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Abstract

We propose two algorithms to overcome separately two of the most con-
straining limitations of surface reconstruction methods in use. In particular,
we focus on the large amount of data characterizing standard acquisitions
by scanner and the noise intrinsically introduced by measurements. The
first algorithm represents an adaptive variant of the multi-level interpolat-
ing approach proposed in [15], based on an implicit surface representation
via radial basis functions. The second procedure is based on a least-squares
approximation to filter noisy data. An extensive numerical validation is
performed to check the performances of the proposed techniques.

1 Introduction

Surface reconstruction consists in retrieving a virtual model starting from a set
of scattered three-dimensional data lying on the surface of an object of inter-
est. This issue characterizes many present-day technological applications, from
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Figure 1: The Stanford armadillo model: surface reconstruction (left) and corresponding polygoniza-
tion (right).

medicine to facial recognition systems, or to the fine arts. The virtual model can
be eventually used for visualization or diagnostic purposes, for industrial reverse
engineering [4] or to generate a polygonal mesh aimed to scientific computing.

This paper provides two new algorithms which tackle, separately, two of
the most constraining limitations of surface reconstruction, i.e., the size of the
data sampling typical, for instance, of standard acquisitions by scanner and the
noise intrinsically introduced by measurements. The proposed algorithms are
both based on an implicit representation of the surface of interest via Radial
Basis Functions (RBF) and provide, independently, an improvement of an al-
gorithm previously proposed in [15]. In more detail, we modify the procedure
proposed there, relying on a multi-level approach to merge local and global sup-
ported RBF. Several advantages are guaranteed by a multi-level reconstruction,
we mention, in particular, the sparsity of the matrix, a highly accuracy of recov-
ered surfaces with details at different scales or non-uniformly distributed data,
a good quality polygonization of the surface (see Fig. 1 for an example, from the
Stanford 3D scanning repository [1]). Nevertheless, the multi-level reconstruc-
tion still exhibits a local redundancy in the data and a marked sensitivity to
noise. These drawbacks justify the proposal of the new algorithms in this paper.

The first algorithm is suited to efficiently deal with large data set, by avoiding
any redundancy in the selection of the data used for surface reconstruction. In
short, it may be considered as an adaptive version of the multi-level approach and
provides an accurate approximation of a surface Σ resorting to a limited number
of points. We complete the multi-level algorithm with an error indicator to refine
the cloud of points where Σ exhibits the most complex behaviour.
The second variant is proposed to handle the reconstruction of noisy data. For
this purpose, we advocate a least-squares technique which is properly regularized
via a ridge regression approach [8].

The natural follow-up of the present work will be the appropriate merging
of the two approaches finalized in an adaptive least-squares procedure able of
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tackling large sparse and noisy data sets.
The paper is organized as follows. In Section 2, we furnish the multi-level

interpolation method presented in [15], after a short introduction on RBF inter-
polation for scattered data. A detailed numerical check is performed to verify
the actual advantages led by this approach. Section 3 details the first new
procedure, i.e., the adaptive algorithm. The associated numerical investigation
concerns standard data sets as well as data from medical measurements. This
last check turns out to be very challenging due to complexity of the considered
geometries. Finally, in Section 4, we introduce the least-squares counterpart
of the multi-level algorithm and we numerically assess the robustness of such a
scheme. Some conclusions are drawn in the last section and a possible follow-up
of the work is provided.

2 Interpolation of scattered data via RBF

Let us consider a cloud X = {x1, . . . ,xN} of N scattered points describing an
unknown surface Σ ⊂ R3. We assume that points in X are endowed with unit
inward normals, collected in Γ = {n1, . . . ,nN}, thus defining an orientation on
Σ. We aim at reconstructing Σ by exploiting the data in X and Γ. This issue
can be generally formulated as the multivariate interpolation problem: given
X = {x1,x2, . . . ,xN} ⊂ R3 and S = {f1, f2, . . . , fN} ⊂ R, with fj = f(xj) for
1 ≤ j ≤ N , find a continuous function F : R3 → R such that

F (xj) = fj for 1 ≤ j ≤ N. (1)

The scalar function F represents the unknown we are interested in, where we
assume Σ to coincide with the zero level set {x ∈ R3 : F (x) = 0} of F , according
to an implicit representation of the surface. This simply leads us to select in (1)
fj = 0, for 1 ≤ j ≤ N .
The multivariate interpolation is a problem less standard with respect to the
well-established univariate interpolation [18]. In more detail, according to the
Mairhuber-Curtis theorem, it is not a priori guaranteed the existence of a mul-
tivariate polynomial interpolating an arbitrary set of data in R3 [24].

