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Abstract

In this paper we study the performance of a W-cycle multigrid algorithm for high

order Discontinuous Galerkin discretizations of the Poisson problem. We recover

the well known uniformity of the rate of convergence with respect to the mesh size

and the number of levels and study the dependence on the polyonomial order p

employed. The theoretical estimates are verified by two- and three-dimensional

numerical tests.

1 Introduction

Multigrid algorithms, at present, are recognized to be among the most powerful tools
to solve a variety of problems and, thanks to their efficiency, they are widely used in
practice. In the framework of Discontinuous Galerkin (DG) schemes for elliptic problems,
one of the first contribution is due to Gopalakrishnan and Kanschat [15], who studied
a variable V-cycle preconditioner for the h-version of the Symmetric Interior Penalty
(SIP) method of [3]. Applying the abstract multigrid theory for non-inherited bilinear
forms developed in [6], they prove, under mild regularity assumptions, that the condition
number of the preconditioned system is bounded uniformly with respect to the mesh size
and the number of levels. In the following years, the topic has been further developed
focusing on different multigrid schemes: exploiting the additive theory described in [7, 8],
Brenner and Zhao [11] analyzed V-cycle, F-cycle and W-cycle multigrid schemes for SIP
discretizations, obtaining a uniform bound for the error propagation operator provided
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the number of smoothing steps is large enough. The extension to graded meshes can be
found in [10], and the application of the previous multigrid schemes to other symmetric
DG discretizations is addressed in [9]. All the previously cited works focus on low order,
i.e., linear, DG methods. With regards to high-order DG discretizations, p- and hp-
multigrid schemes are successfully employed for the numerical solution of many different
kinds of problems, from Poisson, to Euler and Navier-Stokes equations, see e.g. [13, 18,
20, 19, 22, 4]. However, at the best of our knowledge, a theoretical convergence analysis,
highlighting the role of the polynomial approximation degree in the convergence estimates
of the method, is still lacking. In [2] a complete convergence analysis of a W-cycle
algorithm for a wide class of high order DG schemes is provided. More precisely, in [2]
it is shown that the W-cycle algorithm converges uniformly with respect the granularity
of the mesh and the number of levels; the dependence of the rate of convergence on the
polynomial order is also carefully tracked. In this paper, we recall the analysis of the
W-cycle hp-multigrid schemes described in [2], but focusing, for the sake of simplicity, on
the SIP [3] and the LDG [12] approximations and address the performance of the method
on two- and three-dimensional test cases. The paper is organized as follows. In Section
2 we briefy introduce the SIP and LDG discretizations of the Poisson equation and the
corresponding error estimates [21, 17, 23, 2]. The W-cycle multigrid method is described
in Section 4 and the main theoretical results are summarized: we retrieve the uniform
convergence with respect to the granularity of the mesh and the number of levels, and
show the dependence of the rate of convergence on the polynomial order. The theoretical
estimates are then supported by numerical experiments of Section 5, where the W-cycle
method is tested on two- and three-dimensional problems.

2 Model problem and notation

As a model problem, we consider the hp-DG discretization of the following problem: find
u ∈ V = Hs+1(Ω) ∩H1

0 (Ω), s > 1, such that

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx ∀v ∈ V. (1)

Here Ω ∈ R
d, d = 2, 3, is a polygonal/polyhedral domain and f a given function in

Hs−1(Ω).

Let TK denote a quasi-uniform partition of Ω into shape-regular elements T . We suppose
that TK has been obtained by K−1 successive uniform refinements, applying recursively
the red-green algorithm to an initial (coarse) quasi-uniform partition T1. For the resulting
sequence of nested grids Tk, k = 1, . . . ,K, we assume that each element T ∈ Tk is an
affine image, trough the operator FT , of a reference element T̂ , that can be either the
open unit d-hypercube or the unit d-simplex in R

d, d = 2, 3. We then define the mesh
size hk = maxT∈Tk

hT , being hT the diameter of T ∈ Tk, k = 1, . . . ,K. To each level
k = 1, . . . ,K we assign a polynomial approximation order pk ≥ 1 and define

Vk = {v ∈ L2(Ω) : v ◦ FT ∈ M
pk(T̂ ) ∀T ∈ Tk},
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where M
pk(T̂ ) is either the space of all tensor-product polynomials on T̂ of degree pk in

each coordinate direction, if T̂ is the reference d-hypercube or the space of polynomials
of total degree at most pk if T̂ is the reference d-simplex.

