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Abstract. In this paper we address the importance and the impact of employing structure
preserving neural networks as surrogate of the analytical physics-based models typically employed
to describe the rheology of non-Newtonian fluids in Stokes flows. In particular, we propose and test
on real-world scenarios a novel strategy to build data-driven rheological models based on the use of
Input-Output Convex Neural Networks (ICNNs), a special class of feedforward neural network scalar
valued functions that are convex with respect to their inputs. Moreover, we show, through a detailed
campaign of numerical experiments, that the use of ICNNs is of paramount importance to guarantee
the well-posedness of the associated non-Newtonian Stokes differential problem. Finally, building
upon a novel perturbation result for non-Newtonian Stokes problems, we study the impact of our
data-driven ICNN based rheological model on the accuracy of the finite element approximation.
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1. Introduction. Rheological models are closed-form mathematical expressions
describing the relation between the stress and the rate of deformation of the fluid.
The study of the rheology of complex fluids has been a subject of interest for more
than one century: based on the experimental evidence showing different types of rheo-
logical responses, many constitutive models have been proposed. Generally speaking,
there are two main approaches for obtaining shear–stress relationships: data-driven
modeling based on empirical observations; and physics-based models derived from
first principles based on the material’s underlying structure. In the context of the
second approach, even limiting the discussion to the so-called generalized Newtonian,
in which the stress is assumed to be only a function of shear rate and does not depend
upon the history of deformation, several rheological models have been put forward and
are routinely adopted in engineering applications, ranging from the simple power-law
model, in which the shear stress is proportional to a power of the shear rate, to more
involved models such as Cross [10], Carreau and Carreau-Yasuda [8] models, in which
the power law dependence is limited to intermediate shear rates, while asymptotic
constant viscosities are achieved for both low and high shear rates. Clearly, the use of
physics-based rheological models requires an a-priori choice of the analytical depen-
dence between shear rate and viscosity, leaving to the calibration phase the choice of
the parameters to best fit the experimental data.

To overcome the need of the a-priori (to some extent arbitrary) choice of the
model, which may be limiting when complex flow behaviors are considered, data-
driven rheological models can represent a suitable and valid alternative. In recent
years, constitutive models based on neural networks (NN) have received growing at-
tention (see, e.g., [3, 9, 17, 18, 23, 29, 31] and the references therein), owing to their
excellent nonlinear function fitting capabilities, while remaining form-agnostic, which
makes them desirable for a general shear–stress modeling framework. Moreover, NNs
possess two computational attractive features: (1) a rapid online execution time,
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which is particularly beneficial when the evaluation of a constitutive law can domi-
nate the simulation cost; (2) the current availability and efficiency of NN automatic
differentiation packages, which simplifies the task of obtaining tangent problems to
solve the nonlinear system stemming, e.g., from the Finite Element (FE) discretiza-
tion of the associated differential problem. For the solution of algebraic problems
employing machine learning techniques see, e.g., [15] and the references therein.

However, when data-driven models are employed in combination with systems
of partial differential equations (PDEs), there are key issues that have to be prop-
erly addressed to make this approach amenable to scientific simulations. Indeed, the
data-driven model not only must satisfy physical assumptions, but also mathematical
properties to ensure the existence (and potentially, the uniqueness) of solutions of
the associated differential problem. Thus, it becomes of paramount importance the
integration of structure preserving neural networks into partial differential equations
(PDEs) that guarantee the well-posedness of the mathematical problem.

1.1. Our contribution. In this paper we consider the following prototypical
non-Newtonian Stokes problem:

(1.1)


−∇ · [τ(ε(u))] +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Ω,

where we assume that the stress tensor τ has to be deduced from experimental data.
It is worth noticing that from a mathematical point of view (see, e.g., [5]) the stress
tensor τ must satisfy a certain set of conditions (cf. Assumptions (A) below) to
ensure the well-posedness of the differential problem (1.1). In view of this remark, a
common practice to find τ and the associated solution (u, p) is the following:

• a priori select a law for τ that is known to ensure the well-posedness of the
problem (e.g. Carreau or power law, that typically depend on a certain set
of parameters);

• employ experimental data to fit the parameters of the selected law;
• numerically solve (1.1).

As mentioned earlier, the potential difficulty of this approach is the a priori choice
of the law for τ , which can be (to some extent) arbitrary, since it is not adapted to
data. For this reason, in this paper we consider a data-driven discovery of the stress
tensor τ from experimental data, based on neural networks. In particular, to ensure
the well-posedness of the differential problem we make the following choice

τθ(ε(u)) = ±ICNNθ(|ε(u)|)ε(u)

where ICNNθ: R→ R is an Input-Convex neural network (see [1,30]) whose parame-
ters θ are trained on the specific set of experimental data and the sign is automatically
learned depending on the nature of fluid (shear thinning or shear thickening). Dif-
ferently from standard feed-forward neural networks, Input-Convex Neural Network
functions are convex functions with respect to the input variable. In view of this cru-
cial property, it turns out that the following problem (and its discrete approximation)
is well posed:

(1.2)


−∇ · [τθ(ε(u))] +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Ω.
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To conclude, we mention that in [29] a data-driven neural network based approach to
learn viscosity models of two non-Newtonian systems (polymer melts and suspensions
of particles) using only velocity measurements has been studied by employing Physics
Informed Neural Networks [28]. However, in [29] standard neural network have been
employed and the crucial issue of the well-posedness of the resulting differential prob-
lem (1.2) is not addressed.

Throughout the paper we will use the notation x . y with the meaning x ≤ cy,
with c positive constant independent of the discretization parameters.

1.2. Outline. In Section 2, we introduce the Stokes equation for non-Newtonian
fluids and recall useful theoretical results concerning the well-posedness of the con-
tinuous problem and the approximation properties of its finite element approxima-
tion; these latter properties are exemplified through a set of numerical experiments,
that are instrumental for the subsequent discussion. In Section 3, we briefly recall
Input-Convex Neural Network (ICNN) scalar valued functions and we show how to
employ them to build data-driven rheological models that are conformal with the
well-posedness of the differential problem. In Section 4, we address the finite element
approximation of the non-Newtonian Stokes problem governed by the data-driven
ICNN rheological model. In particular, building upon a perturbation-type result
for non-Newtonian Stokes problem, we connect the approximation properties of the
ICNN and the ones of the finite element method. Finally, in Section 5 we draw our
conclusions.

2. Non-Newtonian Stokes flows. In this section we recall the continuous
problem together with its weak formulation and highlight suitable hypotheses guar-
anteeing existence and uniqueness of the solution (Section 2.1). Later, we introduce
the finite element discretization (Section 2.2), whose approximation properties are
exemplified and discussed through a set of numerical tests (Section 2.3).

