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Abstract

We propose the new adaptive algorithm SIMPATY for topology opti-
mization to design lightweight and stiff structures exhibiting free-form fea-
tures. This is achieved by properly combining the classical SIMP method
with an anisotropic mesh adaptation strategy based on a recovery-based a
posteriori error estimator. Mesh adaptivity allows us to contain (and, for
simple structures, even to eliminate) the filtering usually adopted in a topol-
ogy optmization context. Thus, the final layout is intrinsically smooth, so
that the post-processing phase can be strongly reduced (or even skipped),
and the structure can directly move on to the production manufacturing
phase. A free-form design is also enhanced by anisotropic mesh adaptivity.
An extensive numerical validation supports these remarkable properties.

1 Motivations

We are interested in the design of structures with lightweight properties com-
bined with good resistance to applied loads. This issue is certainly of utmost
relevance in different branches of industrial design, such as space, biomedical,
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mechanical, architecture (see, e.g., [1, 2, 3, 4, 5]). For example, in the space
industry, due to the high cost of exploration missions, even a minimum save on
the total mass of the spacecraft can reduce significantly the total launch cost, as
the rocket and the satellite orbital maneuvers require less propellant. Topology
optimization is the common mathematical tool to tackle the design problem, de-
spite the obvious difference among these fields. In short, topology optimization
seeks an optimal structure in a design domain for assigned loads and boundary
conditions, under some constraints (see [6, 7, 8, 9, 10] and the references therein).
For example, typical optimality criteria are minimum volume, minimum compli-
ance (or maximum stiffness), maximum fundamental frequency in the dynamic
case, while constraints can be maximum allowed displacements and stresses, or
a given fraction of the initial volume. One of the well known mathematical
formulations for topology optimization is the so-called SIMP (Solid Isotropic
Material with Penalization) method [7, 6, 10]. This belongs to the family of
density-based methods, where the problem unknown is a scalar field, referred to
as density, taking values between zero (absence of material) and one (presence
of material). The final layout of the structure is obtained by extracting the
parts of the domain where the density is one. In practice, intermediate values
of the density have to be filtered out, and this is obtained through a suitable
penalty exponent, which pushes the density towards either the value zero or
one. Other approaches are possibile, and the most important ones can be classi-
fied in: level-set methods [11, 12], topological derivative procedures [13], phase
field techniques [14, 15], evolutionary approaches [16], homogenization [6, 17],
performance-based optimization [18].

Most of the works in the literature employ a discretization based on a fixed
structured grid. This choice in turn is known to suffer from mesh dependency
and checkerboard phenomena [7, 19, 20], which are contained to some extent by
filtering techniques, which smooth out the density over small patches of elements
[21, 22].

A possible mitigation to mesh dependency and checkerboard effects is pro-
vided by mesh adaptation. In [23], a topology optimization algorithm with
goal-oriented error control to drive mesh adaptivity is considered, relying on a
standard ESTIMATE-MARK-REFINE iterative scheme on structured triangu-
lar grids, yet requiring filtering. Another approach is the one used, for example,
in [24], where anisotropic mesh adaptation is carried out based on a heuristic
approach. In particular, a combination of filtered continuous sensitivities and
filtered design variables is employed to drive mesh adaptation.

The approach proposed in the present work consists of anisotropic mesh
adaptation based on a theoretically sound tool, i.e., a recovery-based a posteri-
ori error analysis. Namely, the estimator developed in [25, 26, 27] is applied in
an original way to the density function of the SIMP method to drive mesh adap-
tation. The resulting procedure is the subject of a pending patent [28], where
we set up the overall optimization-adaptive procedure in the algorithm SIM-
PATY (SIMP with AdaptiviTY). This new algorithm enjoys several advantages:
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a correctly adapted mesh, even with no filter at all, allows us to move towards a
free-form design, in a cost-effective procedure, and alleviates the end user from
most of the post-processing step, since the density is intrinsically characterized
by sharp and smooth gradients. Thus, it suffices to cut off the elements of the
mesh where the density is below a given threshold, to extract the final layout
in a handy and automatic way. This feature is in contrast to what is generally
required by most of the standard algorithms, where a strong post-processing can
be required before getting the final structure.

The layout of the paper is the following. In Section 2, we recall the formula-
tion of the SIMP method, along with the first optimization algorithm on a fixed
grid. Section 3 introduces the anisotropic setting, the recovery-based anisotropic
a posteriori error estimator, and the SIMPATY algorithm, which is employed,
along with some variants, in Section 4 on several benchmark test cases. The
SIMPATY potential of delivering a free-form design is established in Section 5,
where more complex geometries are considered, including a simplified bracket
for satellite applications. Finally, in Section 6 we draw some conclusions and lay
down some future scenarios.

2 Elements of topology optimization: the SIMP method

Given a loaded structure Ω ⊂ R
2, we aim at identifying the optimal topol-

ogy which minimizes the compliance or, equivalently, maximizes the structure
stiffness under a volume constraint. In particular, we assume the traction,
f : ΓN → R

2, to be applied on a portion ΓN of the body boundary ∂Ω. The
compliance is given by ∫

ΓN

f · u dγ,

with u = (u1, u2)
T : Ω→ R

2 the induced displacement field.
The mathematical model underlying the structure deformation is represented

by the linear elasticity equation [29]





−∇ · σ(u) = 0 in Ω

u = 0 on ΓD

σ(u)n = f on ΓN

σ(u)n = 0 on ΓF ,

(1)

where σ(u) = 2µε(u)+λtr(ε(u))I denotes the stress tensor, with ε(u) =
(
∇u+

∇uT
)
/2 the small displacement strain tensor,

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)

the Lamé coefficients, E is Young modulus, ν is Poisson ratio, tr(·) is the trace
operator, I the identity tensor, n the unit outward normal vector to ∂Ω, ΓD
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is the portion of the boundary where the structure is clamped, and ΓF is the
traction-free boundary.

