(µ)) ≤ M . In particular, we observe that, ∀ µ ∈ Dµ, rank(Dn(µ)) =
min{P, M}, ∀ n = 1, ..., F − 1, where P and M are the dimensions of the space of
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parameters and the reduced subspace, respectively. In order to solve the system (29)
according with the values of P and M we use two different techniques depending on
the value assumed by the rank of the matrix Dn(µ). When Dn(µ) has full rank
(= M) we perform an LU factorization of Dn(µ) at each time-step. Otherwise (i.e.

rank(Dn(µ)) < M), we use the generalized inverse D̃n(µ) of Dn(µ) obtained by means
of the Singular Value Decomposition [21]. In practise, we find two orthogonal matrices
U(µ) ∈ R

N×N and V (µ) ∈ R
M×M s.t.: U(µ)T Dn(µ)V (µ) = Σ(µ), n = 1, . . . , F , where

Σ(µ) = diag(σ1, ..., σk, 0, 0...) ∈ R
N×M , with k = rank(Dn(µ)) and σi, for i = 1, ..., k,

are the singular values of Dn(µ). By defining Σ̃(µ) = diag(σ−1
1 , ..., σ−1

k , 0, 0, ...), D̃n(µ)

reads D̃n(µ) = V (µ)Σ̃(µ)(U(µ))T . Finally, the solution weights an(µ) are given by

an(µ) = D̃n(µ)Fn(µ). It is important to point out that the matrix Dn(µ) can be
affinely decomposed, ∀ n = 0, ..., F , similarly to the PDEs case, as a combination of pa-
rameter independent matrices, say Dn

q , with parameter dependent weights, say Θq(µ):

Dn(µ) =

Q∑

q=1

Θq(µ)Dn
q , Q ∈ N. (30)

This allows to extend to the RBµ-DAEs method the offline-online decomposition, with
a very rapid online step, being M ≪ N . Hence, the computation of all the matrices
An

q can be done offline and just once and, in correspondence of any new parameter, the
online step consists only in the assembling of the whole matrix Dn(µ) and solving the
reduced problem.
In the nonlinear case, i.e. for g(t,y) 6= 0, similar considerations could be done. For
the solution of the nonlinear system (28), we use the Newton method [21], an iterative
solver requiring at each iteration r the solution of the following linear system (which is
rectangular in our case):

Jr(µ)an+1
r+1 (µ) = br(µ); (31)

where Jr(µ) ∈ R
N×M is defined as Jr(µ) = An+1(µ)−∆t ∇g(tn+1, Y n+1an+1

r (µ)) and
br(µ) ∈ R

N is defined as br(µ) = −An+1(µ)an+1
r (µ) + ∆t g(tn+1, Y n+1an+1

r (µ)) −
fn+1(µ), with An(µ) and fn(µ) defined as in the linear case ∀ n = 1, ..., F . Once again,
with a technique similar to the one adopted in the linear case, we multiply both sides
of Eq.(31) by (Jn+1

r )T (µ) in order to get an M ×M dimensional problem whose matrix
can have rank less than M . Unfortunately, unlike the linear case where the rank was
known a priori, it is not possible to find a relation for the rank of the matrix. Hence,
we should check at each iteration of the Newton method the value of the rank and
perform an LU factorization or compute the generalized inverse matrix. This implies
that computational cost of the nonlinear case is greater than in the linear one. Also,
only the linear part of the system can be affinely decomposed and, as a consequence,
we should evaluate online the nonlinear term.

Remark 3.3 An important issue of the RBµ-DAEs method consists in the choice of
the vectors of the basis, since the projection onto the reduced space could lead to an ill-
conditioned and, even worse, to an ill-posed systems. Thus, the choice of the parameters
{µ1, µ2, ..., µM}, and hence of the basis, is crucial and will be discussed in Sec.3.3.2.

