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Abstract

We propose a finite element method for solving a system of equations describing the cou-
pling between cardiac mechanics and electrical signalling. The model is based on a multiplica-
tive decomposition of the deformation tensor into a passive and active part, the latter carrying
the information of the electrical potential propagation and anisotropy of the cardiac tissue into
the equations of incompressible or nearly incompressible nonlinear elasticity, governing the
mechanical response of the biological material. Moreover, by changing from an Eulerian to
a Lagrangian configuration, the underlying problem exhibits a nonlinear diffusion term in the
equations of the electrical propagation (namely, the bidomain and monodomain equations).
Piecewise quadratic finite elements are used to approximate the displacements field, while for
pressure, electrical potentials and ionic variables, we use piecewise linear elements. Various
test cases show that the proposed method is able to capture some important features of the
studied phenomenon, and illustrate the behavior of the global model.
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1 Introduction

This work deals with the numerical simulation of the interaction between the propagation of elec-
trical potential and large deformations of the cardiac tissue. This subject has gained a considerable
attention in recent years, as shown by the increasing number of contributions in applied mathemat-
ics and bioengineering (see e.g. [7, 22, 23, 29], the list being far from complete). The diversity of
these studies suggests that both the modeling and numerical treatment of this class of problems is
far from being a resolved subject. A considerable amount of literature is available for the much
more established understanding of a particular facet of the problem, namely the mechanisms that
drive the electrophysiological activity in the heart. Several numerical methods have been proposed
and analyzed for efficiently solving the Bidomain and Monodomain equations (see e.g. [8, 31, 35]).

In this paper we shortly illustrate a recently proposed model for cardiac electromechanics, and
we introduce a suitable numerical method for its approximation. More precisely, the main ingre-
dients include a modeling of the excitation-contraction mechanism based on the recent description
of [1, 7]. The deformation of the tissue can be modeled assuming a quasi-steady elasticity frame-
work, in which we suppose that a multiplicative decomposition between the active and passive
mechanical response can be introduced at the deformation level. In this context we consider that
the active part of the mechanical response carries the information about the anisotropy of the tissue
through the fibers’ orientation. The main features of this model are essentially derived from the
electromechanical model of a one-dimensional fiber. Despite some necessary simplifications in
the underlying physics, the proposed model is able to address the main features of the complete
mechanical/electro-dynamical system, providing more insight on the role of the active strain in
the cardiac electromechanical phenomenon. Our framework can of course accommodate the study
of more general material properties, such as ortothropy, and different model parameters. Another
goal of this paper is to introduce a suitable finite element method for obtaining accurate numerical
approximations of our coupled problem, and to present some numerical examples to illustrate the
behavior of the phenomenon. In this work we will restrict to consider a weak coupling between
the mechanical response and electrical propagation.

The remainder of this paper is organized as follows. In Section 2, the bidomain model for
the electrical activity is outlined, followed by a description of an appropriate mechanical frame-
work on the basis of finite elasticity. Next, we give a precise meaning to the coupling between
mechanics and electrical activity in the tissue. In Section 3 we construct the corresponding finite
element method to solve the derived coupled problem, and Section 4 contains several numerical
examples putting into evidence the good behavior of the models and methods proposed. Finally,
some conclusions are drawn in Section 5.

2 Formulation of the electromechanical problem

A contraction of the cardiac muscle generally takes place in response to an electrical impulse. On
the other hand, it is known that myocardial stretch can cause changes in the electrophysiological
properties of the heart (mechano-electrical feedback). As a matter of fact, several experimental
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studies both in vitro and in vivo, have proved that the myocardial stretch is responsible for the
change in the configuration of action potential, which leads to afterdepolarization-like activity and
arrhythmias (see e.g. [27]). In short, the cardiac electromechanical response behaves as follows.
An electrical impulse starts in the sinoatrial node. There, a depolarization begins and a wave
propagates across the atria, followed by a delay of the potential at the atrioventricular node. Then
a rapid depolarization of both ventricles occurs, which at the cellular level causes an increasing of
calcium concentration, and this mechanism produces a contraction by a temporary binding between
actin and myosin. This complex mechanism has been studied since many years. We will focus the
study on the macroscopic part of the coupling. In the following, we will divide the description into
three main parts: the equations governing the electrical activity, the equations for the mechanical
behavior of the tissue, and finally the coupling strategy.

In order to consider each sub-problem in a natural approach, we will formulate both the elec-
trical propagation and the nonlinear mechanics in a pure Lagrangian framework. To this end, by
Ωo ⊂ R3 we will denote the bounded spatial domain in the undeformed equilibrium state.

2.1 The governing equations for the electrical model

The quantities of interest in the Bidomain model for electrical signaling in the heart, are the intra-
cellular and extracellular electric potentials, ui = ui(X, t) and ue = ue(X, t), at (X, t) ∈ ΩT :=
Ωo× (0, T ). Their difference v = v(X, t) := ui− ue is the transmembrane potential. The conduc-
tivity of the tissue is represented by scaled tensors Di(X) and De(X), that, under axial symmetry,
are given by