In the sequel we resort to a multivariate interpolation based on RBF. This
type of interpolation is not covered by the Mairhuber-Curtis theorem. In such
a case, problem (1) is well-posed under reasonable assumptions on the selected
radial function and on the set X [24].
In the literature, we may distinguish between globally or compactly supported
RBF (for an interesting comparison, we refer to [13]). Globally supported RBF
provide good-quality reconstructions even for non uniformly distributed or in-
complete data. At the same time, the global support of F associates a full
interpolation matrix with conditions (1), thus making the evaluation of F at a
generic point x ∈ R3 computationally expensive, especially when the cardinality
of X becomes large [4, 20, 10, 7, 21]. On the contrary, compactly supported RBF
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are characterized by a sparse interpolation matrix. This significantly reduces the
computational effort to evaluate F (x), while ensuring that data perturbations
have only a local effect on the reconstructed surface. Nevertheless, compactly
supported RBF are not suited to deal with incomplete data. Moreover, the com-
pact support of F , which is in general confined to a thin layer around Σ, may
be problematic during the polygonization of the surface. A polygonization step
smaller than the thickness of this layer is necessarily required.

In the sequel, we adopt the approach proposed in [15] which merges the
computational efficiency of compactly supported RBF with the robustness of a
globally supported RBF approximation. The interpolating function F in (1) is
chosen as

F (x) =
N∑
j=1

(
gj(x) + λj

)
φσ(||x− xj ||), (2)

where gj : R3 → R and λj ∈ R are unknown functions and weights, respectively,
φ : [0, 1)→ [0,+∞) is the selected compactly supported RBF, such that φσ(·) =
φ(·/σ), with σ ∈ R a scaling factor estimated from the density of X (see [14]
and the sections below for further details), and where || · || denotes the Euclidean
norm in R3. Each term in (2) involves a radial function whose support coincides
with a neighborhood of xj of radius σ.
In [15] the authors provide a single-level and a multi-level strategy, both based on
representation (2). In the next section, we itemize the main steps of the second
approach since we will introduce two variants of such a scheme in Sections 3
and 4.

2.1 The multi-level interpolation algorithm

The basic idea of this algorithm is to replace a direct computation of a compactly
supported interpolating RBF via an iterative algorithm which gradually adds the
data to be interpolated. For this purpose, the procedure starts by generating a
coarse-to-fine hierarchy of points from the cloud X, thus identifying the levels
X1, X2, . . . , Xn such that γ1 ≤ γ2 ≤ . . . ≤ γn with γk = card(Xk) and 1 ≤
k ≤ n. Each level is also endowed with a corresponding set of unit normals
Γk = {nk1,nk2, . . . ,nkγk}, and the number n of levels is arbitrarily fixed by the
user. In more detail, the bounding box Ω0 containing all the points in X is
recursively subdivided into cells via an octree algorithm. Then, the levels Xk

are constituted by the gravity centers xki of the points of X contained in each cell,
whereas the normals nki are computed as an average of the corresponding normal
vectors in Γ [15]. According to this algorithm, it is not necessarily guaranteed
that Xi ⊂ Xi+1 as well as the points of the different levels do not coincide a
priori with points in X.

Then, the function F identifying the unknown surface Σ is recursively defined
via the rule

F0(x) = −1; Fk(x) = Fk−1(x) + ok(x) 1 ≤ k ≤ n, (3)
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ok(x) being an offset function taking into account the points of the current level,
chosen such that Fk(x

k
i ) = 0 for any xki ∈ Xk. Thus, once the number n of levels

has been fixed, function F can be computed simply as the sum of n+ 1 terms,
being F (x) ≡ Fn(x). Notice that, if a rough approximation of the surface Σ is
demanded, the recursive procedure (3) can be limited to a reduced number of
levels (compare, for instance, the different level of detail in panels (c) and (d) of
Figure 2, where n is set to 4 and 6, respectively).
Independently of the level, we assume for the offset the same form as in (2), i.e.,

ok(x) =
∑

xki ∈Xk

(
gki (x) + λki

)
φσk(||x− xki ||). (4)

Notice that the scaling factor σk now depends on the considered level. Concern-
ing the selection of the function φ, we employ the Wendland compactly supported
RBF φ(r) = (1− r)4

+(4r+ 1), which identifies a positive definite basis, with (·)n+
the truncated power function with exponent n [23].