3.3.2 The generation of the basis

We propose an adaptive procedure for the choice of the basis vectors in analogy with the
RBµ-PDEs method (see [16]). Actually, different approaches can be implemented (e.g.
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random generation from a Gaussian or uniform distribution [7]), but in spite of their
easy implementation and rapid computation, experimental tests have revealed that they
work only in the linear case. Hence, in the nonlinear case a generation approach similar
to the one used for the RBµ-PDEs method is proposed and described in the following
steps.
The basis parameters are chosen among a finite set of parameters, let say D ⊂ Dµ.
Let yn

h,j = yh(tn, µj) be the non-reduced solution associated with the j-th parameter
in D at the time-step tn and yn

R,j be the reduced one in correspondence of the same
parameter and time-step. Our procedure reads as follows:

1. we choose randomly µ1 ∈ D; then we compute yh,1 and set Y = [yh,1];

2. for m = 1, ..., Mmax, with Mmax ≪ N to be fixed a priori:

(a) ∀ µj ∈ D such that µj 6= µk, k = 1, ..., i−1, compute: ej = max
n=0,...,F

‖yn
h,j − yn

R,j‖

‖yn
h,j‖

,

where yR,j is the reduced solution computed with the actual matrix Y ;

(b) if ej < ε ∀j, with ε fixed a priori, stop the procedure, else go to 2c;

(c) set µi = argmaxS\{µ1,...µm−1} ej;

(d) set Y = [yh,1 ... yh,m].

This procedure is computationally expensive, since for each parameter in D, a non-
reduced solution is required. However, this procedure is performed only once offline.
Also, this procedure can be improved in terms of accuracy adding a control on the rank
of the matrix Y each time a new basis vector is introduced.
Once provided the reduced subspace SR and the matrix Y , the CPU times associated
with the computation of the reduced solution at the online step are significantly smaller
than the ones required while computing the corresponding non-reduced solution. Never-
theless, it is important to point out that the real gain in the RBµ-DAEs method cannot
be appreciated in the computation of a single solution, but rather in a many-query con-
text: if the time required to perform the adaptive procedure and to compute the reduced
solutions is smaller than the one required to compute the non-reduced solutions, then,
the RBµ-DAEs method is convenient (see also Sec.4).

3.4 A priori error estimate

In this Section we derive an a priori error estimate for the RBµ-DAEs method.
Typically, in the context of the time-discretization schemes an a priori estimate of the
local error, i.e. the approximation error generated at each time-step, is derived in order
to obtain the estimate of the global error, i.e. over the whole time interval; we apply
the same approach also to the analysis of the RBµ-DAEs method. In view of the error
estimate, we recall that the proposed DR approach is structured in two consequent
steps: a discretization step and a reduction one (see Sec.3.3.1). Since we consider the
non-reduced approximate solution as a “truth” approximation of the exact one, we
are mostly interested in estimating the error committed in the reduction step of our
method performed after a discretization in time. For this reason, we will only consider
the estimation of the reduction error, which is defined as:

eR(tn, µ) := ‖yn
h(µ) − yn

R(µ)‖, n = 1, ..., F, (32)
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where yn
h(µ) and yn

R(µ) are respectively the non-reduced and reduced solutions at time
tn. In this Section we provide a bound for the global reduction error:

ER(µ) := max
n=1,...,F

eR(tn, µ). (33)

For the sake of simplicity, we provide the estimate for the system (1) and we consider
the parameter vector as a single parameter µ = µ ∈ R; also, the matrix C ∈ R

N×N is
defined as C = IN , the identity matrix.
The local error eR(tn, µ) (32) is estimated in the following Theorem.

Theorem 3.1 If f(t,y; µ) satisfies the assumptions of Sec.1 with Lipschitz constant L,
∀µ ∈ Dµ, then there exists a positive constant k ∈ R such that:

eR(tn+1, µ) ≤ C
n
(∆t, µ) max

i=1,...,n

(
k inf

w∈SR(ti)
‖yi

h(µ) − w‖

)
n = 1, . . . , F, (34)

where C
n
(∆t, µ) := [CLU (µ) CY (µ)(1 + ∆t L) + 1]

(CLU (µ))n − 1

CLU (µ) − 1
for n = 1, ..., F

with CLU (µ) := CL CU (µ); the constant CL depends on the Lipschitz constant L, while
CU (µ) and CY (µ) are defined as follows:

CU (µ) := max
n=1,...,F

‖Un(µ)‖, CY (µ) := max
n=1,...,F

‖Y n(µ)‖, (35)

being Un(µ) ∈ R
N×M chosen such that (Un(µ))T Y n(µ) = IM ∀n = 1, . . . , F , with IM

the identity matrix [12].