Model (1) represents the building block of the SIMP method [7, 10]. This
approach introduces a density function ρ ∈ L∞(Ω) taking values in [0, 1], repre-
senting the distribution of the material in the structure. Throughout the paper,
we adopt standard notation for function spaces [30]. Ideally, we expect only
the extremal values, ρ = 0 (void) and ρ = 1 (material). Nevertheless, all the
intermediate values are allowed and have to be penalized in the formulation.
In particular, we adopt the standard power law penalization function ρp, with
p ≥ max

{
2/(1−ν), 4/(1+ν)

}
[7]. Function ρp penalizes intermediate values by

promoting essentially the values of ρ close to one, which correspond to the stiffest
material, consistently with the minimization of the compliance. Consequently,
the SIMP approach entails solving model (1) with a modified Hooke law, which
replaces λ with ρpλ and µ with ρpµ. With a view to the optimization problem,
we first provide the weak form of the modified linear elasticity equation: find
u ∈ U = {v ∈ [H1(Ω)]2 : v = 0 on ΓD} such that

a(u,v) = C(v) ∀v ∈ U, (2)

with

a(u,v) =

∫

Ω
σρ(u) : ε(v) dx, C(v) =

∫

ΓN

f · v dγ,

and σρ(u) = ρp
[
2µε(u)+λtr(ε(u))I

]
. Notice that C(u) = a(u,u) coincides with

the compliance to be minimized.
The full SIMP method thus reads: find ρ such that

min
ρ∈L∞(Ω)

C(u(ρ)) :





a(u(ρ),v) = C(v) ∀v ∈ U∫
Ω ρ dx ≤ α|Ω|

ρmin ≤ ρ ≤ 1,

(3)

where 0 < α < 1 denotes the maximum allowable volume fraction, with respect
to the original volume |Ω|, and 0 < ρmin < 1 is a lower bound for the den-
sity, which ensures the elasticity system to be well-defined. We observe that
(3) generally exhibits multiple local minima, due to the non-convexity of the
problem. This is the reason why one cannot a priori guarantee the uniqueness
of the solution [7].

Problem (3) is numerically tackled via a finite element discretization [31]. We
introduce a conforming tesselation Th = {K} of Ω, with K a generic triangular
tile. We denote by V d

h the associated finite element space of (piecewise continu-
ous polynomials of) degree d, with the understanding that for d = 0 the functions
are discontinuous and piecewise constant on Th. The discrete counterpart of (3)
thus reads: find ρh such that

min
ρh∈V

r
h

C(uh(ρh)) :





a(uh(ρh),vh) = C(vh) ∀vh ∈ [V s
h ]

2 ∩ U∫
Ω ρh dx ≤ α|Ω|

ρmin ≤ ρh ≤ 1,

(4)
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with uh(ρh) ∈ [V s
h ]

2 ∩ U .
The SIMP is known to suffer from two main drawbacks, the dependency on

the selected mesh and the presence of checkerboards [20, 7]. The former issue
arises when the numerical solution to the optimization problem depends on the
mesh at hand, due to the non-uniquness issue. The latter issue is related to
discretization and leads to alternating solid and void elements in a checkerboard
pattern. This is due to the two-field formulation, involving density and displace-
ment. Certain combinations of finite elements turn out to be unstable, similarly
to the two-field pressure-velocity formulation of the Stokes problem.

Possible remedies to mesh dependency consist of adding explicit limitations
on the allowable density distributions or of filtering the density. This may be
useful also to contain checkerboard effects. The employment of higher order
finite elements for the displacement with respect to the density (s ≥ r in (4)) is
an alternative viable method to avoid the checkerboard problem. Higher order
finite elements, however, require high CPU times, even though they remain
affordable in two dimensions. The non-uniqueness of the solution remains an
issue, independently of the selected discretization.

Concerning the specific choice made in SIMPATY algorithm for s and r,
we choose s = r = 1, since we rely on a beneficial effect of anisotropic mesh
adaptation with no filter at all. When we switch off mesh adaptation, we resort
to a low-pass filter based on the diffusion kernel, namely, we replace the discrete
density ρh with its filtered version, ρf , which solves the following Helmholtz-type
partial differential problem

{
−τ2∆ρf + ρf = ρh in Ω

τ2∇ρf · n = 0 on ∂Ω,
(5)

with τ a real parameter measuring the thickness of the smoothed density, to be
properly tuned [21].

The algorithm merging the SIMP method with the Helmholtz filter is pro-
vided in

Algorithm 1 SIMP algorithm on a fixed grid

Input : TOL, kmax, ρmin, α
Set : ρ0h ← 1, k ← 0, err ← 1+TOL
while (err > TOL & k < kmax) then
1. ρk+1

h ← IPOPT(ρkh, ρmin, Mit=10, α, ...);

2. ρk+1
h ← ρf (ρ

k+1
h );

3. err ← ‖ρk+1
h − ρkh‖∞;

4. k ← k+1;
end

end

5



Some comments are in order. In line 1. the optimization problem (4) is solved
via the Interior Point OPTimizer (IPOPT) package [32]. IPOPT is a common
large-scale nonlinear optimization tool based on the interior point algorithm
[33]. Both equality and inequality constraints can be tackled via suitable slack
variables. Constraints may involve both the control variable (for example, the
density) as well as functions of the control variable (for example, the total volume
of the structure). We have highlighted only the main input parameters, i.e., the
initial guess, ρkh, the minimum density, ρmin, the maximum number of iterations,
Mit, and the maximum volume fraction, α. The tolerance for the stopping
criterion is always understood to be set to 10−6.
Among the input parameters of IPOPT, the computation of the gradient of the
compliance with respect to the density, ∇ρC, needs more details. With this aim,
we resort to the Lagrangian functional

L = L(u, z, ρ) = C(u) + a(u, z)− C(z),

where z ∈ U is the Lagrange multiplier. It is well known that

∇ρC(ρ) = ∇ρL
∣∣
{u(ρ),z(ρ),ρ}

,

where u(ρ) and z(ρ) are the solutions to the primal and the adjoint problem
associated with the Gâteaux derivative of L with respect to z and u, respectively.
In particular, the primal problem coincides with (2), whereas the adjoint problem
reads: find z ∈ U such that

a(v, z) = −C(v) ∀v ∈ U. (6)

On comparing (6) with (2) and due to the self-adjointness of a(·, ·), we infer that
z = −u, i.e., the adjoint solution is for free. Finally, the Gâteaux derivative of
L with respect to ρ along the direction ϕ is

〈∇ρC, ϕ〉 =

∫

Ω
p ρp−1σ(u) : ε(z)ϕdx,

which implies ∇ρC(ρ) = −p ρ
p−1σ(u(ρ)) : ε(u(ρ)). Thus, each evaluation of the

gradient of the compliance requires only a primal solve. In more detail, on the
discrete level, the i-th component of the gradient vector is provided by

[
∇ρhC(ρh)

]
i
= 〈∇ρhC, ϕh,i〉 = −

∫

Ω
p ρp−1

h σ(uh) : ε(uh)ϕh,i dx,

where {ϕh,i}i represents the finite element basis of the space V r
h .