For each internal face F = ∂T
+
∩ ∂T

−
, being T± two adjacent elements with outward

unit normal vectors n±, we define jumps and averages as

Jτ K = τ+ · n+ + τ− · n−, {{τ}} =
τ+ + τ−

2
,

JvK = v+n+ + v−n−, {{v}} =
v+ + v−

2
,

with τ± and v± traces on ∂T±, taken within the interior of T±, of the (regular enough)
functions τ and v, respectively. For any boundary face F = ∂T ∩ ∂Ω, we set JvK = vnT ,
{{τ}} = τ |T . We denote by FI

k and FB
k the sets of interior and boundary faces, respec-

tively, of Tk, k = 1, . . . ,K.

Finally, we define the lifting operators Rk : [L2(Fk)]
d → [Vk]

d and Lk : L2(FI
k ) → [Vk]

d,
defined as

∫

Ω

Rk(τ ) · η dx = −
∑

F∈Fk

∫

F

τ · {{η}} ds ∀η ∈ [Vk]
d, k = 1, . . . ,K,

∫

Ω

Lk(v) · η dx = −
∑

F∈FI

k

∫

F

vJηK ds ∀η ∈ [Vk]
d, k = 1, . . . ,K,

where, here and in the following, the space Lp(Fk) is the space of facewise functions in
Lp, 1 ≤ p ≤ ∞.

3 Discontinuous Galerkin formulation

On the finest level we are interested in solving the following problem: find uK ∈ VK such
that

AK(uK , vK) =

∫

Ω

fvK dx ∀vK ∈ VK , (2)

with AK(·, ·) : VK × VK → R defined as

AK(u, v) =
∑

T∈TK

∫

T

∇u · ∇v dx+
∑

T∈TK

∫

T

∇u · (RK(JvK) + LK(β · JvK)) dx

+
∑

T∈TK

∫

T

(RK(JuK) + LK(β · JuK)) · ∇v dx+
∑

F∈FK

∫

F

σKJuK · JvK ds (3)

+ θ

∫

Ω

(RK(JuK) + LK(β · JuK)) · (RK(JvK) + LK(β · JvK)) dx.

Choosing suitably the parameter θ ∈ [0, 1], β ∈ R
d and the stabilization function

σK ∈ L∞(FK) we can describe different DG schemes. In this paper we focus on the
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SIP [3] and LDG [12] methods, which are characterized by the following choices. For the
SIP method, we choose θ = 0 and β = 0, while for the LDG method θ = 1 and β is a
uniformly bounded (and possibly null) vector. For all the schemes, the penalization term
σK ∈ L∞(FK) is defined as

σK |F =
αKp2K

min(hT+ , hT−)
, F ∈ FI

K , σK |F =
αKp2K
hT

F ∈ FB
K , (4)

with αK ∈ R
+ and F = ∂T

+
∩ ∂T

−
.

It can be shown [21, 1, 23, 17] that the bilinear form AK(·, ·) is continuous and coercive
with respect to the following DG norm

‖v‖2DG,K =
∑

T∈TK

‖∇v‖2L2(T ) +
∑

F∈FK

‖σ
1/2
K JvK‖2L2(F ).

Moreover, the following error estimates holds [21, 17, 23].

Theorem 1. Let u be the exact solution of problem (1) such that u ∈ Hs+1(TK), s ≥ 1,
and let uK ∈ VK be the DG solution of problem (2). Then,

‖u− uK‖DG,K .
h
min(pK ,s)
K

p
s−µ/2
K

‖u‖Hs+1(TK),

‖u− uK‖L2(Ω) .
h
min(pK ,s)+1
K

ps+1−µ
K

‖u‖Hs+1(TK),

with µ = 0 whenever a continuous interpolant can be built, cf. [23], or the projector of
[14] can be employed; µ = 1 otherwise.

4 Multigrid W-cycle methods

A key point in the definition of the W-cycle algorithm is construction of proper sublevels.
As supposed in Section 2, the finest level TK is obtained by a sequence of refinements
of a starting grid T1. Thanks to the red-green algorithm, the resulting set of nested
grids T1 ⊆ T2 ⊆ · · · ⊆ TK is such that hk = h12

1−k. Assuming also that pk−1 ≤ pk,
k = 2, . . . ,K, the associated discontinuous spaces are nested, i.e., V1 ⊆ V2 ⊆ · · · ⊆ VK .
We assume a local bounded variation on the polynomial order among levels, i.e.,

pk . pk−1, k = 2, . . . ,K,

where, here and in the following, we use the symbol . to mean that the inequality holds
up to a positive constant.
On Vk, k = 1, . . . ,K, we introduce the mesh-dependent inner product