Proof. For the sake of clearness, we omit the explicit dependence on the parameter for yn
h ,

yn
R and the associated variables. If we apply to Eq.(1) the BE scheme we can rewrite system (1)

at each time-step as follows:

F(yn+1
h ; µ) := y

n+1
h − ∆t f(tn+1

,y
n+1
h ; µ) − y

n
h = 0 n = 0, ..., F − 1, (36)

where yn
h = yn

h(µ). Also, if we apply the DR approach described in Sec.3.3 we can write the
reduced system as:

y
n+1
R − ∆t f(tn+1

,y
n+1
R ; µ) − y

n
R = 0 n = 0, ..., F − 1; (37)

where yn
R = yn

R(µ). Equivalently:

F(yn+1
R ; µ) + (yn

h − y
n
R) = 0 n = 0, ..., F − 1. (38)

We note that the Lipschitz-continuity of the function f is inherited by the function F, which
is endowed with a Lipschitz constant (1 + ∆t L) [7]. Eq.s (36) and (38) allow to write:

F(yn+1
R ; µ) + y

n
h − y

n
R = F(yn+1

h ; µ) = 0 n = 0, ..., F − 1. (39)

By introducing the projector P n ∈ R
N×N of R

N onto SR(tn), defined as P n := Y n(Un)T for
n = 1, ..., F and by subtracting F(P n+1yn+1

h ; µ) from Eq.(39), we have:

−F(P n+1
y

n+1
h ; µ)+F(yn+1

R ; µ)+y
n
h−y

n
R = −F(P n+1

y
n+1
h ; µ)+F(yn+1

h ; µ) n = 0, ..., F−1.

(40)
Then, by multiplying both sides of Eq.(40) by (Un+1)T and by recalling the definition of the
projector P n+1, we can write:

(Un+1)T [F(Y n+1(Un+1)T yn+1
h ; µ) − F(yn+1

R ; µ) − yn
h + yn

R] =

(Un+1)T [F(P n+1yn+1
h ; µ) − F(yn+1

h ; µ)] n = 0, ..., F − 1.
(41)
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We introduce ∀µ ∈ Dµ the vector wh(µ) ∈ R
M defined as:

w
n+1
h (µ) := (Un+1)T

y
n+1
h ; (42)

then, by substituting this last expression in Eq.(41) and writing yn
R = Y nan(µ), we get:

(Un+1)T [F(Y n+1wn+1
h (µ); µ) − F(Y n+1an+1; µ)] + (Un+1)T (yn

R − yn
h) =

(Un+1)T [F(P n+1yn+1
h ; µ) − F(yn+1

h ; µ)].
(43)

We define the mapping H : R
M → R

M such that ∀ x : (0, T ) → R
M and ∀µ ∈ Dµ we have:

H(x(tn+1); µ) := (Un+1)T
F(Y n+1

x(tn+1); µ) n = 0, ..., F − 1. (44)

Since F(y; µ) is a Lipschitz-continuous function, H inherits the same property with a Lipschitz
constant CU CY (1 + ∆t L) [7]. By recalling the definition of wn

h given in Eq.(42), we define:

un(µ) := u(tn, µ) = H(wn
h(µ); µ) n = 0, ..., F − 1,

vn(µ) := v(tn, µ) = H(an(µ); µ) n = 0, ..., F − 1.
(45)

Then, we rewrite Eq.(43) as:

un+1(µ) − vn+1(µ) = (Un+1)T eR(tn, µ)

−(Un+1)T [F(P n+1yn+1
h ; µ) − F(yn+1

h ; µ)] n = 0, ..., F − 1,
(46)

and we find the following upper bound:

‖un+1(µ) − vn+1(µ)‖ ≤ ‖Un+1‖ eR(tn, µ)

+‖Un+1‖ ‖F(P n+1yn+1
h ; µ) − F(yn+1

h ; µ)‖ n = 0, ..., F − 1.
(47)

Introducing in the previous expression the Lipschitz constant of F, (1 + ∆t L), we write:

‖un+1(µ)−v
n+1(µ)‖ ≤ ‖Un+1‖ eR(tn

, µ)+(1+∆t L)‖Un+1‖ ‖P n+1
y

n+1
h −y

n+1
h ‖ n = 0, ..., F−1.

