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Abstract

The life cycle of several sessile or highly sedentary aquatic species is characterized
by a pelagic stage, during which propagules are dispersed by the water flow. As
a consequence, hydrodynamics plays a crucial role in redistributing offspring,
thus deeply influencing the spatiotemporal dynamics of such species. In this
work, we describe an integrated modeling framework that allows the coupling
of a minimal – yet biologically well founded – ecological model for population
dynamics at the local scale to an efficient numerical model of three dimensional
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free surface flows in a thermally forced basin. The computed hydrodynamical
fields are employed in a Lagrangian description of larval transport at the basin
scale. The developed modeling framework has been applied to a realistic case
study, namely the spread of an idealized aquatic sedentary population in Lake
Garda, Italy. The analysis of this case study shows that the interplay between
demography and hydrodynamics can produce complex spatiotemporal dynamics.
Our results also evidence that larvae can travel over relatively long distances even
in a closed basin. A sensitivity analysis of the model outcomes shows that both
biological traits and external forcings may remarkably influence the evolution of
diffusion patterns in space and time.
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1 Introduction

One of the most important and challenging problems in population ecology is the
understanding of the spatial dynamics of animal populations. This represents
indeed a very complex task, since it requires the study of processes occurring
at different spatial scales, ranging from local ones, such as birth and death pro-
cesses, to non-local ones, such as dispersal processes [29]. A case of particular
interest is represented by those aquatic species that are sessile or highly seden-
tary as adults, but have a pelagic stage at the beginning of their life cycle (e.g.,
mussels, corals, etc.; see [20, 13]). For these species, the redistribution of or-
ganisms between subsequent generations is almost exclusively operated by the
water flow. In particular, currents determine the patterns of larval dispersal.
Such patterns can be extremely complex, since they reflect the effects of the un-
derlying hydrodynamics [3, 13, 42], and play a key role in determining long-term
spatiotemporal population dynamics.

Both numerical simulations and measurements of dispersal ability have con-
tributed to better understanding of some features of larval transport in marine
and freshwater ecosystems [39, 10]. The outcomes of numerical models have
been sometimes profitably compared to those of genetic models [18], elemental
fingerprinting techniques [40] or in situ larval culturing [3]. Nevertheless, coupled
ecological-hydrodynamic models are still needed in order to understand and fore-
cast spatial population dynamics in a comprehensive way, as first clearly stated
by [37]. Such models may in fact contribute to answering the basic questions con-
cerning larval dispersal, i.e., where do larvae go and where do larvae come from
[28]. Although questions of this kind could seem too simplistic, they correspond
de facto to some of the most debated topics in the literature on larval dispersal,
such as the estimation of the spatial scale over which larval transport occurs
[12] and the debate on the relevance of self-recruitment (that is, the retention of
larvae in their native site) on population dynamics at the basin scale [10, 12, 3].
A comprehensive understanding of spatiotemporal recruitment patterns is also
required to face important applied issues, such as population management and
the design of protected areas [20, 47, 13].

In this work, we develop an integrated modeling framework that combines
a minimal, (yet ecologically well-founded) population model for the local demo-
graphic dynamics of a spatially structured sessile population, with a rigorous
description of transport effects. In particular, we aim to describe long-term
population dynamics. This actually represents a necessary condition for the
understanding of the spatiotemporal patterns of population abundance at the
basin scale. Remarkably, very few works have reported the results of long-term
analyses in the context of larval dispersal. In point of fact, a recent literature
survey [33] shows that just 5 on the 69 reviewed papers on fish recruitment
in marine ecosystems were multigenerational (e.g., [36]; see also [6]). Moreover,
most works devoted to the analysis of larval dispersal refer to marine ecosystems,
while we specifically address the study of closed water bodies.
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From a modeling perspective, larval dispersal is described here by a La-
grangian approach. The velocity fields used to evaluate larval trajectories are
computed using the volume-conservative finite element model described in [32, 8]
and extended in [5] to include baroclinic effects due to thermal forcing induced by
solar radiation. The resulting coupled model is applied to a case study concern-
ing the spread of an ideal sessile organism in Lake Garda, Italy. Although the
case study is not tailored on a specific animal population, we consider thermal
end environmental forcings (solar radiation, wind stress, etc.) that are specific
for the basin under study.

The manuscript is organized as follows. In section 2 we describe the hy-
drodynamic model, while in section 3 some details are given on the numerical
method employed for its solution. The solar radiation model is described in
section 4, while the simple ecological model is presented in section 5. The main
features of the case study are introduced in section 6. The model is first validated
with respect to its capability of reproducing realistic temperature fields. The
results of several simulations of larval spread in lake Garda are then presented
and discussed. In section 7 some conclusions are drawn on the applicability of
the present approach to other similar problems and further developments of the
present model are discussed.

2 The hydrodynamic model

The hydrodynamical model used in this work is based on the Reynolds aver-
aged equations for 3D free-surface baroclinic flows, derived under hydrostatic
and Boussinesq assumptions. Baroclinic terms allow the model to account for
pressure variations due to fluid density variations, while a realistic definition of
thermodynamic forcings enables to estimate correctly the heat budget of the
water basin. In the present work, fluid density variations responsible for the
baroclinic component of fluid pressure are assumed to be dependent on temper-
ature only. Other factors (such as water salinity) have been disregarded, thus
limiting the applicability of the model to freshwater ecosystems.