2.1. Continuous problem and weak formulation. Let us consider an in-
compressible fluid inside a domain Ω ⊂ R2, with Lipschitz boundary ∂Ω. We denote
by u : Ω → R

2 the velocity field and by p : Ω → R the pressure. We suppose that
(u, p) satisfies the following equation:

(2.1)

{
−∇ · [τ(x, ε(u))] +∇p = f in Ω,

∇ · u = 0 in Ω,

coupled with the homogeneous Dirichlet boundary condition for u and zero mean
condition for the pressure p:

u = 0 on ∂Ω,

∫
Ω

p dx = 0.

Here τ denotes the stress tensor, which is a suitable function of the symmetric strain
rate tensor ε(u) defined as:

ε(u) :=
1

2
(∇u +∇uT )

and the term f is a given body force. In the framework, adopted in this paper, of the
so-called generalized Newtonian fluids, the stress tensor is assumed to be a function
of the shear rate only, i.e. τ(x, ε(u)) = τ(ε(u)) and does not depend on the history
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of deformation. More precisely, we have:

τ(ε(u)) = k(|ε(u)|)ε(u)

where the function k : R → R represents the viscosity of the fluid, which results to
be a constant in case of a Newtonian fluid, while the norm |·|2 represents the squared

Frobenius norm, i.e. for K ∈ Rn×n real matrix, |K|2 =
∑n
i,j=1K

2
ij . Popular choices

for k(·) are the Carreau law:

(2.2) k(t) = k∞ + (k0 − k∞)(1 + λt2)(n−2)/2,

and the power law:

(2.3) k(t) = k0t
n−2

where k0 > k∞ ≥ 0, λ > 0 and n ∈ (1, 2) for pseudo-plastic fluid and n > 2 for a
dilatant fluid. The case n = 2 corresponds to Newtonian fluids.

About the mathematical analysis of problem (2.1), the literature is quite flourish-
ing: we only refer to the works [5,6,11,12,19,24] and references therein (see also [13,27]
and their references for more recent contributions on the topic, under more general
assumptions of non-isothermal fluids). In particular, in this paper we will adopt the
assumptions (and the results) presented in [5]. We thus introduce a set of assumptions
for k(·) which guarantee the existence and uniqueness of the (weak) solution to (2.1):

Assumptions (A): We assume that k ∈ C(0,∞) and that there exist constants
r ∈ (1,∞), α ∈ [0, 1] and ε, C,M > 0 such that:

k(t) ≤ C[tα(1 + t)1−α]r−2 ∀t ≥ 0,

|k(t)t−k(s)s| ≤ C|t−s|[(t+s)α(1+t+s)1−α]r−2 ∀t, s > 0 such that |s/t−1| ≤ ε,

k(t)t− k(s)s ≥M(t− s)[(t+ s)α(1 + t+ s)1−α]r−2 ∀t ≥ s ≥ 0.

Remark 2.1. The Assumptions (A) are satisfied by the Carreau law (2.2) with
α = 0 and r = n if k∞ = 0 and r = 2 if n ∈ (1, 2] and k∞ > 0 and by the power law
(2.3) with α = 1 and r = n (cf. [5, Remark 2.1]). The parameter α entering in the
Assumptions (A) measures the degree of degeneracy of k(·) for a given r: the closer
α is to one the more degenerate k(·) is.

We are now ready to introduce the weak formulation of (2.1). Following [5] let us
assume that k(t) satisfies Assumptions (A) and for v ∈ [W 1,r

0 (Ω)]2 we define:

(2.4) J(v) :=

∫
Ω

[ ∫ |ε(v)|

0

k(t)tdt
]
− 〈f ,v〉 ,

where 〈f, g〉 :=
∫

Ω
fg dx. We set X = [W 1,r

0 (Ω)]2, and let 〈·, ·〉 be the duality pairing
between the dual space X∗ and X. It is easy to check that J(·) is Gateaux differen-
tiable on X with:

〈J ′(w1),w2〉X∗ = 〈Aw1,w2〉X∗ − 〈f ,w2〉 ∀w1,w2 ∈ X,
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where A : X→ X∗ is such that

〈Aw1,w2〉X∗ = 〈k(|ε(w1)|)ε(w1), ε(w2)〉 .

In [5] it is proved that if k(·) satisfies the assumptions (A) then the functional
J(v) is strictly convex on X and the following result holds:

Proposition 2.2. Let V := {v ∈ X : ∇ · v = 0 in Ω}. The problem:

J(u) ≤ J(v) ∀v ∈ V

or equivalently:

(2.5) 〈Au,v〉X∗ = 〈f ,v〉 ∀v ∈ V

admits a unique solution.

Let us define M = Lr
′

0 (Ω), where r′ is the conjugate exponent of r. Considering
the mixed formulation of (2.5) provides the weak formulation of (2.1) which reads
reads as follows: find (u, p) ∈ X×M such that:

(2.6)

{
〈Au,w〉X∗ − 〈p,∇ ·w〉 = 〈f ,w〉 ∀w ∈ X,

〈∇ · u, q〉 = 0 ∀q ∈M.

For the well-posedness of (2.6) we require the inf-sup condition:

(2.7) inf
q∈M

sup
w∈X

〈q,∇ ·w〉
‖q‖M‖w‖X

≥ β > 0

to hold. In particular, Amrouche and Girault (1990) proved in [2] that when taking
X = [W 1,r

0 (Ω)]2 and M = Lr
′

0 (Ω), with r and r′ conjugate exponents, there exist a
constant β(r) such that:

(2.8) inf
q∈M

sup
w∈X

〈q,∇ ·w〉
‖q‖M‖w‖X

≥ β(r) > 0.

Hence (2.7) holds, and therefore the existence of a unique solution (u, p) in (2.6) is
implied. Note that the unique solution u coincides with the solution of (2.5), as it
can be seen from (2.6) by restricting the test functions w to V ⊂ X.

2.2. Finite Element approximation. In this section, we briefly introduce the
finite element approximation of (2.6). Let Xh and Mh be two finite dimensional
spaces such that

Xh ⊂ X ∩ [W 1,∞(Ω)]2 , Mh ⊂M ∩ L∞(Ω).

The discretized version of (2.6) reads: find (uh, ph) ∈ Xh ×Mh such that

(2.9)

{
〈Auh,wh〉X∗ − 〈ph,∇ ·wh〉 = 〈f ,wh〉 ,
〈∇ · uh, qh〉 = 0

holds ∀wh ∈ Xh,∀qh ∈Mh.
We further introduce the following three classical hypotheses (cf. [5]):
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• (H1) Approximation property of Xh: there is a continuous linear operator
πh : [W 1,r

0 (Ω)]2 → Xh such that for j = 0, ...,m we have

‖w − πhw‖[W j+1,r(Ω)]2 ≤ Ch
j‖w‖[W j+1,r(Ω)]2 ,

for any w ∈ [W 1,r
0 (Ω)]2 ∩ [W j+1,r(Ω)]2.