(48)
Moreover, since H is continuously differentiable, we can write:

‖wn+1
h (µ) − an+1(µ)‖ = ‖H−1(un+1(µ); µ) − H−1(vn+1(µ); µ)‖ ≤

CL‖u
n+1(µ) − vn+1(µ)‖ n = 0, ..., F − 1,

(49)

where CL is the Lipschitz constant of H−1; by using Eq.s (35) and (48) we can write:

‖wn+1
h (µ)−a

n+1(µ)‖ ≤ CLU (1+∆t L)‖P n+1
y

n+1
h −y

n+1
h ‖+CLU eR(tn

, µ) n = 0, ..., F−1,

(50)
where CLU := CL CU ∈ R. Now we can find a bound for the local error eR(tn+1, µ), which we
write as:

eR(tn+1
, µ) = ‖yn+1

h − y
n+1
R ± P

n+1
y

n+1
h ‖ n = 0, ..., F − 1, (51)

by means of the triangular inequality:

eR(tn+1
, µ) ≤ ‖P n+1

y
n+1
h − y

n+1
h ‖ + ‖P n+1

y
n+1
h − y

n+1
R ‖ n = 0, ..., F − 1. (52)

For every n = 0, . . . , F , we have:

‖P n+1yn+1
h − yn+1

R ‖ = ‖Y n+1(wn+1
h (µ) − an+1(µ))‖ ≤

‖Y n+1‖ ‖wn+1
h (µ) − an+1(µ)‖ n = 0, ..., F − 1;

(53)
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then, by means of Eq.s (35) and (50) we have:

‖P n+1
y

n+1
h −y

n+1
R ‖ ≤ CY CLU (1+∆t L)‖P n+1

y
n+1
h −y

n+1
h ‖+CLU eR(tn

, µ) n = 0, ..., F−1.

(54)
By using Eq.(54), we can write:

eR(tn+1
, µ) ≤ [CLU CY (1 + ∆t L) + 1] ‖P n+1

y
n+1
h −y

n+1
h ‖+CLU eR(tn

, µ) n = 0, ..., F−1.

(55)
If we define:

ǫ
n+1(µ) := [CLU CY (1 + ∆t L) + 1] ‖P n+1

y
n+1
h − y

n+1
h ‖ n = 0, ..., F − 1, (56)

we can write the following recursive inequality:

eR(tn+1
, µ) ≤ ǫ

n+1(µ) + CLU eR(tn
, µ) n = 0, ..., F − 1. (57)

By using a recursive strategy over the time (similar to the one presented in [17]) and by recalling
that eR(t0, µ) = y0

h − Y 0a0 = 0, we can write:

eR(tn, µ) ≤
n−1∑
i=0

ǫn−i−1(µ)(CLU )i ≤ max
i=0,...,n−1

ǫi(µ)
n−1∑
i=0

(CLU )i =

max
i=1,...,n−1

ǫi(µ) (CLU )n
−1

CLU−1
n = 1, ..., F ;

(58)

then, by recalling Eq.(56), it follows:

eR(tn
, µ) ≤ C

n
(∆t) max

i=1,...,n
‖P i

y
i
h(µ) − y

i
h(µ)‖ n = 1, . . . , F. (59)

where C
n
(∆t) = C

n
(∆t, µ). In order to make effective the estimate (59), we need to bound

the vector norm ‖P iyi
h(µ) − yi

h(µ)‖, for i = 1, . . . , n and n = 1, . . . , F . With this aim, let

us recall a standard result on projectors (see [17]) for which, given a subspace S ⊂ R
N and a

projector B, there exists a positive constant cB s.t. ‖Bx − x‖ ≤ cB infw∈S ‖x − w‖ ∀x ∈ R
N .

By applying this property to our problem and by introducing the positive constant k ∈ R, the

result (34) follows. �

We need now a bound for the following term in Eq.(34):

inf
w∈SR(ti)

‖yi
h(µ) − w‖ ∀i = 1, ..., F. (60)

With this aim, we introduce the following Definitions and an associated Proposition
which will be the basis of the main result of this Section.