4



The equations of the hydrodynamic model read as follows
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Flow velocities along x, y and z directions are denoted by u, v and w, respec-
tively. Water temperature and free surface elevations are denoted by T and η,
while h, fC and q denote the bottom depth, Coriolis parameter and the sum of
all heat sources and sinks (to be described later in greater detail). In the present
formulation, density is computed by the state equation

ρ = ρ0[1 − αT (T − TR)2], (6)

where T is the temperature expressed in Celsius degrees, TR = 4◦C, αT =
6.8 · 10−6 K−2 and ρ0 = 1000 kg m−3 is a reference density value, while the rel-
ative density variations are denoted by ∆ρ = (ρ− ρ0)/ρ0. Atmospheric pressure
gradients have been neglected, since only applications to relatively small basins
will be considered. Also, the horizontal turbulent viscosity in the momentum
and temperature diffusion has been considered negligible.

3 The numerical approximation method

The system of hydrodynamic equations (1)-(4) has been discretized by an ex-
tension of the semi-implicit and semi-Lagrangian numerical method proposed in
[32], that is described in detail in [5]. Introducing a series of discrete time levels
tn that cover the total time interval (0, T ] with N timesteps of constant length
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∆t = tn+1 − tn, the semi-implicit time discretization can be written as
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Here, n+ϑ denotes time averaging of two subsequent time levels with averaging
parameter ϑ, that should be taken in the interval [1/2, 1] in order to guarantee
stability of the Crank-Nicolson time discretization (see the relevant linear stabil-
ity analysis in [7]). Furthermore, X denotes the foot of the Lagrangian trajectory
reaching point (x, y, z) at time level tn+1. Note that horizontal viscous terms and
Coriolis terms have been discretized explicitly, since they do not imply severe
stability restrictions on the computational meshes used in the present applica-
tion. As for the spatial discretization, the (x, y) plane has been covered with
an unstructured triangular mesh, while the z direction has been discretized in a
suitable number of horizontal layers. Along the lines of [32], Raviart-Thomas el-
ements of order 0 are used for the momentum equations, while P0 finite elements
have been used for the free surface and temperature.

The temperature equation (4) is solved first, uncoupled from the momentum
and free surface equations. As shown in (4), temperature advection is treated in a
semi-Lagrangian fashion, employing respectively cubic and linear interpolations
in the vertical and horizontal directions for the reconstruction step. The vertical
turbulent viscosity term is discretized by a finite volume approach in space and
by the Crank-Nicolson method in time. The computation of the heat fluxes
due to solar radiation is described in detail in the next Section. Solution of the
temperature equation yields an updated density value that is used to compute
baroclinic gradients. After this step, the algorithm follows exactly [32]. The
updated value of ηn+1 is computed by solving a Helmholtz equation obtained
by substitution of (1) and (2) in (4). Finally, the velocity field is updated. The
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vertical velocity is then recovered from the incompressibility constraint. It is to
be remarked that, due to the lack of full coupling between baroclinic gradients
and momentum equations, the resulting time discretization is only conditionally
stable with respect to internal gravity waves, while unconditional stability with
respect to external gravity waves is guaranteed by the semi-implicit discretization
of the free surface equation. No-flow boundary conditions are imposed at the
lateral boundaries of the spatial domain, while bottom friction and wind drag
formulae are used at the bottom and free surface, respectively.

4 Solar radiation forcing on the water basin

Modeling the heat fluxes at the surface of an enclosed water basin is essential to
correctly reproduce the dynamics and thermal budget of the basin itself. Fur-
thermore, a correct estimation of the water temperature is mandatory for the
simulation of most biological processes. We will start by defining the various
contributions to the heat flux at the surface of the water basin, while the mod-
eling approach to the description of total heat sources within the basin will be
discussed later on in this section. The total heat flux at the surface can be de-
composed into shortwave radiation QOc, longwave radiation QOl, sensible heat
exchange Ql and evaporation heat flux Qe. Each of these terms will now be
discussed in detail.

The total incoming shortwave radiation flux at the surface is defined accord-
ing to [30] as

QOc = I0(1 − 0.65C2
n)(1 − Rs)at, (12)

where I0 is the intensity of the radiation that would reach the Earth’s surface in
absence of the atmosphere, Cn is a cloudiness dimensionless coefficient varying
from 0 (clear sky) to 1 (completely cloudy sky), at = 0.6÷0.7 is the atmospheric
attenuation term, which depends on soil reflectivity and on the content of water
vapor in the atmosphere, and Rs is the albedo coefficient. Both I0 and Rs are
functions of the relative position with respect to the sun. Thus, they are time
dependent and have to be updated at each time step of the numerical simulation.

The albedo coefficient can be defined as Rs = a (α)−b [23], where α is the
angle (measured in degrees) of the sun position with respect to the ground, while
a and b are two cloudiness dependent coefficients defined as

a b

Cn < 0.5 2.2 0.97

Cn > 0.5 0.95 0.75

The incoming solar radiation at the surface is computed by taking into ac-
count the possible presence of mountains surrounding the lake, which implies
that sun rays reach the water surface only when the sun inclination α is larger
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than a critical value αcr. Thus, one can define

I0 =

{

0 α < αcr,
ISCE0 sin α α > αcr.

(13)

Here, ISC = 1367Wm−2 is the value of the solar constant given in [17], while
E0 is a correction term that accounts for the eccentricity of the Earth’s elliptic
orbit. In [25], the approximate formula

E0 = 1.00011 + 0.034221 cos Γ + 0.00128 sin Γ

+0.000719 cos 2Γ + 0.000077 sin 2Γ, (14)

is proposed, where Γ = 2π(dn − 1)/365 and dn denote the progressive number
corresponding to the the position of the current simulation day in the year
(dn = 1 corresponding to January 1 and dn = 365 to December 31). Finally, the
solar angle α is defined by the formula

sin α = sin δ sin φ + cos δ cos φ cos ω, (15)

where δ is the solar declination angle, defined as

δ = 0.006918 − 0.399912 cos Γ + 0.070257 sin Γ − 0.006758 cos 2Γ

+ 0.000907 sin 2Γ − 0.002697 cos 3Γ + 0.00148 sin 3Γ, (16)

φ is the geographic latitude and ω is an angular width varying linearly between
ωa = arcos(− tan φ tan δ) and −ωa in such a way that it is zero at noon.