The output density, ρk+1
h , from IPOPT is then filtered in line 2. by approx-

imating (5) via linear finite elements.
The global convergence check in line 3. is based on the stagnation of the density
function between successive iterations to within a user-defined tolerance TOL
and a maximum number kmax of iterations.
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Figure 1: Cantilever test case: geometry and load.

2.1 The basic test case

We assess the performance of Algorithm 1 on the standard cantilever test case
whose geometry and setting are sketched in Fig. 1.

The design domain is Ω = (0, 3)×(0, 1). The elastic model (1) is characterized
by the data f = (0,−80)T , ΓD = {(x, y) : x = 0, 0 ≤ y ≤ 1}, ΓN = {(x, y) : x =
3, 0.45 ≤ y ≤ 0.55}, ΓF = ∂Ω\(ΓD∪ΓN ), E = 103, ν = 1/3. The SIMP exponent
p is set to 3, the mesh Th is structured and consists of 9600 regular elements
and we employ linear finite elements for both density and diplacement. The
parameter of the Helmholtz filter is set to τ = 0.02. Concerning the parameters
for Algorithm 1, we choose TOL=8 · 10−2, kmax=100, ρmin = 0.01 and α = 0.5.

The algorithm stops after 39 iterations. Figure 2, top, shows the output den-
sity of Algorithm 1. The output structure is the standard one in the literature
(see, e.g, [7] for the same aspect ratio of the geometry). Figure 2, bottom, fur-
nishes the output obtained with a variant of Algorithm 1, where we fix kmax=1,
we increase the number Mit of the IPOPT iterations to 100 to allow the full
convergence of the optimization algorithm and we skip the filtering phase. As
expected, the predicted structure is very rough, even though it identifies the
same topology as in the previous run.

Figure 3 highlights the benefits of filtering and of a shrewd choice of the finite
element pair (ρh,uh). In the first row, we choose r = 0, s = 1, and we switch
off (left) and on (right) the Helmholtz-type filter. It is evident that the action
of the filter alleviates the checkerboard pattern. Notice that, for a piecewise
constant ρh, the filtered density (piecewise linear) is mapped to the P0 finite
element space in line 2. of Algorithm 1 by local L2-projection.

In the second row, we do not apply the filter and we change the discrete
space for the density, fixing s = 2. In particular, we pick r = 0 (left) and r = 1
(right). In both cases, no checkerboard appears. For the choice r = 0, some
very thin struts (not desirable for printing) are generated. A jagged boundary is
present in both cases, due to the employment of a not sufficiently fine or adapted
mesh.
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Figure 2: Cantilever test case: optimal density with (top) and without (bottom)
filtering.

Figure 3: Cantilever test case: effect of the filter and of the degree of the finite
element approximation (the same colormap is used in all panels).
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3 An anisotropic variant of the SIMP method

The reference anisotropic background is the one exploited, e.g., in [34, 35]. The
anisotropic properties of a generic triangle K of the mesh Th = {K} are ex-
tracted out of the spectral properties of the standard affine map TK between the
equilateral reference element K̂ inscribed in the unit circle and K, i.e.,

x = TK(x̂) = MK x̂+ tK ,

with x ∈ K, x̂ ∈ K̂, MK ∈ R
2×2, tK ∈ R

2. In particular, we factorize the
Jacobian MK through the polar decomposition MK = BKZK , with BK ∈ R

2×2

a symmetric positive definite matrix stretching the triangleK, and ZK ∈ R
2×2 an

orthogonal matrix which rotates K. Then, we introduce the classical eigenvalue-
eigenvector factorization of BK as BK = RT

KΛKRK , with RT
K = [r1,K , r2,K ] and

ΛK = diag(λ1,K , λ2,K), with λ1,K ≥ λ2,K > 0. The eigenvectors r1,K , r2,K
identify the directions of the semi-axes of the ellipse circumscribed to K, while
the eigevalues λ1,K , λ2,K measure the length of these semi-axes (see [34, 35]
for more details). A measure of the anisotropic deformation is provided by the
aspect ratio of the element K, sK = λ1,K/λ2,K ≥ 1: the higher sK , the larger
the deviation from the equilateral shape, for which sK = 1.

3.1 The recovery-based error estimator

A standard recovery-based adaptive procedure consists of two steps, i.e., the
proposal of a recovered gradient based on the discrete solution, and its employ-
ment to estimate the H1(Ω)-seminorm of the discretization error [36, 37, 38]. In
[25, 26, 27], an extension of this procedure to the anisotropic context has been
proposed. With a view to the anisotropic analysis, we have introduced a new
recipe for the recovered gradient, P (∇uh). The main difference with respect
to [37] is that P (∇uh) is piecewise constant over the patches ∆K = {T ∈ Th :
T ∩K 6= ∅}, instead of being piecewise linear continuous on Ω. In particular, the
patchwise restriction of P (∇uh) coincides with the area-weighted average over
the patch ∆K of the gradient of the discrete solution, namely,

P (∇uh)
∣∣
∆K

=
1

|∆K |

∑

T∈∆K

|T | ∇uh|T ,

with uh ∈ V 1
h . Thus, the associated a posteriori anisotropic error estimator is

η2 =
∑

K∈Th

η2K . (7)

whose local contribution is defined by

η2K =
1

λ1,Kλ2,K

2∑

i=1

λ2
i,K

(
rTi,K G∆K

(
E∇

)
ri,K

)
, (8)
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with E∇ =
[
P (∇uh)−∇uh

]∣∣
∆K

the recovered error, and where G∆K
(·) ∈ R

2×2

is the symmetric semidefinite positive matrix with entries

[G∆K
(w)]i,j =

∑

T∈∆K

∫

T
wiwj dx with i, j = 1, 2, (9)

for any vector-valued function w = (w1, w2)
T ∈ [L2(Ω)]2. The scaling factor(

λ1,Kλ2,K

)−1
in (8) ensures consistency with the isotropic case (λ1,K = λ2,K).

Estimator (7)-(8) is inspired by the anisotropic interpolation error estimate
provided in [39] for a quasi-interpolant operator Ih,

‖v − Ih(v)‖L2(K) ≤ C
( 2∑

i=1

λ2
i,K (rTi,KG∆K

(∇v) ri,K)
)1/2

,

with C a constant depending on the shape regularity of the patch ∆K and for
any v ∈ H1(Ω).