(u, v)k = hd
k

dim(Vk)∑

i=1

uivi ∀u, v,∈ Vk, ui, vj ∈ R, i, j = 1, . . . , dim(Vk), (5)
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being ui and vi the coefficients of the expansion of u and v with respect to a set of basis
functions, orthonormal in the L2(T̂ )-inner product. Equation (2) can be then written in
terms of the following linear system of equations

AKuK = fK ,

where the operators AK : VK → V ′
K and fK ∈ V ′

K are defined as

(AKu, v)K = AK(u, v), (fK , v)K =

∫

Ω

fv dx ∀u, v ∈ VK ,

being V ′
K the dual of VK . The subproblems on the coarse levels k = 1, . . . ,K − 1, are

defined by considering the bilinear forms Ak(·, ·), defined as in (3) but on level Vk

Ak(u, v) =
∑

T∈Tk

∫

T

∇u · ∇v dx+
∑

T∈Tk

∫

T

∇u · (Rk(JvK) + Lk(β · JvK)) dx

+
∑

T∈Tk

∫

T

(Rk(JuK) + Lk(β · JuK)) · ∇v dx+
∑

F∈Fk

∫

F

σkJuK · JvK ds

+ θ
∑

T∈Tk

∫

T

(Rk(JuK) + Lk(β · JuK)) · (Rk(JvK) + Lk(β · JvK)) dx,

where σk ∈ L∞(Fk) is defined according to (4), but defined on level k. We then set

(Aku, v)k = Ak(u, v) ∀u, v ∈ Vk.

One of the fundamental ingredients to build a multigrid algorithm are the intergrid trans-
fer operators (prolongation and restriction). The prolongation operatorRk

k−1 : Vk−1 → Vk

is the natural injection, while the restriction operator Rk−1
k : Vk → Vk−1 is the adjoint

with respect to the discrete inner product (5). We next define the projection operator
P k−1
k : Vk → Vk−1 as

Ak−1(P
k−1
k v, w) = Ak(v,R

k
k−1w) ∀v ∈ Vk, w ∈ Vk−1.

The second ingredient is the smoothing scheme. In our case we consider a Richardson
iteration, and denote by Bk its associated operator Bk = ΛkIk, where Ik is the identity
operator and Λk ∈ R is an upper bound for the spectral readius of Ak, such that

Λk .
p4k
h2
k

,

cf. [1, Lemma 2.6]. We now consider the following problem

Akz = g, k = 1, . . . ,K,

with a given g ∈ V ′
k. Let z0 ∈ Vk denote the initial guess. If we apply the W-cycle k-th

level iteration to the above linear system with m1 pre- and m2 post-smoothing steps, we
obtain the approximate solution MGW(k, g, z0,m1,m2). For k = 1 (coarsest level), the
solution is computed with a direct method, that is

MGW(1, g, z0,m1,m2) = A−1
1 g,
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Algorithm 1 Multigrid W-cycle scheme

Pre-smoothing:
for i = 1, . . . ,m1 do

z(i) = z(i−1) +B−1
k (g −Akz

(i−1));
end for

Coarse grid correction:

rk−1 = Rk−1
k (g −Akz

(m1));
ek−1 = MGW(k − 1, rk−1, 0,m1,m2);
ek−1 = MGW(k − 1, rk−1, ek−1,m1,m2);
z(m1+1) = z(m1) +Rk

k−1ek−1;

Post-smoothing:
for i = m1 + 2, . . . ,m1 +m2 + 1 do

z(i) = z(i−1) +B−1
k (g −Akz

(i−1));
end for

MGW(k, g, z0,m1,m2) = z(m1+m2+1).

while for k > 1 MGW(k, g, z0,m1,m2) is defined recursively as shown in Algorithm 1.
We next recall the convergence results shown in [2]. We introduce the error propagation
operator associated to the W-cycle scheme described in Algortihm 1

Ek,m1,m2
v =

{
0 k = 1,

Gm2

k (Ik −Rk
k−1(Ik − E

2
k−1,m1,m2

)P k−1
k )Gm1

k v k > 1,

cf. [16, 5], where Gk = Ik −B−1
k Ak, and define the discrete norms ||| · |||s,k, s ∈ R,

|||v|||s,k =
√

(As
kv, v)k, v ∈ Vk, k = 1, . . . ,K.