Dk(X) = σt
kI +

(
σl
k − σt

k

)
al(X)aT

l (X), k ∈ {e, i},
where σl

k = σl
k(X) ∈ C1(R3) and σt

k = σt
k(X) ∈ C1(R3), k ∈ {e, i}, are the intra- and extra-

cellular conductivities along and transversal to the direction of the fiber (parallel to the unitary
direction vector denoted by al(X)), respectively, and at(X) its transpose. This description is cru-
cial in the model, since the cardiac tissue is actually made of fibers that drive the propagation
of the electrical potential. Even if the fibers’ distribution is rather known (subepicardial my-
ofibers follow a left-handed helix parallel to the wall, crossing the wall near the apex, and then
continue in a right-handed helical pathway at the subendocardium; the fibers cross over to the
subepicardium near the base), some simplifications can be assumed, for example, that fibers are
aligned with the domain axis, in which case we have that Di(X) and De(X) are diagonal matrices:
Di(X) = diag(σl

i, σ
t
i , σ

t
i ) and De(X) = diag(σl

e, σ
t
e, σ

t
e). In terms of physiological relevance, an

intermediate description allows that the fibers are aligned to the fixed angle θ. Then Dk is recast
explicitly in the form

Dk =

σ
t
k + (σl

k − σt
k) cos2(θ) (σl

k − σt
k) sin(θ) cos(θ) 0

(σl
k − σt

k) sin(θ) cos(θ) σt
k + (σl

k − σt
k) sin2(θ) 0

0 0 σt
k

 ,
for k ∈ {e, i}. The conductivities in the longitudinal direction must be larger than in the transversal
direction.
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The bidomain model is given by the following coupled reaction-diffusion system (for a general
introduction, see e.g. [31]):

χcm∂tv −∇ ·
(
Di(X)∇ui

)
+ χIion(v,w) = 0,

χcm∂tv +∇ ·
(
De(X)∇ue

)
+ χIion(v,w) = Iapp,

∂tw −H(v,w) = 0, (X, t) ∈ΩT ,

(2.1)

provided with homogeneous Neumann boundary conditions. Here, cm > 0 is the surface capac-
itance of the membrane, χ is the ratio of membrane area per tissue volume, and w(X, t) is the
gating variable, which controls the local repolarization behavior of the action potential and it is
scalar or vectorial, depending on the choice of membrane model. The knowledge of suitable initial
conditions for v, ue,w is also required. The stimulation current possibly applied to the extracel-
lular space is represented by the function Iapp = Iapp(X, t). In the case that Di = %De for some
% ∈ R, the bidomain system reduces to the monodomain model:

χcm∂tv −∇ ·
(

Di(X)

1 + %
∇v
)

+ χIion(v,w) =
%

1 + %
Iapp,

∂tw −H(v,w) = 0, (X, t) ∈ ΩT .

(2.2)

This simpler model requires less computational effort than (2.1), and even though the assumption
of equal anisotropy ratios is very strong and generally unrealistic, (2.2) is still adequate for a quali-
tative investigation of certain repolarization sequences and the distribution of patterns of durations
of the action potential [8].

The choice of the functions H(v,w) and Iion(v,w) is determined by the membrane model to
be used. Depending on the level of complexity of the type problem to be studied, we will restrict
ourselves to two membrane models. First, the Rogers-McCulloch model [28], which is based on
purely phenomenological evidence, and is given by

H(v,w) = bv −w,

Iion(v,w) = c2vw − c1v(1− v)(v − a),
(2.3)

where a, b, c1, c2 are model parameters. Even though very simple, this model is able to capture the
characteristic shape of the action potential curve (see Figure 1 top). The phase diagram in Figure 1-
bottom shows computed trajectories for different initial values of v0 and w0 which converge to the
stable equilibrium state (0, 0). In order to provide results on a physiologically more accurate scale
for electrical potentials and time, the RM model (2.3) will be conveniently replaced by

H(v, w) =
b

TA
(v − vmin − Aw),

Iion(v, w) =
c1

TA2
(v − v0)(v − vmin − aA)(v − vmin − A) +

c2

T
(v − vmin)w.

(2.4)

The right column of Figure 1 displays the corresponding action potential curves and phase diagram.
Secondly, we use the phase-I Luo-Rudy (LRI) model [20] constructed on the basis of a description
of ionic currents. In that model, w is a vector of dimensionless ion-channel gating variables, and
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Figure 1: Action potential curve (top) and phase portrait (bottom) for the Rogers-McCulloch model
in the original (left) and rescaled (right) case, starting from the initial states A = (0.3, 0.1), B =
(−60, 0) and reaching the intersections of the nullclines.

the total ionic current density Iion(v,w) is the sum of a fast inward sodium current INa, a slow
inward current Isi, a time-dependent potassium slow outward current IK, an outward potassium
current IK1 , a plateau potassium current IKp , and a total background current Ib. For completeness,
further details are provided in the Appendix.

2.2 Model for finite elasticity

The myocardium is composed of connective tissue and cells surrounded by space filled with fluid,
all of these materials being mainly formed by water. From the mechanical viewpoint, the heart
tissue in its resting state can be regarded as an inhomogeneous, anisotropic, and incompressible
(or nearly incompressible) elastic material [13]. The tissue is subject to external load and active
deformation inducing a strain field. An adequate scenario for the modeling of cardiac mechanics
is then provided by the nonlinear elasticity framework.

From now on, x will denote the current position of a particle that occupied the position X in
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the initial undeformed configuration, and d = x−X stands for the displacement field. Then

F = ∇x = I +∇d, Fij =
∂xi
∂Xj

= δij +
∂di
∂Xj

,

where δij denotes the Kronecker delta, is the deformation gradient tensor, measuring strain between
the deformed and undeformed states. The symbol∇ denotes the gradient of a quantity with respect
to the material coordinates X. We assume that F can be decomposed (factorized) into an elastic
(passive) factor taking place at a macroscale, and an active factor, acting at the microscale (see
e.g. [21])

F = FeFo. (2.5)

Notice that F is given by the gradient of a vector map, while Fe,Fo are not, in general. In the
sequel we will refer to this setting as the active strain formulation. Similar decompositions have
been proposed in the context of finite elastoplasticity (see e.g. [30]).