The unknown functions gki in (4) are computed via a local quadratic least-
squares approximation solved on a σk-neighborhood of xki . The weights λki are
determined via a global interpolation, by imposing the interpolation constraints

Fk(x
k
i ) = Fk−1(xki ) + ok(x

k
i ) = 0, ∀ xki ∈ Xk (5)

(for all the details of the procedure we refer to [15]). Concerning the selection of
the scaling factor σk, we employ the same recursive formula as in [15], by picking

σ1 = cL; σk+1 =
σk
2

1 ≤ k < n, (6)

where L is the diagonal of the initial bounding box Ω0, while c is a user-defined
parameter.

Due to the algorithm employed for the level identification, we cannot ensure
that the final approximation Fn necessarily interpolates the initial data set X.

2.2 Numerical assessment

We numerically check the performances of the multi-level interpolation approach.
We have coded this algorithm in C++, by employing the linear algebra libraries
Lapack [11] and OpenNL [17]. For the visualization of the implicit surface, we
use the computer graphics algorithm marching tetrahedra that generates a
triangulation of the surface by resorting to marching cubes [12]. In particular,
we use the Bloomenthal algorithm which is a very efficient version of marching
tetrahedra [2, 3]. To solve the linear system associated with the interpolation
constraints (5), we use the conjugate gradient method combined with the Jacobi
preconditioner [19]. In particular, we employ the normalized residual for the
stopping criterion, by demanding an accuracy equal to 10−10. Finally, for the
sake of simplicity, we scale the clouds of data so that the diagonal L of the initial
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level k γk nzk σk #iterations K(Ak)

1 8 6 0.6027 8 2.727
2 47 7 0.3014 20 4.749
3 231 8 0.1507 62 168.525
4 1261 11 0.0753 100 101.457
5 8676 19 0.0377 88 74.572
6 34833 16 0.0188 56 34.167

Table 1: The Stanford bunny model: quantitative information about the multi-level interpolation
approach.

bounding box Ω0 has unitary length and a vertex coincides with the origin of
the Cartesian coordinate system.

As reference data set we select the Stanford bunny model from the Stanford
3D scanning repository [1], consisting of N = 34833 points. We build a hierarchy
with six levels and we set c = 0.75 in (6) as in [15]. In particular, the last level
X6 coincides with the whole data set X.

Table 1 provides some quantitative information related to the generation
of the coarse-to-fine hierarchy of points and to the solution of system (5). In
particular, for each level Xk, we furnish the corresponding cardinality γk, the
average number nzk of non-zero entries per row of the corresponding matrix Ak
identified by the interpolation constraints (5), the radius σk in (4), the number of
iterations demanded by the solver to reach the desired accuracy and the condition
number of Ak. The number of points at each level grows exponentially. Despite
this, the computational cost of the algorithm remains contained. This is due
to the fact that the local support of the RBF decreases as the level increases,
so that the number of non-zeros entries per row remains limited. At each level,
the time demanded to solve the corresponding linear system is below the second
due to the sparsity of the matrix Ak. Finally, the iterations required by the
preconditioned conjugate gradient method to converge as well as the condition
number of Ak preserve contained values.

The qualitative results of our investigation are gathered in Figures 2 and 3.
With reference to Figure 2, panels (a)-(d) show the levels 1, 2, 4 and 6 of the
multi-level interpolation algorithm. The reconstruction of the bunny gradually
improves and eventually is very accurate. Panel (e) displays the level set associ-
ated with F . As expected, this function can be assimilated to a signed distance
from the surface, assuming positive values inside Σ and negative values outside
the surface. Panel (f) shows the robustness of the multi-level approach in dealing
with incomplete data, being able to effectively repair two holes in the base of the
bunny. Panel (h) highlights the capability of the approach in providing a good
quality reconstruction even in the presence of data with a non-uniform spatial
density. The initial data are shown in panel (g). The density of the points in the
back part of the bunny is about one thirtieth of the distribution in the front part.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: The Stanford bunny model: qualitative information about the multi-level interpolation
approach.

Finally, Figure 3 (b) shows the polygonization of the surface detail in panel (a).
Despite the compact support of F , the polygonal mesh discretizing the bunny
surface is of good quality. Few seconds are, in general, demanded to generate
the grid via the Bloomenthal algorithm. In the specific case, for instance, the
time associated with a polygonization step of 0.01 amounts to 15.05 seconds.