• (H2) Approximation property of Mh: there is a continuous linear operator
ρh : Lr

′
(Ω)→Mh such that for all j = 0, ...,m we have

‖q − ρhq‖Lr′ (Ω) ≤ Ch
j‖q‖Lr′ (Ω) ∀q ∈ Lr

′
(Ω).

• (H3) Discrete inf-sup condition: for any r ∈ (1,∞) there exists a constant
βh(r) > 0 such that

inf
qh∈Mh

sup
wh∈Xh

〈qh,∇ ·wh〉
‖qh‖M‖wh‖X

≥ βh(r) > 0.

Under those assumptions, the following result holds (cf. [5, Thm 4.1])

Theorem 2.3. Assume that k(·) satisfies Assumptions (A). Let (u, p) be the so-
lution of (2.6) and let (uh, ph) ∈ Xh × Mh be the solution of (2.9). Assume that
(H1)-(H2) for j = 1, ...,m and (H3) hold. If r ∈ (1, 2], θ ∈ [r, 2 + α(r − 2)]

(2.10) ‖u− uh‖[W 1,r(Ω)]2 + ‖p− ph‖θ/[2(θ−1)]

Lθ′ (Ω)
≤ C1h

θj/2

where C1 = C(‖u‖[W j+1,θ(Ω)]2 , ‖p‖W j,r′ (Ω) , βh(r)−1).

If r ∈ [2,∞), θ ∈ [2 + α(r − 2), r] we have

(2.11) ‖u− uh‖[W 1,θ(Ω)]2 + ‖p− ph‖2/θLr′(Ω) ≤ C2h
j/(θ−1)

where C2 = C(‖u‖[W 1,∞(Ω)]2 , ‖u‖[W j+1,2(Ω)]2 , ‖p‖W j,θ′ (Ω) , βh(r)−1).

Remark 2.4. If k(·) is not degenerate, i.e., α = 0 (cf. Remark 2.1), then the error
estimates in Theorem 2.3 are optimal on choosing θ = 2 under suitable regularity
assumptions of the solution pair (u, p). The rates of convergence deteriorate as k(·)
degenerates (i.e. α→ 1).

Remark 2.5. As the study of the numerical approximation of (2.1) is not the focus
of the paper, we limit our discussion to the pioneering Theorem 2.3 which is instru-
mental for the our purpose and nonetheless still represents nowadays a benchmark for
the error analysis of the approximation of non-Newtonian Stokes problems. We refer,
e.g., to [7, 16, 20–22] and the references therein for more recent contributions in the
field.

2.3. Numerical results. In this section we show some numerical tests corrobo-
rating the error estimates contained in Theorem 2.3. The outcome of the simulations
will be the base to study the impact of the use of neural networks as approximation
of the stress tensor τ (see Section 3 for the introduction of the particular class of
employed neural networks and Section 4 for the impact on the numerical solution
of (2.1)). To this goal, in the sequel we consider the Carreau law (2.2) with pa-
rameters k0 = 2, k∞ = 0, λ = 2 and n ∈ {1.2, 1.6, 2, 2.4, 2.8}, inside the domain
Ω = (−0.5, 0.5)2. We recall (cf. Remark 2.1) that in this case Assumptions (A)
are satisfied with r = n and α = 0. To evaluate the rate of the convergence of the
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approximation, the source term f is manufactured so that the exact solution (u, p) is
explicitly given by:

u(x, y) =

[
5y sin(x2 + y2) + 4y sin(x2 − y2)
−5x sin(x2 + y2) + 4x sin(x2 − y2)

]
p(x, y) = sin(x+ y).

Dirichlet boundary conditions for velocity given by the exact solution are imposed
on the domain boundary: u|∂Ω = u|∂Ω. We consider the Taylor-Hood finite element
spaces:

Xj
h := {wh ∈ [C(Ω)]2 : wh|τ ∈ Pj(τ),∀τ ∈ Th, and wh = u on ∂Ω},

M j−1
h := { qh ∈ L2

0(Ω) : qh|τ ∈ Pj−1(τ),∀τ ∈ Th},

where Pm is the space of all polynomials of degree less than or equal to m, and Th is
a collection of disjoint open regular triangles τ such that

⋃
τ∈Th τ = Ω.

The numerical solution of the nonlinear system stemming from the discretization
of (2.9) is carried out using the Newton method with trust region [26] available in
Firedrake [14] through its PETSc backend [4].

In Table 1, we report the experimental convergence orders obtained for different
values of the parameter n and different polynomial degrees j. These results are in line
with the theoretical predictions reported in Theorem 2.3 (see also Remark 2.4). In
particular, as expected when the Carreau model is considered, optimal convergence
rates are achieved for both pseudo-plastic and dilatant fluids.

W 1,r Velocity Error Lr
′

Pressure Error

j
r

1.2 1.6 2 2.4 2.8 1.2 1.6 2 2.4 2.8

2 (P2/P1) 2.00 2.00 2.00 2.00 2.00 2.47 3.03 2.34 2.85 3.35
3 (P3/P2) 3.01 3.01 3.01 3.01 3.01 3.09 3.30 3.43 3.51 3.52
4 (P4/P3) 4.00 4.00 4.00 4.00 4.00 4.11 4.16 4.17 4.27 4.43
5 (P5/P4) 5.00 5.01 5.00 5.02 5.29 5.18 5.24 5.01 5.31 5.29

Table 1: Carreau law (2.2) with parameters k0 = 2, k∞ = 0, λ = 2 and n = r ∈
{1.2, 1.6, 2, 2.4, 2.8}. Experimental convergence rates for different polynomial degrees
j (cf. theoretical estimate (2.10) with θ = 2).

3. Data-driven ICNN rheological models. The aim of this section is two-
fold: (a) we briefly recall Input-Convex Neural Network (ICNN) scalar valued func-
tions introduced in [1] (cf. Section 3.1); (b) we show how to employ ICNN to build
data-driven rheological models that are conformal with Assumptions (A) (cf. Section
3.2). The conformity with the assumptions is crucial to ensure the well-posedness of
the associated differential problem governed by the obtained data-driven rheological
model (see (4.1) below), thus building the numerical simulation upon solid mathe-
matical foundations.

