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MIXED AND MULTIPOINT FINITE ELEMENT METHODS FOR
ROTATION-BASED POROELASTICITY∗

WIETSE M. BOON† , ALESSIO FUMAGALLI† , AND ANNA SCOTTI†

Abstract. This work proposes a mixed finite element method for the Biot poroelasticity equa-
tions that employs the lowest-order Raviart-Thomas finite element space for the solid displacement
and piecewise constants for the fluid pressure. The method is based on the formulation of linearized
elasticity as a weighted vector Laplace problem. By introducing the solid rotation and fluid flux as
auxiliary variables, we form a four-field formulation of the Biot system, which is discretized using
conforming mixed finite element spaces. The auxiliary variables are subsequently removed from the
system in a local hybridization technique to obtain a multipoint rotation-flux mixed finite element
method. Stability and convergence of the four-field and multipoint mixed finite element methods
are shown in terms of weighted norms, which additionally leads to parameter-robust preconditioners.
Numerical experiments confirm the theoretical results.
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1. Introduction. The cornerstone of this work is a reformulation of the lin-
earized elasticity equations as a weighted vector-Laplacian on the displacement. The
key is then to consider the mixed formulation of this problem by introducing the
solid rotation as an auxiliary variable. This allows us to relieve the H1-regularity
requirement that is typically placed on the displacement variable.

Rotation-based formulations of elasticity and poroelasticity were recently inves-
tigated in [8] and [7], where the displacement is sought in H1 and the rotation in L2.
In contrast, we seek the displacement in the larger space H(∇·,Ω) and the rotation
in the smaller space H(∇×,Ω). In turn, our variational problem requires its own,
distinct a priori analysis and leads to a different choice of the finite element spaces.

An important advantage of the four-field formulation we consider is that it allows
for mass-lumping techniques that are common to multipoint mixed finite element
methods. The primary example of these methods is the multipoint flux mixed finite
element method (MF-MFEM) [20]. The method, traditionally employed for elliptic
problems such as Darcy’s flow, employs the Brezzi-Douglas-Marini [11] space to model
the Darcy flux and introduces a low-order quadrature rule on its inner product to
obtain an approximation of the mass matrix that is easily invertible. In turn, the flux
variable can be eliminated locally, leading to a scheme with cell-centered pressures
that is closely related to the multipoint flux approximation (MPFA) finite volume
method [2].

The MF-MFEM was extended to the case of linearized elasticity as the multipoint
stress MFEM (MS-MFEM) [4], which has in turn been applied to the Biot equations
[5] and Stokes flow [12]. From the perspective of exterior calculus, these hybridization
techniques were recognized as a way to compute local coderivatives and subsequently
generalized to a larger class of mixed finite element spaces [14]. Based on these
results, the multipoint vorticity MFEM (MV-MFEM ) was recently developed for a
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vorticity-velocity-pressure formulation of Stokes [10].
The similarities between the Stokes and the Biot equations were used in [19] to

construct stabilized mixed finite element discretizations. Through a similar obser-
vation, we herein extend MV-MFEM for Stokes [10] to a multipoint rotation mixed
finite element method (MR-MFEM ) for linearized elasticity and poroelasticity. As
mentioned before, we obtain the MR-MFEM from a rotation-based formulation of
elasticity. It therefore employs the Raviart-Thomas (RT0) space for the solid dis-
placement, as opposed to piecewise constants (Pn

0 ) in MS-MFEM. The coupling with
fluid flow in a poroelastic setting is then naturally incorporated because the divergence
of the displacement is well-defined on RT0.

The paper is organized as follows. First, the conventions concerning notation are
introduced in Subsection 1.1 and the model problem is presented in Section 2. The
ensuing sections contain the main contributions of this work, which are as follows:

• Well-posedness analysis of a rotation-based, four-field formulation of poroe-
lasticity with the solid rotation in H(∇×,Ω) and displacement in H(∇·,Ω),
using parameter-weighted norms (Section 3).

• Stability and convergence analysis of two families of mixed finite elements
that conform to the four-field formulation (Section 4).

• A stable and convergent multipoint rotation-flux mixed finite element method
for the Biot equations that employs the RT0 × P0 pair for the solid displace-
ment and fluid pressure (Section 5).

• Parameter-robust preconditioners for the mixed finite element methods based
on the analysis in weighted norms (Section 6).

• Numerical experiments that confirm the convergence of the methods and
robustness of the preconditioner (Section 7).

Concluding remarks are given in Section 8.

1.1. Preliminaries and notation. Let Ω ⊂ Rn be a contractible, Lipschitz
domain with n ∈ {2, 3}. Let L2(Ω) be the space of square integrable functions on Ω
and let its inner product be denoted by ⟨·, ·⟩Ω. The space L2(Ω) is endowed with the
norm ∥ · ∥ :=

√
⟨·, ·⟩Ω. We apply the same notation for the inner product and norm

of square-integrable vector functions in (L2(Ω))n.
Let H(∇·,Ω) be the subspace of (L2(Ω))n that contains functions with square

integrable divergence. Let ∇× denote the conventional curl operator in 3D. Note
that for n = 2, we simply have that ∇× r := (−∂2r, ∂1r) and ∇× u := ∂2u1 − ∂1u2

for sufficiently regular scalar fields r and vector fields u. In turn, let H(∇×,Ω) be the
subspace of (L2(Ω))kn , with kn := ( n2 ), consisting of functions with square integrable
curl.

For a Hilbert space X, let X ′ denote its dual, and the corresponding duality
pairing is given by ⟨·, ·⟩X′×X . For notational brevity, we omit the subscript on duality
pairings since it can be deduced from context. Given an operator A : Z → Y and
a subspace X ⊆ Z, let A|X be the restriction of A on X. We denote the kernel
and range of the restriction by Ker(A,X) := Ker(A|X) and Ran(A,X) := Ran(A|X),
respectively.

For a, b ∈ R, the notation a ≲ b implies that a constant C > 0 exists, independent
of material or discretization parameters, such that Ca ≤ b. However, the constant C
may depend on the domain Ω and on the shape-regularity of the mesh. We use ≳
analogously and a ≂ b if and only if a ≲ b ≲ a.

2. Model Problem. We start in Subsection 2.1 with linear elasticity to high-
light the manipulation of the system that lies at the heart of the proposed numerical
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methods. The coupling to flow is introduced afterward in Subsection 2.2.

2.1. Linearized elasticity as a weighted vector-Laplacian. Let us consider
the governing equations of linearized elasticity in terms of the Cauchy stress σ and
displacement u:

σ = 2µε(u) + (λ∇ · u)I, −∇ · σ = fu.(2.1)

Here, µ and λ are the Lamé parameters, fu is a body force, ε is the symmetric gradient
and I ∈ Rn×n the identity tensor. We reformulate these equations by recalling the
following calculus identity:

−∇ · ε(u) = 1

2
∇× (∇× u)−∇(∇ · u).(2.2)

We substitute this identity and the definition of σ in the momentum balance equation
and assume spatially constant µ to obtain

∇× (µ∇× u)−∇(2µ+ λ)∇ · u = fu(2.3)

We now define the rotation variable r := µ∇ × u, which leads us to the strong
form of our 2-field formulation for linear elasticity in terms of (r, u):

µ−1r −∇× u = 0, ∇× r −∇(2µ+ λ)∇ · u = fu.(2.4a)

subject to the boundary conditions

ν · u = 0, ν × r = 0, on ∂rΩ,

ν × u = ν × u0, (2µ+ λ) Tr ε(u) = σ0, on ∂uΩ.
(2.4b)

Here, ∂rΩ∪ ∂uΩ is a disjoint decomposition of the boundary ∂Ω and ν is its outward
oriented, unit normal vector. To ensure uniqueness, we assume that the boundary
decomposition is such that ∥ν · ϕ∥∂rΩ + ∥ν × ϕ∥∂uΩ > 0 for all non-zero rigid body
motions ϕ.

To derive the variational formulation of (2.4), we introduce the following Hilbert
spaces in which to seek the rotation and displacement variables:

R := {r ∈ H(∇×,Ω) | ν × r = 0 on ∂rΩ} ,
U := {u ∈ H(∇·,Ω) | ν · u = 0 on ∂rΩ} .

(2.5)

By introducing test functions (r̃, ũ) ∈ R × U and using integration by parts, we
obtain the variational formulation: find (r̃, ũ) ∈ R× U such that

⟨µ−1r, r̃⟩Ω − ⟨u,∇× r̃⟩Ω = ⟨u0, ν × r̃⟩∂uΩ, ∀r̃ ∈ R,

⟨∇ × r, ũ⟩Ω + ⟨(2µ+ λ)∇ · u,∇ · ũ⟩Ω = ⟨fu, ũ⟩Ω − ⟨σ0, ν · ũ⟩∂uΩ, ∀ũ ∈ U.
(2.6)

Remark 2.1. The boundary conditions in (2.4) do not immediately translate into
classical boundary conditions such as clamped boundaries, i.e. u = 0 on ∂Ω. We refer
to [9] for techniques that handle this case.
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2.2. Coupling to porous medium flow. Next, we consider the setting of
a poroelastic medium in which fluid flow and solid mechanics form a fully coupled
system known as the quasi-steady Biot equations:

σ = 2µε(u) + (λ∇ · u− αp)I, −∇ · σ = fu,

q̌ = −K∇p, ∂t(c0p+ α∇ · u) +∇ · q̌ = f̌p,
(2.7)

with q̌ the Darcy flux and p the fluid pressure. Moreover, K is the hydraulic conduc-
tivity, c0 the specific storativity, and α is the Biot-Willis constant.