As discussed in [24], the total longwave radiation QOl is the difference be-
tween two contributions representing the incoming longwave radiation Qi

Ol from
the atmosphere to the water body and the outgoing longwave radiation Qo

Ol, so
that QOl = Qi

Ol − Qo
Ol. These terms can be modeled as

Qo
Ol = εσT 4

s (17)

and
Qi

Ol = εairσ(1 + 0.17C2
n)T 4

air(1 − Rt), (18)

respectively. Here, ε = 0.972 and εair are the water and air emissivities, respec-
tively, σ = 5.669 · 10−8Wm−2K−4 is Stefan-Boltzmann constant, Ts and Tair are
water surface and air temperatures, and Rt = 0.03 is the value of the longwave
reflection coefficient proposed in [23]. Air emissivity can be computed by the
formula εair = CεT

2
air [44], where Cε = 0.937 · 10−5K−2.

The radiative flux Qe due to evaporation is defined by the formula

Qe = ρLw(aw + bw|W|)(es(Tr) − es(Ts)) (19)

proposed in [23], where aw = 4.18 · 10−11ms−1Pa−1, bw = 0.95 · 10−11Pa−1, Lw

is the latent evaporation heat, es is the saturated vapor pressure and Tr the
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dewpoint temperature. For the latent evaporation heat and the saturated vapor
pressure we use the formulae given in [23], i.e.,

Lw = 1000(2499 − 2.36T ◦
s ), (20)

es(T
◦
s ) = 2.171 · 1010 e

“

−4157

T◦
s +239.09

”

,

where T ◦
s is the water temperature at the surface expressed in Celsius.

The sensible heat flux Ql is modelled as proposed in [24]:

Ql = CHcp airρair|W|(Tair − Ts), (21)

where CH = 1.4 · 10−3 is the heat transfer coefficient at the height of 10m above
the surface, W is the wind velocity at the same height and cp air is the constant
pressure specific heat of air.

Following [23], longwave radiation, sensible heat and evaporation fluxes at
the surface are considered to have an impact on the superficial water layer only.
Therefore, their values - along with surface shortwave flux - are used to impose
a Neumann boundary condition at the surface for the temperature equation.
Shortwave radiation, instead, can be assumed to penetrate to a larger extent
into the water column, depending on the water turbidity. This effect is modelled
in [23] as

QOc(z) = QOc(0)γe−γ(η−z), z < η (22)

where γ = 1.1z−0.73
DS and zDS is the Secchi distance parameter, i.e., the smallest

water depth at which a reference area disk is not visible from the surface. Thus,
the total forcing term in the temperature equation for the interior of the water
body (4) can be defined as

q =
1

ρcp

∂ QOc

∂z
, (23)

where cp is the constant pressure specific heat.

5 The ecological model and its coupling to hydrody-

namics

In this section we describe the coupled ecological-hydrodynamic model. Firstly,
we discuss the features of the idealized species life cycle. Then we sketch the
demographic model and the procedures employed to evaluate larval transport.
Finally, we introduce the larval connectivity matrix, a tool that helps to describe
the core features of larval dispersal in a synthetic way.

5.1 The species life cycle

For the sake of simplicity, we limit our analysis to the case of semelparous species,
i.e., to species whose individuals reproduce once in their lifetime and then die.
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We also assume that the reproductive season is as short as to be reasonably
considered impulsive and that the sex ratio at birth and in the population is
balanced. Although these hypotheses could seem too restrictive, they apply to
a wide spectrum of populations and ecosystems, ranging from insects to mussels
and from fish to plants (see, for instance, [34, 35]). Finally, we consider species
in which adults are sessile or highly sedentary (e.g., because they live anchored
to the bottom) while propagules (either eggs or larvae) are benthonic (i.e., they
can be transported by the waterflow). Note that this is the typical case of several
mussel, coral or reef fish species [20, 13].

Therefore, our reference life cycle can be outlined as follows:

• in each year t adult females (At) reproduce, generating eggs (Et) with per
capita net fertility f (hence Et = fAt), then die;

• a fraction σE of fertilized eggs survive and become larvae (Lt = σEEt);

• larvae grow and are dispersed by the water flow;

• a fraction σL of larvae survive, settle and are recruited as adults in the
next year/generation (At+1 = σLLt).

Note that some of the steps just summarized describe yearly processes taking
place at the local scale (i.e., adult reproduction and larval settlement), while oth-
ers refer to phenomena that occur on a short time scale but on a large (basin)
spatial scale (i.e., larval transport). Also, it is worth noticing that in many
natural populations, fertility and/or survival parameters may depend on pop-
ulation abundance (density dependence), thus providing a mechanism for the
self-regulation of the population. Density dependence has important implica-
tions also in the context of larval recruitment (see, e.g., [13] and more references
therein).