3.1. Input-Convex Neural Networks. We first consider a classical feedfor-
ward fully connected neural network NNθ(x) : Rd → R, d ≥ 1 where x = (x1, . . . , xd)
and the vector θ contains the parameter identifying the neural network (weights and
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biases below). We denote by L the number of hidden layers. We will make use of the
following standard notations:

• w(l)
ij → weight connecting neuron j in layer l − 1 to neuron i in layer l;

• b(l)i → bias of neuron i in layer l;

• h(l)
i → output of neuron i in layer l, defined as: h

(l)
i = σl(

∑
j w

(l)
ij h

(l−1)
j +b

(l)
i ),

where σl is the activation function at layer l.
The first and last layers correspond to the inputs and output of the neural network,
respectively. Indeed, defining yj as the jth output, we have:

h
(0)
j = xj (j = 1, ..., d),

h
(L+1)
j = y := NNθ(x).

According to [1], the feedforward neural network function NNθ(x) turns into a
convex function if the following conditions hold:

(C1) w
(2:L+1)
ij ≥ 0;

(C2) σl is convex and non-decreasing ∀l ∈ {1, . . . , L+ 1}.
In other words, any feed-forward network function NNθ(x) can be re-worked into
its convex counterpart, called ICNNθ(x), by choosing a non-decreasing (and convex)
activation function and restricting its weights to be non-negative (for all but the first
layer).

Having in mind (C1), to guarantee the convexity of the function it becomes

important to regulate the sign of each weight w
(2:L+1)
ij during the training phase. If

a weight w ∈ {w(k)
ij }i,j,k, for k = 1, . . . , L + 1, becomes negative during the training

process, it must be made positive before performing the successive training step. To
reach this goal, various algorithms exist, such as nullifying negative weights by setting
them to 0. However, motivated by the encouraging results presented in [30], in the
sequel of the paper we employ the so-called exponentiation algorithm, described in
Algorithm 3.1.

Algorithm 3.1 Exponentiation

1: INPUT: constant ε
2: while training in progress do
3: do training
4: for layer ∈ 2 : L+ 1 do
5: if w < 0 then
6: w ← ew−ε

7: end if
8: end for
9: end while

The parameter ε entering in Algorithm 3.1 serves the purpose of constraining the
updated weights, ensuring their proximity (from the right) to zero after exponenti-
ation. It should be noted that, as ε increases, there is a concurrent increase in the
number of weights that are turned from negative to positive. For all the numerical
experiments presented in this work, the value ε = 30 turned out to be a satisfactory
compromise.
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In what follows, with the aim of exploring the efficacy of Algorithm 3.1 in en-
forcing the convexity constraint, we present two simple examples. In the first case,
we consider the approximation of the non-convex function y(x) = |x| + sin(x) by an
Input-Convex Neural Network function ICNNθ and we compare it with the approxi-
mation obtained by employing a standard feedforward neural network function NNθ.
The training dataset is obtained by sampling the function y in 100 randomly gener-
ated point belonging to the interval (-10,10). Both ICNNθ and NNθ were constructed
with an architecture consisting of one input layer with 1 unit, followed by two hid-
den layers with 120 and 56 units, respectively, and finally one output layer with 1
unit. These networks were trained using the Mean Square Error (MSE) loss func-
tion, employing the Adam optimization algorithm over 3000 epochs. The employed
neural network architecture has proven to be the most effective one after undergoing
numerous numerical tests.

In Figure 1, a direct comparison between ICNNθ and NNθ is presented. We first
observe that differently from NNθ, the function ICNNθ is convex. It is also worth
noting, for future use, that the convexity constraint plays the role of an implicit
regularizing mechanism to prevent the overfitting of data.

Fig. 1: Approximation of y(x) = |x|+ sin(x): comparison between ICNNθ and stan-
dard NNθ with same architecture, same training procedure.

As a second example, we consider f(x, y) = |x|+|y|+sin(x+y), a two-dimensional
non-convex function which is approximated by an Input-Convex Neural Network func-
tion ICNNθ in the domain Ω = [−10, 10] × [−10, 10]. The architecture selected for
ICNNθ comprised one input layer with 2 units, three hidden layers with respectively
120, 56 and 56 units, and one output layer with 1 unit. For the training, 1000 ran-
dom points were randomly generated in Ω. The network was trained using the Mean
Square Error loss function and the Adam optimization algorithm over 10000 training
epochs. In Figure 2, two different perspectives of the approximation of the non-convex
function f by ICNN are presented. We observe that the ICNN effectively captures the
global trend of the function while disregarding, because of the convexity constraint,
the contribution from the oscillating term sin(x+ y).
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Fig. 2: Approximation of the non-convex function f(x, y) = |x|+ |y|+ sin(x+ y) (red
colour) by ICNNθ (viridis): two different points of view.

At last, before detailing the data-driven construction of rheological models, let
us remark that in case one needs to select among convex or concave approximation
to best fit a given dataset, the simple procedure presented in Algorithm 3.2 can be
employed. The idea is straightforward and it is based on employing the given dataset,
say {(xi, yi)}Ni=1 and its modified version {(xi,−yi)}Ni=1 to train two Input-Convex
Neural Networks, say ICNN+

θ and ICNN−θ . Finally, comparing the values of the
loss functions associated to ICNN+

θ and ICNN−θ yields the best fit. Note that while
ICNN−θ is a convex approximation of the modified data set {(xi,−yi)}Ni=1, the opposite
function −ICNN−θ is a concave approximation of the original dataset {(xi, yi)}Ni=1.

Algorithm 3.2 Convex/concave selection

INPUT: dataset {(xi, yi)}Ni=1

while training in progress do
train ICNN+

θ (x) with data {(xi, yi)}Ni=1 and ICNN−θ (x) with data {(xi,−yi)}Ni=1

end while
if loss(ICNN+

θ (x)) ¡ loss(ICNN−θ (x)) then
ICNNθ = ICNN+

θ (x)
else

ICNNθ = −ICNN−θ (x)
end if

3.2. Data-driven rheological models: the use of ICNNs. We are now
ready to discuss how to employ convex neural networks to build data-driven rheo-
logical models of generalized non-Newtonian fluids, whose viscous stress, we recall, is
given by

(3.1) τ(ε(u)) = k(|ε(u)|)ε(u),

where the function k is convex or concave depending on the nature of the fluid (shear-
thinning or shear-thickening).

More precisely, given experimental measurements, say {(xi, yi)}Ni=1 with x =
|ε(u)| and y = k(|ε(u)|), we employ Algorithm 3.2 that automatically returns the
best convex/concave fit ICNNθ of the viscosity k, thus providing the following ICNN
stress tensor

(3.2) τθ(ε(u)) = ICNNθ(|ε(u)|)ε(u).
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In the sequel, we will refer to the function ICNNθ as the ICNN viscosity.
To test this procedure on real rheological data, we consider now experimental

rheological measurements for a set of shear-thinning aqueous solutions of Xanthan
gum with sodium chloride addition, available in the dataset [25]. The solutions differs
by molar concentration M of NaCl ranging between 0 and 0.7, while the Xanthan
gum content was the same for all solutions (1 g/L). The apparent viscosity for the
different solutions has been experimentally characterized using a rotational rheometer
(see [25] for details). For each experimental dataset, we adopt our strategy to learn
the corresponding data-driven ICNN rheological model.