We observe that
|||v|||21,k =

√
(Akv, v)k = Ak(v, v) ∀v ∈ Vk.

Following the classical approach in the multigrid theoretical framework [16, 5], we first re-
call the following smoothing property (Lemma 2) and approximation property (Lemma 3),
which are a key ingredient for the analysis of multigrid methods. The proofs of Lemma 2
and Lemma 3 can be found in [2].

Lemma 2 (Smoothing property). For any v ∈ Vk, k = 1, . . . ,K, it holds

|||Gm
k v|||s,k . p

2(s−t)
k ht−s

k (1 +m)(t−s)/2|||v|||t,k, 0 ≤ t ≤ s ≤ 2.

Lemma 3 (Approximation property). Let µ be defined as in Theorem 1. Then,

|||(Ik −Rk
k−1P

k−1
k )v|||0,k .

h2
k−1

p2−µ
k−1

|||v|||2,k ∀v ∈ Vk, k = 2, . . . ,K.
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A key ingredient for the analysis of our W-cycle multigrid scheme is the convergence of
the corresponding two-level method, whose error propagation operator is given by

E
2lvl
k,m1,m2

= Gm2

k (Ik −Rk
k−1P

k−1
k )Gm1

k .

The following convergence result holds, cf. [2] for the proof.

Theorem 4. There exists a positive constant C2lvl independent of the mesh size, the
polynomial approximation degree and the level k, such that

|||E2lvl
k,m1,m2

v|||1,k ≤ C2lvl
p2+µ
k

(1 +m1)1/2(1 +m2)1/2
|||v|||1,k v ∈ Vk

with µ defined as in Theorem 1. Therefore, the two-level method converges provided the
number of pre-smoothing and post-smoothing steps is chosen sufficiently large.

Using the previous results we then have that the W-cycle multigrid scheme converges uni-
formly with respect to the mesh size and the number of levels, and the rate of convergence
depends on the polynomial order, cf. [2] for the proof.

Theorem 5. There exist a constant Ĉ > C2lvl and an integer m̂k independent of the
mesh size, but dependent on the polynomial approximation degree, such that

|||Ek,m1,m2
v|||1,k ≤ Ĉ

p2+µ
k

(1 +m1)1/2(1 +m2)1/2
|||v|||1,k ∀v ∈ Vk, (6)

provided m1 +m2 ≥ m̂k, with

m̂
1/2
k ≥ p2+µ

k−1

C2
stabĈ

2

Ĉ− C2lvl

.

5 Numerical results

In this section we verify the theoretical estimates given in Theorem 4 and Theorem 5 in
the case of h- and p-multigrid schemes. We compute the convergence factor as

ρ = exp

(
1

N
ln

‖rN‖2
‖r0‖2

)
,

with N denoting the iteration counts needed to achieve convergence up to a relative
tolerance of 10−8 and rN and r0 denoting the final and initial residuals, respectively.
We first consider a two-dimensional example. We build the sequence of nested meshes
of Ω = (0, 1)2 by applying the red-green algorithm to a starting coarse mesh made
of structured triangular and Cartesian elements (h1 = 0.25). In Table 1 and Table 2
we report the convergence factors obtained for the h-multigrid scheme as a function
of the number of smoothing steps m = m1 = m2 and the number of levels. The W-
cycle is applied to SIP and LDG discretizations (α = 10, p = 1, 2) on a sequence of
triangular structured grids and Cartesian grids, respectively. The symbol “-” indicates
that the maximum number of 10000 iterations has been reached without convergence.
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Table 1: 2D test case. Convergence factors ρ of h-multigrid as a function of m and the
number of levels (α = 10, p = 1).

SIP. Triangular grids. LDG. Cartesian grids.
k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5

m = 1 0.8717 0.8777 0.8791 0.8798 - - - -
m = 2 0.7658 0.7752 0.7774 0.7784 - - - -
m = 3 0.6778 0.6890 0.6917 0.6924 0.8948 0.9142 0.9018 0.9034
m = 4 0.6042 0.6158 0.6182 0.6185 0.8636 0.8786 0.8723 0.8734
m = 6 0.4946 0.5079 0.5035 0.5014 0.8071 0.8211 0.8203 0.8210
m = 8 0.4257 0.4456 0.4375 0.4292 0.7647 0.7832 0.7816 0.7811
m = 10 0.3782 0.4045 0.3963 0.3893 0.7424 0.7585 0.7571 0.7532
m = 12 0.3439 0.3697 0.3663 0.3558 0.7227 0.7364 0.7352 0.7309
m = 14 0.3143 0.3378 0.3352 0.3287 0.7038 0.7139 0.7145 0.7098
m = 16 0.2906 0.3121 0.3097 0.3038 0.6851 0.6916 0.6943 0.6897
m = 18 0.2719 0.2890 0.2865 0.2812 0.6675 0.6712 0.6739 0.6694
m = 20 0.2535 0.2721 0.2657 0.2609 0.6502 0.6503 0.6546 0.6505

Table 2: 2D test case. Convergence factors ρ of h-multigrid as a function of m and the
number of levels (α = 10, p = 2).