3.2 The adaptive SIMP algorithm

We resort to a metric-based approach to generate the new adapted mesh by
exploting the information provided by η.

A metric,M : Ω→ R
2×2, is a symmetric positive definite tensor field which

contains all the geometric information related to a certain mesh [40]. In practice,
we will approximateM with a piecewise constant function,MTh , associated with
the actual grid Th, such that MTh

∣∣
K

= RT
KΛ−2

K RK , using the local estimator
ηK in a predictive way. This goal is reached via an iterative procedure, which
eventually yields an optimal adapted grid, i.e., the mesh minimizing the number
of elements under the constraint η ≤ MTOL on the accuracy, with MTOL a
tolerance fixed by the user. The tricky step is the prediction of the metricMTh

from the estimator. We outline here the procedure adopted for this purpose,
while referring to, e.g., [35, 34, 41, 26] for more details.

With reference to the generic iteration of the adaptive procedure, we rewrite
estimator ηK by collecting the size information of the element in a unique factor,
as

η2K = λ1,K λ2,K |∆̂K |
[
sK (rT1,K Ĝ∆K

(E∇) r1,K)

+s−1
K (rT2,K Ĝ∆K

(E∇) r2,K)
]
,

where Ĝ∆K
(·) is the scaled matrix G∆K

(·)/|∆K |, and |∆K | = λ1,Kλ2,K |∆̂K |,

with ∆̂K = T−1
K (∆K). The area-dependent quantity is λ1,K λ2,K |∆̂K |, while

the remaining term depends on orientation (ri,K , i = 1, 2) and aspect ratio
(sK). Minimizing the cardinality of the mesh implies maximizing the size of the
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element, i.e., minimizing the quantity

J (sK , {ri,K}i=1,2) = sK (rT1,K Ĝ∆K
(E∇) r1,K)

+s−1
K (rT2,K Ĝ∆K

(E∇) r2,K),

where it is understood that matrix Ĝ∆K
(E∇) is known and computed using

information on the current mesh and discrete solution. Thus, we are led to solve
the constrained minimization problem

min
sK ,ri,K

J (sK , {ri,K}i=1,2) :

{
ri,K · rj,K = δij

sK ≥ 1,
(10)

with δij the Kronecker symbol. The solution to this problem is provided by the
following result (see [42] for the proof).

Proposition 3.1 Let {gi,gi}i=1,2 be the eigen-pairs associated with Ĝ∆K
(E∇),

with g1 ≥ g2 > 0 and {gi}i=1,2 orthonormal. Then, J (·) is minimized when

sK = s∗K , ri,K = r∗i,K , with

s∗K =
√
g1/g2, r∗1,K = g2, r∗2,K = g1. (11)

The optimal metric associated with K is identified by r∗1,K and r∗2,K in (11),
while λ∗

1,K and λ∗
2,K are computed by combining the optimal s∗K in (11) with

the equidistribution criterion η2K = MTOL2/#Th, #Th being the mesh element
cardinality. We obtain

λ∗
1,K = g

−1/2
2

(
MTOL2

2#Th|∆̂K |

)1/2

, λ∗
2,K = g

−1/2
1

(
MTOL2

2#Th|∆̂K |

)1/2

. (12)

The optimal piecewise constant metricMTh is thus obtained simply by col-
lecting the optimal values {r∗i,K}

2
i=1 and {λ∗

i,K}
2
i=1, for each K ∈ Th. The new

metric is finally provided to the function adaptmesh in FreeFem++ [43] to gen-
erate the new adapted mesh.

Next step is to enrich the SIMP method with the anisotropic mesh adap-
tation. Since the density function solution to (4) exhibits very stong gradients
across the material-void interface, we expect that an anisotropic mesh adapta-
tion should be the ideal technique to sharply capture these directional features.
The additional benefit of anisotropic mesh adaptivity is the possibility of avoid-
ing any filtering procedure since the final structure is intrinsically smooth. This
is very important for practical applications since the post-processing phase can
be skipped and the structure can directly move on to the production phase.

The resulting modified SIMP algorithm is listed in
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Algorithm 2 SIMPATY: SIMP with AdaptiviTY

Input : CTOL, MTOL, kmax, ρmin, T
(0)
h , α

Set : ρ0h ← 1, k ← 0, errC ← 1+CTOL
while (errC > CTOL & k < kmax) then
1. ρk+1

h ← IPOPT(ρkh, ρmin, Mit=nk, α, ...);

2. T
(k+1)
h ← adapt(T

(k)
h , ρk+1

h , MTOL, method);

3. errC ← |#T
(k+1)
h −#T

(k)
h |/#T

(k)
h ;

4. k ← k+1;
end

end

The main difference with respect to Algorithm 1 is step 2., where mesh

adaptation is carried out. Starting from the initial mesh T
(0)
h , the SIMPATY

algorithm generates a sequence of adapted meshes, {T
(k)
h }k, with associated

densities {ρkh}k. Function adapt covers two adaptive strategies, i.e., the stan-
dard Hessian-based approach implemented in the built-in FreeFem++ function
adaptmesh (method="AM"), and the metric-based procedure based on the ZZ
anisotropic error estimator (7)-(8) (method="ZZ"). At step 3. we check the
stagnation of the adapted mesh through the relative variation of the cardinality
#Th of the mesh elements to within CTOL and a maximum number kmax of
iterations.

The parameter nk is set to a moderate value (e.g., 10) at every iteration,
except for the first one where it takes a larger value (e.g., 200). This choice
should allow IPOPT to get very close to the optimal solution on the initial mesh,
whereas a less strict check is expected to suffice in the next iterations. Essentially,
we strike a balance between quality of the solution and non-optimality of the
mesh. Indeed, it is not reasonable to compute an accurate density function on
a rough intermediate mesh which is not necessarily the optimal one.

4 Standard benchmarks for SIMPATY algorithm

We focus on the very popular structure in the topology optmization community,
i.e., the cantilever in Section 2.1, to check the effectiveness of Algorithm 2. This
is to be considered as a preliminary assessment with a view to more challenging
configurations.