By J, Jo we denote the determinants of F,Fo, respectively. The Jacobian J describes the vol-
ume map of infinitesimal reference elements onto the corresponding current elements. In other
electromechanical models available (see e.g. [23, 22, 29]), an appropriate term is added to the pas-
sive stress tensor, generating an additive decomposition between passive and active stress. We will
refer to the latter decomposition as active stress formulation. It is demonstrated in [21] that the
active stress decomposition is equivalent to (2.5) only in the special case of small deformations. A
deeper discussion on the active stress vs. active strain formulations can be also found in [1].

As discussed in [36], the time-space scales in the cardiac electromechanical phenomenon sug-
gest the use of steady state equations of motion to describe the conservation of linear and angular
momentum. These are reduced to the force balance

−∇ · P = f ,

where P is the Piola-Kirchoff stress, which represents force per unit undeformed surface, and f is
a vector of body forces. Note that the balance is defined in the undeformed state Ωo.

The definition of P in terms of the components of the deformation stress and strain measures,
is given by the constitutive relations. In the studied context, the medium is typically assumed to
be an hyperelastic material. Therefore it can be postulated that there exists an elastic strain energy
density function W = W(Fe) depending only on the present value of the elastic deformation,
which characterizes the material. Among the wide variety of models that have been proposed for
the passive cardiac tissue (for an updated review on this aspect, we refer the reader to [13]), we
consider simple Mooney-Rivlin materials, for which the internal stored energy function reads

W(Fe) =
µ1

2

(
tr(FeF

T
e )− 3

)
+
µ2

4

(
(tr(FeF

T
e ))2 − tr(FeF

T
e )2 − 6

)
,

where µ1, µ2 are elastic moduli. For Neo-Hookean materials µ2 = 0. To assure incompressibility
of the material (where only isochoric behavior is allowed), the strain energy is assumed to take the
form

W iso =W(Fe) + p(J − 1),
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where p is the Lagrange multiplier arising from the imposition of the incompressibility constraint
J = 1 (conservation of mass), and which is usually interpreted as the hydrostatic pressure field.

The Piola-Kirchoff stress tensor is given by the Frechet derivative of the internal stored energy
functionW , which in the fully relaxed configuration reads

P = Jo
∂W
∂Fe

F−To − pF−Te F−To ,

where for Mooney-Rivlin materials it takes the form

P = Jo
(
µ1 + µ2tr(FF−1

o F−To FT )
)
FF−1

o F−To − µ2Jo
(
FF−1

o F−To FT
)2

F−T − pF−T .

An alternative step is to consider nearly incompressible materials to avoid solving a mixed-type
problem. In such case, a strain energy function for Neo-Hookean materials is (see [5, 14])

W(Fe) =
µ1

2

(
tr(FeF

T
e )− 3− 2 ln(J)

)
.

The discussion on whether the myocardium should be modeled as incompressible or nearly in-
compressible is apparently not resolved, we therefore leave the door open for considering both
approaches.

We point out that if the chosen strain energy function has desirable stability properties (such
as polyconvexity and coercivity), then the application of an active strain decomposition like (2.5)
essentially traduces into a simple shift of the relaxation state from I to F−1

o , therefore preserving the
qualitative structure ofW . In this sense, the active strain formulation could be straightforwardly
extended to the study of more adequate material models, like the structurally based model for the
passive properties of the cardiac tissue presented in [13]. Notice that in the material law used
herein, so far we have not addressed a major ingredient in the modeling of cardiac dynamics which
is anisotropy. Obviously, the strain energy could also be considered to depend explicitly on the
fibers distribution through the inclusion of further invariants of the left Cauchy-Green tensor, or
through the use of components of the Green-Lagrange strain tensor, as in e.g. [15, 23, 32].

In contrast, we propose to account for the anisotropic behavior of the fibers simply by assigning
direction-specific active deformation fields in the active part of the decomposition. More specifi-
cally, for a myofiber distribution along the direction of the unit vectors al,at, we consider that the
active strain assumes the form

Fo = I + γlal ⊗ al + γtat ⊗ at, (2.6)

where al,at are the fiber sheet longitudinal and transversal directions respectively (which in a
simplified setting are assumed to represent fixed directions, for any point X), and γi are scalar
fields accounting for the activation, depending on macroscopic stimuli related to the electrical part
of the model, which will be made precise later. Recently, in [12] the authors also use an anisotropic
contribution in the active part of the cardiac response, but this is included in the framework of an
active stress formulation. We point out that our approach is not necessarily incompatible with an
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anisotropic description at the passive elastic level (which will give a more physiologically relevant
mechanical description), however we leave such analysis for a future study.

Putting together the previous description, we obtain that the Euler-Lagrange problem (in its
weak formulation) reads: Find d, p in suitable admissible displacement and pressure spaces such
that ∫

Ωo

(
µ1Jo(I +∇d)F−1

o F−To : ∇ϕ− pJ(I +∇d)−T : ∇ϕ
)

= 0∫
Ωo

(J − 1)q = 0,

(2.7)

for all test functions ϕ, q. Concerning boundary conditions, we have proceeded by specifying a
displacement field on a portion ΓD of ∂Ωo, which for simplicity has been taken as homogeneous
Dirichlet boundary data

d = 0 on ΓD ⊂ ∂Ωo, (2.8)

and homogeneous Neumann conditions on ∂Ωo \ ΓD.