Using the same steps as in Subsection 2.1, we rewrite the elasticity equations in
terms of rotation and displacement. As time discretization, we choose an implicit
method such as the backward Euler or Crank-Nicolson scheme with time step ∆t.

In order to obtain an advantageous scaling with the time step, we introduce the
scaled Darcy flux q := δq̌, with δ :=

√
∆t. Different scalings of q̌ are possible, but may

result in systems that either do not have favorable symmetries, which complicates the
analysis, or contain negative powers of ∆t, which can be undesirable in the case of
small time steps.

By including quantities relative to the previous time step in the right-hand side
fp, we obtain the semi-discrete, four-field formulation of the Biot equations:

µ−1 −∇×
∇× −∇(2µ+ λ)∇· ∇α

K−1 δ∇
α∇· ∇ · δ c0



r
u
q
p

 =


0
fu
0
fp

 ,(2.8a)

subject to the boundary conditions

ν · u = 0, ν × r = 0, on ∂rΩ,

ν × u = ν × u0, (2µ+ λ) Tr ε(u)− αp = σ0, on ∂uΩ,

p = p0, on ∂pΩ, ν · q = 0, on ∂qΩ.

(2.8b)

We assume that ∂pΩ ∪ ∂qΩ forms a disjoint decomposition of the boundary with
|∂pΩ| > 0. To facilitate the analysis in the next section, we define the following
Hilbert spaces for the fluid flux and pressure:

Q := {q ∈ H(∇·,Ω) | ν · q = 0 on ∂qΩ} , P := L2(Ω).(2.9)

3. Analysis of the semi-discrete problem. We continue by constructing and
analyzing the variational formulation of system (2.8), which is continuous in space
and discrete in time. As short-hand notation, we will use x := (r, u, q, p) and x̃ :=
(r̃, ũ, q̃, p̃) belonging to the Hilbert space:

X := R× U ×Q× P,(3.1)

with the spaces R,U defined in (2.5) and Q,P in (2.9).
For simplicity, let all material parameters be homogenous in space and we more-

over assume that the conductivity K is isotropic and thus given by a positive scalar.
To highlight the structure of the system, we define the operators A : X → X ′ and
B : X → X ′ and the functional f ∈ X ′ as follows:

⟨Ax, x̃⟩ := µ−1⟨r, r̃⟩Ω + (2µ+ λ)⟨∇ · u,∇ · ũ⟩Ω +K−1⟨q, q̃⟩Ω + c0⟨p, p̃⟩Ω,
⟨Bx, x̃⟩ := ⟨∇ × r, ũ⟩Ω + ⟨∇ · (αu+ δq), p̃⟩Ω,
⟨f, x̃⟩ := ⟨u0, ν × r̃⟩∂uΩ + ⟨fu, ũ⟩Ω − ⟨σ0, ν · ũ⟩∂uΩ − ⟨p0, ν · δq̃⟩∂pΩ + ⟨fp, p̃⟩Ω.
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Let the compound operator A : X → X ′ be such that

A := A+B −B∗,(3.2)

with B∗ : X → X ′ the adjoint of B defined by ⟨B∗x, x̃⟩ := ⟨Bx̃, x⟩.
The variational formulation of (2.8) is then given by: find x ∈ X such that

⟨Ax, x̃⟩ = ⟨f, x̃⟩, ∀x̃ ∈ X.(3.3)

Based on the scaling in the operator A, we endowX with the following parameter-
dependent norm:

∥x∥2X := µ−1(∥r∥2 + ∥∇ × r∥2) + µ∥u∥2 + (2µ+ λ)∥∇ · u∥2

+K−1∥q∥2 + δ2

η + c0
∥∇ · q∥2 + (η + c0)∥p∥2.(3.4)

3Here, η := α2

2µ+λ + δ2K is a scaling parameter particularly chosen for the ensuing
analysis. In order for these norms to be well-defined, we assume that µ, λ, K, and
(η + c0) are positive. However, we do not explicitly bound these parameters away
from zero, so that we do not rely on small, lower bounds in our analysis.

It is convenient to analyze problem (3.3) using an equivalent energy norm, which
we introduce in the following lemma.

Lemma 3.1 (Energy norm). Let Π be the L2-projection onto Ran(∇×, R) and
let the energy norm be given by

|||x|||2 := µ−1(∥r∥2 + ∥∇ × r∥2) + µ∥Πu∥2 + (2µ+ λ)∥∇ · u∥2

+K−1∥q∥2 + 1

η + c0
∥∇ · (αu+ δq)∥2 + (η + c0)∥p∥2.(3.5)

Then the following equivalence holds:

∥x∥X ≂ |||x|||, ∀x ∈ X.(3.6)

Proof. Let us consider the lower bound “≳”. We first show that ∥u∥ ≳ ∥Πu∥
follows immediately from the L2-orthogonality of Π:

∥u∥2 = ∥Πu∥2 + ∥(I −Π)u∥2 ≥ ∥Πu∥2.(3.7a)

Secondly, we consider the norms on the divergence terms. The triangle-type inequality

∥a+ b∥2 ≤ 2(∥a∥2 + ∥b∥2) and the lower bound η + c0 ≥ α2

2µ+λ yield

1

η + c0
∥∇ · (αu+ δq)∥2 ≤ 2

(
α2

η + c0
∥∇ · u∥2 + δ2

η + c0
∥∇ · q∥2

)
≤ 2

(
(2µ+ λ)∥∇ · u∥2 + δ2

η + c0
∥∇ · q∥2

)
.(3.7b)

Collecting (3.7), we conclude ∥x∥X ≳ |||x|||.
For the upper bound “≲”, we once again first bound the norm ∥u∥. The Poincaré

inequality implies that a αu > 0 exists such that

αu∥u∥ ≤ ∥∇ · u∥, ∀u ⊥ Ker(∇·, U).
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Since Ω is contractible, we have Ker(∇·, U) = Ran(∇×, R) and we use the Poincaré
inequality to derive

µ∥u∥2 ≤ µ∥Πu∥2 + 1

α2
u

µ∥∇ · ((I −Π)u)∥2

= µ∥Πu∥2 + 1

α2
u

µ∥∇ · u∥2

≤ max

{
1

2α2
u

, 1

}(
µ∥Πu∥2 + (2µ+ λ)∥∇ · u∥2

)
.(3.8a)

It remains to show a bound on the divergence terms. Using the same triangle-type
inequality and lower bound on η + c0 as in (3.7b), we derive

1

η + c0
∥∇ · (αu+ δq)∥2 ≥ 1

η + c0

(
1

2
∥∇ · δq∥2 − ∥∇ · αu∥2

)
≥ 1

2

δ2

η + c0
∥∇ · q∥2 − (2µ+ λ)∥∇ · u∥2.

From this result, we deduce

(2µ+ λ)∥∇ · u∥2 + 1

η + c0
∥∇ · (αu+ δq)∥2

≥ (2µ+ λ)∥∇ · u∥2 + 2

3

1

η + c0
∥∇ · (αu+ δq)∥2

≥ 1

3

(
(2µ+ λ)∥∇ · u∥2 + δ2

η + c0
∥∇ · q∥2

)
.(3.8b)

Collecting (3.8), we have ∥x∥X ≲ |||x||| and the result follows.

With the energy norm defined by (3.5), we are now ready to prove the key pre-
requisites for well-posedness of (3.3), namely the continuity and inf-sup conditions on
A.

Lemma 3.2 (Continuity). The operator A : X → X ′ is continuous:

∥Ax∥ := sup
x̃∈X

⟨Ax, x̃⟩
∥x̃∥X

≲ ∥x∥X , ∀x ∈ X.(3.9)

Proof. First, we apply the Cauchy-Schwarz inequality to each of the terms, e.g.

µ−1⟨r, r̃⟩Ω ≤ µ−1∥r∥∥r̃∥, ⟨∇ × r, ũ⟩Ω = ⟨∇ × r,Πũ⟩Ω ≤ 1
√
µ
∥r∥√µ∥Πũ∥.

After summing all products, we use the Cauchy-Schwarz once more to conclude that
⟨Ax, x̃⟩ ≲ |||x||| |||x̃|||. The result in ∥ · ∥X follows from the norm equivalence shown
in Lemma 3.1.