4.1 Central Load Cantilever (CLC)

We apply the SIMPATY algorithm with the following values for the input pa-
rameters: CTOL=10−2, MTOL=0.5, kmax=30, ρmin = 10−2, the initial mesh
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T
(0)
h is a 60 × 20 structured mesh and α = 0.5. The SIMP parameter is p = 3,

and nk is set as suggested above.
SIMPATY converges after 18 iterations. The corresponding density and mesh

are shown in Fig. 4, first and second row, respectively. In particular, this mesh
is obtained by a truncation procedure which preserves only the elements of the

final adapted mesh T
(18)
h , where the piecewise constant L2(Ω)-projection of ρ18h

is greater than or equal to the threshold value 0.5. The predicted structure is
essentially the same as the one provided without adaptivity (see Fig. 2). Despite
the absence of any filter and of any post-processing of the final mesh, we obtain
an extremely smooth structure as it is evident on comparing the densities in
Fig. 2, bottom, and Fig. 4, first row. Moreover, the density in Fig. 2, top,
is less sharp compared with Fig. 4, first row, as highlighted by the presence
of intermediate densities between matter and void. The anisotropic features
of the mesh are particularly evident along the material-void interface where the
gradient of the density is stronger. The outer horizontal sides make an exception
since they coincide with a portion of the boundary of the original design domain.
The maximum value attained for the aspect ratio is 203.07. The compliance
directly computed solving system (1) on the truncated mesh is equal to 8.852.

For the sake of assessment, we carry out a comparison with three other
adaptation techniques.
First, we run the isotropic version of SIMPATY algorithm, obtained by solving
the optimization problem (10) with the constraint that sK = 1. The result is
that

λ∗
1,K = λ∗

2,K =

(
g1 + g2

2

)−1/2( MTOL2

2#Th|∆̂K |

)1/2

,

which amounts to replacing both g1 and g2 in (12) by their arithmetic mean,
(g1 + g2)/2, ensuring the same global accuracy MTOL. Figure 4, third row,
displays the corresponding truncated mesh. The number of elements is 29497 to
be compared with 4992 triangles of the anisotropic grid.

In Fig. 4, fourth row, we provide the anisotropic adapted mesh obtained
by setting method="AM" in SIMPATY. This function controls the interpolation
error within a certain tolerance, here set to 0.25 to guarantee a number of el-
ements comparable with the one in Fig. 4, second row. The anisotropy of this
mesh is weaker with respect to the one yielded by the anisotropic ZZ procedure,
as confirmed by the maximum aspect ratio equal to 160.88.

As a last check, we merge SIMPATY algorithm with the procedure employed
in [21], following [44, 22]. This consists of a projection which emphasizes the
density gradient yielding a sharper material-void pattern starting from the fil-
tered density. As a consequence, Algorithm 2 has to be modified by replacing
the input ρk+1

h of function adapt with ρk+1
P , where

ρk+1
P = 0.5

(
1 +

tanh(β (ρf (ρ
k+1
h )− 0.5))

tanh(0.5β)

)
,

13



0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Figure 4: CLC test case: optimal density (first row) and adapted mesh (sec-
ond row) obtained with the anisotropic ZZ estimator; mesh generated via
the isotropic ZZ estimator (third row), via adaptmesh (fourth row) and the
anisotropic ZZP technique (fifth row).
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❍❍❍❍❍❍
AM ZZ ZZP

isotropic 9.020(14) 9.060(23) 10.195(6)

anisotropic 9.673(9) 8.852(18) 9.236(9)

Table 1: CLC test case: compliance associated with different adapted meshes.

ρf being the filtered density in (5) and with β a parameter tuning sharpening
features. We refer to this variant of SIMPATY as to ZZP algorithm. In practice
we expect that ZZP converges in fewer iterations since ρP is sharp but smoother
than ρh. The resulting anisotropic adapted mesh, for β = 20, is shown in Fig. 4,
fifth row, and it consists of 2819 triangles with maximum aspect ratio equal to
75.34. The reduced number of elements and aspect ratio confirm the effectiveness
of the projection step.

Overall, all the four meshes in Fig. 4 are fully comparable with the optimal-
design structure provided in Fig. 18(3) in [23], where 24576 structured triangles
are employed.

Table 1 provides the parameter design of interest, i.e., the compliance com-
puted on the truncated mesh with unit density everywhere. The data refer to
the three adaptive algorithms, i.e., the FreeFem++ function adaptmesh (first
column), the plain SIMPATY algorithm (ZZ) (second column), and its variant
with projection (ZZP) (third column), for both the isotropic (first row) and the
anisotropic (second row) cases. In brackets, we furnish the number of iterations
required to converge.
The minimum possible compliance is the one associated with the full-material
structure and it is equal to 6.611. In this respect, the best compliance is achieved
by the anisotropic ZZ approach, while the least performing structure is the one
predicted by the isotropic ZZP method. The number of iterations is minimized
by the ZZP algorithm, although also in the other cases the convergence is quite
fast, compared, for instance, with Fig. 17 in [23].

4.2 Bottom Load Short Cantilever (BLSC)

In this section, we perform a more quantitative assessment by focusing on prop-
erties of relevance in an engineering setting. In particular, we cast the Bottom
Load Short Cantilever (BLSC) test case in [45] in our framework by replacing
the pointwise loads with a distributed traction, taking into account the thickness
of the structure in the computation of the compliance and under a plane-stress
assumption.

The design domain is Ω = (0, 1)2 for a thickness t = 0.01, and we choose in
model (1) ΓD = {(x, y) : x = 0, 0 ≤ y ≤ 1}, ΓN = {(x, y) : x = 1, 0 ≤ y ≤ w},
with w = 0.1, ΓF = ∂Ω \ (ΓD ∪ ΓN ), f = (0,−5.8 · 104/(w t))T (see Fig. 5).
The material considered is one of the most popular in structural mechanics, i.e.,
ASTM A-36 steel, characterized by E = 2.11 · 1011, ν = 0.29 and by a yield
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Figure 5: BLSC test case: geometry and load.

strength σy = 2.2 · 108. We set p = 3, while the SIMPATY input parameters
are chosen as CTOL=10−2, MTOL=0.35, kmax=30, ρmin = 10−2, the initial

mesh T
(0)
h is an n × n structured grid, for n = 20, 40 and 100, and α = 0.5.

Finally, parameter nk is set to 20 at every iteration except for the first one where
nk=200. Figures 6-10 collect the results of the outputs provided by SIM-
PATY algorithm for n = 20 and 40 and by resorting to the adaptive procedures
identified by the flags method="ZZ" and method="AM". Figures 6 shows the
material distribution. The employed adaptive strategy marginally affects the
final structure, whereas the initial grid plays an important role. A finer grid
seems to favour the generation of a more complex topology, as confirmed also
by Fig. 7, where n is set to 100. The optimized structure more similar to the
one in Fig. 32 (a) of [45] is obtained starting from the coarsest mesh (n = 20).
Nevertheless, we highlight that the procedure adopted in [45] is different, since
the authors apply SIMP with the OC (Optimality Criteria) method [46] on a
fixed 100× 100 quadrilateral mesh along with a filtering technique.
The absolute value of the structure displacement uh in Fig. 8 confirms that the
stiffest structures are associated with the most complex ones, on noting that
lower values imply a stiffer behaviour.