2.3 The coupled model

With the purpose to study the basic mechanisms of the mechano-electrical feedback, and the related
numerical challenges, we herein consider a rather simple cupled model. We first assume that
the active deformation functions γi, i = l, t (Figure 2) depend directly on the transmembrane
potential through the following sublinear relation (see also [1], where a linear dependence with the
transmembrane potential is proposed)

γl(v) = −σlβ
v − vmin

vmax − vmin + v
, γt(v) = −σtβ

v − vmin

vmax − vmin + v
, (2.9)

where vmin, vmax are problem-dependent parameters accounting for the proper scaling of the so-
lution, β = 0.3 is included to model the change of length experimented by the cardiac fibers in
a normal heartbeat, and σl, σt are the conductivity factors defined in Section 2.1. Notice that the
definition of γ implies that the ratio between the intensity of the contraction in each direction of
the fiber with respect to the other direction coincides with the corresponding conductivity ratio. In
the light of (2.6), γ < 0 implies a contraction of the myocardium. This approach then assumes
that the information of the electrical part of the model enters in the mechanical description through
(2.6),(2.9) only. To account for the coupling at the microscale, we also relate the activation func-
tion γ to the intracellular calcium concentration [Ca]+ in the following way (see the similar model
in [7]):

γi(v, [Ca]+) = −σiβ
v − vmin

vmax − vmin + v
+ εiβ

lio
1 + η([Ca]+)(lio − 1)

,

for i = l, t, where lio = (η(c∗o) − εi)−1(η(c∗o) − 1), η([Ca]+) = 1
2

+ 1
π

arctan(β2 log([Ca]+/cR)),
and c∗o, cR, εi are given parameters. We will use this approach only when a ionic model (such as
Luo-Rudy) is considered. For simplified membrane models (Rogers-McCulloch), the terms γi are
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Figure 2: Mean active deformation function γ =
γl + γt

2
(a measure of the bulk active strain)

depending on the transmembrane potential (left), action potential curve and active deformation
function during a 500 ms period for the Rogers-McCulloch and Luo-Rudy I models (middle and
right, respectively).

taken as in (2.9). A more accurate description is indeed possible by considering a detailed model
of the microscopic activation depending on more involved elements of the ionic activity, such as
specific sarcomere length (as done for instance in [27, 29]), but we restrict ourselves to the present
simpler setting.

The second main ingredient of the electromechanical coupling is the proper representation of
the dependence of the electrical properties of the tissue, on the active strain. One approach to
account for the influence of the mechanical response into the electrophysiology, is essentially pro-
vided by a transformation of coordinates from Eulerian to Lagrangian and the use of the Piola
identity ∇ · (JF−T ) = 0 (see details in [1]). Other related approaches (to be included in a forth-
coming analysis) are based on a dependence of ionic currents, on certain microscopic mechanical
processes (see [29, 32]).

Collecting the items of the analysis above, and considering for instance, the case of incompress-
ible Neo-Hookean materials, we end up with the following bidomain electromechanical coupled
model

−∇ ·
(
µ1Jo(I +∇d)F−1

o F−To − p(I +∇d)−T
)

= 0 in Ωo,

J = 1 in Ωo,

χcm∂tv −∇ ·
(
Jo(I +∇d)−1De(I +∇d)−T∇ue

)
+ χIion = 0 in ΩT ,

χcm∂tv +∇ ·
(
Jo(I +∇d)−1Di(I +∇d)−T∇ui

)
+ χIion = Iapp in ΩT ,

∂tw −H(v,w) = 0 in ΩT .

(2.10)

The system of equations has to be completed with no-flux boundary conditions for the electric
variables, Dirichlet boundary conditions for the mechanical balance equation, and suitable initial
data for ue, v,w.
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Analogously, we have the monodomain electromechanical system (written in terms of v, p,X):

−∇ ·
(
µ1Jo(I +∇d)F−1

o F−To − p(I +∇d)−T
)

= 0 in Ωo,

J = 1 in Ωo,

∂tv −∇ ·
(
Jo(I +∇d)−1D(I +∇d)−T∇v

)
= Iion(v,w) in ΩT ,

∂tw −H(v,w) = 0 in ΩT .

(2.11)

Note that the third equation is a balance equation for the potential, accounting for the dynamics
between flow and reactions of ionic species, whereas the last equation is pointwise attached to the
material and does not represent any balance in space. Note also that (2.10) and (2.11) are both
written in the total Lagrangian formulation, that is, only in terms of the undeformed configuration.

2.4 Weak formulation

Assuming that all unknowns are regular enough (we suppose v, ue ∈ L2(0, T ;H1(Ωo)), w ∈
L2(0, T, L2(Ωo)), d ∈ L2(0, T ;H1

D(Ωo)
3), p ∈ L2

0(Ωo), in order to get bounded energy integrals),
we multiply the equations in (2.10) by a vectorial test field ϕ vanishing on ΓD, and by scalar test
functions q, ξ1, ξ2, ξ3 respectively. The weak problem associated to the coupled electromechanical
model (2.10) reads as follows. Given v0, w0 ∈ L2(Ωo), Iapp ∈ L2(ΩT ), for t ∈ (0, T ), find a
displacement vector d, pressure p, electrical potentials v, ue and ionic variables w such that the
following identities hold for all test functions ϕ, q, ξj:

µ1

∫
Ωo

Jo(I +∇d)F−1
o F−To : ∇ϕ−

∫
Ωo

p(I +∇d)−T : ∇ϕ = 0,∫
Ωo

(J − 1)q = 0,∫
Ωo

χcm∂tvξ
i +

∫
Ωo

(I +∇d)−1Di(I +∇d)−T∇ui · ∇ξi + χ

∫
Ωo

Iionξ
i = 0,∫

Ωo

χcm∂tvξ
e −

∫
Ωo

(I +∇d)−1De(I +∇d)−T∇ue · ∇ξe + χ

∫
Ωo

Iionξ
e =

∫
Ωo

Iappξ
e,∫

Ωo

∂twξ =

∫
Ωo

Hξ.