Definition 3.1 Let us suppose that for j = 1, ..., J the parameters λj are distinct and
evenly distributed and that x(λj) ∈ R

N is known for j = 1, ..., J ; the Lagrangian subspace
is defined as:

SL := span {uj | uj = x(λj), j = 1, ..., J}, (61)

which is the set of linear combinations of J points in R
N .

Definition 3.2 Given a scalar parameter λ ∈ R, the Lagrangian interpolating polyno-
mial [21] is defined by:

xL(λ) = U wL(λ); (62)

where

[wL(λ)]j :=
J∏

k=1,k 6=j

λ − λk

λj − λk
. (63)

and U :=
[
u1 u2 ... uM

]
, being uj, for j = 1, ..., J , members of the basis of SL.
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Remark 3.4 The Lagrangian subspace SL coincides with the reduced subspace SR(tn)
at each time-step with J = M : in fact the basis vectors uj, j = 1, ..., M , assume the form
of y(tn, µj) and, hence, U plays the role of the matrix Y n. The Lagrangian interpolating
polynomial associated with a particular choice of the parameter λ = µ ∈ R is a repre-
sentation of the reduced solution (it is in fact a combination of the basis vectors). This
allows the following result (see [17] or [21] for the proof) on the Lagrangian polynomial
which will be useful in the estimate of an upper bound for the expression (60).

Proposition 3.1 Let x : R → R
N be a continuous function and let SL be the La-

grangian subspace of dimension J , defined in Eq.(61). If x(λ) ∈ CJ+1(R), the space of
(J +1) times differentiable functions, for each parameter λ ∈ R there exists another pa-

rameter λ̃ ∈ R s.t. the approximation error of the Lagrangian interpolating polynomial
could be estimated as:

xi(λ) − xL,i(λ) =

J∏
k=0,k 6=j

(λ − λk)

(J + 1)!

d(J+1)xi(λ̃)

dλJ+1
∀ i = 1, ..., N. (64)

Hence, we have the following upper bound of the Lagrangian approximation error:

‖x(λ) − xL(λ)‖ ≤
2J+1

(J + 1)!

∥∥∥∥
d(J+1)x

dλJ+1

∥∥∥∥
|D|

J
, (65)

where |D| = max
1≤i,j≤J, i6=j

|λi − λj |.

If we combine the results shown in Theorem 3.1 and Proposition 3.1 we can find the
following upper bound for the reduction-error.

Theorem 3.2 Let eR(tn, µ) be the reduction error defined in Eq.(32). Under the as-
sumptions of Theorem 3.1 and by keeping the same notation, eR(tn, µ) satisfies the
following inequality:

eR(tn+1, µ) ≤ C
n
(∆t, µ) k |D|

2M+1

M(M + 1)!

(
max

i=1,...,n
di

M+1(µ)

)
n = 0, . . . , F − 1;

(66)

where di
M+1(µ) :=

d(M+1)yi
h

dµM+1
and |D| = max

1≤i,j≤J, i6=j
|µi − µj | depends on the selected

parameters for the generation of the basis.

Proof. For the sake of simplicity we omit the parameter dependence for all variable depending
on yh and yR. By recalling Remark 3.4 we can apply the result given in Proposition 3.1 to
Eq.(34), thus obtaining:

eR(tn+1
, µ) ≤ C

n
(∆t, µ) k max

i=1,...,n

∥∥∥∥
d(M+1)yh

dµM+1

∥∥∥∥
2M+1

(M + 1)!

|D|

M
. (67)

The definition of di
M+1(µ) leads to the thesis. �

By using the results of Theorem 3.2 concerning the local reduction error, it is possible
to estimate the global reduction error ER(µ) as reported in the following Theorem.

17



Theorem 3.3 If the assumptions in Theorem 3.2 hold for the global reduction error
(Eq.(33)), the following a priori estimate holds:

ER(µ) ≤ C̃(∆t, µ) dmax(µ)
2M+1

(M + 1)!

|D|

M
, (68)

where dmax(µ) := max
n=1,...,F

dn
M+1(µ) and C̃(∆t, µ) := max

n=1,...,F
C

n
(∆t, µ).