To summarize, from this numerical check, we can state that the multi-level
reconstruction preserves the main advantages of a standard compactly supported
RBF approximation (in particular, the sparsity of the interpolation matrix; the
accuracy in the reconstruction of surfaces with details at different scales), while
overcoming some limits of such an approximation. In particular, it successfully
interpolates data with a non-uniform spatial distribution, fills holes and cuts in
the surface, provides an implicit function F with a (nearly) global support and
allows to obtain a good quality polygonization of the surface. Nevertheless, the
multi-level approach still suffers of some drawbacks. For instance, it would be
advisable to limit the considerable growth of the number of points at each level.
This often yields a final level containing either all or too few points with respect
to the original set X. Moreover, during the creation of a new level, no check
is performed on the accuracy already guaranteed by the previous levels. This
may lead to a local redundancy in the data identifying the reconstructed surface.
Finally, the multi-level reconstruction still exhibits a marked sensitivity to noise
(see, for instance, Figure 11, left). The two next sections are meant to address
these limitations by providing two new variants of the multi-level interpolation
algorithm.
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(a) (b)

Figure 3: The Stanford bunny model: polygonization (b) of the surface detail in (a).

3 An adaptive multi-level approach

The adaptive approach will lead to reconstructions which involve less points with
respect to the standard multi-level procedure. Consequently, the computational
effort for reconstructing Σ will be sensibly reduced.

3.1 Adaptive creation of the levels

Goal of the adaptive approach is to obtain, at the lowest levels, a rough recon-
struction of the features of Σ in correspondence with the coarsest scales, and
then, at the successive levels, to adaptively enrich such a reconstruction in the
regions where details at small scales are present. A check on the local accuracy
ensured by the reconstructed surface will drive the adaptive enrichment.

As in the original multi-level algorithm, we recursively subdivide the initial
bounding box Ω0 via an octree algorithm to produce a coarse-to-fine hierarchy
of levels, X1, X2, . . . , Xn. Nevertheless, we adopt a new criterion to select the
points of the levels. In particular, the levels Xk are now constituted by the points
xki of X closest to the center of gravity of the points of X contained in each cell,
while nki exactly coincides with the normal in Γ associated with xki . Then,
starting from the k̃th level, with k̃ a user-defined integer, we introduce a filter
to discard some points at each level, with the aim of refining the reconstruction
only where details at small scales are relevant. For this purpose, we exploit the
fact that, as shown in the previous section, F behaves essentially like a signed
distance from the surface, so that the farthest the point x the largest the value
|F (x)|. As a consequence, the quantity |F (x)| can be assumed as an estimator
for the interpolation error.
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Figure 4: The Stanford bunny model: a detail of the reconstructed surface via the criterion based on
a fixed rate (left) and on a fixed number (right) of the points at each level.

Thus, to create the kth level, with k ≥ k̃, we first identify all the points xki
of the level Xk (together with the associated unit normals in Γk), and then we
keep only the points leading to the highest error with respect to the previous
surface reconstruction, i.e., such that |Fk−1(xki )| is the largest possible value.

An adaptive choice of the points demands a sufficiently sharp reconstruction
of the surface up to level k̃−1, in order to have a precise idea of the areas where
a refinement of the sampling is required. This justifies the introduction of an
adaptive selection only at the highest levels. The choice of k̃ essentially depends
on the total number of points in X. In general, the smaller k̃, the higher the
number of iterations required to achieve a certain accuracy. In our numerical
experiments, we usually set k̃ = 5.

We assessed two different criteria to select the worst points. In the first case,
a fixed rate of the total number of points in Xk is picked. In the second case,
a fixed number M of points is selected at each new level k, with k ≥ k̃. The
first criterion suffers of the same limits of the original multi-level approach, by
exhibiting an exponential growth of the number of points, level by level. The
second strategy avoids this exponential growth but, in general, creates a high
number of levels with M points. In such a case, it may be advisable to keep the
value of the radius σ sufficiently large, for instance, by setting σk = σk̃ for each

k ≥ k̃.
The numerical assessment suggests that the second criterion is more effective
guaranteeing a better quality of reconstruction with respect to the number of
points involved. Figure 4 shows a detail of the Stanford bunny model, recon-
structed via the two adaptive strategies. The criterion based on a fixed number
of points yields a slightly smoother surface.
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The whole adaptive procedure is itemized in Algorithm 1.