Although the wellposedness analysis of the bidomain equations for a (restricted) class of mem-
brane models has received several recent contributions (see [4, 6, 9, 33]), the mathematical analysis
of the cardiac mechanical response has been much less studied (see [10, 17]). As for the elec-
tromechanical coupling, it seems that there are no available results in terms of wellposedness and
stability of solutions. For the model proposed herein, an analysis of existence (and uniqueness,
under additional regularity restrictions on the mechanical variables) of solution, along with the
stability of the coupled system is currently under development [3].
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3 Finite element approximation

In this section, we outline the numerical strategy adopted to discretize the previously described
model, and to obtain the corresponding approximate solutions.

Let (0, T ) be partitioned into Ñ subintervals [tn, tn+1] of constant time step ∆t = tn+1 − tn

and denote with a superscript n the quantities computed at time tn. Define In+1
ion = Iion(vn,wn+1).

Then the semidiscrete system related to (2.10) reads as follows: Find (d, ue, v,w)n+1 such that for
all n ∈ {1, . . . , Ñ∆t}∫

Ωo

µ1J
n
o (I +∇dn+1)(Fno )−1(Fno )−T : ∇ϕ−

∫
Ωo

pn+1(I +∇dn+1)−T : ∇ϕ +
∫

Ωo

(Jn+1 − 1)q = 0,

(3.1)
χCm

∆t

∫
Ωo

(vn+1 − vn)ξi −
∫

Ωo

(I +∇dn+1)−1Di(I +∇dn+1)−T∇un+1
i · ∇ξi + χ

∫
Ωo

In+1
ion ξi = 0,

(3.2)
χCm

∆t

∫
Ωo

(vn+1 − vn)ξe −
∫

Ωo

(I +∇dn+1)−1De(I +∇dn+1)−T∇un+1
e · ∇ξe

+χ
∫

Ωo

(In+1
ion − I

n+1
app )ξe = 0,

(3.3)
1

∆t

∫
Ωo

(wn+1 −wn)ξ −
∫

Ωo

H(vn,wn+1)ξ = 0,

(3.4)

and a similar system is provided, corresponding to the semidiscrete counterpart for (2.11). Anal-
ogously to other approaches for the numerical treatment of the electromechanical coupling (as
e.g. [15, 22, 23]), here we assume that the evolution of the macroscopic mechanical dynamics has
a weak impact on the microscopic electrical activity, allowing in this way a formal uncoupling
of the two sub-problems. Then, in practice, the fully coupled problem will be solved in a segre-
gated way, and applying a standard backward Euler time integration scheme for ionic variables.
However, further efforts are being made to include a monolithic treatment of the coupling, as done
in [12]. A summary of the time-stepping algorithm is as follows: Assume that all field variables
are known at time tn. Then

i) The displacements dn+1 and pressure pn+1 are computed from (3.1) (see details in Sec-
tion 3.1).

ii) The ionic variables wn+1 are obtained from (3.4).

iii) The electrical potentials vn+1, un+1
e are determined by solving (3.2)-(3.3).

As for the spatial discretization, we partition the domain Ωo using a regular mesh Th constructed
by closed triangles (or tetrahedra for the 3D case) with boundary ∂K and diameter hK . The mesh
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parameter is h = maxK∈Th
{hK} and we use classical finite element spaces V r

h approximating
H1(Ωo) by piecewise polynomials of maximum order r on Th. More precisely,

V r
h = {v ∈ H1(Ωo) ∩ C0(Ωo) : v|K ∈ Pr(K) for all K ∈ Th},

for which {ϕrh} is a basis. It is evident that we are dealing with a saddle-point type problem.
Then for the scheme to formally satisfy the discrete inf-sup or Ladyzhenskaya-Babuska-Brezzi
stability condition (see e.g. [26]), the displacement field will be approximated using the FE space
V 2
h , while the pressure (in the incompressible formulation) and electrical potential fields, will be

approximated using V 1
h , other options being certainly possible (see [24] for a comparison of sev-

eral discretization methods applied to soft tissue mechanics). The linear systems associated to
the segregated bidomain (or monodomain) and ionic sub problems, are solved using a precondi-
tioned GMRES iterative method (with LU preconditioner). On the other hand, the linear systems
involved in the Newton step associated to the seggregated mechanical problem are solved with the
unsymmetric multi-frontal method (UMFPACK).

3.1 Newton iteration

The non-linear system of equations resulting from the discretization of the bulk balance equation
(2.7)-(2.8) is solved using an incremental iterative Newton-Raphson solution procedure. Dropping
the superscript denoting time discretization, we denote the solution at the (sub)iteration step k
by (Fk, pk), and the incremental growth of the discrete deformation and pressure by δFk+1 =
I + δ(∇dk+1), δpk+1. Since the speed of convergence of Newton’s iterations is known to depend
on its proper initialization, as initial guess for the iteration process we use F0 = I (the identity
matrix), that is, we start from the undeformed geometry. Next, when evolving in time, as initial
guess we take the deformation at the previous time step. The problem in its weak form reads:
Given an approximation of the solution to (2.7)-(2.8) on the sub-iteration step k, find δdk+1, δpk+1

in an appropriate space of variations, such that∫
Ωo

µ1Jo∇(δdk+1)F−1
o F−To : ∇ϕ + pk[(I +∇dk)−1∇(δdk+1)]T : (I +∇dk)−1∇ϕ

−δpk+1Cof(I +∇dk) : ∇ϕ +

∫
Ωo

µ1Jo(I +∇dk)F−1
o F−To : ∇ϕ− Cof(I +∇dk) : ∇ϕpk = 0∫

Ωo

Cof(I +∇dk) : ∇(δdk+1)q +

∫
Ωo

(Jk − 1)q = 0,

for all ϕ, q. Here Cof(M) denotes the matrix of cofactors of the generic tensor M, and Fo does not
have superscript since it is taken at the previous time step. Notice that we have used the relation

DF−T (δd) = −F−T (∇(δd))TF−T , for all δd.