5.2 The local demographic model

A number of models accounting for density dependence can be found in the
literature (see, for instance, [31, 21]). Here we consider one of the simplest and
most used, the Beverton-Holt model [4], slightly modified as proposed in [21]
in order to account for demographic fluctuations. This model was originally
formalized to describe the dynamics of fish stocks and has already been used
to link larval dispersal to recruitment dynamics in sessile aquatic population
with a benthonic life stage (e.g., [26, 2, 6]). In the Beverton-Holt model, larval
survival is supposed to decrease with larval abundance itself, thus σL = σ(Lt).
The mechanism behind this assumption is that settling larvae have to compete
for limited resources (either nutrients or space, or both). From a mathematical
perspective, this yields a simple nonlinear deterministic model in discrete time.
At the local scale, the model is defined by the equation

At+1 = σEσ(LT )fAt.
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In this equation, larval survival is a decreasing function of larval abundance, i.e.,

σ(LT ) =
σ0

(1 + βLt)
ξ
,

where σ0 is larval survival when the abundance of larvae is low, while β and
ξ are two positive parameters describing the intensity of density dependence.
For ξ ≤ 1, the only solution admitted by the model is a stationary equilibrium
corresponding to the carrying capacity of the habitat. For ξ > 1, the model can
also display more complex dynamics, including periodic and chaotic fluctuations
of population densities [21].

The effects of larval transport have not been considered so far. However,
the demographic model just introduced can be suitably extended to cope with
spatial processes due to transport. In particular, consider that in each discrete
spatial location i the Beverton-Holt model can be written as

Ai
t+1 =

σ0
(

1 + βLi
t

)ξ
Li

t,

where Li
t is the amount of larvae arriving at location i after dispersal. The

value of Li
t must then be estimated on the basis of the velocity fields produced

by the hydrodynamic model already described. Not all the elements in the
computational domain represent viable locations for the survival and growth
of the population. Adverse conditions of illumination, temperature, pressure,
flux velocity and/or substrate composition may prevent the establishment of
local populations (see, e.g., [13]). In the present work, we will use depth and
temperature as proxies for habitat viability. Therefore, we define a patch as
viable if its mean depth is not greater than a threshold value dmax and its
temperature during the spawning season is above Tmin.

5.3 Evaluating larval transport

Larval transport by the water flow is modeled by a Lagrangian approach, which
represents a common choice in the literature (e.g., [41]; see also [47, 13] and
more references therein), since it provides a natural and accurate framework to
describe the movement of the larvae. The fate of individual larvae is in fact
deeply influenced by the different spatial trajectories they follow [22]. In our
simple approach, we consider that dispersing larvae are passively transported by
currents, i.e., that they are unable to swim, orient themselves or perform vertical
migrations. Although this is quite a common assumption in the description of
larval dispersal (e.g., [26, 1]), active movements can also play a remarkable role
in determining the mean distance traveled by larvae [43, 12, 47, 13].

The Lagrangian approach requires the computation of the trajectories fol-
lowed by single larvae (individual based model). A system of three ordinary
differential equations is integrated numerically to determine the position of each
propagule. While in the horizontal directions the propagule velocity is identical
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to the velocity of the flow, the vertical velocity component wp is assumed to be
given by the sum wp = wflow +wbuoy, where wflow is the flow velocity and wbuoy

is the velocity induced by the buoyancy effect

g
ρ − ρL

ρL
,

where g is the gravity constant, ρ is the water density and ρL is the density of
larvae. Other effects could be included in the evaluation of larval trajectories
may be introduced at this point (see [33] for a critical survey of the issues that
do typically emerge in this context), but we do not explore this possibility here.

Suitable initial conditions (corresponding to the initial position of each par-
ticle) have to be specified in order to solve the previous system of differential
equations. Specifically, in the first year of simulation the ecological model is
initialized by picking the point in the spatial domain where larvae (or adult in-
dividuals) are first injected, while in the subsequent years the initialization is
carried out reading stored data for adult abundance and computing the larval
output due to a reproductive event. Then, for each active element (i.e., for each
element with positive larval abundance) np Lagrangian particles are generated.
The value of np should be proportional to the total larval output in each element,
but this could make model simulations very time-consuming. In fact, species
with very high fecundities would result in huge numbers of particles. In order
to avoid this unpleasant effect, the number np of Lagrangian particles released
in each active element has been kept constant (we typically used np = 100), and
the information about the larval abundance in the patch from which larvae are
dispersed has been stored in a label. Therefore, Lagrangian particles ultimately
represent blobs of larvae whose abundance can be easily computed as the ratio
between the total larval abundance of the native element and the number of re-
leased particles np. The initial position of each blob is assigned randomly within
each active element.

The computation of the Lagrangian steps is accomplished by integrating
the equations of motions for the propagules between 0 and a final time tL,
representing the mean duration of the larval stage (assumed here to be constant;
see, e.g., [6, 1]). Technically, numerical integration has been carried out by means
of a standard explicit Euler method. To preserve accuracy we used a much
smaller time step (in general 60 s) than that used to solve the hydrodynamic
model. At the end of the larval period we let propagules settle in the element
corresponding to their current position, if the element is viable, otherwise we
assume that larvae cannot settle and die. This corresponds to assuming that
mature larvae are able to perform (small) vertical active movements (e.g., [6]).
Since larvae also experience mortality due to density dependence, in viable patch
we evaluate survival through the modified Beverton-Holt model described above.
Adult densities in each spatial location can then be evaluated on the basis of
the abundance of settled larvae (at the next year) again with the help of the
ecological model.
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In order to start the Lagrangian simulation, also initial data for the hy-
drodynamic fields should be determined by application of a data assimilation
technique. However, since this study is more aimed at demonstrating the feasi-
bility of our approach, and considering the small amount of available data for
the case study analysed in section 6, we have simply initialised the model with
a constant free surface value and zero velocity and run it for a sufficiently long
start up period (in the case considered in section 6, one month) under realistic
wind and solar forcing, in order to generate realistic hydrodynamical conditions.
Once a realistic circulation is established, the Lagrangian particles are released.
This complex set of operations constitutes a year in the life cycle of the aquatic
species. Therefore, it has to be iterated several times to study long-term spa-
tiotemporal population dynamics. The resulting algorithm can be outlined in
this way:

1. initialize the hydrodynamic model;

2. initialize the ecological model;

3. generate np Lagrangian particles for each active element and

assign larval abundance to each particle;

4. perform Lagrangian steps;

5. evaluate larval survival and settling in viable elements;

6. store data for adults and repeat.