Algorithm 1 : Adaptive multi-level algorithm

1. input : X,Γ, n, k̃,M
2. build the bounding box Ω0 containing the points in X;
3. for k = 1, . . . , n do
4. divide Ωk−1 into 8k cells, Ω1

k, . . . ,Ω
8k

k , via an octree algorithm;
5. for each cell Ωi

k, with i = 1, . . . , 8k, find the point xki ∈ X closest to the
center of gravity of the points x ∈ X ∩ Ωi

k;
6. if k < k̃ then
7. add xki to Xk, for i = 1, . . . , 8k;
8. add the associated vectors nki ∈ Γ to Γk, for i = 1, . . . , 8k;
9. else

10. add the M points xki with the greatest error |Fk−1(xki )| to Xk;
11. add the associated vectors nki ∈ Γ to Γk;
12. end if
13. end for
14. output : {Xk}nk=1, {Γk}nk=1

3.2 Numerical assessment

The numerical check of this section aims at consolidating the good properties
of the adaptive multi-level algorithm. The adaptive algorithm has been imple-
mented in the same environment of the standard procedure, and we preserve the
solver as well.
As expected, it can be checked that the adaptive procedure yields an accurate,
albeit parsimonious, approximation of the surface Σ that consequently requires
a fast post-processing. Indeed, the adaptive algorithm avoids any redundancy
since, when creating the kth level, it automatically discards the points xki such
that Fk−1(xki ) = 0.

3.2.1 Standard vs adaptive multi-level algorithm

We focus on two benchmark problems. The first one represents a brain surface,
the second one coincides with the Stanford bunny tackled in Section 2.2 [1].

The brain dataset consists of N = 46650 points (see Figure 5). In Table 2 we
quantitatively compare the reconstruction provided by the multi-level algorithm
in [15] and by the adaptive variant here proposed. The number n of levels is
fixed to 6 in the first case and to 7 in the adaptive case. The adaptive selection
of the points is activated at the fifth level (k̃ = 5), and the number M of points
preserved at each level k ≥ k̃ is set to 8000. Finally, also in the adaptive case,
we halve the radius σ according to (6).
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Figure 5: The brain data set.

A comparison between the two main panels of the table confirms the exponential
growth of the number of points in the non-adaptive case, in contrast to the
stagnating cardinality of the adaptive approach. The different criterion adopted
to select the points xki leads to a different accuracy already before starting the
adaptive selection, with an error which is about the half in the adaptive case.
At the fifth level, the two methods reach a similar accuracy even though the
cardinality of X5 in the adaptive case is about one fourth of the number of points
employed by the standard approach. As a consequence, the computational cost
is considerably damped in the adaptive case, dealing with a linear system of
reduced order. In a dual way, the adaptive approach allows to considerably
reduce the interpolation error after sampling about the same number of points.
This is evident by comparing the highlighted values in the table. Finally, we
remark that the small error provided at the sixth level of the standard algorithm
is due to the employment essentially of all the available data.

Non-adaptive Adaptive

level k γk σ error γk σ error

1 8 0.5563 4626.62 8 0.5563 1981.41
2 60 0.2781 2961.20 60 0.2781 1393.13
3 412 0.1390 1700.13 412 0.1390 937.038
4 2894 0.0695 804.102 2894 0.0695 444.684

5 25955 0.0348 180.089 8000 0.0348 186.200
6 46637 0.0173 0.06046 8000 0.0173 86.3005

7 - - - 8000 0.0086 39.7091

Table 2: The brain dataset: quantitative comparison between the standard multi-scale and the adap-
tive reconstruction.

11



level k γk nzk σk #iterations K(Ak)

1 8 6 0.6027 8 2.727
2 47 7 0.3014 20 4.749
3 231 8 0.1507 62 168.525
4 1261 11 0.0753 100 101.457
5 4000 12 0.0377 73 58.351
6 4000 6 0.0188 41 21.811
7 4000 1 0.0094 18 3.991

Table 3: The Stanford bunny model: quantitative information about the adaptive multi-level inter-
polation approach.

Now we apply the adaptive multi-level procedure to the Stanford bunny
model in Figure 2. In more detail, we replicate the quantitative analysis provided
in Table 1 for the standard approach, by selecting n = 7, k̃ = 5, M = 4000 and
by gradually halving the radius σ as in (6). Table 3 summarizes the main
results of such an analysis. Notice that the basic algorithm employs one level
less since it already employs all the points in X at the sixth level. Despite the
increased number of levels and the additional check on the error demanded by
the adaptive procedure, the computational time required by the adaptive multi-
level algorithm is lower, namely 66 seconds to be compared with 90 seconds
of the standard multi-level method. Finally, in the adaptive case, we detect a
higher sparsity of the matrix Ak as well as a reduction of the condition number
K(Ak).