The von Mises stress, vM=
[
σ2
11+σ2

22−σ11 σ22+3σ2
12

]1/2
, is displayed in Fig. 9,

with σij the ij component of the stress tensor σ. Accordingly to Fig. 32(c)
in [45], the highly stressed portions of the structure are the clamped cornes to-
gether with the loaded section. Additionally, we remark that the most complex
structures allow us to alleviate the stress distribution especially on the clamped
boundaries, even though no explicit constraint has been enforced on the stress.
Finally, Fig. 10 provides the frequency distribution of the safety factor, sF=vM/σy,
which measures the resistance of the structure to the loads and, according to
the von Mises yield criterion, should always satisfy sF≤ 1. A strong lumping of
the bins characterizes all of the four panels, highlighting that all the points of
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Figure 6: BLSC test case: optimal density obtained for method="ZZ" (left) and
method="AM" (right) with a 20× 20 (top) and 40× 40 (bottom) initial mesh.

Figure 7: BLSC test case: optimal density obtained for method="ZZ" (left) and
method="AM" (right) with a 100× 100 initial mesh.
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Figure 8: BLSC test case: displacement on the final mesh obtained for
method="ZZ" (left) and method="AM" (right) with a 20× 20 (top) and 40× 40
(bottom) initial mesh.

Figure 9: BLSC test case6 von Mises stress on the final mesh obtained for
method="ZZ" (left) and method="AM" (right) with a 20× 20 (top) and 40× 40
(bottom) initial mesh.
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Figure 10: BLSC test case: frequency distribution of sF at the nodes of the final
mesh on 10 bins obtained for method="ZZ" (left) and method="AM" (right) with
a 20× 20 (top) and 40× 40 (bottom) initial mesh.

the structure essentially work to the same extent.
The quantities shown in the last three figures, as well as the values in the

following tables, have been computed on the final truncated mesh. Table 2
gathers more quantitative information related to the two adaptive procedures,
"ZZ" and "AM", for the two coarsest initial meshes. Figures are organized as
follows: the first three rows refer to the output of SIMPATY algorithm, i.e.,
the number, #it, of iterations to converge, the cardinality, #Th, of the final
adapted mesh, and the maximum aspect ratio, sK,max = maxK∈Th sK ; the next
rows track five quantities of engineering relevance, namely, the compliance Ct =
t
∫
ΓN

f ·uh dγ taking into account the thickness of the cantilever, the maximum
von Mises stress, vMmax, at the mesh nodes, the maximum safety factor, sFmax =
vMmax/σy, the average, avg(sF), and the standard deviation, std(sF), of the
safety factor computed by a volume integral over the truncated domain.
A comparison between the two tables emphasizes that no remarkable difference
can be appreciated between the quantities of interest. The structure is always
working under safety conditions, the maximum safety factor being far from one.
Moreover, the average value of sF, about one third of sFmax, points out that that
few parts of the structure are highly stressed. The low value of the standard
deviation confirms that the von Mises stress is almost uniform throughout the
cantilever. It appears that the "ZZ" procedure delivers safer structures due to
the lower values of sFmax. Finally, a cross comparison of Table 2 with Table 10
in [45] shows that there is a general agreement, despite the modeling differences
between the two cases.
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❍❍❍❍❍❍
ZZ 20× 20 ZZ 40× 40

#it 10 12

#Th 19150 10337

sK,max 884.74 282.17

Ct 24.7314 24.8731

vMmax 1.06 · 108 1.05 · 108

sFmax 0.4821 0.4761

avg(sF) 0.1393 0.1418

std(sF) 3.83 · 10−2 3.33 · 10−2

❍❍❍❍❍❍
AM 20× 20 AM 40× 40

#it 15 23

#Th 6710 16940

sK,max 150.02 587.94

Ct 22.2546 26.9122

vMmax 1.21 · 108 1.16 · 108

sFmax 0.5503 0.5268

avg(sF) 0.1312 0.1455

std(sF) 3.67 · 10−2 3.84 · 10−2

Table 2: BLSC test case: quantitative assessment for method="ZZ" (left) and
for method="AM" (right).

5.5

1.5

4
.0

2
.0

2
.0

0
.1 f

1.0

Figure 11: Michell test case: geometry and load.

4.3 Michell structure

We now consider another standard benchmark, known as Michell truss, whose
analytical solution was studied in [47]. The design domain is Ω = (0, 5.5)× (0, 4)
without the circle of radius 1 centered at (1.5, 2), for a thickness t = 0.05. We
choose in model (1) ΓD = {(x, y) : (x − 1.5)2 + (y − 2)2 = 1}, ΓN = {(x, y) :
x = 5.5, |y − 2| ≤ w/2}, with w = 0.1, ΓF = ∂Ω \ (ΓD ∪ ΓN ), f = (0,−1/(w t))T

(see Fig. 11). The material parameters are set to E = 1, ν = 0.29. We set p = 3,
while the SIMPATY input parameters are chosen as CTOL=10−2, MTOL=0.35,

kmax=30, ρmin = 10−2, the initial mesh T
(0)
h is isotropic with 60 edges on the

rectangle sides as well as on the boundary of the circle. The variant ZZP is
adopted, for two choices of the volume fraction, i.e., α = 0.4 and α = 0.2,
respectively, with the common values τ = 1/38 in the Helmholtz filter, and
β = 20 for the projection. Finally, parameter nk is set to 50 at every iteration
except for the first one where nk=200. The resulting adapted mesh delivered
by SIMPATY is displayed in Fig. 12, and is obtained by first applying the same
truncation procedure used in the CLC test case, and then by uniformly splitting
each triangle in four subtriangles. As can be noticed, the optimal layout is a
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Figure 12: Michell test case: adapted mesh T
(13)
h (α = 0.4, top) and T

(7)
h

(α = 0.2, bottom).

continuum structure rather than a Michell truss. This was also observed in [18,
Section 4.31.1], and justified by the fact that continuum topology optimization is
a more general approach than the truss topology optimization method, and may
or may not result in truss-like structures. Actually, configurations more similar
to those studied in [47] can be observed as the volume fraction gets smaller and
smaller (see Fig. 12, bottom).