We first consider the solution with a NaCl molar concentration M = 0.5 (la-
belled in the sequel as NaCL 05+XG) and we compare the learned rheological model
obtained by employing a standard feed-forward neural network NNθ with the one ob-
tained with convex neural networks ICNNθ. An identical architecture is used for both
neural networks: specifically, a configuration of 1×120×56×1. Consistency in training
was maintained by using the same dataset and MSE loss function for both networks,
with the training process spanning over N = 100000 epochs. In Figure 3 (left), the
resulting viscosities corresponding to the two neural networks are reported, together
with the dataset they are trained on. The ability of ICNNθ to avoid overfitting can
be clearly appreciated. Moreover, from Figure 3 (right) the lack of monotonicity of
NNθ(t)t for the standard feed-forward neural network clearly implies the violation of
Assumption (A)1, while ICNNθ(t)t remains monotone (see also Algorithm 3.3 below
for a systematic validation of Assumptions (A)).

Fig. 3: Comparison between ICNNθ and a standard feed-forward neural network
NNθ in the approximation of real rheological measures: viscosity curves k(t) (left)
and function k(t)t (right), with k ∈ {ICNNθ,NNθ}. DATASET: NaCL05 XG

The proposed data-driven strategy is then employed to discover the rheology
of the aqueous solution with NaCl molar concentration M = 0, 0.1, 0.5, 0.7. The
results are presented in Figure 4, where the ICNN viscosities are compared with
the ones obtained employing a-priori chosen parametric models, namely Carreau and
Power law. The results shows the capability of ICNN to automatically learn most
of the trends presented in the datasets, including non-standard behaviour such as
the one displayed by the NaCL 00+XG dataset (see Figure 4 (a)) for low shear rate
values, that cannot be captured by the a-priori functional dependence prescribed by
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standard rheological models. A quantitative comparison in terms of both the Root
Mean Squared Error (RMSE) and the coefficient of determination R2 is presented in
Table 2. These results confirm the superior performances of the proposed data driven
ICNN rheological model.

(a) NaCL 00+XG (b) NaCL 01+XG

(c) NaCL 05+XG (d) NaCL 07+XG

Fig. 4: Comparison between our data-driven ICNN procedure, Carreau and Power
law rheological models on 4 shear-thinning aqueous solutions of Xanthan gum with
sodium chloride addition [25] .

Power Law Carreau ICNN
Case RMSE R2 RMSE R2 RMSE R2

NaCL 00+XG 0.027362 0.72873 0.001160 0.98850 0.000037 0.99963
NaCL 01+XG 0.012810 0.67595 0.000128 0.99761 0.000099 0.99750
NaCL 05+XG 0.000859 0.98476 0.000731 0.98703 0.000035 0.99938
NaCL 07+XG 0.012906 0.72695 0.000310 0.99344 0.000046 0.99903

Table 2: Fitting comparison between Power Law, Carreau, and ICNN models.

Finally, we discuss how to verify that the learned ICNN viscosity satisfies As-
sumptions (A). This is crucial for the existence and uniqueness of the solution of
the associated ICNN non-Newtonian Stokes (see (4.1)). To reach this goal, we pro-
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pose the use of Algorithm 3.3 which numerically checks whether the trained ICNNθ

is in compliance with the Assumptions (A) by fine-tuning (through a minimization
process) the values of constants r ∈ (1,∞), α ∈ [0, 1], and C,M > 0.

Algorithm 3.3 (Check the validity of Assumptions (A))

1: initial guess C = C0, α = α0, r = r0, M = M0; t1, ..., tN ∈ (0,∞), s1, ..., sN ∈
(0,∞)

2: k = 0, max iterations K > 0
3: while k ≤ K do
4: Define f1 =

∑N
j=1 Ck[tαkj (1 + tj)

1−αk ]rk−2 − ICNNθ(tj) =
∑N
j=1 f1,j

5: Define f2 =
∑N
j=1

∑N
i=1 Ck|tj − si|[(tj + si)

αk(1 + tj + si)
1−αk ]rk−2 −

|ICNNθ(tj)tj − ICNNθ(si)si| =
∑N
j=1

∑N
i=1 f2,ij

6: Define f3 =
∑N
j=1

∑N
i=1 ICNNθ(tj)tj−ICNNθ(si)si−Mk(tj−si)[(tj+si)

αk(1+

tj + si)
1−αk ]rk−2 =

∑N
j=1

∑N
i=1 f3,ij

7: Compute F = f1 + f21{|s/t−1|≤1} + f31{t≥s} =
∑N
j=1 f1,j +∑N

j=1

∑N
i=1 f2,ij1{|si/tj−1|≤1} +

∑N
j=1

∑N
i=1 f3,ij1{tj≥si}

8: Minimize F with respect to Ck,Mk, αk, rk imposing f1,j ≥ 0 ∀tj , and f2,ij ≥
0 ∀tj , si such that |si/tj − 1| ≤ 1, and f3,ij ≥ 0 ∀tj , si such that tj ≥ si

9: k = k + 1
10: end while

In Table 3 we collect the output of Algorithm 3.3 applied to the ICNN approx-
imation of the dataset in [25]. The initial values of the parameters C0, α0, r0, and
M0 were set to 10, 0.5, 1.5, and 10, respectively. It is worth noting that the spe-
cific choice of these initial values did not significantly impact the performance of the
minimization algorithm. The minimization problem in Step 8 of Algorithm 3.3 is
solved using the best1bin algorithm implemented in the differential evolution

function of the scipy.optimize library. The differential evolution function was
favored over traditional optimization algorithms due to its multi-process capabilities,
enhancing computational efficiency, and its proficiency in avoiding local minima, en-
suring more robust solutions. The arrays {ti} and {sj}, with i, j = 1, . . . , 100 were
generated uniformly within the range of 0 to the maximum shear rate value stored in
the dataset. The value K was selected to be arbitrarily high (over 10,000 epochs) to
ensure robust performance during the iteration process.

NaCL 00+XG NaCL 01+XG NaCL 05+XG NaCL 07+XG
C 1.002 0.538 1.052 0.635
α 0.015 0.010 0.013 0.015
r 1.628 1.452 1.453 1.624
M 0.050 0.098 0.053 0.038

Table 3: Optimized constants ensuring that the ICNN viscosities trained on the
datasets [25] satisfy Assumptions (A).