Figure 6, top shows a qualitative comparison between the reconstructions
provided by the two approaches. The two surfaces are fully comparable despite
the lower sampling performed by the adaptive procedure (less than 14000 points
to be compared with the full set X of data, consisting of 34833 points). The
enlarged views in the bottom part of the figure highlight that the details lost by
the adaptive multi-level approach as well as the little roughness are essentially
irrelevant.

3.2.2 Reconstructions from medical data

We assess the performances of the adaptive multi-level approach on scattered
data provided by medical measurements such as computed tomography (CT)
scan or magnetic resonance imaging (MRI). The complexity of the surfaces to be
reconstructed makes this a challenging task. Indeed, the involved surfaces often
exhibit details at very different scales. In addition, the data are usually acquired
on parallel sections (slices), thus exhibiting local variations in the spatial density.
We compare the reconstructions provided by the proposed adaptive procedure
with the output of the Vascular Modelling ToolKit (VMTK), a state-of-the-
art collection of libraries and tools for 3D reconstruction, geometric analysis,
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Figure 6: The Stanford bunny model: qualitative comparison between the standard (left) and the
adaptive (right) multi-level reconstruction; the whole bunny (top) and a detail (bottom).
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(a) (b) (c)

Figure 7: Reconstruction of an aortic arch provided by the adaptive multi-level method (a) and by
VMTK, via bi-harmonic radial basis functions (b) and thin plate splines (c).

mesh generation and surface data analysis for image-based modeling of blood
vessels [22].

Figure 7 gathers the results associated with the reconstruction of an aortic
arch. We employ the VMTK interpolation routines based on globally supported
biharmonic radial basis functions and on thin plate splines, respectively both
contained in the VMTK script vmtkrbfinterpolation. Panels (b) and (c)
show that, in the reconstruction performed by VMTK, the presence of details
at different scales introduces spurious surfaces that are difficult to remove even
with a manual post-processing. In particular, the spline reconstruction yields a
second wide surface, external to the aortic arch. On the contrary, no artifacts
are present in the reconstruction provided by the adaptive multi-level method,
as displayed in panel (a).

In Figure 8, we assess the robustness of the adaptive algorithm when dealing
with data acquired on parallel sections. We consider the reconstruction of a
carotid bifurcation whose total length is 42mm (see panel (a)). The distance
among the slices plays an important role. In panel (b), we perform a first recon-
struction starting from data on equispaced slices at a reciprocal distance of 3mm.
In such a case, the total number of points at our disposal is N = 912. The shape
of the bifurcation is correctly retrieved even though the reconstructed surface ex-
hibits some bumps, which are particularly evident along the two branches. Panel
(c) shows the output of the adaptive procedure when the distance among the
slices is diminished to 1.5mm and the number N essentially doubles (N = 1814).
Any roughness of the surface is now erased. This confirms the capability of the
adopted approach to provide good quality reconstructions even when data are
not uniformly distributed. The total time T demanded by the multi-level proce-
dure is very contained as shown in Table 4, which distinguishes between the time
Tr for the surface reconstruction and the time Tp required by the polygonization
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(a) (b) (c)

Figure 8: Adaptive reconstruction of a carotid bifurcation starting from data on parallel sections (a).
Reconstruction with data acquired on slices at a distance of 3mm (b) and of 1.5mm (c).

of the surface. Polygonization takes much more time than reconstruction. The
adaptive algorithm reduces the times, in particular the reconstruction time. All
the times associated with the finer sampling are lower, likely in contrast to the
expectation. This is justified by the choice made for the initial radius σ1, set to
1.5 in the coarse case and to 1 for the fine sampling.

N = 912 N = 1814

Tr Tp T Tr Tp T

standard 1.015 8.145 9.168 0.788 5.480 6.278
adaptive 0.624 7.793 8.424 0.282 4.601 4.891

Table 4: Reconstruction of a carotid bifurcation: times (in seconds) demanded by the two multi-level
procedures and for the two samplings of the surface.

4 A least-squares multi-level approach

This section provides a variant of the multi-level approach suited to deal with
noisy data. As expected, the strong sensitivity to noise represents a limit also
of the adaptive procedure (see Figure 9, left for an example). In more detail, we
preserve the criterion adopted in the basic approach to generate levels Xk and
to compute functions gki in (4), while replacing the interpolation conditions (5)
for the weights λki with a least-squares approach, which exploits a set of points
larger than Xk.
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Figure 9: The Stanford bunny model, reconstruction from noisy data: adaptive multi-level approach
(left); standard regression method (right).