Lemma 3.3 (Inf-sup). The operator A is bounded from below as

∥Ax∥ ≳ ∥x∥X , ∀x ∈ X.(3.10)

Proof. We aim to show that, for given x ∈ X, a test function x̃ ∈ X exists with
the properties

⟨Ax, x̃⟩ ≳ |||x|||2, |||x̃||| ≲ |||x|||.(3.11)
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The equivalence from Lemma 3.1 will then provide the result in the norm ∥ · ∥X .
We construct this test function explicitly in four parts. First, let x̃0 := x =

(r, u, q, p) for which we derive

⟨Ax, x̃0⟩ = ⟨Ax, x⟩ = µ−1∥r∥2 + (2µ+ λ)∥∇ · u∥2 +K−1∥q∥2 + c0∥p∥2.(3.12)

The second test function we consider is given by x̃1 := (0, µ−1∇ × r, 0, 1
η0+c0

∇ ·
(αu+ δq)) with η0 ≥ 0 to be chosen later. Using the orthogonality ∇ · ∇× r = 0, we
derive using the Cauchy-Schwarz and Young’s inequality:

⟨Ax, x̃1⟩ = µ−1∥∇ × r∥2 + 1

η0 + c0
∥∇ · (αu+ δq)∥2 + ⟨ c0

η0 + c0
p,∇ · (αu+ δq)⟩Ω

≥ µ−1∥∇ × r∥2 + 1

η0 + c0
∥∇ · (αu+ δq)∥2 − ∥p∥∥∇ · (αu+ δq)∥

≥ µ−1∥∇ × r∥2 + 1

2(η0 + c0)
∥∇ · (αu+ δq)∥2 − η0 + c0

2
∥p∥2.(3.13)

The last two components are constructed by exploiting the inf-sup conditions on
the operators that compose B. The first of these implies that a βr > 0 exists such
that for each u ∈ U , there exists a r̃u ∈ R with

∇× r̃u = Πu, βr

(
∥r̃u∥2 + ∥∇ × r̃u∥2

)
≤ ∥Πu∥2.

We use r̃u to define x̃2 := (−βrµr̃u, 0, 0, 0). The Cauchy-Schwarz and Young inequal-
ities give us:

⟨Ax, x̃2⟩ = βrµ∥Πu∥2 − βr⟨r, r̃u⟩Ω

≥ βrµ∥Πu∥2 − 1

2

(
µ−1∥r∥2 + β2

rµ∥r̃u∥2
)

≥ βr

2
µ∥Πu∥2 − 1

2
µ−1∥r∥2(3.14)

The final test function is constructed similarly. Two constants βu, βq > 0 exist
such that for each p ∈ P , there exists a pair (ũp, q̃p) ∈ U ×Q with the properties

∇ · ũp = p, Πũp = 0, βu

(
∥ũp∥2 + ∥∇ · ũp∥2

)
≤ ∥p∥2,

∇ · q̃p = p, Πq̃p = 0, βq

(
∥q̃p∥2 + ∥∇ · q̃p∥2

)
≤ ∥p∥2

These allow us to define x̃3 := (0,− α
2µ+λ ũp,−βqδKq̃p, 0). Let us use the short-hand

notation η0 := 1
2

(
α2

2µ+λ + βqδ
2K
)
. We then proceed as in (3.14) to derive

⟨Ax, x̃3⟩ =
(

α2

2µ+ λ
+ βqδ

2K

)
∥p∥2 − α⟨∇ · u, p⟩Ω − βqδ⟨q, q̃p⟩Ω

≥ 2η0∥p∥2

− 1

2

(
(2µ+ λ)∥∇ · u∥2 + α2

2µ+ λ
∥p∥2 +K−1∥q∥2 + β2

q δ
2K∥q̃p∥2

)
≥ η0∥p∥2 −

1

2
(2µ+ λ)∥∇ · u∥2 − 1

2
K−1∥q∥2.(3.15)
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Letting x̃ :=
∑

i x̃i, we sum (3.12), (3.13), (3.14), and (3.15) to obtain

⟨Ax, x̃⟩ ≥ 1

2

(
µ−1∥r∥2 + 2

µ
∥∇ × r∥2 + βrµ∥Πu∥2 + (2µ+ λ)∥∇ · u∥2

+
1

η0 + c0
∥∇ · (αu+ δq)∥2 +K−1∥q∥2 + (η0 + c0)∥p∥2

)
≳ |||x|||2,(3.16)

where we used η0 ≂ η in the final inequality since min{1, βq}η ≤ 2η0 ≤ max{1, βq}η.
It remains to show that x̃ is bounded. Clearly, we have |||x̃0||| = |||x|||, so we

continue with the bounds for the remaining xi:

|||x̃1|||2 = µ∥µ−1∇× r∥2 + η + c0
(η0 + c0)2

∥∇ · (αu+ δq)∥2

≲ µ−1∥∇ × r∥2 + 1

η + c0
∥∇ · (αu+ δq)∥2 ≤ |||x|||2

|||x̃2|||2 = µβ2
r (∥r̃u∥2 + ∥∇ × r̃u∥2) ≲ µ∥Πu∥2 ≤ |||x|||2

|||x̃3|||2 =
α2

2µ+ λ
∥p∥2 + β2

q δ
2K∥q̃p∥2 +

1

η + c0
∥2η0p∥2

≲ η∥p∥2 ≤ |||x|||2.

(3.17)

Collecting (3.17), we have |||x̃||| ≲ |||x|||. Together with (3.16), we have shown
(3.11) and the result follows by Lemma 3.1.

Theorem 3.4 (Well-posedness). Problem (3.3) admits a unique solution x ∈ X
that satisfies

∥x∥X ≲ ∥f∥X′ := sup
x̃∈X

⟨f, x̃⟩
∥x̃∥X

.(3.18)

Proof. We aim to utilize the Babuška-Lax-Milgram theorem. For this, we need
to show that for each x ∈ X, a x̃ ∈ X exists such that ⟨Ax̃, x⟩ > 0. The symmetries
of A allow us to write:

⟨Ax̃, x⟩ = ⟨A(r̃, ũ, q̃, p̃), (r, u, q, p)⟩ = ⟨A(r,−u,−q, p), (r̃,−ũ,−q̃, p̃)⟩(3.19)

In turn, we use Lemma 3.3 to construct x̃ such that ⟨Ax̃, x⟩ ≳ ∥x∥X > 0.
Combining (3.19) with Lemmas 3.2 and 3.3, we invoke the Babuška-Lax-Milgram

theorem to conclude that a unique solution exists that satisfies (3.18)

Corollary 3.5. The elasticity problem (2.6) admits a unique solution (r, u) ∈
R× U that is bounded in the norm

∥(r, u)∥2R×U := µ−1(∥r∥2 + ∥∇ × r∥2) + µ∥u∥2 + (2µ+ λ)∥∇ · u∥2.(3.20)

Proof. Let α = 0, then the system (3.3) decouples into the elasticity problem
(2.6) and a Darcy flow problem. If we neglect the Darcy problem, then Theorem 3.4
gives us that the unique solution x is bounded in the norm ∥x∥X = ∥(r, u, 0, 0)∥X =
∥(r, u)∥R×U .
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4. Conforming four-field MFE discretization. In this section, we introduce
a conforming mixed finite element discretization of the four-field formulation (3.3).
Let Ωh be a shape-regular, simplicial tesselation of the domain Ω. We define the
discrete space Xh := Rh × Uh ×Qh × Ph such that the following assumptions hold

A1. The finite element spaces are conforming, i.e. Xh ⊂ X.
A2. The pairs Qh × Ph and Uh × Ph satisfy

Ran(∇·, Qh) = Ran(∇·, Uh) = Ph

and are inf-sup stable for the mixed formulation of the Poisson equation, i.e.

sup
q̃h∈Qh

⟨∇ · q̃h, ph⟩Ω
∥q̃h∥+ ∥∇ · q̃h∥

≳ ∥ph∥, sup
ũh∈Uh

⟨∇ · ũh, ph⟩Ω
∥ũh∥+ ∥∇ · ũh∥

≳ ∥ph∥, ∀ph ∈ Ph.

A3. The pair Rh × Uh satisfies Ran(∇×, Rh) = Ker(∇·, Uh) and

sup
r̃h∈Rh

⟨∇ × r̃h, uh⟩Ω
∥r̃h∥+ ∥∇ × r̃h∥

≳ ∥uh∥, ∀uh ∈ Uh.

Remark 4.1. Assumptions A2 and A3 can be relaxed to general inf-sup stable
pairs of finite elements that do not satisfy Ran(∇·, Qh) ⊆ Ph, Ran(∇·, Uh) ⊆ Ph, and
Ran(∇×, Rh) ⊆ Uh. However, in order to ease the upcoming analysis, we consider
these stronger assumptions.

Remark 4.2. These assumptions are different from the Stokes-Biot stability con-
ditions introduced in [19, Def. 3.1] since we do note require a Stokes-stable pair
Uh × Ph. On the other hand, we need the additional space Rh to capture the solid
rotations.