5.4 The larval connectivity matrix

In the numerical experiments presented in section 6 the solar and wind forcing,
although realistic, are indeed periodic and completely deterministic. Thus, if
the hydrodynamics initialization process is carried out by a simple start up run
as described above, a single run of the hydrodynamic component is sufficient
to fully describe dispersal processes during a given year. If hydrodynamics and
thermodynamic parameters are chosen with reference to a standard year and
inter-annual variations of the environmental conditions are negligible, the results
obtained for the reference year can then be extended to the years to come. In the
reminder of this work we assume that these hypotheses are indeed acceptable for
our case study area, thus allowing a significant reduction of the computational
cost of a simulation that spans several species life cycles. For a given simulation
scenario we perform a single numerical experiment, covering one larval spawning
season, and derive the so-called larval connectivity matrix, which represents a
powerful tool to understand the spatial relationships existing among patches
(e.g., [2]; see also [12, 42]).

Connectivity matrices are a standard tool in graph theory [9] and are widely
used also in the ecological context to describe dispersal in fragmented habitats

13



[46]. In particular, a connectivity matrix states which patches in the landscape
are connected each other and what is the intensity of the connection. As such,
the larval connectivity matrix C has the following structure:

C =











c11 c12 · · · c1nel

c21 · · · · · · · · ·
...

...
...

...
cnel1 · · · · · · cnelnel











,

in which the element cji represents the fraction of larvae that are generated in
i and settle in j during one life cycle, while nel is the number of elements used
to resolve the spatial domain on the (x− y) plain. Larval transport can thus be
evaluated in this way:

L = σLCL, (24)

where L and L represent larval abundance in each discrete location before and
after transport, respectively.

Notice that evaluating a larval connectivity matrix by means of the algorithm
described above is straightforward. This task basically requires that a new label,
reporting the information concerning the element in which the trajectory was
originated, be attributed to each particle. Afterwards, to simulate the spread of
the species it is sufficient to perform steps 1-4 of the algorithm sketched above,
with the third step slightly modified so that Lagrangian particles are released
in all viable (and not only in all active) elements. Once the larval connectivity
matrix has been estimated, the simulation algorithm can thus be rewritten as:

1. initialize the ecological model;

2. estimate the effects of larval transport by means of the

connectivity matrix;

3. evaluate larval survival and settling;

4. store data for adults and repeat.

6 A case study: the spread of a sedentary species in

lake Garda (Italy)

In this section we present some results obtained applying the previously de-
scribed model to a realistic case study, namely the spread of an ideal sedentary
species in Lake Garda (Italy). We first introduce the domain of the case study
and report some details about the validation of the hydrodynamic model with re-
spect to its ability of reproducing realistic temperature fields. Then, we describe
model simulations and analyze the impact of hydrodynamics on the spatial dy-
namics of the population. Finally, we present a first model sensitivity analysis
and discuss the robustness of the results.
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6.1 Introduction to the case study area and model validation

Lake Garda is the largest Italian lake. It lies at 45 degree of latitude, with
an extension of about 368 km2 and a mean and maximum depth of 70 m and
350 m, respectively, as shown in Figure 1. In order to discretize the spatial do-
main for the purpose of performing model simulations, we use relatively coarse
unstructured meshes with an approximate mesh size of 20 m. As for the verti-
cal discretization, we use layers with different thicknesses, ranging between 5 m
(close to the water surface) and 50 m (at the bottom of the water body). How-
ever, this is done only to reduce the computational cost in this first assessment
of the coupled model performance and does not represent an intrinsic limitation
of the approach. In [5], simulations with finer meshes were carried out for the
hydrodynamic model only, along with a number of idealized baroclinic tests.
Here, we only present results with realistic temperature forcing.

As for the environmental forcings, the effect of wind stress is incorporated
into the model in a simple but realistic way, namely by considering a periodic
wind forcing corresponding to the main two wind currents on the lake, the
‘Peler’ and ‘Ora’ winds. Peler wind blows southward on the upper portion of
the lake from the early nighttime to late morning, approximately. It can reach
a maximum speed of 15 ms−1. Ora wind blows in the opposite direction in the
early afternoon, reaching a speed of approximately 12 ms−1.

The validation of the solar radiation model, together with its coupling to
the hydrodynamic model, has been carried out by simulating one year of lake
dynamics with typical solar radiation conditions. A simulation time step ∆t =
900 s has been used, while the time averaging parameter is set to ϑ = 0.6.
The computed water temperature at the surface has been then averaged over
the lake and monthly time averages of this quantity have been compared to
the corresponding climatological maximum and minimum average temperatures.
Results are reported in Figure 2, showing that the computed values are generally
consistent with the climatological ones, although a slight overestimation occurs
during summer months.

A comparison with measured data has also been carried out for the temper-
ature field at a single time instant. More specifically, in Figure 3 the surface
temperature on a typical September day is compared to the corresponding field
as recovered by NOAA satellite measurements (data available on the website of
the University of Bern, Switzerland). Although it should be noted that the color
maps used in the two plots are not exactly the same, the general pattern of the
computed temperature field is in good agreement with the measured values.