To this aim, we introduce the global error associated with level k

Ekglobal(λk) =
1

L

√√√√ Q∑
i=1

Fk(yi)2, (7)

where the points yi belong to a set Y of cardinality Q > γk, with γk = card(Xk),
and L is the length of the diagonal of the initial bounding box. The quantity
Ekglobal(λk) coincides with an l2-norm of the least-squares error. We have explic-
itly highlighted the dependence of the global error on the unknown coefficients
λki gathered in the vector λk. Different choices are possible for the set Y which,
a priori, may coincide with any set of cardinality greater than γk, even with
the whole set X (this is the default choice in the numerical validation of the
next section). Finally, the scaling factor 1/L in (7) makes Ekglobal(λk) indepen-
dent of the data scale. The same scaling has been adopted in the interpolatory
approach.

Thus, to identify the coefficients λki , we minimize the global error by com-
puting

argmin
µk∈Rγk

[
Ekglobal(µk)

]2

where µk denotes a generic vector of Rγk . This is equivalent to impose

∂
[
Ekglobal(µk)

]2

∂µk

∣∣∣
µk=λk

= 0

i.e., to solve the normal equation system

AT
kAkλk = AT

k bk, (8)
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where Ak ∈ RQ×γk is the rectangular matrix of entries [Ak]ij = φσk(‖yi − xkj ‖),
while the generic entry of the vector bk ∈ RQ is provided by

bi = −

Fk−1(yi) +

Q∑
j=1

AijGij


with Gij = gkj (yi). For the radius σk we preserve the choice in (6).

In contrast to the expectations, this new approach does not lead to significant
improvements when dealing with noisy data (see Figure 9, right for an example),
especially when the number n of levels involved in the multi-level approach is
large.

4.1 A ridge regression penalization

Following [16], to improve the performances of the least-squares reconstruction
we modify the error functional (7) via a ridge regression, which essentially pe-
nalizes the size of the regression coefficients [8]. We consequently replace the

global error associated with level k,
[
Ekglobal(λk)

]2
, with the new quantity

[
Ekreg(λk)

]2
=
[
Ekglobal(λk)

]2
+ Treg‖λk‖2σk , (9)

where ‖λk‖σk denotes the weighted norm

‖λk‖σk =
1

σk

√√√√ γk∑
j=1

(
λkj

)2

and Treg is a positive parameter to be properly set. Clearly, with Treg = 0
we recover the original least-squares approach. We apply the ridge regulariza-
tion at each level k of the multi-level approach in contrast to [16] where the
regularization is adopted in a single-level strategy. Now, we are led to compute

argmin
µk∈Rγk

[
Ekreg(µk)

]2

i.e., (8) changes into the new system(
AT
kAk + TregDk

)
λk = AT

k bk, (10)

with Dk ∈ Rγk×γk the diagonal matrix of entries Dii = (L/σk)
2 for i = 1, . . . , γk,

whose solution is λk = (AT
kAk + TregDk)

−1AT
k bk.

The quadratic term Treg‖λk‖2σk in (9) introduces a regularization. In partic-
ular, the invertibility of the matrix AT

kAk+TregDk is guaranteed, thus ensuring
the uniqueness of the solution to problem (10). This is not always the case for
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Figure 10: Reconstruction of a sphere from noisy data: standard multi-level approach (left); ridge
regression method (right).

the standard least-squares system (8) which admits a unique solution only if
matrix Ak is full rank.

The penalization acts by shrinking the value of the coefficients λkj , while the
parameter Treg tunes such a contraction. In more detail, when Treg increases, the
norm of the vector λk decreases, i.e., ‖λk‖σk → 0 as Treg →∞. Viceversa, when
the value of Treg reduces to zero, we have that ‖λk‖σk → ‖λ

OLS
k ‖σk , where we

have denoted by λOLSk the solution to the ordinary least-squares approximation.
Hence, the ridge regression allows to impose an upper and a lower bound to the
variability of the coefficients λkj , which turns out to be a crucial feature when
dealing with noisy data.

Remark 4.1 In [8], it is established that a ridge regression regularization is
equivalent to an ordinary least-squares approximation plus a constraint on the
sum of the regression coefficients, which is demanded below a certain threshold T .
In particular, a precise one-to-one correspondence between T and Treg is proved.
In [9], the authors demonstrate that the ridge regression approach produces a
better estimate for the regression coefficients with respect to the ordinary least-
squares approximation in the case of data affected by noise and provided that Treg
is properly chosen. In particular, the superiority of the ridge regression form is
proved in terms of mean squared error.