We focus on two families of discretizations that satisfy these assumptions. For
given polynomial degree k ≥ 0, the first of these families is given by

X
(1)
h :=

(
N(1)

k × RTk × RTk × Pk

)
∩X.(4.1)

In particular, the rotation variable is discretized using Nédélec elements of the first
kind [17]. Here, k denotes the polynomial degree of the tangential traces on mesh
edges. The displacement and fluid flux are both discretized using Raviart-Thomas
elements of order k, which implies that the normal traces of these functions on mesh
faces are of polynomial degree k. Finally, the pressure variable is sought in the space of
discontinuous, elementwise polynomials of degree k. The intersection with X ensures
that the essential boundary conditions are respected.

The second family we consider is defined as:

X
(2)
h :=

(
N(2)

k+1 × RTk × BDMk+1 × Pk

)
∩X.(4.2)

In this case, the Nédélec elements of the second kind are used to discretize the rotation

variable. The notation N(2)
k+1 implies that the basis functions of Rh are given by

polynomials of degree k + 1 on the mesh edges. Similarly, the fluid flux is here given
by the Brezzi-Douglas-Marini space BDMk+1 which has normal traces on mesh faces
of polynomial degree k + 1.

In 2D, since rotation is a scalar, the two families of discrete spaces employ the
continuous Lagrange elements of order k + 1 for the rotation space Rh, denoted by
Lk+1.

9



With the discrete space Xh ⊂ X defined, we are ready to formulate the four-field
mixed finite element method (4F-MFEM): find xh ∈ Xh such that

⟨Axh, x̃h⟩ = ⟨f, x̃h⟩, ∀x̃h ∈ Xh.(4.3)

The two main results are presented next, namely the stability of the 4F-MFEM
in Subsection 4.1 and its convergence in Subsection 4.2.

4.1. Stability. The analysis of (4.3) follows the same steps as in Section 3.
First, the continuity bound ⟨Axh, x̃h⟩ ≲ ∥xh∥X∥x̃h∥X , ∀xh, x̃h ∈ Xh is immediate
by Lemma 3.2 and the conformity A1. The inf-sup condition is considered in the
following lemma.

Lemma 4.1 (Inf-sup). If Xh satisfies A1–A3, then the following bound holds

sup
x̃h∈Xh

⟨Axh, x̃h⟩
∥x̃h∥X

≳ ∥xh∥X , ∀xh ∈ Xh.(4.4)

Proof. First, we define the discrete analogue of the energy norm (3.5) as

|||xh|||2h := µ−1(∥rh∥2 + ∥∇ × rh∥2) + µ∥Πhuh∥2 + (2µ+ λ)∥∇ · uh∥2

+K−1∥qh∥2 +
1

η + c0
∥∇ · (αuh + δqh)∥2 + (η + c0)∥ph∥2.(4.5)

with Πh the L2-projection on Ran(∇×, Rh). The equivalence ∥xh∥X ≂ |||xh|||h holds
for all xh ∈ Xh by the same arguments as in Lemma 3.1, using A1 and Ker(∇·, Uh) =
Ran(∇×, Rh) from assumption A3.

Next, we follow the proof of Lemma 3.3 for a discrete function xh ∈ Xh and Π
replaced by Πh. Each of the test functions x̃h,i ∈ Xh can be created in analogy to x̃i

due to assumptions A2 and A3. Thus, defining x̃h :=
∑

i x̃h,i, we have ⟨Axh, x̃h⟩ ≳
|||xh|||2h and |||x̃h|||h ≲ |||xh|||h. The equivalence of norms then provides the result.

The stability of the mixed finite element method, which forms the main result of
this section, now follows by the same arguments as in Theorem 3.4.

Theorem 4.2 (Stability). If assumptions A1–A3 are satisfied, then the discrete
problem (4.3) admits a unique solution xh ∈ Xh that satisfies

∥xh∥X ≲ ∥f∥X′
h
:= sup

x̃h∈Xh

⟨f, x̃h⟩
∥x̃h∥X

.(4.6)

4.2. Convergence. Let ΠR, ΠU , ΠQ, and ΠP be the canonical interpolation
operators onto the respective finite element spaces, defined for sufficiently regular
(r, u, q, p) ∈ X. These operators have the following approximation properties for the

finite element families X
(1)
h and X

(2)
h from (4.1) and (4.2):

∥(I −ΠR)r∥ ≲ hk̄+1∥r∥k̄+1, ∥∇ × (I −ΠR)r∥ ≲ hk+1∥∇ × r∥k+1,

∥(I −ΠU )u∥ ≲ hk+1∥u∥k+1, ∥∇ · (I −ΠU )u∥ ≲ hk+1∥∇ · u∥k+1,

∥(I −ΠQ)q∥ ≲ hk̄+1∥q∥k̄+1, ∥∇ · (I −ΠQ)q∥ ≲ hk+1∥∇ · q∥k+1,

∥(I −ΠP )p∥ ≲ hk+1∥p∥k+1.

Here, ∥ · ∥k denotes the Hk(Ω)-norm and we have k̄ = k for Xh := X
(1)
h and k̄ = k+1

for Xh := X
(2)
h . Let the composite interpolant ΠX be defined for sufficiently regular

elements of X such that

ΠX(r, u, q, p) := (ΠRr,ΠUu,ΠQq,ΠP p).(4.7)
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Theorem 4.3 (Error estimate). If x, the solution to (3.3), is sufficiently regular,

and Xh is chosen as X
(1)
h or X

(2)
h with polynomial degree k ≥ 0, then the solution

xh ∈ Xh to (4.3) converges as

∥xh − x∥X ≤ Chk+1
(
hk̄−k∥r∥k̄+1 + ∥∇ × r∥k+1 + ∥u∥k+1 + ∥∇ · u∥k+1

+ hk̄−k∥q∥k̄+1 + ∥∇ · q∥k+1 + ∥p∥k+1

)
,(4.8)

with C ≥ 0 possibly depending on the material parameters.

Proof. As shown in the proof of Lemma 4.1, for each yh ∈ Xh, a ỹh exists such
that ⟨Ayh, ỹh⟩ ≳ ∥yh∥2X and ∥ỹh∥X ≲ ∥yh∥X . Consider yh = xh −ΠXx ∈ Xh and let
us use the properties of ỹh with the consistency Xh ⊂ X and continuity of A from
Lemma 3.2 to derive

∥xh −ΠXx∥2X ≲ ⟨A(xh −ΠXx), ỹh⟩ = ⟨A(x−ΠXx), ỹh⟩
≲ ∥(I −ΠX)x∥X∥xh −ΠXx∥X .

A triangle inequality now gives us

∥xh − x∥X ≤ ∥xh −ΠXx∥X + ∥(I −ΠX)x∥X ≲ ∥(I −ΠX)x∥X ,

and the approximation properties of ΠX conclude the proof.

5. A multipoint rotation-flux MFE method. We continue by considering

the lowest order instance of the finite element family of the second kind, i.e. X
(2)
h

from (4.2) with k = 0. In 3D, this space contains two degrees of freedom per edge for

the rotation r ∈ N(2)
1 and three degrees of freedom per face for the flux q ∈ BDM1.

By choosing an appropriate quadrature rule for the inner products in Rh and Qh,
we can localize the mass matrix around the vertices. In turn, the variables (r, q) can
be eliminated through static condensation and we obtain a multipoint mixed finite
element method for the Biot system with (u, p) ∈ RT0 × P0 in Subsection 5.1. The
stability and convergence of this method are shown in Subsection 5.2.

5.1. Static condensation. Following [14], we consider a specific quadrature
rule for functions φ, ϕ on a simplicial mesh:

⟨ϕ, φ⟩h :=
∑
ω∈Ωh

|ω|
n+ 1

∑
x∈V(ω)

ϕω(x) · φω(x)(5.1)

in which ϕω is the restriction of ϕ on an element ω ∈ Ωh and V(ω) is the set of its
vertices. The dot product herein reduces to the standard product for scalar ϕ, φ.

We emphasize that ⟨ϕ, φ⟩h is non-zero if and only if the basis functions ϕ, φ
are non-zero at the same vertex of a mesh element. It has two more advantageous
properties, which we highlight in the following lemma.