4. Non-Newtonian Stokes equations with neural networks. In this sec-
tion, we study the finite element approximation of the non-Newtonian Stokes equa-
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tions (2.6), where the viscous stress τ is replaced by its ICNN approximation τθ (cf.
(3.1) and (3.2)). The corresponding problem is named ICNN non-Newtonian Stokes
problem and its weak formulation reads as follows: find (u, p) ∈ X×M such that:

(4.1)

{∫
Ω

ICNNθ(|ε(u)|)ε(u) : ε(w)−
∫

Ω
p∇ ·w =

∫
Ω

f ·w ∀w ∈ X∫
Ω
q∇ · u = 0 ∀q ∈M.

In particular, we are interested in studying the convergence properties of the finite-
element approximation of (4.1) towards the solution of (2.6). To this aim, it will be
crucial to incorporate the contribution from the approximation τθ of the stress tensor
τ (see Theorem 4.2 below) and combine it with the results of Theorem 2.3 (see the
inequality (4.15) below).

To ease the presentation, we train the data-driven ICNN rheological model on
datasets obtained by sampling the Carreau law (2.2) to obtain 100 shear-rate values
randomly generated over the interval (0,70). More precisely, to explore a variety
of different scenarios, multiple datasets based on (2.2) have been produced, choosing
k∞ = 0, k0 = 2, λ = 2, and different values of the exponent n = r = 1.2, 1.6, 2, 2.4, 2.8.
The range of n allows to consider both pseudo-plastic and dilatant regimes. Since,
depending on the regime, the resulting viscosity k may be either convex (for 1 < r ≤ 2)
or concave (for r ≥ 2), we employed Algorithm 3.2 to automatically select the best
convex/concave fit. The architecture of the employed ICNN is 1 × 120 × 56 × 1
and 20000 epochs of the Adam optimization algorithm have been run to minimize
the loss function given by the Mean Square Error. The resulting ICNNθ functions
approximating the viscosity k for different values of n are reported in Figure 5, while
Table 4 collects the associated L2 error.

Fig. 5: ICNNθ approximations of the Carreau law (2.2) with parameters: k∞ =
0, k0 = 2, λ = 2, n = 1.2, 1.6, 2, 2.4, 2.8.
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L2-error
ICNNn=1.2 4.1e-3
ICNNn=1.6 9.6e-4
ICNNn=2.0 1.1e-6
ICNNn=2.4 6.2e-4
ICNNn=2.8 6.9e-3

Table 4: L2-error between the Carreau viscosity k and the ICNN viscosity for different
values of n, measured on the interval (0, 70).

Finally, in Table 5 we report the values of the optimized constants, obtained by
Algorithm 3.3, to ensure the validity of Assumptions (A) and thus the well-posedness
of the ICNN non-Newtonian Stokes problem (4.1). In particular, we note that the
obtained values of r are closed, as expected, to the corresponding values of n.

ICNNn=1.2 ICNNn=1.6 ICNNn=2.0 ICNNn=2.4 ICNNn=2.8

C 1.600 1.786 2.000 2.379 2.753
α 0.099 0.118 0.022 0.182 0.162
r 1.176 1.589 2.000 2.403 2.807
M 0.859 0.913 1.000 0.369 0.136

Table 5: Optimized constants obtained by Algorithm 3.3: ICNN functions satisfy
Assumptions (A).

4.1. Convergence results. Let (u, p) be the solution of the non-Newtonian
Stokes problem (2.6) where the viscosity is governed by the Carreau law (2.2) with
parameters: k∞ = 0, k0 = 2, λ = 2 and n ∈ {1.2, 1.6, 2, 2.4, 2.8}. Let us denote by
(uh,ICNN , ph,ICNN ) the finite element approximation of ICNN-Stokes equations (4.1)
with ICNN viscosity obtained in the previous section. In Figure 6, we plot the velocity
error ‖u−uh,ICNN‖[W 1,r(Ω)]2 and the pressure error ‖p−ph,ICNN‖Lr′ (Ω) as the mesh

is refined, for r ∈ {1.2, 1.6, 2, 2.4, 2.8} (recall r = n). These results have been obtained
with Taylor-Hood finite-elements with j = 2.

The plots in Figure 6 reveal two key findings. First, the errors steadily decrease
to a minimum in all different scenarios (apart the trivial case r = 2). Secondly, the
value of the plateau is related to the approximation error of ICNN when trained to
fit the Carreau law (see Table 4). More precisely, denoting εICNN,u and εICNN,p as

εICNN,u := lim
h→0
‖u− uh,ICNN‖[W 1,r(Ω)]2

εICNN,p := lim
h→0
‖p− ph,ICNN‖Lr′ (Ω)

we note a correlation between εICNN,u, εICNN,p and the errors reported in Table 4, as
it is evident from Figure 7, where we observe that an improvement of the accuracy of
ICNN corresponds to lower values of εICNN,u and εICNN,p.
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(a) Case n = r = 1.2

(b) Case n = r = 1.6

(c) Case n = r = 2

(d) Case n = r = 2.4

(e) Case n = r = 2.8

Fig. 6: Velocity error ‖u − uh,ICNN‖[W 1,r(Ω)]2 (left) and pressure error ‖p −
ph,ICNN‖Lr′ (Ω)for r ∈ {1.2, 1.6, 2, 2.4, 2.8}.
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Fig. 7: εICNN,u and εICNN,p against the accuracy of ICNN.

Remark 4.1. As mentioned earlier, for r = 2 no plateau is observed and asymp-
totic optimal convergence is achieved. This is due to the fact that, in this case, the
function k(·) reduces to a constant and can be approximated exactly by ICNN.

The following perturbation result paves the way for a deeper understanding of
the above numerical findings.

