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Abstract

We present a new numerical method for the computation of the

forcing term of minimal norm such that a two point boundary value

problem admits a solution. The method relies on the following steps.

The forcing term is written as a (truncated) Chebyshev series, whose

coe�cients are free parameters. A technique derived from automatic

di�erentiation is used to solve the initial value problem, so that the

�nal value is obtained as a series of polynomials whose coe�cients

depend explicitly on (the coe�cients of) the forcing term. Then the

minimization problem becomes purely algebraic, and can be solved

by standard methods of constrained optimization, e.g. with Lagrange

multipliers. We provide an application of this algorithm to the re-

stricted three body problem in order to study the planning of low

thrust transfer orbits.
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1 Introduction

We consider a two point boundary value problem for the non autonomous
dynamical system in R

N :










y′(t) = f(y(t)) + ϕ(t)

y(−1) = y0

y(1) = y1 ,

(1)

where f ∈ C1(RN , RN) and ϕ ∈ C([−1, 1], RN). We introduce a new numer-
ical method for the computation of ϕ of minimal norm, among the functions
representable with a truncated Chebyshev series, such that (1) admits a solu-
tion. In order to evaluate the performance of the algorithm, we apply it to a
well known problem, that is the study of low thrust orbits between the Earth
and the Moon. We refer to [MTBZ] and references there for a discussion of
the astrodynamical problem.

Our new approach is derived from the method introduced in [AG1, AG2]
to consider the dependence of parameters of the solution of hyperbolic equa-
tions. Such method heavily relies on a computer representation of algebras of
functions, in such a way that the computer can use as �numbers� such func-
tions in a straightforward and transparent way, reducing to a minimum the
computations to be done explicitly by hand. The basic ideas of this method
have been used since a few years in the �eld of computer assisted proofs, see
[AK1, AK2] for some examples, but its potentiality in optimization and con-
trol appears to have been overlooked. In Section 2 we describe the approach
in a generic setting. In Section 3 we describe the speci�c planar restricted
three body problem that we use to present the method. In Section 4 we
present the results that we obtained for the RTBP examples, and we discuss
the features of the method.

2 Study of the trajectory depending on a pa-

rameter

Consider a generic initial value problem in R
n

{

y′
c(t) = f(t, y(t)) + ϕc(t)

yc(−1) = y0 ,
(2)
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where f is an analytic function, c is an n × N real matrix and the forcing
term ϕc : [−1, 1] → R

n depends on c as follows:

(ϕc(t))i =
N−1
∑

j=0

cijTj(t) , (3)

where Tj(t) is the j-th Chebyshev polynomial and (ϕc(t))i denotes the i-th
component of ϕc(t). Our �rst step is to compute explicitly the dependence
of yc(t) on c, for t ∈ (−1, 1].

We choose our favorite method to solve the IVP; in order to focus on the
issue of the parameter dependence, we choose at �rst the simplest method,
e.g. an explicit �rst order Euler scheme with constant time step δ, and we
consider the case n = N = 1. We show later that it is straightforward
to adapt the method to a better scheme, e.g. a Runge-Kutta scheme with
variable time step, and to the case n, N > 1.

Set tk = kδ and yk(c) = yc(tk) so that the Euler scheme reads

yk+1(c) = yk(c) + δf(kδ, yk) + δϕc(kδ) . (4)

Now we write

yk(c) =
+∞
∑

j=0

yk,jUj(c) ,

where {Uj(c)}j∈N is a basis of some space of functions X of our choice. In
this paper we consider the cases where X is the set of analytic functions in
a disc (and then Uj(c) = cj) and where X =C([-1,1]) (and then Uj(c) =
cos(j arccos c)), that is the Taylor and Chebyshev expansions, respectively
for analytic and continuous functions, but it will be clear how to generalize
the method to other expansions. Now we choose a maximum order M and
we approximate yk(c) with the truncated expansion

∑M

j=0
yk,jUj(c). Our

aim is to compute the coe�cients yk,j using an automatic algorithm. Since
y0(c) = y0, then we have y0,0 = y0 and y0,j = 0, when j ≥ 1.

The core of the method consists in a generalization of the Taylor Models
approach (see [BM1, BM2, BM3, BM4]). For a detailed description of the
technique with di�erent expansions see [AG1, AG2]. Here, we only recall the
basic ideas. First, we observe that it is straightforward to implement on a
computer an arithmetic of Taylor or Chebyshev polynomials of one variable.
Using object-oriented programming and operator overloading, it is possible
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to de�ne a class Fun which represents a Taylor or Chebyshev expansion and
a set of methods which perform the basic operations and the computation
of the elementary functions. More precisely, an object Fun is represented
as the list of the coe�cients. Then it is straightforward to implement a
procedure that, given a scalar α and two objects Fun T1, T2, computes the
object Fun corresponding to α(T1 ∗ T2), where ∗ is either the addition or
the multiplication. Then, given a polynomial p(x), it is possible to compute
the object Fun corresponding to p(T1), and since all analytic functions f(x)
can be approximated with polynomials, it is also possible to compute the
object Fun that better approximates f(T1). A more algebraic oriented way
of expressing this idea is the following: let X be the space of functions
spanned by {Uj(c)}j∈{0,...,M} and let T : X → R

M+1 be the (invertible)
map that extracts the coe�cients. Our approach consists in lifting the basic
arithmetics of X to R

M+1. More precisely, we compute operators

{⊕,⊗} : R
M+1 × R

M+1 → R
M+1

and
⊙ : R × R

M+1 → R
M+1

such that T (f+g) = T (f)⊕T (g), T (fg) = T (f)⊗T (g) and T (αg) = α⊙T (g).
Then, we make extensive use of object-oriented programming and operator
overloading in order to make this lifting completely transparent to the user.