4.2 Numerical assessment

To assess the effect of the ridge regression penalization on the multi-level least-
squares approach, we generate synthetic data by adding noise to exact data and
then we try to recover the original configuration. The Matlab built-in function
awgn is employed to add the noise to the original coordinates of the points
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Figure 11: The Stanford bunny model, reconstruction from noisy data: standard multi-level approach
(left); ridge regression method (right).

in X. In particular, we consider a white Gaussian noise and we quantify the
corresponding intensity with respect to the initial data via the signal-to-noise
ratio (SNR). Moreover, we assume as compactly supported RBF function φ(r) =
(1− r)2

+ [24].
We start from a very trivial set X of data that describes the surface of a

sphere. The Gaussian noise added to these points is characterized by a SNR
equal to 40dB. We choose Y ≡ X and Treg = 0.1. Figure 10 compares the out-
put provided by the standard multi-level approach and by the ridge regression
variant. The reconstruction on the left exhibits many oscillations and confirms
the poor performances of the interpolatory scheme. On the contrary, the regu-
larized least-squares approach completely removes the noise and produces a very
smooth surface.

As second test case, we consider the Stanford bunny model. We modify
each point of the original data set by adding a Gaussian noise such that SNR
is equal to 40dB, and we set Y ≡ X and Treg = 0.01. Figure 11, left shows
the very noisy reconstruction provided by the standard multi-level method. The
interpolation step exactly reproduces the noise. The regularized least-squares
approach delivers a reliable approximation of the original surface as displayed
by the right panel in Figure 11.

We check the sensitivity of the regularized least-squares approximation with
respect to the parameter Treg. For this purpose, we analyze the trend of the error
Θ as a function of Treg, where Θ is computed as the average of the distances
between the points on the reconstructed surface and the exact data distribution.
Figure 12 shows the corresponding trend, together with the behaviour of Θ for
Treg = 0 (i.e., for the multi-level ordinary least-squares approximation). It is
evident that, despite for a limited window of values for Treg, the ridge regression
approach always furnishes a better approximation. Moreover, as expected from
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Figure 12: Reconstruction of the Stanford bunny model from noisy data: error trend as a function
of Treg for the ridge regression method (solid line) and for the standard multi-level approach (dashed
line).

the theory, when Treg tends to zero, the error approaches the one obtained via
the multi-level ordinary least-squares method.

Finally, we have numerically investigated the dependence of the reconstruc-
tion on the selected set Y . Nevertheless, both the test cases exhibit a low
sensitivity to this choice.

5 Conclusions

The numerical assessment tackled in the previous sections confirms the good
performances of both new algorithms. They provide the expected improvements
on the multi-level interpolating approach proposed in [15].

The validation in Section 3.2.1 shows that the adaptive procedure furnishes
an accurate and parsimonious representation of surface Σ. In more detail, on the
brain model, the adaptive approach is able to guarantee a certain accuracy by
employing about one fourth of the points demanded by the standard algorithm,
and, viceversa, the accuracy of the surface reconstructed via the adaptive tech-
nique is considerably higher with respect to the one furnished by the reference
procedure and after sampling about the same number of points.
A cross comparison between Tables 1 and 3 on the Stanford bunny model high-
lights also the higher sparsity of the matrix Ak and a reduction of the correspond-
ing condition number in the adaptive case. Moreover, despite the additional time
required for the check driving the adaptive procedure, the computational time
characterizing the standard approach is higher with respect to the one demanded
by the adaptive algorithm.
Finally, the adaptive procedure is extremely robust also when dealing with the
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complex data provided by the medical measurements in Section 3.2.2. As shown
by Figures 7 and 8, the adaptive algorithm outperforms with respect to VMTK
interpolation routines, by exhibiting a strong effectiveness even in the presence
of details at different scales and of non-uniformly distributed data.

Section 4.2 confirms the good quality of the results provided by the regular-
ized least-squares approach, which completely removes the noise and yields very
smooth surfaces. A low sensitivity with respect to the selected set Y is another
important feature detected by the numerical validation.

A possible follow-up of this work is an appropriate merging of the two pro-
posed approaches to tackle large sparse and noisy data sets, as well as the pro-
posal of an adaptive method to deal with sharp features. This last issue is of
great interest in the current scientific community [6, 5].
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The authors thank Elena Faggiano (Università di Pavia) for the help in elaborat-
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