The stopping criterion for the algorithm corresponds to∥∥δdk+1
∥∥
H1(Ωo)∥∥dk+1
∥∥
H1(Ωo)

+

∥∥δpk+1
∥∥
L2(Ωo)

‖pk+1‖L2(Ωo)

< tol. (3.5)
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Figure 3: 1D Rogers-McCulloch (top row) and Luo-Rudy (bottom row) monodomain models:
Time evolution of the membrane potentials (left column) in the pure electrical propagation (dashed
lines) and in the coupling with a description for the contraction of the fiber (solid lines); and
potentials’ distribution over the fiber (right column).

The sequence {δdk+1, δpk+1}k ought converge to (dn+1 − dn, pn+1 − pn). Obviously, the cost
of each nonlinear iteration is the cost of one residual evaluation and a number of solutions to the
linearized subproblems.

4 Numerical Examples

As a sample of our results, we present simulations corresponding to the general systems (2.10) and
(2.11) in different scenarios: a single fiber representation, 2D simple geometries, and a truncated
ellipsoid in 3D. For the 3D case, our code is based on the C++ object oriented parallel library
LifeV [19]. As stated in the previous section, we approximate displacements d with P2 finite
elements, while for the pressure field p and the electrical potential fields v, ui, ue,w we use piece-
wise linear elements. Our main objective now reduces to provide a qualitative insight of the main
features of the model.

13



10
1

10
2

10
−6

10
−4

10
−2

N

E
r
r
o
r
s

 

 

h

h
3

H
1
−error

L
2
−error

10
1

10
2

10
−4

10
−3

10
−2

10
−1

N

E
r
r
o
r
s

 

 

h

H
1
−error

Figure 4: Convergence history for: (left) the displacements in a pure mechanical model problem,
and (right) the electrical potential in a pure electrical model problem, on a 2D slab.

4.1 A single fiber simulation

To investigate the propagation of a depolarization wave in a moving domain, consider the system
(2.11) for t > 0 and X ∈ Ωo = (0, 1). In one spatial dimension, it reduces to solving the following
parabolic PDE system

∂t(v(1 + γ))−D∂X((1 + γ)−1∂Xv) = (1 + γ)Iion(v, w)

∂tw = H(v, w),

endowed with no-flux boundary conditions. Here Iion and H , when taken as in (2.3), assume
the following adimensional parameters (see [28]) a = 0.13, b = 0.013, c1 = 0.26, c2 = 0.1,
D = 5.6 × 10−3. With this choice of parameters, the travelling waves produced have positive
speed. Impulse propagation was initiated by application of a stimulus current to the leftmost part
of the fiber. The Luo-Rudy kinetics (see the Appendix) are also used in this first test. In Figure 3
we display the time evolution of the transmembrane potential (species v) until the time t = 300 ms,
at the same point in a contractile and fixed fiber (left), and a snapshot of the spatial distribution
of v in Ωo at a fixed time t = 80 ms (right). The dashed lines correspond to the propagation of
the transmembrane potential on a fixed fiber, while the solid line represents its counterpart in a
coupled propagation-contraction of the domain. The representation is done in X−coordinates.
The situation for both Rogers-McCulloch and Luo-Rudy models is depicted (top and bottom of
Figure 3, respectively). From the time evolution plots, it is observed that the electrical potential in
a fixed point has a faster variation in a fixed fiber than in a contractile one. This is in well agreement
with previous works (as e.g. [34]). On the other hand, the snapshots show that (a pull back to the
reference configuration of) the potential wave in a contractile domain travels faster than that on
the fixed domain. We stress that this behavior does not imply that in our model the mechanical
response precedes the electrical propagation.

14



Figure 5: 2D Rogers-McCulloch anisotropic monodomain electromechanical coupling: Time evo-
lution of the transmembrane potential and deformed configuration (compared to the resting state)
for the compressible model (left), incompressible model (center) and pressure isovalues varying
between 33 and 69 (right), for time instants t = 10 ms (top), t = 200 ms (middle) and t = 400 ms
(bottom).

4.2 A 2D slab of tissue

In order to validate our mechanical numerical scheme (following [24]), we perform one time step
iteration, so that all potential fields are known constant quantities acting as initial conditions. The

15



system to solve corresponds to (2.11) on the spatial domain Ωo = (−1, 1)2. A simple stretching
in the X1-direction is assumed, along with a compression in the X2−direction. Let us define
λ = 1 + βX1. The given body force and boundary data (zero displacements on the bottom, and
traction on the remaining edges of the slab) are chosen such that the solution of the mechanical
problem is d = (βX2

1/2, X2(1 + βX1)−1 −X2)T , p = µ1/2 which gives

F =

[
1 + βX1 0

−X2(1 + βX1)−2 (1 + βX1)−1

]
,

and satisfies the incompressibility condition. Analogously, we perform a validation of the electrical
solver, taking only the simplified monodomain Rogers-McCulloch problem (see e.g. [2]). Dirichlet
boundary conditions are imposed on the left and right boundaries of the unit square (v(0, X2, t) = 1
and v(1, X2, t) = 1), and the model parameters are chosen such that the problem possesses the
following analytical solution

v(X1, X2, t) =
{

1 + 0.0001 exp
(√

1/2(X1 − C0t)
)}−1

.