The extension of this method to the case n > 1 is straightforward. The
case N > 1 requires a little more work, since we have to consider multi-
variable Taylor or Chebyshev expansions. Clearly, we still can represent a
multivariable expansion by a list of coe�cients, and we can still implement
the sum of two of such objects componentwise. All is left to do is to im-
plement the multiplication. This is not a trivial task, but a very e�cient
algorithm for the case of the Taylor expansion has been introduced in [BM4],
and it is not too hard to extend it to the Chebyshev expansion. We refer to
our programs for details.

With the class Fun in place, we can use a standard implementation of the
algorithm (4), observing that, given yk, the methods of the class will take
care of the computation of f(kδ, yk), while ϕc(kδ) is explicitly given by (3).
Extending this approach to better integration schemes, say Runge-Kutta or
multistep, is straightforward: it su�ces to implement the chosen algorithm
using objects Fun and their methods.
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3 Low thrust orbits in the planar RTBP

In order to model the dynamics of a spaceship travelling from an orbit around
the Earth to an orbit around the Moon, we consider the forced planar RTBP,
that is the system:

ẍ + 2ẏ = Ωx + f(t) ẋ√
ẋ2+ẏ2

ÿ − 2ẋ = Ωy + f(t) ẏ√
ẋ2+ẏ2

,
(5)

where

Ω(x, y) =
x2

2
+

y2

2
+

1 − µ
√

(x + µ)2 + y2
+

µ
√

(x + µ − 1)2 + y2
+ C .

We choose µ ≃ 0.0121506683, that is the reduced mass of the Earth-Moon
system and C = −1.600172454916536, so that Ω(L1) = 0. The forcing is
given by a scalar function f(t) to be determined times a unit vector directed
as the velocity of the spaceship, so we assume that the thrust is parallel to
the velocity. We show how to apply the method described in the previous
section to the problem of optimizing the travel from an orbit 167km above
the Earth to an orbit 100km above the Moon. We choose a connecting orbit
passing close to L1. Note that the Jacobi function

J(x, y, ẋ, ẏ) = ẋ2 + ẏ2 − 2Ω(x, y)

is roughly −60 on an orbit 167km above the Earth and −1.6 on an orbit
100km above the Moon, and in order to �cross� L1 it is necessary to raise
it above 0. We build the connecting orbit as follows. We start from the
Lyapunov orbit around L1 with J = 0.1 and approximate periodic orbits
around the Moon and the Earth. Then we compute approximate connections
from the Lyapunov orbit to the orbit around the Earth (backwards in time)
and to the orbit around the Moon (forward in time). This is useful, if not
necessary, because of the high instability of the Lyapunov orbit: it is much
harder to aim to the Lyapunov orbit than to a stable orbit around a primary.
These orbits are obtained by applying a constant low thrust (that is, f(t) = c,
with small c), chosen but simple trial and error. Once these rough orbits are
computed, we apply the techique described above to correct them in order to
satisfy some required boundary conditions and at the same time to minimize
the thrust. More precisely, we write (5) as a system of 4 �rst order equations
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by setting v = ẋ and w = ẏ, we write the modulus of the forcing term as

f(t) = c +
N−1
∑

j=0

cjTj(t) ,

we choose some initial value on the trajectory at the arbitrary time t = 0
and we solve the equation with a fourth order Runge-Kutta scheme up to
some time t = T , using objects Fun as scalars, the coe�cients cj being the
independent variables of the objects Fun. Referring to Section 2, we have
n = 4 (the dimension of the system), we choose N = 4 and M = 10. We
rescale the time in the interval [−1, 1] and apply the method described in
Section 2 to obtain (x(T ), y(T ), v(T ), w(T )) as a function of {cj}, expressed
either as a Taylor series or a Chebyshev series. Once that expression is
known explicitly, it is easy to apply a minimization method to solve some
problem, e.g. �nd {cj} such that (x(T ), y(T ), v(T ), w(T )) is the same but
‖f‖ is minimal. Or �nd {cj} such that the distance of the spaceship to the
Earth or the Moon is assigned, e.g. (x(T ) − µ)2 + y(T ) = R2 together with
the �nal velocity (v(T ))2 + w(T )2 = V 2 and ‖f‖ is minimal. Or possibly,
we can add another constraint, such as the �nal velocity to be orthogonal
to the line connecting the satellite to a primary. We describe in more detail
the second of these examples. Since we have a objects Fun that represent
(x(T ), y(T ), v(T ), w(T )) as a function of {cj}, then we can use again the
(automatic) algebra Fun to compute two objects Fun, that is two explicit
Taylor or Chebyshev polynomials a(c1, . . . , cN) and b(c1, . . . , cN), represent-
ing (x(T )−µ)2+y(T ) and (v(T ))2+w(T )2 . So, we reduced the problem to the
following: �nd {cj} of minimal norm under the constraint a(c1, . . . , cN) = R2

and b(c1, . . . , cN) = V 2. This can be achieved easily e.g. with Lagrange mul-
tipliers.
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Figure 1: A complete orbit