Proof. The thesis follows from the inequality (CLU )n ≤ (CLU )F , ∀n = 1, ..., F , and from

the definition of dmax. �

Theorem 3.3 ensures that ER(µ) → 0 as M → ∞, ∀µ ∈ Dµ ⊂ R because of the factorial
term and the fact that |D| → 0 as M → ∞; when the number of basis vectors tends to
infinity, SR covers the whole R

N , i.e the reduced solution yR(tn, µ) is actually a member
of the basis itself and eR(tn, µ) = 0 at each time-step.

4 Numerical tests

In this Section we provide some numerical tests for problem (1) with both a linear and
nonlinear parameter dependence. For the numerical solution we use the proposed RBµ-
DAEs and, for the sake of comparison, the PODµ method presented in Sec.2.1. We
analyze the performances of the RBµ-DAEs method from two standpoints: the error
behavior and the computational cost.
Numerical tests for the linear problem are reported in [7]; for the linear formulation of
the problem the RBµ-DAEs method gives optimal results: the matrix of the reduced
system allows an affine decomposition similar to the one presented in Sec.3.2 for the
PDEs case. In this way, most of the computational effort resides in the offline step;
the online step only requires the assembling of the matrix and the solution of an M
dimensional system, which is actually very fast. Such decomposition is not possible
when dealing with parametric nonlinearity. Even larger savings in computational costs
are allowed by the reduced method in the nonlinear case.

4.1 Test1: linear parameter dependence

In this Section we compare the numerical results obtained by using the RBµ-DAEs and
the PODµ methods on problem (1); with the choice of f(t, y; µ) = −R(µ)y + g(t,y; µ),
this is a nonlinear problem with a nonlinear parameter dependence. Moreover, we choose
a scalar parameter µ = µ ∈ Dµ ⊂ R, which represents the resistance associated with
each resistor of the chain.

4.1.1 Implementation

Let us report some details on the implementation of the methods.
Both methods require the computation of some non-reduced solutions for the assembling
of the projection matrices. Those solutions are obtained by solving problem (1), with
N = 200, using the BE method for the time discretization with a time-step ∆t =
5 · 10−10 sec and the Newton method for the solution of the nonlinear system at each
time-step with a tolerance of 5 · 10−5 on the residual.
In the implementation of the adaptive procedure and for building the cubic spline we use
D = 40 non-reduced solutions computed in correspondence of D parameters randomly
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Figure 2: Test 1: relative errors e(µ) vs µ ∈ D in correspondence of M = 8.

chosen in the set Dµ = [104, 3 · 104] Ω. Both reduced solutions are computed using the
BE scheme with the same time-step used for the non-reduced system and the Newton
scheme for the nonlinear system, now with a tolerance of 5 ·10−4 on the residual. These
reduced solutions are computed in correspondence of a set D

µ

of 100 new parameters
randomly chosen from the same set Dµ.

Remark 4.1 In the implementation of the adaptive procedure for the RBµ-DAEs method
we add a control on the rank of the current Y : we allow a solution yh to concur to the
new basis vectors only if at each time-step the matrix Y is not rank deficient.

4.1.2 Error behavior

In this Section we discuss the error behavior associated with the RBµ-DAEs method,

in particular, we analyze the error over the set D
µ

with a fixed dimension of the basis
and, then, the error behavior as the number of basis vectors changes.
For testing these properties we perform the adaptive procedure over a set of D pa-
rameters and we compute the reduced solutions over the set D

µ

. The relative error
reads:

e(µ) = max
n=1,...,F

eR(tn, µ)

‖yh(tn, µ)‖
, (69)

where eR(tn, µ) is the local error defined in Eq. (32). Fig.2 displays the relative errors
vs the set of parameters D

µ

. The reduced solutions are computed using a projection
matrix formed by M = 8 basis vectors: this error behavior can be explained by the
adaptive procedure, as the current parameter is close to a basis parameter the error
goes to zero since a great part of the information concerning the exact solution is stored
in the projection matrix. On the other hand, a larger error occurs when the current
parameter is far from the ones in the basis. In Fig.3 we report the error behavior
in correspondence of two different parameter values as M changes. As expected from
Theorem 3.3, as M increases, the error decreases almost linearly: this is due to the low
number of basis vectors M used; however we expect an improvement of the convergence
rate as M tends to infinity.