Theorem 4.2 (Perturbation result). Let Xl = [W 1,rl(Ω)]2, Ml = Lr
′
l(Ω), l =

1, 2. Let Al : Xl → X∗l , l = 1, 2 be defined as: 〈Alv,w〉X∗l :=
∫

Ω
kl(|ε(v)|)ε(v) : ε(w),

for any v,w ∈ Xl, where kl satisfies Assumptions (A) for l = 1, 2. Let (ul, pl) be the
solution to: {

〈Alul,w〉X∗l − 〈pl,∇ ·w〉 = 〈f ,w〉 ∀w ∈ Xl,

〈∇ · ul, q〉 = 0 ∀q ∈Ml,

for l = 1, 2. Set r := minl=1,2{rl}, denote by j the index such that rj = maxl=1,2{rl}
and by i the other index. If there exists q ∈ [r′,∞] such that ‖ε(uj)‖[Ls(Ω)]4 < +∞,

where s = 1
1− 1

q−
1
r

if q > r′, s =∞ otherwise, and ‖k1(|ε(uj)|)− k2(|ε(uj)|)‖Lq(Ω) <

+∞, then the following inequalities hold:

‖u1 − u2‖[W 1,r(Ω)]2 ≤ C‖k1(|ε(uj)|)− k2(|ε(uj)|)‖Lq(Ω)‖ε(uj)‖[Ls(Ω)]4 ,(4.2)

and, when r ≤ 2,

‖p1 − p2‖Lr′ (Ω) ≤ C‖k1(|ε(uj)|)− k2(|ε(uj)|)‖Lq(Ω)‖ε(uj)‖[Ls(Ω)]4

+ Ci‖k1(|ε(uj)|)− k2(|ε(uj)|)‖r−1
Lq(Ω)‖ε(uj)‖

r−1
[Ls(Ω)]4 ,(4.3)

where Ci > 0 depends on ki whereas C > 0 is independent of i, j. When r > 2 it
holds, instead,

‖p1 − p2‖Lr′ (Ω)

≤ Ci‖k1(|ε(uj)|)− k2(|ε(uj)|)‖Lq(Ω)‖ε(uj)‖[Ls(Ω)]4

×
(

1 + ‖ε(u1)‖
r−2
r

[Lr(Ω)]4 + ‖ε(u2)‖
r−2
r

[Lr(Ω)]4

)
,(4.4)

where again Ci > 0 depends on ki.
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Remark 4.3. In general it is not guaranteed that ‖k1(|ε(uj)|)−k2(|ε(uj)|)‖L∞(Ω)

is finite, since there could be singularities in the tensor ε(uj), leading to some explosion
(in some particular case) in the quantities ki, i = 1, 2. This means that we must find,
if possible, a sufficiently small q ≥ r′ such that ‖k1(|ε(uj)|)−k2(|ε(uj)|)‖Lq(Ω) < +∞.
Clearly, if q is too small, this could lead to the apparently unavoidable necessity of an
extra assumption on the regularity of ε(uj), which belongs a priori only to [Lr(Ω)]4.
For a more detailed theory ensuring more regularity on ε(uj) we refer, for instance,
to [6, 11,13] and the references therein.

Proof. Let us first prove (4.2). From the monotonicity of Ai (cf. [5, (2.19) and
(2.14)]), having chosen Ai so that r = minl=1,2{rl} = ri, we have, for j 6= i,

C0‖u1 − u2‖[W 1,r(Ω)]2 ≤ 〈Aiui −Aiuj ,ui − uj〉X∗i
= 〈Aiui −Ajuj ,ui − uj〉X∗i︸ ︷︷ ︸

(i)

+ 〈Ajuj −Aiuj ,ui − uj〉X∗i︸ ︷︷ ︸
(ii)

.

First, in view of ∇ · ui = 0, we have

(i) = 〈pj ,∇ · (ui − uj)〉 − 〈pi,∇ · (ui − uj)〉 = 0.

On the other hand, for q ∈ [r′,∞] such that ‖k1(|ε(uj)|) − k2(|ε(uj)|)‖Lq(Ω) < +∞,
we have

(ii) =

∫
Ω

(kj(|ε(uj)|)− ki(|ε(uj)|))ε(uj) : ε(ui − uj),(4.5)

which yields, after the use of the Hölder inequality, the following estimate

(ii) ≤ ‖k1(|ε(uj)|)− k2(|ε(uj)|)‖Lq(Ω)‖ε(uj)‖[Ls(Ω)]4‖ε(ui − uj)‖[Lr(Ω)]4

≤ C‖k1(|ε(uj)|)− k2(|ε(uj)|)‖Lq(Ω)‖ε(uj)‖[Ls(Ω)]4‖ui − uj‖[W 1,r(Ω)]2 ,(4.6)

where s := 1
1− 1

q−
1
r

if q > r′, otherwise, if q = r′, s = ∞. Here C > 0 is a generic

constant. Combining the bounds for (i) and (ii) we obtain:

(4.7) ‖u1 − u2‖[W 1,r(Ω)]2 ≤ C‖k1(|ε(uj)|)− k2(|ε(uj)|)‖Lq(Ω)‖ε(uj)‖[Ls(Ω)]4 .

Concerning the pressure, let us first recall that, by the inf-sup condition (2.8),

β(r)‖p1 − p2‖Lr′ ≤ sup
w∈W 1,r(Ω)

〈Aiui −Ajuj ,w〉X∗i
‖w‖[W 1,r(Ω)]2

≤ sup
w∈[W 1,r(Ω)]2

(iii)︷ ︸︸ ︷
〈Aiui −Aiuj ,w〉X∗i −

(iv)︷ ︸︸ ︷
〈Ajuj −Aiuj ,w〉X∗i

‖w‖[W 1,r(Ω)]2
(4.8)

≤ sup
w∈[W 1,r(Ω)]2

|(iii)|
‖w‖[W 1,r(Ω)]2

+ sup
w∈[W 1,r(Ω)]2

|(iv)|
‖w‖[W 1,r(Ω)]2

.(4.9)

Now, the second summand is estimated exactly as the term (ii) above, leading to

|(iv)| ≤ ‖k1(|ε(uj)|)− k2(|ε(uj)|)‖Lq(Ω)‖ε(uj)‖[Ls(Ω)]4‖ε(w)‖[Lr(Ω)]4

≤ C‖k1(|ε(uj)|)− k2(|ε(uj)|)‖Lq(Ω)‖ε(uj)‖[Ls(Ω)]4‖w‖[W 1,r(Ω)]2 ,(4.10)
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entailing
(4.11)

sup
w∈[W 1,r(Ω)]2

|(iv)|
‖w‖[W 1,r(Ω)]2

≤ C‖k1(|ε(uj)|)− k2(|ε(uj)|)‖Lq(Ω)‖ε(uj)‖[Ls(Ω)]4 ,

where s, q are defined above. Concerning (iii), we need to distinguish between two
cases. First, we recall that by [5, (2.1a), Lemma 2.1], it holds

|ki(|ε(ui)|)ε(ui)− ki(|ε(uj)|)ε(uj)|

≤ Ci|ε(u)|
[
(|ε(u1)|+ |ε(u2)|)α(1 + |ε(u1)|+ |ε(u2)|)1−α]r−2

,(4.12)

where we set u := u1 − u2. Let now r ≤ 2. Then, by recalling that 1
2 (|x| + |y|) ≤

|x|+ |x− y| ≤ 2(|x|+ |y|), for any x, y ∈ R2×2, we obtain

|ki(|ε(ui)|)ε(ui)− ki(|ε(uj)|)ε(uj)|

≤ Ci|ε(u)|
[

1

2
(|ε(u1)|+ |ε(u)|)α(2 + |ε(u1)|+ |ε(u)|)1−α

]r−2

≤ Ci|ε(u)| 1

2r−2
(|ε(u1)|+ |ε(u)|)r−2 ≤ Ci

2r−2
|ε(u)|r−1.