SIP. Triangular grids. LDG. Cartesian grids.
k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5

m = 1 0.9611 0.9669 0.9660 0.8798 0.9795 0.9801 0.9796 0.9783
m = 2 0.9278 0.9364 0.9349 0.7784 0.9608 0.9586 0.9605 0.9577
m = 3 0.8993 0.9093 0.9073 0.6924 0.9459 0.9431 0.9438 0.9401
m = 4 0.8741 0.8848 0.8824 0.6185 0.9339 0.9316 0.9304 0.9264
m = 5 0.8513 0.8625 0.8595 0.5548 0.9235 0.9217 0.9195 0.9155
m = 6 0.8302 0.8417 0.8384 0.5014 0.9142 0.9128 0.9102 0.9061
m = 8 0.7931 0.8043 0.8000 0.4292 0.8973 0.8967 0.8937 0.8895
m = 10 0.7613 0.7710 0.7663 0.3893 0.8817 0.8819 0.8788 0.8740
m = 12 0.7336 0.7416 0.7364 0.3558 0.8668 0.8676 0.8643 0.8592
m = 14 0.7086 0.7149 0.7096 0.3287 0.8525 0.8537 0.8502 0.8444
m = 16 0.6853 0.6910 0.6856 0.3038 0.8386 0.8401 0.8362 0.8301
m = 18 0.6635 0.6688 0.6634 0.2812 0.8251 0.8267 0.8228 0.8162
m = 20 0.6431 0.6483 0.6430 0.2609 0.8121 0.8138 0.8092 0.8024

As expected from Theorem 5, the convergence factor is independent of the number of
levels k and decreases increasing m.
Table 3 shows the iteration counts and convergence factor (between parenthesis) of h-
multigrid as a function of the polynomial approximation degree p and the number of
levels k, for both SIP and LDG methods. We also provide a comparison with the itera-
tion counts of the Conjugate Gradient (CG) algorithm. We observe that the multigrid
algorithm converges faster than CG and, in accordance to (6), convergence deteriorates
increasing p. In Tables 4 we show the iteration counts and the convergence factors (be-
tween parenthesis) as a function of m and k, for the p-multigrid algorithm. In this case
we fix the grid and from each level to the coarser one we decrease the polynomial order in
such a way that pk−1 = pk − 1. We observe that uniformity with respect to the number
of levels can be appreciated only asymptotically since the ratio pk/pk−1 in our case in
not constant. The data in Table 5 confirm that the convergence factor increases with p
according to estimate (6), nevertheless the multigrid algorithm clearly outperform the
CG method.
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Table 3: 2D test case. Iteration counts and convergence factors (between parenthesis) of
h-multigrid as a function of p and the number of levels k (α = 10, m = 6).

SIP. Triangular grids. LDG. Cartesian grids.
k = 2 k = 3 k = 4 k = 2 k = 3 k = 4

p = 1 27 (0.50) 28 (0.51) 27 (0.50) 86 (0.81) 94 (0.82) 93 (0.82)
p = 2 99 (0.83) 107 (0.84) 105 (0.84) 206 (0.91) 202 (0.91) 196 (0.91)
p = 3 204 (0.91) 219 (0.92) 199 (0.91) 280 (0.94) 278 (0.94) 239 (0.93)
p = 4 362 (0.95) 321 (0.94) 263 (0.93) 426 (0.96) 370 (0.95) 338 (0.95)
p = 5 427 (0.96) 352 (0.95) 319 (0.94) 564 (0.97) 368 (0.95) 485 (0.96)
p = 6 374 (0.95) 447 (0.96) 420 (0.96) 750 (0.98) 499 (0.96) 638 (0.97)

CG iteration counts
p = 1 133 273 549 130 269 638
p = 2 355 706 1421 276 656 1405
p = 3 630 1110 2239 484 1122 2393
p = 4 872 1788 3631 738 1706 3608
p = 5 1273 2597 5263 1051 2402 5049
p = 6 1749 3597 7314 1409 3195 6728

Table 4: 2D test case. Convergence factors ρ of p-multigrid as a function of m and the
number of levels (α = 10, p = 5).