Remark 4.2 Simulations performed using a vector parameter with a linear parameter
dependence highlight a similar error behavior and the same conclusions can be drawn;
for more details on this issue see [7].
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Figure 3: Test 1: relative errors vs M−1 in correspondence of µ = 19479 Ω (left) and
µ = 29196 Ω (right) in a logarithmic scale; a linear reference behavior is also reported
with a dotted line.
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Figure 4: Test 1: relative errors e(µ) vs CPU time [sec] in correspondence of different
numbers m of basis vectors.

4.1.3 Comparison with the PODµ method

In this Section we compare the numerical results obtained on the same problem by
the RBµ-DAEs method and the PODµ method. As already discussed in Sec.4.1.1 the
same set of parameters is used for the generation of both the projection matrices; the
results reported refer to the set D

µ

. In this Section and in the following ones we will
use m to indicate the number of basis vectors both for the RBµ-DAEs (M) and PODµ

(K) methods. Fig.4 displays for different values of m the relative errors versus the
CPU time. In particular, each dot in the plot represents the mean value of both the
displayed variables over D

µ

. These results show that the two methods have a completely
different behavior. In the RBµ-DAEs method the computational cost increases with m,
while in the PODµ method it is almost constant. This can be explained by the condition
number of the reduced systems; in the first method as m increases the condition number
of the linear system (at each Newton iteration) increases and more Newton iterations
are required to reach the prescribed tolerance. This does not occur with the PODµ

method where the condition number is almost fixed. The RBµ-DAEs method requires
less computational time only for m = M < 6 basis vectors; besides that, also the
relative error should be taken into account. Increasing the number of basis vectors,
both methods show improvements in the accuracy: in the RBµ-DAEs method we have
a slower error decrease but the level of accuracy is always better than the PODµ one.
In Fig.s 5 and 6 we report in correspondence of a fixed value of m the relative error and
the computational times for both the methods. In these plots the different behavior is
still evident: we can notice again the “jumping” behavior of the RBµ-DAEs method
(already explained in the previous paragraph) and the smooth behavior of the PODµ

one. This can be explained by the theory at the basis of the method itself: as the
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Figure 5: Test 1: comparison of the RBµ-DAEs method and the PODµ one; relative
errors e(µ) vs µ ∈ D are reported in correspondence of m = 5.
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Figure 6: Test 1: comparison of the RBµ-DAEs method and the PODµ one; CPU times
[sec] vs µ ∈ D are reported in correspondence of m = 5.

parameter becomes larger (i.e. larger resistance), then the transient of the circuit is
dominated by a linear dynamics which requires few basis vectors (associated with the
energy of the system) to be described.

4.2 Test 2: nonlinear parameter dependence

In this Section we consider the nonlinear parameter dependence; we show results ob-
tained solving the problem (1) with f(t,y; µ) = −Ry+g(t,y; µ). The scalar parameter
µ = µ ∈ Dµ ⊂ R represents the thermal voltage of the diode whose constitutive law
has an exponential dependence on this parameter; this fact makes the basis generation
more complex: the condition number of the problem can increase, thus requiring higher
computational costs. The implementation techniques for the solution of this problem
are the same described in Sec.4.1.1.

4.2.1 Error behavior and comparison with the POD method

Let us consider the error behavior of the RBµ-DAEs method and we compare its per-
formances w.r.t. the PODµ ones for a nonlinear parameter dependence. We perform
the adaptive procedure for the basis generation over a set of D = 40 parameters ran-
domly chosen in the set Dµ = [0.02, 0.05] V. Fig.7 displays the relative errors, defined in
Eq.(69), as the parameter µ changes; we can notice again the typical “jumping” behav-
ior: the error tends to zero when the current parameter is close to a basis one. In Fig.8
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Figure 7: Test 2: relative errors e(µ) vs µ ∈ D in correspondence of M = 8.
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Figure 8: Test 2: relative errors vs M−1 in correspondence of µ = 0.046729 V (left)
and µ = 0.027724 V (right) in a logarithmic scale; a linear reference behavior is also
reported with a dotted line.
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Figure 9: Test 2: relative errors e(µ) vs CPU time [sec] in correspondence of different
numbers m of basis vectors.