6.2 Simulation of species spread

The computed velocity fields can be used to evaluate the effects of hydrody-
namics on the spatial redistribution of larvae and generate the spatiotemporal
patterns of species spread into the lake, by repeated application of the connec-
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Parameter Value Parameter Value

σE 0.1 ρL ρ

σ0 0.1 tL 7 [d]

f 1000 dmax 50 [m]

β 0.0001 Tmin 0 [C]

ξ 1

Table 1: Biological parameter values.

tivity matrix as described by formula (24). To start a model simulation all
the parameters have to be specified. In particular, hydrodynamic and thermo-
dynamic parameters have been set to fit the case of Lake Garda as described
above, while the species demographic parameters have been set to the values
reported in Table 1. Notice that Tmin has been chosen so that temperature does
not play a role in habitat viability, which is in this setting only dependent on
depth. Furthermore, in this reference simulation the density of the larvae is
taken to be equal to that of the water.

Figure 4 shows a typical example of model simulation. The species begins
its spread close to Peschiera sul Garda (approximately marked by a black arrow
in panel (a) of Figure 4) and in a few years it reaches the whole south basin of
Lake Garda. For the parameter setting of Figure 4, population densities in each
patch settle on a stationary value. This is obviously due to the introduction
of a compensatory density dependence (ξ = 1). However, we observe that the
population is not homogeneously distributed among all the viable patches of
the lake. Specifically, the carrying capacity of each site can be not completely
exploited due to recruitment limitations, i.e, because there are less settling larvae
than larvae that are potentially allowed to settle. As already noticed by [2],
both density dependence and recruitment limitation can thus play a role in
determining population dynamics. Therefore, both demographic processes and
transport phenomena due to hydrodynamics are important to understand the
evolution of spatiotemporal population patterns. As such, they should always
be analyzed together in long-term studies.

Experiments of this kind can help answering some of the basic questions set
in section 1, namely where do larvae go, or where do they come from [28]. Key to
the understanding of such questions is the larval connectivity matrix C (Figure 5,
panel (a), inset). In fact, by definition, the i-th column of C determines what is
the fraction of larvae starting from patch i and arriving in patch j. In the same
way, it is also possible to estimate where do larvae come from by just reading
the rows of C. It may help to display the connectivity matrix in a spatially
explicit setting. Figure 5(a) shows the strongest connections among patches
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defined by matrix C (cij > 0.05, corresponding to the black dots in the sparsity
plot reported in the inset). Interestingly, relatively few patches are characterized
by several of such connections, while most patches seem to be poorly connected.
Also, it turns out that the strongest links between patches occur among rather
distant locations.

The larval connectivity matrix can be also used to evaluate the so-called
dispersal kernel [45], which states what is the fraction of propagules that is
expected to travel a given distance from the release point as a function of the
distance from the native patch itself. Although dispersal kernels are usually
rigorously defined for isotropic environments (in which dispersal is not affected
by spatial dishomogeneity), they are often estimated also in cases in which the
hypothesis of spatial homogeneity is violated, as in the case of larval transport
[41, 43]. Figure 5(b) displays the mean dispersal kernel (i.e., the average of the
dispersal kernels estimated with reference to each viable site in Lake Garda) for
the scenario depicted in Figure 4. The inset shows the dispersal kernel obtained
by excluding the effects of self-recruitment, i.e., by excluding larvae that settle
in the same patch in which they have been released. As such, the kernel in
the inset describes the probability that a propagule travels a given distance,
provided that it leaves the native patch. Three regions can be identified in
the dispersal kernel, respectively corresponding to short-, medium- and long-
distance dispersal. Quite interestingly, more than 40% of the larvae do not move
beyond 1 km (10% excluding self-recruitment) from the native element (short-
distance dispersal), while more than 9% (13% if self-recruitment is disregarded)
are dispersed for more than 10 km, approximately three times (long-distance
dispersal) the distance traveled by larvae on average (about 3629 m). Note that
such long-distance dispersal events may be very important in the maintenance
of the population at the basin scale [10, 27, 11, 12].

The larval dispersal kernel is a very useful tool, since it helps summarizing
the core characteristics of larval dispersal in the basin. However, some features
of larval dispersal are highly site-dependent. In particular, both self-recruitment
(i.e., the local retention of larvae in their native patch, corresponding to the main
diagonal of C; Figure 5, panel (c)) and the mean distance traveled by larvae (d)
vary remarkably among patches (as found in empirical observations; e.g., [12,
13]). The importance of self-recruitment represents another highly debated topic
in the literature on larval dispersal [10, 12, 28, 3]. Simple statistical analyses
show that in the scenario of Figure 4 the mean fraction of larvae being locally
retained in each viable element is about 31.27% (variance 12.06%). We remark
that estimating local larval retention can give important cues on the planning
of management policies (e.g., in the case of invasive alien species or marine
protected areas; e.g., [20, 47, 13]), specifically suggesting an a priori estimation
of the potential effectiveness of control actions planned at the local/basin scale.
A visual inspection of the bottom panels of Figure 5 shows that patches with low
self-recruitment are typically characterized by short mean dispersal distances,
and viceversa, with some notable exceptions close to the south-eastern coasts of
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Lake Garda. We also remark that contrasting panels (c) and (d) of Figure 5 to
panel (a) yields a better understanding of the structure of larval connectivity
patterns, specifically defining larval sources and sinks [6].