Lemma 5.1 ([14, Thm. 4.1]). The norm ∥ ·∥h induced by the inner product (5.1)
is equivalent to the L2-norm on Rh and Qh:

∥ϕ∥h ≂ ∥ϕ∥, ∥φ∥h ≂ ∥φ∥, ∀(ϕ, φ) ∈ Rh ×Qh.(5.2)

Moreover, the quadrature rule is exact if the test function is elementwise constant:

⟨rh, r̊h⟩h = ⟨rh, r̊h⟩Ω, ∀rh ∈ Rh, r̊h ∈ R̊h := Pkn
0 ,(5.3a)

⟨qh, q̊h⟩h = ⟨qh, q̊h⟩Ω, ∀qh ∈ Qh, q̊h ∈ Q̊h := Pn
0 .(5.3b)
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We will apply this quadrature rule on the L2-inner products on the two spaces
Rh×Qh. In particular, we substitute ⟨·, ·⟩h in the definition of A to obtain the discrete
operator Ah : Xh → X ′

h:

⟨Ahxh, x̃h⟩ := µ−1⟨rh, r̃h⟩h + (2µ+ λ)⟨∇ · uh,∇ · ũh⟩Ω + ⟨K−1qh, q̃h⟩h + c0⟨ph, p̃h⟩Ω.
(5.4)

In turn, we define Ah := Ah +B −B∗, which leads us to the following problem:
find x̂h ∈ Xh such that

⟨Ahx̂h, x̃h⟩ = ⟨f, x̃h⟩, ∀x̃h ∈ Xh.(5.5)

Next, we aim to eliminate the variables r̂h and q̂h to obtain a multipoint mixed
finite element method. For that, let us consider the matrix representation of (5.5).
Let Mu and Mp be the mass matrices on the spaces Uh and Ph, respectively. Moreover,
let Mr,h and Mq,h be the matrices corresponding to the quadrature rule, applied to
the basis functions of Rh and Qh. Let Br, Bu, and Bq be the representations of the
curl on Rh, the divergence on Uh, and the divergence on Qh, respectively. Finally, to
shorten notation, we let B̂r = MuBr, B̂u = MpBu, and B̂q = MpBq denote the action of
these differential operators in their respective range spaces.

Since Mr,h and Mq,h are easily invertible, the variables r̂h and q̂h can now be
eliminated by taking a Schur complement. We arrive at the algebraic formulation of
the multipoint rotation-flux mixed finite element method (MR-MFEM): find (û, p̂) ∈
Uh × Ph such that

[
(2µ+ λ)BT

uMuBu + µB̂rM
−1
r,h B̂

T
r −αB̂T

u

αB̂u c0Mp + δ2KB̂qM
−1
q,hB̂

T
q

] [
û
p̂

]
=

[
fu − µB̂rM

−1
r,h fr

fp − δKB̂qM
−1
q,hfq

]
,

(5.6)

with û, p̂ the vector representations of ûh and p̂h, respectively, and f = [fr, fq, fu, fp]
T

representing the right-hand side f ∈ X ′
h in (4.3).

We will refer to (5.5) as the reducible problem and the equivalent (5.6) as the
reduced problem. We remark that (5.6) is a discretization of the following system, in
which we recognize the (1, 1)-block as the weighted vector Laplacian from (2.3):[

−∇(2µ+ λ)∇ ·+∇× µ∇× ∇α
α∇· c0 −∇ · δ2K∇

] [
û
p̂

]
.(5.7)

Remark 5.1. The more general case in which the conductivity K is an element-
wise constant, full tensor can be handled by defining a new lumped mass matrix MK

q,h

such that qTMK
q,hq̃ = ⟨K−1q, q̃⟩h for all q, q̃ ∈ Qh. However, we restrict our analysis

to constant, scalar K and will only consider the more general case in the numerical
examples of Section 7.

5.2. Analysis. We devote this subsection to the theoretical results concerning
the MR-MFEM (5.6). After presenting general findings, we present specific results
for the two-dimensional case in Subsection 5.2.1.

Lemma 5.2 (Well-posedness). The operator Ah satisfies

∥xh∥X ≂ sup
x̃h∈Xh

⟨Ahxh, x̃h⟩
∥x̃h∥X

, ∀xh ∈ Xh.(5.8)

In turn, the reducible problem (5.5) admits a unique and bounded solution x̂h ∈ Xh.
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Proof. The same arguments as in Theorem 4.2 are followed, using the equivalence
∥ · ∥ ≂ ∥ · ∥h when necessary.

As in Lemma 5.1, we let R̊h := Pkn
0 with kn := ( n2 ) and Q̊h := Pn

0 be the spaces

containing elementwise constant (vector) functions. Additionally, let Π̊R and Π̊Q be
their respective L2 projections. These have the following approximation properties
for sufficiently regular (r, q) ∈ R×Q:

∥(I − Π̊R)r∥ ≲ h∥r∥1, ∥(I − Π̊Q)q∥ ≲ h∥q∥1.(5.9)

Lemma 5.3 (Convergence). The solution x̂h to (5.5) converges linearly to x, the
solution to (3.3). I.e. a constant C exists, depending on the physical parameters and
the regularity of x, such that

∥x̂h − x∥X ≤ Ch.(5.10)

Proof. We follow [14, Thm. 3.2] by first showing that the solutions x̂h and xh

converge linearly to each other and then using Theorem 4.3 to obtain the result. We
start by considering the norm of the difference and use Lemma 5.2 with the fact that
Axh = Ahx̂h to derive:

∥x̂h − xh∥X ≂ sup
x̃h∈Xh

⟨Ah(x̂h − xh), x̃h⟩
∥x̃h∥X

= sup
x̃h∈Xh

⟨(A−Ah)xh, x̃h⟩
∥x̃h∥X

= sup
x̃h∈Xh

⟨(A−Ah)xh, x̃h⟩
∥x̃h∥X

We continue by bounding the numerator, which consists of the following terms:

⟨(A−Ah)xh, x̃h⟩ = µ−1(⟨rh, r̃h⟩Ω − ⟨rh, r̃h⟩h) +K−1(⟨qh, q̃h⟩Ω − ⟨qh, q̃h⟩h)

For the first term, we derive the upper bound

µ−1(⟨rh, r̃h⟩Ω − ⟨rh, r̃h⟩h) = µ−1(⟨rh − Π̊Rr, r̃h⟩Ω + ⟨Π̊Rr − rh, r̃h⟩h)
≤ µ−1(∥rh − Π̊Rr∥∥r̃h∥+ ∥Π̊Rr − rh∥h∥r̃h∥h)
≂ µ−1∥rh − Π̊Rr∥∥r̃h∥

The second term is bounded analogously and we obtain

⟨(A−Ah)xh,x̃h⟩ ≲ µ−1∥rh − Π̊Rr∥∥r̃h∥+K−1∥qh − Π̊Qq∥∥q̃h∥

≲ (µ−1∥rh − Π̊Rr∥2 +K−1∥qh − Π̊Qq∥2)
1
2 (µ−1∥r̃h∥2 +K−1∥q̃h∥2)

1
2

≤ (µ−1∥rh − Π̊Rr∥2 +K−1∥qh − Π̊Qq∥2)
1
2 ∥x̃h∥X

Combining with the above, we have thus derived

∥x̂h − xh∥X ≲ (µ−1∥rh − Π̊Rr∥2 +K−1∥qh − Π̊Qq∥2)
1
2

≲
√
µ−1(∥rh − r∥+ ∥r − Π̊Rr∥) +

√
K−1(∥qh − q∥+ ∥q − Π̊Qq∥)

≲ ∥xh − x∥X +
√
µ−1∥r − Π̊Rr∥+

√
K−1∥q − Π̊Qq∥.

Finally, a triangle inequality, property (5.9), and Theorem 4.3 with k = 0 give us

∥x̂h − x∥X ≤ ∥x̂h − xh∥X + ∥xh − x∥X ≤ Ch.
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The introduction of the quadrature rule leaves components of the solution un-
changed. We present these invariants formally in the following lemma and subsequent
corollaries. The proofs are analogous to [10], but are included here for the sake of
completeness.

Lemma 5.4. The application of the quadrature rule does not affect the curl of the
rotation, i.e. ∇× r̂h = ∇× rh.

Proof. Let ur = ∇ × (r̂h − rh) and consider the test function x̃ = (0, ur, 0, 0).
Using the fact that ∇ · ur = 0, we derive

0 = ⟨Ahx̂h −Axh, x̃⟩
= ⟨∇ × (r̂h − rh), ur⟩Ω + (2µ+ λ)⟨∇ · (ûh − uh),∇ · ur⟩Ω − ⟨p̂h − ph,∇ · αur⟩Ω
= ∥∇ × (r̂h − rh)∥2.

Corollary 5.5. In the decoupled case of α = 0, the volumetric strain is not
affected by the quadrature rule. I.e. ∇ · ûh = ∇ · uh.

Proof. Let us consider x̃ = (0, ûh − uh, 0, 0). Using ∇ × (r̂h − rh) = 0 from
Lemma 5.4 and α = 0, we derive:

0 = ⟨Ahx̂h −Axh, x̃⟩ = (2µ+ λ)∥∇ · (ûh − uh)∥2.

5.2.1. The two-dimensional case. In the special case with n = 2, we obtain
stronger results concerning the rotation variable, which we present in the following
corollary and lemma, respectively.

Corollary 5.6. In 2D, the rotation variable is entirely unaffected by the quadra-
ture rule: r̂h = rh.

Proof. In 2D, the curl is given by the rotated gradient ∇× u = (−∂2u, ∂1u). In
turn, Lemma 5.4 implies that r̂h − rh is a constant. For x̃ := (µ(r̂h − rh), 0, 0, 0), we
derive using R ⊆ R̊h and Lemma 5.1:

0 = ⟨Ahx̂h −Axh, x̃⟩ = ⟨r̂h, r̂h − rh⟩h − ⟨rh, r̂h − rh⟩Ω
= ⟨r̂h, r̂h − rh⟩Ω − ⟨rh, r̂h − rh⟩Ω = ∥r̂h − rh∥2.