Figure 4 displays the error history for both model problems. We see that (left plot) a convergence
of order h2 is recovered for the displacements in the H1-norm, while a cubic rate of convergence
is achieved in the L2-norm. For the pure electric problem, a linear convergence is obtained for the
electrical potential.

We now consider the anisotropic monodomain electromechanical problem (2.11) on the unit
square. We assume that the fibers are aligned with the X1-axis (θ = 0), so that the conductivity
tensor is a diagonal matrix of entries (in Ohm−1cm−1) D11 = σl = 3.28 × 10−2, D22 = σt =
6.99 × 10−3. The membrane model used is the rescaled Rogers-McCulloch (2.4), for which the
remaining parameters are T = 0.63 ms, A = 130 mV, v0 = vmin = −84.0 mV. The initial data for
the transmembrane potential and gating variable is

v0(X1, X2) = 1−
(

1 + exp(−50
√
X2

1 + (X2 − 0.5)2)

)
, w0(X1, X2) = 0.

The portion of the boundary where homogeneous Dirichlet boundary conditions for the displace-
ment field are applied is the bottom edge, while the other edges experience no externally applied
force. The elastic modulus is µ1 = 4, the activation parameters are β = 0.3, vmax = 26. The
domain is discretized using 4’406 vertices (8’570 triangles), and the time evolution parameters are
set to Tfinal = 600ms, ∆t = 1ms. A tolerance of 1.0 × 10−5 is used for the Newton stopping
criterion (3.5), achieving convergence almost always in less than five iterations.

Several experiments have been conducted to obtain a qualitative comparison between the be-
haviors of the incompressible and nearly compressible formulations. Figure 5 displays snapshots
at three different time instants of the potential field and corresponding deformed domain for both
models, plus pressure isovalues for the incompressible formulation. As in the 1D simulations, it
is observed that the propagation of the electrical wave induces contraction of the tissue. Although
the results are somewhat different (in terms of magnitude of the transmembrane potential and dis-
placements), we see that the shown deformations generate strains of reasonable magnitude in both
cases, while the pressure field shows no spurious oscillations.
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Figure 6: Description of the orientation of muscle fibers for an idealized left ventricular geometry.

4.3 A truncated ellipsoidal geometry

Now we illustrate the behavior of the electromechanical coupled model on a idealized left ven-
tricule of height 10cm, discretized using 29’560 nodes forming 155’770 tetrahedra. For our choice
of finite elements, this implies that we handle 222’556 degrees of freedom for the displacements
and 29’560 degrees of freedom for each electrical potential field and gating variable. The domain
is initially subject to a periodic pure-electrical external stimulus. The time discretization parame-
ters are set to Tfinal = 600ms, ∆t = 0.5ms, and the Luo-Rudy kinetics along with the bidomain
model are used to describe the electrical activity. For the orientation of the cardiac fibers, we use
an analytical description given in e.g. [8] (see Figure 6).

As for the initial data, we assume that the tissue is polarized at the beginning of cardiac cycle.
This means that ionic variables are set to zero, while the transmembrane potential corresponds to
constant resting state v0 = −84.0 mV, and we impose an initial stimulus of magnitude 100 mV at
the point (−0.96,−0.82,−2.5). The conductivity parameters (in Ohm−1cm−1) are σl

i = 3× 10−3,
σt
i = 3.1525×10−4, σl

e = 2×10−3, σt
e = 1.3514×10−3. The elastic and activation parameters are

set as in the previous subsection. For this example we use the nearly incompressible electrome-
chanical model. From Figure 7, and analogously to the 1D and 2D simulations, a propagation of
the electrical wave is observed, which induces local contraction of the cardiac tissue.

Figure 8 examines the scaling of the solver for the Luo-Rudy bidomain electromechanical
model on a refined ellipsoide (39’850 nodes) at time instant t = 60 ms (when the physics of
the coupled problem is already clearly noticeable). The figure provides results in terms of the
number of linear iterations, the average CPU timing for each linear iteration, each preconditioner
computation (built using two layers of overlap), and a single time step. All these accounting for
the resolution of the coupled problem (electrical system plus mechanical system). Up to 64 pro-
cessors, the algorithm shows a reasonable scalable behavior. Since the preconditioner computation
takes a no minor part of the overall process, we re-use it.
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Figure 7: Snapshots of the evolution of the transmembrane potential and corresponding movement
of the mesh, Luo-Rudy I, bidomain electromechanic model on a truncated ellipsoid at time instants
t = 60, 300, 600 ms (left, middle, right, respectively), in different settings.

4.4 A heart-like geometry

Finally we preform several numerical tests using a 3D bi-ventricular geometry. The associated
tetrahedral mesh consists of 13’628 vertices and 69’544 elements. The bidomain Rogers-McCulloch
electromechanical model is used here, and Figure 9 illustrates the propagation of the transmem-
brane potential front, along with the displacement through the cardiac muscle. After the initial
activation, a second activation stimulus is applied at t = 500ms.
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Figure 8: Scalability results for the Luo-Rudy bidomain electromechanic model on a truncated
ellipsoid at time instant t = 60 ms. Number of linear iterations (left) and time spent on different
parts of the algorithm (right).

5 Conclusions

In this paper we have proposed a numerical method for a coupled electromechanical model of
the cardiac tissue. The electrical part of the model includes a description of the anisotropy in the
medium and allows for different electric membrane models. The interaction between the electric
and mechanical activity is taken into account by assuming that when decomposing multiplicatively
the visible deformation, its active part depends directly on the transmembrane potential through a
saturation-like function. In this active part, we also include the anisotropic description of the tissue.
The finite element method is based on P2 elements for the displacements, while for electrical
potentials and pressure field we use P1 elements.