we report the relative error as M changes for a fixed value of the parameter: again, we
have a monotone decreasing of the error ad M increases.
Regarding the PODµ method: for the basis generation we use the same set of parameters

used in the adaptive procedure and we test both the methods on the same set D
µ

of
50 new parameters chosen randomly in Dµ. Fig.9 shows the relative errors vs the CPU
time in correspondence of different numbers m of basis vectors. In the nonlinear case the
CPU time required by the RBµ-DAEs method for the solution of the reduced system is
always lower than the PODµ one. Again, the curve corresponding to the PODµ method
in the plot has a vertical displacement, also, the CPU time can decrease with m since
the conditioning of the system can get better when adding some new basis vectors. We
report results obtained for m = M = 4, ..., 8 for the RBµ-DAEs method: an m = M = 9
vector basis is hard to be built due to instabilities caused by the bad conditioning of
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Figure 10: Test 2: comparison of the RBµ-DAEs method and the PODµ one; relative
errors e(µ) vs µ ∈ D are reported in correspondence of m = 5.
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Figure 11: Test 2: comparison of the RBµ-DAEs method and the PODµ one; CPU
times [sec] vs µ ∈ D are reported in correspondence of m = 5.

the reduced problem; for the PODµ method we report results for m = K = 5, ..., 11
since the value of the relative errors and the CPU times become almost stationary for
m = K > 11. The relative error achieved with the PODµ method becomes competitive
with the RBµ-DAEs one only in correspondence of about m = K = 10 basis vectors
for the PODµ method. Fig.s 10 and 11 show a comparison of the two methods in
terms of relative errors and the computational times respectively: we can draw similar
conclusions as those reported for the linear parameter dependence; also, in this case the
computational saving of the RBµ-DAEs method is definitely lower.

5 Conclusions

In this work we have proposed a Reduced Basis method (RBµ-DAEs) for the solution
of parametrized systems of DAEs. In particular, we have considered a Microelectronic
application, even if the method is applicable to other Engineering problems as well.
We have proposed an a priori estimate for the error associated with the solution of
parametrized problems via the RBµ-DAEs method, thus highlighting that the error
rapidly decreases as the number of basis vectors used for the reduction increases. Nu-
merical tests reveal that the proposed RBµ-DAEs method, in comparison with a POD
approach for parametrized DAEs (PODµ), is efficient for the solution of such problems.
This is more evident in the case of nonlinear problems with nonlinear parameter de-
pendence; e.g. for the numerical test discussed in this work, the computational costs of
the online step associated with the RBµ-DAEs method are even more than three times
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lower than those of the PODµ approach, for a prescribed error level.
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[20] A. Quarteroni, G. Rozza, L. Dedè, A. Quaini. Numerical approximation of a control prob-
lem for advection-diffusion processes. In System modeling and optimization, IFIP Int. Fed.

Inf. Process. 199, 261-273, Springer, New York (2006).

[21] A. Quarteroni, R. Sacco, F. Saleri. Numerical Mathematics. Springer-Verlag, Berlin, 2006.

[22] M.J. Rewienski. A Trajectory piecewise-linear approach to model order reduction of non-
linear dynamical systems. PhD Thesis, Massachusetts Institute of Technology, 2003.

[23] G. Rozza. Reduced-basis methods for elliptic equations in sub-domains with a posteriori
error bounds and adaptivity. Journal of Applied and Numerical Mathematics 55(4), 403-
424 (2005).

[24] A. Verhoeven, M. Striebel, J. Rommes, J. ter Maten, T. Bechtold. Proper Orthogonal
Decomposition Model Order Reduction of nonlinear IC models. TUe CASA Report, 2008.
http://www.win.tue.nl

[25] A. Verhoeven, J. ter Maten, M. Striebel, R. Mattheij. Model Order Reduction for nonlinear
IC models. TUe CASA Report, 2007.
http://www.win.tue.nl

[26] T. Voss, A. Verhoeven, T. Bechtold, J. ter Maten. Model Order Reduction for Nonlinear
DAE in Circuit Simulation. TUe CASA Report, 2006.
http://www.win.tue.nl

25



MOX Technical Reports, last issues
Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

03/2009 M. D’Elia, L. Dedé, A. Quarteroni:
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