SIP. Triangular grids. LDG. Cartesian grids.
k = 2 k = 3 k = 4 k = 2 k = 3 k = 4

m = 1 345 (0.95) 361 (0.95) 553 (0.97) - - -
m = 2 201 (0.91) 197 (0.91) 308 (0.94) 343 (0.95) 376 (0.95) 522 (0.97)
m = 4 117 (0.85) 113 (0.85) 177 (0.90) 196 (0.91) 208 (0.92) 310 (0.94)
m = 6 96 (0.83) 95 (0.82) 127 (0.86) 139 (0.88) 153 (0.89) 229 (0.92)
m = 8 83 (0.80) 82 (0.80) 100 (0.83) 133 (0.87) 133 (0.87) 183 (0.90)
m = 10 73 (0.78) 72 (0.77) 83 (0.80) 121 (0.86) 119 (0.86) 152 (0.89)
m = 12 65 (0.75) 65 (0.75) 72 (0.77) 109 (0.84) 108 (0.84) 131 (0.87)
m = 14 59 (0.73) 59 (0.73) 63 (0.75) 99 (0.83) 98 (0.83) 114 (0.85)
m = 16 54 (0.71) 54 (0.71) 56 (0.72) 91 (0.82) 90 (0.81) 102 (0.83)
m = 18 50 (0.69) 50 (0.69) 51 (0.70) 83 (0.80) 83 (0.80) 92 (0.82)
m = 20 46 (0.67) 46 (0.67) 47 (0.67) 77 (0.79) 77 (0.79) 84 (0.80)

CG iteration counts: 2597 CG iteration counts: 2392

As a final test, we present a three-dimensional example. We have employed an h-multigrid
scheme to solve the linear system arising from a SIP discretization of a diffusion equation
on Ω = (0, 1)3 employing a tetrahedral mesh. The staring mesh size is h1 = 0.25, α = 10
and p = 1, 2, 3. The results are reported in Table 6. We observe that the performance of
our method are in agreement with the theoretical results of Theorem 5.
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Table 5: 2D test case. Iteration counts and convergence factors (between parenthesis) of
p-multigrid as a function of p and the number of levels (α = 10, m = 6).

SIP. Triangular grids.
k = 2 k = 3 k = 4 CG

p = 2 38 (0.62) - - 706
p = 3 70 (0.77) 70 (0.77) - 1110
p = 4 80 (0.79) 83 (0.80) 93 (0.82) 1795
p = 5 96 (0.83) 95 (0.82) 127 (0.87) 2597
p = 6 122 (0.86) 120 (0.86) 126 (0.86) 3597

LDG. Cartesian grids.
k = 2 k = 3 k = 4 CG

p = 2 101 (0.83) - - 652
p = 3 160 (0.89) 167 (0.90) - 1127
p = 4 126 (0.86) 159 (0.89) 178 (0.90) 1701
p = 5 139 (0.88) 153 (0.89) 229 (0.92) 2392
p = 6 189 (0.91) 189 (0.91) 176 (0.90) 3201

Table 6: 3D test case. Convergence factors ρ of h-multigrid as a function of m and the
number of levels (α = 10, p = 1, 2, 3).

p = 1 p = 2 p = 3
k = 2 k = 3 k = 4 k = 2 k = 3 k = 4 k = 2 k = 3

m = 1 - - - 0.9745 0.9746 0.9722 0.9869 0.9867
m = 2 - 0.9544 0.8700 0.9501 0.9500 0.9452 0.9741 0.9737
m = 3 0.8321 0.7697 0.7509 0.9271 0.9266 0.9198 0.9617 0.9612
m = 4 0.7141 0.7078 0.6853 0.9052 0.9042 0.8957 0.9498 0.9491
m = 6 0.6125 0.6022 0.5756 0.8647 0.8625 0.8511 0.9267 0.9262
m = 10 0.4633 0.4440 0.4135 0.7935 0.7883 0.7734 0.8840 0.8841
m = 14 0.3632 0.3344 0.3055 0.7318 0.7246 0.7081 0.8453 0.8456
m = 18 0.2910 0.2652 0.2356 0.6786 0.6687 0.6513 0.8100 0.8103
m = 20 0.2633 0.2456 0.2125 0.6544 0.6437 0.6273 0.7933 0.7934
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