6.3 Sensitivity analysis

The results of model simulations do obviously depend upon the specific pa-
rameter setting considered. Therefore, it is important to perform a sensitivity
analysis of the model outcomes with respect to changes in the parameter val-
ues. Before presenting the results of this sensitivity study, it is to be remarked
that model outcomes are also influenced by factors other than demographic,
biological or thermodynamic parameters. Specifically, the spatial resolution at
which the model analysis is carried out can have a significant impact on model
outcomes. In our analyses, we have used a grid of 1593 elements and about 20
vertical layers with thickness varying between 5 (close to the surface) and 50 m
(close to the bottom). This vertical discretization turned out to be an acceptable
trade-off between the accuracy of the results and the efficiency of the compu-
tational scheme. Simulations with a coarser vertical discretization lead in fact
to inaccuracies in the computation of velocity fields. Other parameter values,
such as the number np of Lagrangian particles released from each element, can
of course have an impact on model outcomes. For instance, we have run model
simulations using np = 50 instead of np = 100 and found that in this way the
spread of the species is remarkably underestimated.

The first type of analysis we present concerns the role of the demographic
parameters σ0, which quantifies survival from the larval stage to the adult phase
(i.e., survival during transport and after settlement), and ξ, which describes the
intensity of density dependence. Demographic parameters can have a strong
impact on the densities reached by local colonies. For instance, higher σ0’s
do obviously lead to more abundant local populations (panels (a) and (b) of
Figure 6). As already remarked above, the densities reached by local colonies
are highly site-dependent. As an example, population densities in Desenzano
sul Garda (dots) are much lower than those recorded in Bardolino (diamonds).
However, different values of the biological parameters σ0 and ξ do not appear
to alter the structure of the larval connectivity matrix C. Therefore, the long-
term spatial pattern of species spreading remains qualitatively unaltered. On
the other hand, increasing values of either σ0 or ξ (or both) lead to interesting
outcomes at the local scale. Local populations may in fact display wide demo-
graphic fluctuations. Such fluctuations can be either regular (periodic dynamics,
Figure 6(c)) or highly irregular (chaotic dynamics, Figure 6(d)) and result from
the introduction of an overcompensatory density dependence (ξ > 1). Therefore,
this typical feature of the modified Beverton-Holt model [21] is still preserved
when ecology and hydrodynamics are coupled. Quite interestingly, we observe
that different spatial locations are in general characterized by different popu-
lation densities averaged over time. Specifically, mean population densities in
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Desenzano sul Garda are higher than those in Bardolino in case of periodic dy-
namics (Figure 6(c)). Also, notice that demographic fluctuations under periodic
regime can be characterized by very different oscillation amplitudes and can be
desynchronized [15, 14]. Years with high population densities in Desenzano sul
Garda correspond in fact to years with low densities in Bardolino.

On the other hand, some other biologic parameters may influence the struc-
ture of the connectivity matrix C. This is the case, for instance, of larval density
ρL. This result should be obviously expected: in fact, if ρL is greater than water
density, then the vertical acceleration due to gravity becomes active and forces
larvae towards the floor of the lake. As a result, propagules travel shorter dis-
tances than in the case in which ρL = ρ. However, this does not necessarily
imply negative impacts on the spread of the species. Top panels of Figure 7
show what is expected to happen for small positive variations of larval density
(on the order of 0.1% of water density). Although the mean distance traveled
by dispersing larvae turns out to be shorter than in the previously analyzed
scenario (2902 m), the spread of the species can be even promoted. Notice in
fact that in this simulation scenario the species is expected to establish with
high population densities also along the southern coasts of Lake Garda. This
seemingly paradox can be explained by the observation than the closer a larva is
dispersed (clearly from a viable patch), the higher the probability it can settle in
a viable patch. Small positive variations of larval densities may thus mitigate re-
cruitment limitations in otherwise poorly connected sites. However larger values
of ρL do obviously reduce the spread of the species in a remarkable way. As an
example, bottom panels of Figure 7 report the results of a simulation obtained
with a larger positive variations of larval density with respect to water density
(on the order of 1 %). In this case, larvae travel remarkably shorter distances
(995 m) and the spread of the species is limited to the south-western part of the
lake.

Water temperature plays an important role in the spread of aquatic species
in several ways (see e.g., [13] and references therein). For instance, spawning is
often regulated by temperature, meaning that the release of propagules cannot
happen below a given temperature threshold. Also the duration of the larval
phase may depend on temperature, as well as other demographic parameters
such as larval survival or adult fertility. Top panels of Figure 8 show a model
simulation in which the aquatic species is supposed to be sensitive to temper-
ature. Specifically, we assume that a patch is viable for the population only
if the mean temperature during the spawning season exceeds a minimum value
Tmin = 10 C and the mean depth does not exceed dmax = 50 m, as in the
previous model runs. This assumption does obviously change connectivity pat-
terns. A comparison between the top panels of Figure 8 and the bottom panels
of Figure 4 shows that, although the stationary population distribution turns
out to be quite similar in the two simulation scenarios, transient spatiotemporal
dynamics can be quite different, mainly due to density dependence. A decrease
in the number of viable patches leads in fact to a smaller abundance of both
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released and settling larvae, which then experience higher survival rates, thus
promoting a faster population growth. Temperature has also a direct influence
on water flows and currents. As such, variations of mean and maximum temper-
ature values used in thermal forcing terms can modify water circulation in the
water body, thus altering larval redistribution patterns. As an example, bottom
panels of Figure 8 show what happens in a scenario in which mean and max-
imum temperatures used in thermal forcing terms are 2 C higher. As already
recorded in the previous simulation, the interplay between density-dependent
demographic dynamics and hydrodynamics effects may produce nontrivial ef-
fects on the spatiotemporal evolution of the spread. This suggests that climate
change may have a remarkable influence on spatiotemporal invasion patterns
[16, 38, 13].