Lemma 5.7 (Improved estimate). If n = 2, then we obtain second order conver-
gence in the rotation variable:

∥r̂h − r∥ = ∥rh − r∥ ≲ h2∥r∥2(5.11)

Proof. The equality was shown in Corollary 5.6. For the second, we introduce the
projection PR : R → Rh obtained by solving the following problem: find PRr ∈ Rh

such that

⟨∇ × PRr,∇× r̃h⟩Ω = ⟨∇ × r,∇× r̃h⟩Ω, ∀r̃h ∈ Rh.(5.12)

In case ∂rΩ = ∅, we set ⟨PR, 1⟩Ω = ⟨r, 1⟩Ω to ensure uniqueness. Since ∇× is a
rotated gradient in 2D, PRr is an L1 approximation of the solution to a Laplace
problem, which gives us the approximation property

∥(I − PR)r∥ ≲ h2∥r∥2.(5.13)
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Let the test function x̃ := (rh −PRr,Πh(uh − u), 0, 0) with Πh the L2 projection
onto Ran(∇×, Rh) ⊆ Qh, as in the proof of Lemma 4.1. We now use ∇ ·Πh = 0 and
the orthogonality property (5.12) to derive

0 = ⟨A(xh − x), x̃⟩ = µ−1⟨rh − r, rh − PRr⟩Ω − ⟨uh − u,∇× (rh − PRr)⟩Ω
+ ⟨Πh(uh − u),∇× (rh − r)⟩Ω

= µ−1⟨rh − r, rh − PRr⟩Ω − ⟨Πh(uh − u),∇× (I − PR)r⟩Ω
= µ−1⟨rh − r, rh − PRr⟩Ω
= µ−1(∥rh − r∥2 + ⟨rh − r, (I − PR)r⟩Ω)

Combining this with (5.13), we arrive at the following bound

∥rh − r∥ =
−⟨rh − r, (I − PR)r⟩Ω

∥rh − r∥
≤ ∥(I − PR)r∥ ≲ h2∥r∥2.

6. Parameter-robust preconditioning for 4F-MFEM. We follow the pre-
conditioning framework [16], which uses the Riesz representation operator as the
canonical preconditioner. In particular, let ⟨·, ·⟩X be the inner product on X that
induces the norm ∥ · ∥X from (3.4). Then we define the preconditioner P : X ′

h → Xh

as the operator that satisfies

⟨Pf, x̃⟩X = ⟨f, x̃⟩, ∀(f, x̃) ∈ X ′
h ×Xh.(6.1)

Let L(Xh, Xh) denote the space of linear maps Xh → Xh and let ∥ · ∥L(Xh,Xh) be
its norm. From Lemma 3.2, we have ∥PA∥L(Xh,Xh) ≲ 1 and, additionally, Lemma 4.1

implies that ∥(PA)−1∥−1
L(Xh,Xh)

≳ 1. In turn, the condition number of the precondi-

tioned system satisfies

κ(PA) = ∥PA∥L(Xh,Xh)∥(PA)−1∥L(Xh,Xh) ≲ 1.(6.2)

Since our analysis is based on bounds with constants that are independent of
material parameters, this condition number is bounded from above for all admissible
parameters. In turn, the operator P is a parameter-robust preconditioner for 4F-
MFEM.

Due to the definition of the norm ∥ · ∥X , the operator P has a block-diagonal
structure with the blocks defined according to their inverses:

⟨P−1
r r, r̃⟩ := µ−1(⟨r, r̃⟩Ω + ⟨∇ × r,∇× r̃⟩Ω),

⟨P−1
u u, ũ⟩ := µ⟨u, ũ⟩Ω + (2µ+ λ)⟨∇ · u,∇ · ũ⟩Ω,

⟨P−1
q q, q̃⟩ := K−1⟨q, q̃⟩Ω +

δ2

η + c0
⟨∇ · q,∇ · q̃⟩Ω, ⟨P−1

p p, p̃⟩ := (η + c0)⟨p, p̃⟩Ω.

We emphasize that this preconditioner requires solving independent systems for
the variables r, u, q, and p. In order to generate a preconditioner that is scalable for
larger systems, these solves can be replaced by spectrally equivalent operators [16].
However, such extensions are beyond the scope of this work.

7. Numerical results. In this section, we present numerical experiments to
show the performance of the proposed schemes. We first perform convergence studies
in Subsection 7.1 to verify the results from Section 4 and Section 5. Subsequently,
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Subsection 7.2 shows the robustness of the preconditioner introduced in Section 6.
Finally, Subsection 7.3 presents the approximations for the Mandel problem computed
by the proposed four-field and multipoint schemes.

We focus on the lowest order instances of the families of finite elements introduced
in Section 4. We refer to the first as the two-field mixed finite element method
for elasticity (2F-MFEM ), respectively the four-field MFEM for poroelasticity (4F-
MFEM ). For the second kind, we apply the quadrature rule from Section 5, and
we use the acronym MR-MFEM to refer to the resulting multipoint rotation(-flux)
mmixed finite element method.

All the numerical results are obtained with the libraries PorePy [13] and Py-
GeoN [1]. The scripts of all the test are publicly available at https://github.com/
compgeo-mox/rotation based biot.

7.1. Convergence study. In this section we evaluate the performance of the
method by considering the numerical errors. In particular, we consider problems
(2.4) and (2.8) for n = 2 and n = 3, with the computational domain given by the unit
cube Ω = (0, 1)n. For simplicity, all material parameters are set to 1 and we assume
homogeneous essential conditions on ∂Ω.

7.1.1. Linear elasticity. We consider the following exact solutions for n = 2
and 3 of Problem (2.4), respectively:

u(x, y) = x2y2(1− x)2(1− y)2[4,−1]T ,(7.1a)

u(x, y, z) = x2y2z2(1− x)2(1− y)2(1− z)2[4,−1, 2]T ,(7.1b)

and we set r = ∇× u. The source term fu is computed accordingly.
The relative L2 errors against the analytical solutions are reported in Table 7.1.

We notice second order convergence of r for n = 2 for both 2F-MFEM and MR-MFEM
as shown in Lemma 5.7. In all the other cases, the unknowns converge linearly with
respect to the mesh size, as expected by Theorem 4.3 and Lemma 5.3. Moroever, the
number of degrees of freedom is significantly smaller for MR-MFEM compared to the
2F-MFEM, and the errors are observed to be larger for the former than for the latter.

In Table 7.2, we compare the solutions of the two methods by computing the
relative norms of their differences and associated convergence rates. We observe that
the curl of the rotation ∇ × r and the divergence of the displacement ∇ · u are
unaffected by the quadrature rule (5.1), as was shown in Lemma 5.4 and Corollary 5.5,
respectively. Moreover, the computated rotation is identical for the two methods if
n = 2, in agreement with Corollary 5.6.

7.1.2. Poroelasticity. Next, we consider Problem (2.8). Let the exact solutions
for the displacement be given by (7.1), while for the flow variables, we consider:

q(x, y) = [sin(2xπ) sin(2yπ), xy(1− x)(1− y)]T , p(x, y) = xy(1− x)(1− y),

q(x, y, z) =

sin(2xπ) sin(2yπ) sin(2zπ)xyz(1− x)(1− y)(1− z)
y(1− y) sin(2xπ) sin(2zπ)

 , p(x, y, z) = xyz(1− x)(1− y)(1− z).

Moreover, we set r = ∇×u, and the source terms in the second and fourth equations
of (2.8a) are computed accordingly. For simplicity we have considered also a vector
source term in the third equation of (2.8a), which does not affect the previously
introduced theory.
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Table 7.1
Relative L2 errors and convergence rates for the solutions r and u, curl of the rotation ∇× r,

and divergence of the displacement ∇ · u against the analytical solutions. Results for the elasticity
example in Subsection 7.1.1.