Therefore, by Hölder’s inequality, we deduce

sup
w∈[W 1,r(Ω)]2

|(iii)|
‖w‖[W 1,r(Ω)]2

≤ Ci
2r−2

‖|ε(u)|r−1‖Lr′ (Ω) ≤
Ci

2r−2
‖ε(u)‖r−1

[Lr(Ω)]4 .

Notice that Ci depends on ki. Exploiting now (4.7) and putting together the estimate
above and (4.11), we immediately deduce (4.3). The case r > 2 is much easier. The
term involving (iv) is estimated in (4.11). Concerning the term involving (iii), again
from (4.12) we infer, applying Hölder’s inequality,

sup
w∈W 1,r(Ω)

|(iii)|
‖w‖[W 1,r(Ω)]2

≤ Ci‖ε(u)‖[Lr(Ω)]4‖(|ε(u1)|+ |ε(u2)|)α(1 + |ε(u1)|+ |ε(u2)|)1−α‖
r−2
r

Lr(Ω)

≤ Ci‖ε(u)‖[Lr(Ω)]4‖1 + |ε(u1)|+ |ε(u2)|‖
r−2
r

[Lr(Ω)]4

≤ C̃i‖ε(u)‖[Lr(Ω)]4(1 + ‖ε(u1)‖
r−2
r

[Lr(Ω)]4 + ‖ε(u2)‖
r−2
r

[Lr(Ω)]4),

for some C̃i > 0, depending on ki. Therefore, exploiting (4.12) and putting together
with (4.11) we easily end up with (4.4). The proof is concluded.

We now employ the above perturbation result to interpret the outcome of our
campaign of numerical tests. Let us first introduce (uICNN , pICNN ), formally defined
as:

uICNN := lim
h→0

uh,ICNN , pICNN := lim
h→0

ph,ICNN .

In the sequel we employ Theorem 4.2 with k1(t) = k(t) given by the Carreau law
(2.2) with parameters k∞ = 0, k0 = 2, λ = 2 and n = r ∈ {1.2, 1.6, 2, 2.4, 2.8}
and k2(t) = ICNN(t) representing its convex neural network approximation. In this
context, it is reasonable to assume that k1, k2 verify Assumptions (A) for the same
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value of the parameter r. Moreover, we assume that ‖ε(uICNN)‖[Lr′ (Ω)]4 < ∞, and

‖ε(u)‖[Lr′ (Ω)]4 <∞.
From Theorem 4.2 with q =∞, we immediately obtain the following bounds:

εICNN,u = ‖u− uICNN‖[W 1,r(Ω)]2

. ‖k(|ε(uICNN )|)− ICNN(|ε(uICNN )|)‖L∞(Ω) . ‖k − ICNN‖L∞(0,∞),(4.13)

εICNN,p = ‖p− pICNN‖Lr′ (Ω)

. ‖k(|ε(uICNN )|)− ICNN(|ε(uICNN )|)‖mL∞(Ω) . ‖k − ICNN‖mL∞(0,∞)(4.14)

where m = r − 1 if r ∈ (1, 2], m = 1 if r > 2, and the hidden constant may depend
on the W 1,r′ -norm of uICNNθ

or u, see Theorem 4.2. For the sake of conciseness we
restrict ourselves to the case of the velocity and in Table 6 we report εICNN,u (where
the pair (uICNN , pICNN ) is approximated by (uh,ICNN , ph,ICNN ), with h = 0.0027)
together with the error between the viscous law and the Input-Convex Neural Network
measured in L∞-norm.

εICNN,u ‖k − ICNNθ‖L∞
r = 1.2 0.00093 0.068426
r = 1.6 0.00051 0.004010
r = 2.0 0.00012 0.000550
r = 2.4 0.00067 0.005929
r = 2.8 0.00070 0.028900

Table 6: For different values of r, the behaviour of εICNN,u and L∞-error are similar:
they both decrease for increasing values of r until they reach a minimum for r = 2,
then they both increase for r > 2.

Consider now the following simple inequality:

‖u− uh,ICNN‖[W 1,r(Ω)]2 ≤ ‖uICNN − uh,ICNN‖[W 1,r(Ω)]2 + ‖u− uICNN‖[W 1,r(Ω)]2

. hlr/2 + ‖k − ICNN‖L∞(0,∞)(4.15)

where in the last step we employed (2.10) and l is the polynomial degree employed
in the finite element approximation of the velocity u. A closer parallel inspection of
Figure 6 and Table 6 reveals that the error ‖u − uh,ICNN‖[W 1,r(Ω)]2 decreases with
the expected rate 2 (cf. Remark 2.4), until it reaches a plateau value corresponding
to ‖k − ICNN‖L∞(0,∞) (cf. the third column of Table 6). This shows that having
a good approximation of k through ICNN is essential to minimize the value of the
plateau and thus the error.

We conclude this section addressing the convergence of (uh,ICNN , ph,ICNN ) to-
wards the solution (uICNN , pICNN ). Here, as above, this latter is approximated with
(uh,ICNN , ph,ICNN ). The obtained convergence orders are reported in Table 7 and are
in agreement with the quadratic theoretical optimal convergence (2.10) (cf. Remark
2.4).
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‖uICNN − uh,ICNN‖[W 1,r(Ω)]2 ‖pICNN − ph,ICNN‖Lr′ (Ω)

r = 1.2 2.02 1.80
r = 1.6 2.02 2.42
r = 2.0 2.02 3.14
r = 2.4 2.03 2.04
r = 2.8 2.04 2.37

Table 7: Convergence rates of uh,ICNN , ph,ICNN towards the solution uICNN , pICNN .

5. Conclusions. In this work, we introduced and tested on real-world scenarios
a novel theoretical framework and computational strategy to build data-driven rhe-
ological models using Input-Convex Neural Networks. The results obtained demon-
strate that the proposed approach represents a valuable and robust alternative to stan-
dard rheological laws. In the framework of the theoretical results of well-posedness
for the non-Newtonian Stokes problem proved in [5], we have shown that the use of
the data-driven ICNN rheological model is consistent with this theory. In particu-
lar, we demonstrated through numerical assessment that, by automatically choosing
the viscosity law to be either convex or concave (depending on the flow regime), the
mathematical conditions for ensuring the well-posedness of the differential problem
are satisfied.

Code and data that allow readers to reproduce the results in this paper are avail-
able at https://github.com/Juu97/ICNN-Stokes.
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