5 Free shaping with SIMPATY

In this section, we finally move towards a free-form design by considering struc-
tural configurations where SIMPATY algorithm emphasizes its actual power.

5.1 Central Load L-shaped (CLL) lamina

This test case models the L-shaped lamina in Fig. 13 where the design domain
is Ω = (0, 2.5)2 \ [1, 2.5]2. The material properties in (1) are E = 103, ν = 1/3,
while the load is f = (0,−40)T , and the boundary data are ΓD = {(x, y) : 0 ≤
x ≤ 1, y = 2.5}, ΓN = {(x, y) : x = 2.5, 0.45 ≤ y ≤ 0.55}, ΓF = ∂Ω \ (ΓD ∪ΓN ).

Concerning the SIMP algorithm, we choose p = 3. Algorithm 2 is run with

the input parameters CTOL=10−2, MTOL=0.5, kmax=30, ρmin = 10−2, T
(0)
h

consisting of 512 elements and α = 0.5.
For this configuration, we compare the plain SIMPATY algorithm (ZZ) with

the variant ZZP, and a new approach (denoted by ZZG) based on a gradual
variation of the SIMP exponent p as a function of the iteration number, k,
according to the law p = 3 − exp(−k/2). A similar idea is adopted in [48] to
avoid early convergence to a local minimum. In particular, the author increases
the value of p every 20 iterations of the optimization algorithm, without any
mesh adaptation.

Both the isotropic and anisotropic mesh adaptations are considered. Table 3
gathers the results of this comparison in terms of compliance and number of
iterations demanded by SIMPATY to converge. The anisotropic approaches, ZZ
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Figure 13: CLL lamina test case: geometry and load.

❍❍❍❍❍❍
ZZ ZZP ZZG

isotropic 2.1414(21) 2.0315(15) 2.3271(17)

anisotropic 2.2221(15) 1.9071(11) 2.1868(18)

Table 3: CLL lamina test case: compliance(number of iterations) associated
with different adaptation strategies.

and ZZG, perform comparably both in terms of compliance and convergence
speed, whereas ZZP reduces the number of iterations and delivers a smaller
compliance. In terms of number of elements, as expected, the anisotropic
approach always outperforms the isotropic version as shown in Table 4. In
particular, the gain in terms of mesh cardinality is about 3.6, 2.7 and 5.5 for the
plain ZZ, the ZZP and the ZZG strategy, respectively.

Figure 14 collects the adapted meshes generated by ZZ and the two variants
ZZP and ZZG. The shape predicted by the three procedures is different despite
preserving the external frame. It is remarkable the curved shape of the bottom-

❍❍❍❍❍❍
ZZ ZZP ZZG

isotropic 19896 8864 33737

anisotropic 5544 3276 6125

Table 4: CLL lamina test case: number of elements associated with different
adaptation strategies.
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❍❍❍❍❍❍
ZZ ZZP ZZG

optimization 505.59 320 293.35

adaptation 27.13 16.22 28.34

total 536.59 338.51 325.77

Table 5: CLL lamina test case: CPU time associated with different adaptation
strategies.

left boundary of the lamina, which represents a relevant feature with a view to
a free-form design. This property is a free lunch of the proposed technique in
contrast to what is usually available in the pertinent literature (see, e.g., [23, 24]).

Finally, we carry out a cross-comparison among the three anisotropic ap-
proaches in terms of CPU time1 and performance. Table 5 gathers the time (in
seconds) required by the optimization (calls to IPOPT) and the mesh adapta-
tion (computation of the metric and mesh generation), as well as the total time,
which accounts also for setup and output operations. For all methods, most of
the time is spent in the optimization phase, with a discrepancy of about 20X for
the ZZ procedure.

Concerning the check on performance, we select the compliance as reference
quantity, following [23]. The trend characterizing the ZZ and ZZP approaches
is similar. After an initial spike, just after the global minimum value associated
with the full structure, the compliance exhibits a piecewise decreasing pattern,
marked by the mesh adaptation steps. This behavior is similar to what shown in
[23]. The ZZG procedure shows a less regular trend, due to the further update of
the penalty exponent p. It seems that the best overall performance is provided
by ZZP.

5.2 Design of an MBB beam

We exploit SIMPATY algorithm to devise an innovative shape for a bridge-
like structure thanks to the potentialities offered by an anisotropic adaptive
procedure.

The design domain is Ω = (0, 6) × (0, 1). The boundary ∂Ω is subdivided
into ΓD = {(x, y) : 5.94 ≤ x ≤ 6, y = 0}, ΓR = {(x, y) : 0 ≤ x ≤ 0.06, y = 0},
ΓN = {(x, y) : 2.9 ≤ x ≤ 3.1, y = 0}, ΓF = ∂Ω \ (ΓD ∪ ΓR ∪ ΓN ), where ΓR

represents the roller constraint u2 = 0 (see Fig. 16 for a sketch). The load in (1)
coincides with a vertical downward traction of magnitude 100, applied to either
the top or the bottom edge of Ω (see Fig. 16), while the material properties are
E = 103 and ν = 1/3.

We confine the choice of the algorithm to the basic anisotropic ZZ procedure.

1The computations have been run on a GenuineIntel Pentium(R) Dual-Core CPU E6300
2.80 GHz 4GB RAM desktop computer.
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Figure 14: CLL lamina test case: adapted mesh obtained with the anisotropic
(top-left) and the isotropic (top-right) ZZ estimator, the anisotropic ZZP
(bottom-left) and ZZG (bottom-right) estimator.
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Figure 15: CLL lamina test case: compliance history for the ZZ (top), ZZP
(center) and ZZG (bottom) estimator.
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Figure 16: MBB beam test case: geometry and load.

Figure 17: MBB beam test case, bottom load: α = 0.4 (top), α = 0.5 (center),
α = 0.6 (bottom).

In particular, to contain the branching feature of SIMPATY, which is particularly
evident for this configuration, we pick as initial guess, ρ0h, for the density, the
output of five runs of twenty iterations of IPOPT alternated by the Helmholtz

filter with τ = 1/30, on a fixed grid T
(0)
h consisting of 5229 elements.

To investigate the free-shaping capability of SIMPATY procedure, we per-
form two bunches of simulations, by changing the load application area (top
vs bottom) together with the volume fraction α, chosen equal to 0.4, 0.5 and
0.6. The remaining input parameters are set to CTOL=5 · 10−2, MTOL=0.65,
kmax=30 and ρmin = 10−2.