R V εT ‖fT‖ εC ‖fC‖
0.4 0.9 1.03 · 10−7 0.3012 1.27 · 10−7 0.3012
0.4 0.85 2.32 · 10−4 0.4215 3.45 · 10−4 0.4235
0.45 0.9 NA NA 7.66 · 10−5 0.2104
0.43 0.9 6.58 · 10−10 0.1540 1.39 · 10−7 0.1540

Table 1: Result enforcing R and V

4 Results

Figure 1 represents an example of an orbit computed by using the technique.
Tables 1 and 2 collect some results obtained for a trajectory backward in time
starting close to a Lyapunov orbit around L1, more precisely at the point
(x(0), y(0), v(0), w(0)) = (0.73356888,−0.017228233, 0.25064405, 0.17220602)
and ending close to an orbit around the Earth at time T = −1.7. The tra-
jectory with a constant thrust c = 0.2 ends at R =

√

(x(T ) − µ)2 + y(T ) =

0.421852 and V =
√

(v(T ))2 + w(T )2 = 0.876662. For both tables we com-
puted the thrust of minimal norm necessary to end the trajectory the the
values given in the columns R and V , but the results of Table 2 represents
the solution with the additional constraint that the �nal velocity is orthog-
onal to the segment from the spaceship to the Earth, corresponding to an
approximate circular orbit. In order to test the accuracy of the computation,
when the optimization is done we repeat the compuation of the orbit with
standard �oating point numbers, using the explicit expression of the forcing
term, and we use the result of such computation to verify that the constraint
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R V εT ε⊥T ‖fT‖ εC ε⊥C ‖fC‖
0.42 0.87 3.04 · 10−4 8.48 · 10−5 0.3627 1.53 · 10−4 8.26 · 10−7 0.3653
0.42 0.9 3.18 · 10−6 6.00 · 10−7 0.2540 4.02 · 10−6 9.75 · 10−6 0.2541
0.44 0.82 4.18 · 10−9 3.37 · 10−10 0.2044 2.48 · 10−8 2.34 · 10−8 0.2044
0.46 0.82 7.32 · 10−8 1.43 · 10−7 0.1439 3.77 · 10−6 2.22 · 10−6 0.1439

Table 2: Result enforcing R, V and tangential trajectory

are satis�ed. The values εT and εC represent the mean square of the relative
errors on R and V , obtained with the Taylor and the Chebyshev computation
respectively, while ε⊥T and ε⊥C represent |(x(T ) − µ)v(T ) + y(T )w(T )|. The
columns ‖fT‖ and ‖fC‖ represent the norm of the forcing terms. It is clear
from the tables that the method can achieve very accurate results, and it is
also clear that the forcing term obtained with the Taylor and the Chebyshev
computation is (almost) the same.

We discuss and compare the features of the two expansion that we tested:
Taylor and Chebyshev. Generally speaking (see [AG1, AG2]), the main ad-
vantages of the Taylor expansion consist in three features: the algorithms are
simpler and faster, they provide directly the derivatives with respect to the
parameters and furthermore, and, since one does not need to know the radius
of convergence a priori, one can apply them and compute a posteriori the in-
terval of validity of the computation. Taylor expansion have also two main
disadvantages: they do not provide uniform errors in the interval where the
computation is performed and the radius of convergence may be bounded by
poles in the complex plane. The Chebyshev expansion has opposite features:
the error is uniform in the interval and the region of convergence is an ellipse
as thin as necessary, therefore there are no problems caused by poles with
nontrivial imaginary parts. On the other hand, the algorithm for the mul-
tiplication is much more complicated and much slower, it does not provide
any direct computation of the derivatives and �nally, since the Chebyshev
polynomials are de�ned in [−1, 1], one needs to choose a priori (via a suitable
translation/rescaling) the interval where the parameter ranges, �nding out
only a posteriori if the approximation is acceptable. In the application con-
sidered in [AG1, AG2], the Chebyshev expansion was a clear winner, due to
the fact that, when considering the numerical approximation of shock waves
and when trying to improve the resolution, the problem of poles becomes the
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main issue. Here, our judgment is the opposite: since the solutions of the
ode's that we are studying are analytic functions, the issue of poles limiting
the radius of convergence of Taylor series becomes negligible, while the dis-
advantages of the Chebyshev expansion, in particular the slower algorithms
and the fact that the domain has to be chosen a priori, become very relevant.
Additionally, we do not have evidence of a better performance in terms of
accuracy. It is easy to �nd examples when either expansion performs better
than the other one, but on average the accuracy is similar.
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