From the modeling point of view, we stress that a deeper understanding of the electromechanical
coupling is still needed and open to discussion. As limitations in our treatment, we have neglected
several aspects in the modeling of the heart function, such as an accurate anatomical representation
of the fiber directions, a model for the blood circulation, Starling effects, a more involved model
for the passive mechanical properties of the medium, ionic-scale electromechanics (intracellular
calcium handling and cross-bridge formation), etc. Also, the quantitative validation of the model
used here implies a difficult task due to the lack of sufficient experimental data. Nevertheless,
this work is being extended to consider some of these aspects for current and future studies, with
special focus on cases of real pathological interest. For example, cardiac heterogeneities could
cause electrical impulses originating from one area of tissue, to fail to conduct into areas with
prolonged repolarization [16]. It is also known that in certain myocardiopathies, the electrical
potential is able to propagate through all the tissue, while there are specific regions where no
contraction takes place. This is a clear application in which cardiac electromechanical models
have special interest.

From the numerical viewpoint, several improvements can be rather straightforwardly included
in the proposed method. First of all, the time stepping strategy could be upgraded to a adaptive
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Figure 9: Snapshots of the evolution of the transmembrane potential and corresponding slight
movement of the mesh, Rogers-McCulloch monodomain electromechanic model at time instants
t = 60, 300, 600 ms (left, middle, right, respectively).

scheme by using a similar algorithm as the one proposed in [8], where the use of a small time step in
the excitation phase would increase the accuracy of capture of the action potential upstroke, while
a large time step could be used for the plateau phase. Secondly, other finite element discretizations
and more sophisticate preconditioning algorithms can be applied, such as the Monodomain-based
block-triangular preconditioning proposed in [11] or structured algebraic multigrid preconditioners
in the spirit of [25].

Finally, to the authors’ knowledge, the well-posedness analysis, global existence, regularity
of solutions, and related questions concerning the mathematical study of cardiac electromechan-
ical models have not been throughly addressed. Although a rigorous analysis in this direction is
currently under development [3], we can anticipate that the strong coercivity of the diffusion oper-
ators in the fully coupled problems (2.10),(2.11) (which will lead to the performance of a smooth
existence analysis) requires a rather complicated development. A way around to this consists in
considering a loose coupling between the electrophysiology and mechanical description, which al-
lows us to treat separately the nonlinear elasticity problem following e.g. [5, 18] and the bidomain
system as in e.g. [6, 33].
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A The Luo Rudy model

We have Iion(v,w) = INa(v,w) + Isi(v,w) + IK(v,w) + IK1(v,w) + IKp(v) + Ib(v). The
component currents are defined by

INa = GNam
3hj(v − ENa), IK1 = GK1K1∞(v − EK1), Isi = Gsils(v − Esi),

IKp = GKpKp(v − EKp), IK = GKY Yi(v − EK), Ib = 0.03921(v + 59.87),

with GNa = 23, Gsi = 0.07, GK = 0.705, GK1 = 0.604, GKp = 0.0183, ENa = 54.4, EK = −77,
EK1 = −87.26, EKp = −87.26, Eb = −59.87 (in mV). In addition, Esi = 7.7− 13.0287 ln[Ca]+.
The calcium ionic concentration satisfies the Nernst equilibrium

dt[Ca]+ = −10−4Isi +Gsi(10−4 − [Ca]+),

and all gate variables ρ ∈ {h, j,m, l, s, Y,K1} evolve according to dtρ = αρ(v)(1− ρ)− βρ(v)ρ,
which precisely corresponds to the third equation in (2.1). Here, αρ(v) and βρ(v) define the
opening and closure rate of the gates, which are given by αh = αj = 0 for v ≥ −40 mV,
αh = 0.135e−0.147(v+80) for v < −40 mV, and

βh =

{
3.56e0.079v + 3.1× 105e0.35v for v < −40 mV,
(0.13 + 0.13e−0.09(v+10.66))−1 otherwise,

αj = (v + 37.8)
e0.2 + 2.7× 10−10e−0.04v

−7.87× 10−6(1 + e0.3(v+79.2))
for v < −40 mV,

βj =

{
0.1212e−0.01052v(1 + e−0.1378(v+40.14))−1 for v < −40 mV,
0.3e−2.535×10−7v(1 + e−0.1(v+32))−1 otherwise,

αK1 =
1.2

1 + e0.2385(v−EK1
−59.215)

, αm =
0.32(v + 47.13)

1− e−0.1(v+47.13)
, βm = 0.08e−0.0909v,

αl =
0.095e−0.01(v−5)

1 + e−0.072(v−5)
, βl =

0.07e−0.02(v+44)

1 + e0.05(v+44)
, αs =

0.012e−0.008(v+28)

1 + e0.15(v+28)
,

βs =
0.0065e−0.02(v+30)

1 + e−0.2(v+30)
, αY =

0.0005e0.083(v+50)

1 + e0.057(v+50)
, βY =

0.0013e−0.06(v+20)

1 + e−0.04(v+20)
,

βK1 =
0.4912e0.08(v−EK1

+5.476)

1 + e−0.5143(v−EK1
+4.75)

+ e0.0618(v−EK1
−594.31).

21



The gating variables Yi, Kp are assumed to rapidly reach a steady state, and therefore to depend
only on the potential u. We set Yi(v) = 1 for v ≤ −100 mV, Kp = (1 + e0.1672(7.488−v))−1, and

Yi = (2.837e0.04(v+77) − 1)((v + 77)e0.04(v+35))−1 for v > −100 mV.
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