2F-MFEM
h Ndof Errr Rater Erru Rateu Err∇×r Rate∇×r Err∇·u Rate∇·u

n
=

2

6.42e-2 1297 4.72e-3 - 4.47e-2 - 2.19e-2 - 1.85e-1 -
3.17e-2 4929 1.09e-3 2.07 2.22e-2 1.00 9.92e-3 1.13 9.28e-2 0.98
1.57e-2 19297 2.47e-4 2.11 1.11e-2 1.00 3.53e-3 1.47 4.66e-2 0.98
7.83e-3 76465 5.92e-5 2.06 5.52e-3 1.00 1.36e-3 1.37 2.34e-2 0.99
3.91e-3 304473 1.41e-5 2.07 2.76e-3 1.00 5.00e-4 1.45 1.17e-2 1.00

n
=

3

2.34e-1 5900 1.14e-1 - 1.02e-1 - 1.95e-1 - 6.12e-1 -
1.48e-1 22305 6.65e-2 1.18 5.34e-2 1.42 1.41e-1 0.71 3.69e-1 1.10
1.08e-1 54435 4.26e-2 1.42 3.75e-2 1.13 9.77e-2 1.16 2.73e-1 0.96
8.58e-2 106001 3.28e-2 1.13 2.88e-2 1.14 8.09e-2 0.81 2.14e-1 1.05
7.09e-2 185943 2.74e-2 0.96 2.34e-2 1.09 6.56e-2 1.10 1.76e-1 1.03

MR-MFEM

n
=

2

6.42e-2 956 4.72e-3 - 4.46e-2 - 2.19e-2 - 1.85e-1 -
3.17e-2 3664 1.09e-3 2.07 2.21e-2 0.99 9.92e-3 1.13 9.28e-2 0.98
1.57e-2 14408 2.47e-4 2.11 1.11e-2 0.99 3.53e-3 1.47 4.66e-2 0.98
7.83e-3 57220 5.92e-5 2.06 5.52e-3 1.00 1.36e-3 1.37 2.34e-2 0.99
3.91e-3 228098 1.41e-5 2.07 2.76e-3 1.00 5.00e-4 1.45 1.17e-2 1.00

n
=

3

2.34e-1 3510 2.67e-1 - 1.11e-1 - 1.95e-1 - 6.12e-1 -
1.48e-1 13576 1.22e-1 1.71 5.48e-2 1.54 1.41e-1 0.71 3.69e-1 1.10
1.08e-1 33462 8.16e-2 1.29 3.83e-2 1.15 9.77e-2 1.16 2.73e-1 0.96
8.58e-2 65554 6.05e-2 1.29 2.92e-2 1.17 8.09e-2 0.81 2.14e-1 1.05
7.09e-2 115434 4.84e-2 1.17 2.36e-2 1.11 6.56e-2 1.10 1.76e-1 1.03

Table 7.2
Relative differences in L2 between the solutions obtained with 2F-MFEM and MR-MFEM for

the rotation r, displacement u, curl of the rotation ∇× r, and divergence of the displacement ∇ · u
of (2.4). Results for the elasticity example in Subsection 7.1.1.

2F-MFEM vs MR-MFEM
h Errr Rater Erru Rateu Err∇×r Err∇·u

n
=

2

6.42e-2 1.56e-14 - 1.21e-2 - 7.18e-14 8.97e-15
3.17e-2 5.02e-14 - 3.08e-3 1.94 3.44e-13 2.40e-14
1.57e-2 1.21e-13 - 7.71e-4 1.97 1.62e-12 3.97e-14
7.83e-3 3.33e-13 - 1.93e-4 1.99 7.89e-12 1.07e-13
3.91e-3 1.22e-12 - 4.82e-5 2.00 3.65e-11 6.30e-13

n
=

3

2.34e-1 1.54e-1 - 5.61e-2 - 5.52e-14 6.58e-15
1.48e-1 1.01e-1 0.93 2.21e-2 2.04 3.42e-13 2.26e-14
1.08e-1 2.16e-2 1.07 1.16e-2 2.06 9.46e-13 4.94e-14
8.58e-2 5.71e-2 1.01 7.26e-3 2.02 1.39e-12 8.57e-14
7.09e-2 4.67e-2 1.06 4.91e-3 2.05 3.59e-12 1.89e-13

In Table 7.3 we present the relative L2 errors against the analytical solutions of
the unknowns for both methods in 2D and 3D. We notice that in all cases the errors
decay at least with order one, which is expected by Theorem 4.3 and Lemma 5.3. The
rotation in 2D is again second order convergent as observed in the previous example
and supported by Lemma 5.7. We notice that in 3D, the errors for the MR-MFEM
are higher than 4F-MFEM, also higher than in the previous example, probably due to
the fact that we are now performing hybridization on two variables. The inital higher
order of convergence are due to the high errors obtained on the coarse grids we start
with.

Table 7.4 contains the relative L2 errors for the differentials, i.e. the relevant curl
and divergence, of the numerical solutions against their analytical counterparts. Also
in this case we obtain at least order one for all variables, in agreement with the theory.

Finally, in Table 7.5 and Table 7.6 we compare the solutions of the two numerical
methods by computing the relative norms of their difference. As in the elasticity
example, we notice that in 2D the curl of r is unaffected by the quadrature rule (5.1)
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Table 7.3
Relative L2 errors and convergence rates for the solutions of (2.8) against the analytical solu-

tions. Results for the poroelasticity example from Subsection 7.1.2.

4F-MFEM
h Ndof Errr Rater Erru Rateu Errq Rateq Errp Ratep

n
=

2

6.42e-2 2869 3.06e-2 - 5.62e-2 - 8.05e-2 - 1.12e-1 -
3.17e-2 10993 7.83e-3 1.93 2.38e-2 1.22 4.01e-2 0.99 5.67e-2 1.22
1.57e-2 43225 1.95e-3 1.97 1.13e-2 1.06 2.00e-2 0.99 2.84e-2 1.06
7.83e-3 171661 4.88e-4 2.00 5.55e-3 1.02 9.99e-3 1.00 1.42e-2 1.02
3.91e-3 684295 1.22e-4 2.00 2.77e-3 1.00 5.00e-3 1.00 7.12e-3 1.00

n
=

3

2.34e-1 10988 1.32e-1 - 1.41e-1 - 2.87e-2 - 4.48e-1 -
1.48e-1 42227 7.34e-2 1.29 6.50e-2 1.69 1.18e-2 1.95 2.60e-1 1.19
1.08e-1 103811 4.62e-2 1.48 4.09e-2 1.48 6.22e-3 2.04 1.88e-1 1.04
8.58e-2 203050 3.49e-2 1.21 3.01e-2 1.32 4.01e-3 1.89 1.46e-1 1.08
7.09e-2 357203 2.85e-2 1.05 2.42e-2 1.16 2.81e-3 1.87 1.20e-1 1.04

MR-MFEM

n
=

2

6.42e-2 1572 3.06e-2 - 5.55e-2 - 8.05e-2 - 1.15e-1 -
3.17e-2 6064 7.83e-3 1.93 2.37e-2 1.21 4.01e-2 0.99 5.70e-2 0.99
1.57e-2 23928 1.95e-3 1.97 1.13e-2 1.06 2.00e-2 0.99 2.84e-2 0.99
7.83e-3 95196 4.88e-4 2.00 5.55e-3 1.02 9.99e-3 1.00 1.42e-2 1.00
3.91e-3 379822 1.22e-4 2.00 2.76e-3 1.00 5.00e-3 1.00 7.12e-3 1.00

n
=

3

2.34e-1 5088 2.74e-1 - 1.39e+0 - 1.82e-1 - 1.25e+0 -
1.48e-1 19922 1.26e-1 1.70 5.57e-1 2.01 8.57e-2 1.65 5.39e-1 1.85
1.08e-1 49376 8.32e-2 1.32 2.93e-1 2.05 5.49e-2 1.43 3.12e-1 1.74
8.58e-2 97049 6.14e-2 1.31 1.85e-1 1.97 4.17e-2 1.18 2.15e-1 1.61
7.09e-2 171260 4.90e-2 1.19 1.27e-1 1.98 3.31e-2 1.21 1.61e-1 1.52

Table 7.4
Relative L2 errors for the curl of the rotation ∇ × r, divergence of the displacement and flux

∇ · u and ∇ · q, respectively, of (2.8) against the analytical solutions. Results for the poroelasticity
example from Subsection 7.1.2.

4F-MFEM
h Err∇×r Rate∇×r Err∇·u Rate∇·u Err∇·q Rate∇·q

n
=

2

6.42e-2 3.38e-2 - 1.86e-1 - 2.25e-1 -
3.17e-2 1.30e-2 1.36 9.29e-2 0.98 1.13e-1 0.97
1.57e-2 4.35e-3 1.55 4.66e-2 0.98 5.68e-2 0.98
7.83e-3 1.59e-3 1.45 2.34e-2 0.99 2.84e-2 1.00
3.91e-3 5.70e-4 1.47 1.17e-2 1.00 1.42e-2 1.00

n
=

3

2.34e-1 3.22e-1 - 6.70e-1 - 7.31e-1 -
1.48e-1 2.31e-1 0.72 3.79e-1 1.25 4.74e-1 0.95
1.08e-1 1.61e-1 1.16 2.76e-1 1.02 3.48e-1 0.99
8.58e-2 1.30e-1 0.91 2.15e-1 1.07 2.77e-1 0.98
7.09e-2 1.07e-1 1.05 1.77e-1 1.04 2.28e-1 1.01

MR-MFEM

n
=

2

6.42e-2 3.38e-2 - 1.87e-1 - 2.25e-1 -
3.17e-2 1.30e-2 1.36 9.30e-2 0.99 1.13e-1 0.97
1.57e-2 4.35e-3 1.55 4.66e-2 0.98 5.68e-2 0.98
7.83e-3 1.59e-3 1.45 2.34e-2 0.99 2.84e-2 1.00
3.91e-3 5.70e-4 1.47 1.17e-2 1.00 1.42e-2 1.00

n
=

3

2.34e-1 3.22e-1 - 3.65e+0 - 7.30e-1 -
1.48e-1 2.31e-1 0.72 1.47e+0 1.98 4.74e-1 0.94
1.08e-1 1.61e-1 1.16 8.01e-1 1.95 3.47e-1 0.99
8.58e-2 1.30e-1 0.91 5.21e-1 1.85 2.77e-1 0.98
7.09e-2 1.07e-1 1.05 3.68e-1 1.82 2.28e-1 1.01

in accordance with Lemma 5.4. For the other variables we get at least first order
convergence, because both solutions converge linearly to the true solution.