Figure 17 collects the structures corresponding to the bottom load, showing
the final adapted mesh superposed to the density distribution. All the three
configurations are not symmetric due to the different anchorage conditions ap-
plied to the bottom ends of Ω. As the volume fraction increases, we observe a
thickening of the horizontal top and bottom portions of the structure together
with an increasing number of secondary beams. We remark also the presence of
a central vertical beam for the largest volume fraction. From Table 6, left, we
infer that higher volume fractions require coarser grids and, as expected, lead to
a less compliant structure. In Fig. 18, we gather the combined density/adapted

26



Figure 18: MBB beam test case, top load: α = 0.4 (top), α = 0.5 (center),
α = 0.6 (bottom).

❅
❅
❅

α = 0.4 α = 0.5 α = 0.6

#it 14 12 12

#Th 30224 22952 12590

C 36.5774 21.0502 14.3752

❅
❅
❅

α = 0.4 α = 0.5 α = 0.6

#it 10 13 9

#Th 14976 12006 7819

C 34.8155 33.2496 24.5489

Table 6: MBB beam test case: number of iterations, cardinality and compliance
for different volume fractions for the bottom load (left) and top load (right).

mesh configuration when the load is applied on top. We highlight the more
straightness of the final structure compared with the rounded forms in Fig. 17.
In particular, the MBB beam associated with α = 0.4 exhibits the least free-
form features. As shown in Table 6, right, the compliance reduces as the volume
fraction increases, while a significant reduction in the mesh cardinality occurs
compared with the bottom load case.

We approach now the same test case by exploiting the procedure usually
adopted in the literature according to which only half of the domain is simu-
lated [46, 45]. The intrinsic limit of this approach is that the actual fixed support
is replaced by a roller, this leading to an under-constrained configuration. We
consider the left half of the beam and enforce a symmetric boundary condition
along the side {(x, y) : x = 3, 0 ≤ y ≤ 1}, i.e., u1 = 0. We apply SIMPATY
algorithm for both the bottom/top loads, for α = 0.5 and by using the same
values for all the other parameters, except for τ which switches between 1/10
and 1/30.

Figures 19 and 20 show the resulting half MBB beams. By increasing τ the
braching is less evident due to the stronger diffusivity of the Helmholtz filter.
Moreover, the straightness and roundedness of the beam associated with the top
and bottom load, respectively are maintained as in the full-geometry approach,
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Figure 19: Half MBB beam test case, bottom load: τ = 1/10 (top), τ = 1/30
(bottom).

Figure 20: Half MBB beam test case, top load: τ = 1/10 (top), τ = 1/30
(bottom)
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Figure 21: Antenna bracket test case: geometry and load.

although the micro structure is somewhat different.

5.3 Additive manufacturing for a satellite component

Wemove now towards a more realistic application, i.e., the topology optimization
of satellite components as, for example, an antenna bracket. For example, to save
on the cost of the launch, orbital maneuvers operation, and satellite qualification
development, each component should be designed to be as much small-mass as
possible. Launch costs per kilogram of mass vary from several thousand of Euros
to tens of thousand of Euros, depending on the orbit altitude in case of Earth
satellite, and even much higher for interplanetary missions (see [49]).

To model the bracket, we consider the simplified geometry in Fig. 21, made
by two rectangles with constant cross-section, glued by a circular joint. In par-
ticular, we select H = L1 = 1, L2 = R = 2 and θ = π/3. The material properties
are E = 103, ν = 1/3, while the load has a uniform magnitude 100, makes and
angle φ to the horizontal direction, and is applied on two outer portions of width
0.1 each. The bracket is fixed at the left boundary, the remaing portion of ∂Ω
being traction-free. It is clearly understood that the analysis here provided is
only qualitative.

The plain SIMPATY algorithm is applied with the input parameters CTOL =
10−2, MTOL=0.45, kmax=30, ρmin = 10−2, an initial mesh consisting of 1712
triangles and α = 0.4. We select three different values for the angle φ, namely, 0
(horizontal load), π/3 (load parallel the tilted rectangle) and π/2 (vertical load).

Figure 22 collects the output of SIMPATY algorithm. The three layouts are
quite different, and reflect the load direction. In particular, the top and the
bottom ones are subjected to a bending moment which is counter-balanced by a
lattice structure throughout the whole design domain. When the load is parallel
to the structure, a compressive stress is dominant and channeled into a tuning
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Figure 22: Antenna bracket test case: φ = 0 (top), φ = π/3 (center), φ = π/2
(bottom).
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❍❍❍❍❍❍
φ = 0 φ = π/3 φ = π/2

#Th 14765 11119 11771

C 23.0882 4.3002 21.7114

Table 7: Antenna bracket test case: number of elements and compliance for
different load angles.

fork connected to a cantilever in the bottom-left part of the bracket, as shown
in the central panel.

Although the qualitative scope of our analysis, values in Table 7 show that
the least compliant structure is the one where φ = π/3, due to the reduced
bending deformation of the layout. We also observe a small sensitivity of the
number of the mesh elements to the load angle.

6 Conclusions and future scenarios

SIMPATY algorithm turned out to be a reliable strategy both qualitatively and
quantitatively. In particular, the verification on the standard SCBL benchmark
has shown that engineering relevant quantities are correctly predicted, even with
a considerable reduction of computational costs, and the structure works under
safety conditions. Qualitatively, the optimized layouts exhibit impressive free-
form features, such as the rounded contours in the CLL lamina and in the MBB
beam test cases. Moreover, the anisotropic mesh adaptation allows us to get
rid of the checkerboard phenomenon. This is also made possible by the employ-
ment of nodal design variables, the density being approximated via continuos
piecewise linear finite elements, in contrast to a more standard piecewise con-
stant discretization. Mesh dependency remains an issue, possibly due to the
nonuniqueness of the solution to the optimization problem.

Concerning future developments, we are currently generalizing SIMPATY
algorithm to a 3D setting. This will represent the subject of a forthcoming paper.
Finally, we remark that, thanks to the recovery-based error estimator, depending
only on the density and not on the target criteria, the approach proposed here
can be applied in a straightforward way to the optimization of several quantities,
other than the compliance, such as the fundamental frequency of a structure.
Another topic of potential interest is represented by a multi-objective framework,
for instance, by including the thermal analysis into the current structural setting.
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