7.2. Parameter-robust preconditioning. In this part, we present the perfor-
mance of the parameter-robust preconditioner for 4F-MFEM presented in Section 6
on the test case from Subsection 7.1. For this, we first symmetrize the system by
negating the second and third rows of A in (2.8). We then consider the MINRES it-
erative algorithm with stopping criteria based on relative residual tolerance, which is
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Table 7.5
Relative differences in L2 between the solutions obtained with the 4F-MFEM and MR-MFEM

scheme for the rotation r, displacement u, flux q, and pressure p. Results for the poroelasticity
example in Subsection 7.1.2.

h Errr Rater Erru Rateu Errq Rateq Errp Ratep

n
=

2

6.42e-2 1.13e-13 - 1.35e-2 - 7.66e-4 - 2.23e-2 -
3.17e-2 3.17e-13 - 3.37e-3 1.97 2.74e-4 1.46 5.60e-3 1.96
1.57e-2 9.82e-13 - 8.39e-4 1.98 8.20e-5 1.71 1.40e-3 1.97
7.83e-3 1.38e-12 - 2.10e-4 1.99 3.13e-5 1.38 3.52e-4 1.99
3.91e-3 7.31e-12 - 5.24e-5 2.00 1.08e-5 1.54 8.80e-5 2.00

n
=

3

2.34e-1 1.58e-1 - 7.88e-1 - 3.72e-1 - 7.47e-1 -
1.48e-1 1.02e-1 0.97 4.80e-1 1.08 1.40e-1 2.14 4.22e-1 1.25
1.08e-1 7.25e-2 1.08 2.71e-1 1.82 7.83e-2 1.86 2.35e-1 1.87
8.58e-2 5.72e-2 1.03 1.75e-1 1.90 5.43e-2 1.58 1.51e-1 1.90
7.09e-2 4.67e-2 1.06 1.20e-1 1.96 4.05e-2 1.54 1.03e-1 1.99

Table 7.6
Relative differences in L2 between the curl of the rotation ∇×r, divergence of the displacement

∇·u, and divergence of the flux ∇· q of the solutions obtained with the 4F-MFEM and MR-MFEM.
Results for the poroelasticity example in Subsection 7.1.2.

h Err∇×r Err∇·u Rate∇·u Err∇·q Rate∇·q

n
=

2

6.42e-2 3.35e-13 1.63e-2 - 3.58e-4 -
3.17e-2 1.75e-12 4.11e-3 1.95 9.00e-5 1.96
1.57e-2 1.03e-11 1.03e-3 1.97 2.26e-5 1.97
7.83e-3 3.73e-11 2.59e-4 1.99 5.65e-6 1.99
3.91e-3 1.90e-10 6.47e-5 2.00 1.41e-6 2.00

n
=

3

2.34e-1 6.35e-13 9.56e-1 - 4.55e-3 -
1.48e-1 9.37e-12 8.49e-1 0.26 1.82e-3 2.01
1.08e-1 1.03e-11 6.22e-1 0.99 9.57e-4 2.05
8.58e-2 3.33e-11 4.40e-1 1.50 6.05e-4 1.98
7.09e-2 5.48e-11 3.12e-1 1.80 4.12e-4 2.01

set to 10−5. In Figure 7.1 we present the number of iterations obtained for n = 2 and
3 for a wide range of the material parameters. We see that the number of iterations
is stable for most of the parameter values. We notice a slight dependency in a few
cases, but the number of iterations remains moderate.

Finally, we have applied the same strategy for the elasticity problem (2.4), which
can be seen as the limit case of α = 0. By varying its parameters and mesh size,
we obtain a stable number of iterations between 2 and 5 (not reported in a figure),
confirming the robustness of the preconditioner.

7.3. Mandel’s problem. In this section we consider Mandel’s test case [3],
which admits an exact solution in 2D and exhibits interesting time-dependent effects.
Let us consider a two-dimensional, poroelastic domain between two rigid plates on
the upper and bottom boundaries of the domains, that are free to slide. A force of
2F is applied on the plates causing a uniform displacement ν · u that is independent
of x. The domain is displayed in the left of Figure 7.2. Due to the symmetries of the
problem, we consider a quarter of the domain. Classically, the following boundary
conditions are applied:

ν · u = 0, ν × (σν) = 0, ν · q = 0, on Γ1 ∪ Γ2,

σν = 0, p = 0, on Γ3,

ν · u = const,
1

a

∫
Γ4

ν · (σν) = −2F, ν × (σν) = 0, ν · q = 0 on Γ4.

We adapt these conditions to our formulation of the problem by setting ∂uΩ = ∂Ω,
∂pΩ = Γ3, and ∂qΩ = ∂Ω\Γ3. First, on Γ1 and Γ2, we set ν ·u = 0 and, together with

19



n = 2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

It
er

at
io

n
s

µ =1e-04

5

15

25
µ =1e+00

0.02 0.05

µ =1e+04

λ
=

1e
-0

4

0.02 0.05
h

5

15

25

0.02 0.05
h

0.02 0.05
h

λ
=

1e
+

00

0.02 0.05
h

5

15

25

0.02 0.05
h

0.02 0.05
h

λ
=

1e
+

04

n = 3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

It
er

at
io

n
s

µ =1e-04

5

20

35
µ =1e+00

0.20.1

µ =1e+04

λ
=

1e
-0

4

0.20.1
h

5

20

35

0.20.1
h

0.20.1
h

λ
=

1e
+

00

0.20.1
h

5

20

35

0.20.1
h

0.20.1
h

λ
=

1e
+

04

−0.04 −0.02 0.00 0.02 0.04

−0.04

−0.02

0.00

0.02

0.04

δ =1e-04

δ =1e-02

δ =1e+00

c0 =0e+00

c0 =1e+01

c0 =1e+02

and K =1e-04

and K =1e+00

and K =1e+04

Fig. 7.1. The number of MINRES iterations remains stable for a wide range of parameter
values when applying the proposed preconditioner.

ν × (σν) = 0, we obtain r = 0, which is set as an essential condition. On the other
hand, on Γ3 and Γ4, we set ν ·u to be equal to the analytical solution and r = 0. The
exact solution for pressure, displacement and stress can be expressed as a series as in
[18].

The values of the geometric and material parameters are reported in the table in
the right of Figure 7.2. Figure 7.3 illustrates the numerical results obtained with both
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F = 6e8 K = 9.869e-11

Fig. 7.2. (left) The domain for the Mandel’s problem and (right) the material and geometric
parameters.
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Fig. 7.3. The scaled pressure (left) and the scaled displacement (right) along the x axis, for
different times. The continuous lines represent the analytical solution at different times τ . The ◦
and × markers are the solutions computed by 4F-MFEM and MR-MFEM, respectively.

4F-MFEM and MF-MFEM, with the analytical solutions. Excellent matching is ob-
served for both schemes. Moreover, we obtain zero rotation, numerically, everywhere
in the domain, which corresponds exactly to the zero rotation in the true solution.

8. Concluding remarks. We have proposed mixed finite element methods
for rotation-based poroelasticity in which the rotation variable is approximated in
H(∇×,Ω). Through a hybridization technique, the rotation and flux variables can
be locally eliminated, leading to a numerical scheme that uses RT0 × P0 for the solid
displacement and fluid pressure. A priori analysis shows that the proposed meth-
ods are stable and convergent. By using weighted norms, we moreover derive robust
preconditioners.

We remark on the limitations of our approach. First, we note that the formulation
(2.3) of the elasticity equations as a weighted vector Laplacian is based on a spatially
constant Lamé parameter µ. However, the techniques from [6] may be applicable
for the more general case of varying µ. Second, the natural boundary conditions
for this formulation do not immediately accommodate the typical no-stress boundary
condition. In our implementation of Mandel’s problem, we therefore augmented the
boundary conditions. Third, we note that nearly incompressible materials are not
naturally handled by this formulation since large values of λ lead to undesirable
scaling in the matrix. To capture the incompressible limit of λ → ∞, it may be
desirable to introduce a solid pressure variable similar to [15]. We aim to overcome
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these limitations in future work.
Finally, the numerical results presented show optimal convergence rates and, when

the preconditioner is applied, a stable number of iterations for a wide range of data
values, all in accordance with the developed theory.
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