We finally remark that the visual inspection of the spatiotemporal patterns
of population density can by no means be considered a formal tool to compare
larval connectivity patterns. Quantitative comparison of the different connec-
tivity matrices can highlight similarities and differences in larval dispersal (e.g.,
[13, 42]). A more synthetic way to estimate the impact of different simulation
scenarios on the spatiotemporal evolution of the species spreading is the compar-
ison of the singular values (see e.g. [19]) of the connectivity matrices evaluated
with the help of the larval transport model, displayed in Figure 9. We note that
both larval density (dashed line) and sensitivity to temperature (dash-dotted
line) have a remarkable impact on the structure of larval connectivity (the solid
line represents the singular values of the baseline case of Figure 4), even if they
do not change water flows in Lake Garda. On the contrary, a small variation of
the thermal forcings (dotted line) produces a less notable effect on the structure
of the connectivity matrix. A general result is that connectivity patterns cannot
be explained on the basis of few components of the matrix. As such, simpli-
fied box models cannot be successfully applied to analyze the problem at hand
and sufficiently high resolution models are thus required to fully understand
spatiotemporal population dynamics in Lake Garda.

7 Discussion and conclusions

In this work we have shown how a simple ecological model for the local demo-
graphic dynamics of a sedentary aquatic species can be coupled to a realistic
description of the transport effects at the basin scale, in order to study the
long-term dynamics of the population in a closed, thermally forced water body.
Studying the evolution of these spatiotemporal patterns is a very complex task,
which requires an integrated and highly interdisciplinary approach. However,
understanding the patterns of species spread is mandatory in both conservation
and management problems.

We have described local demographic dynamics by means of a modified
Beverton-Holt model. The underlying hydrodynamic model implements a semi-
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implicit and semi-Lagrangian method, thus ensuring efficiency and accuracy.
Moreover, the introduction of realistic thermal end environmental forcing (solar
radiation, wind stress, etc.) has allowed to link the hydrodynamics to a range of
key biological processes. As for larval transport, a Lagrangian approach was used
for evaluating larval trajectories. In addition, under some reasonable simplifying
hypotheses, less costly long-term model simulations were achieved by estimation
of the larval connectivity matrix, that allowed off-line computation of hydrody-
namical effects on larval circulation. While analyzing a realistic case study (the
spread of an ideal sedentary aquatic species in Lake Garda, Italy) we have found
that although transport and retention effects are extremely site-dependent, lar-
vae can generally travel over relatively long distances. Long-distance dispersal
represents about 10% of total dispersal, thus possibly representing a key feature
for the definition of the population dynamics at the basin scale. A sensitivity
analysis of the model has shown that both biological parameters and thermal
forcing can play a major role in determining long-term demographic dynamics,
as well as the spatial distribution of the population.

Future developments of this work will concern the use of more realistic eco-
logical models, a more thorough validation of the hydrodynamic component and
the use of higher spatial resolutions. Also, the description of larval transport
can be made more accurate by introducing some realistic details such as the
possibility of swimming or performing oriented vertical migrations. All these
improvements should be then validated against field data with the aim of pro-
ducing an accurate (yet agile) model for analyzing complex spread problems in
aquatic ecosystems.
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Figure 1: Bathymetry of Lake Garda
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Figure 2: Monthly averaged temperature obtained in a year long simulation
compared to climatological maximum and minimum temperatures.

(a) (b)

Figure 3: Water temperature at the surface in a typical September day: (a)
remote sensing measurement from NOAA satellite (b) numerically simulated
temperature.
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Figure 4: Model simulation results: the abundance of adult individuals is dis-
played 5 (a), 10 (b), 15 (c) and 20 years (d) after the beginning of the spread.
The starting point of the diffusion of the species is marked by the black arrow
(Peschiera sul Garda). We limit the plot to the south basin of Lake Garda
because it contains most of the viable patches. Model parameters are as in
Table 1.
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Figure 5: Structure of larval connectivity patterns for the simulation reported in
Figure 4. Panel (a) displays connectivity matrix C (inset). The strongest con-
nections (cij > 0.05) are displayed as black dots and are also reported as links
between nodes in the geographic layout shown in the main panel. Panel (b)
reports the mean dispersal kernel. Inset: dispersal kernel obtained by exclud-
ing the effects of self-recruitment. Panel (c) and (d) show self-recruitment and
the mean distance traveled by single larvae departing from each viable patch,
respectively.

29



0 10 20 30
0

50

100

150

200

Time [yrs]
0 10 20 30

0

2000

4000

6000

8000

Time [yrs]

0 10 20 30
0

30

60

90

120

Time [yrs]
0 10 20 30

0

200

400

600

800

Time [yrs]

(a) (b)

(d)(c)

P
o
p
u
la

ti
o
n
 d

e
n
s
it
y
 [

a
d
u
lt
s
  

]
-2

P
o
p
u
la

ti
o
n
 d

e
n
s
it
y
 [
a
d
u
lt
s
  
]

-2
P

o
p
u
la

ti
o
n
 d

e
n
s
it
y
 [

a
d
u
lt
s
  

]
-2

P
o
p
u
la

ti
o
n
 d

e
n
s
it
y
 [
a
d
u
lt
s
  
]

-2

Figure 6: Sensitivity analysis: the role of demographic parameters on local
population dynamics. Black dots and diamonds correspond to adult density in
Desenzano sul Garda and Bardolino, respectively (see Figure 1). a) σ0 = 0.01,
ξ = 1 (as in Figure 4); b) σ0 = 0.1; c) σ0 = 0.1, ξ = 30; d) σ0 = 0.5, ξ = 30.
Unspecified parameters as in Table 1.

30



(a) (b)

(c) (d)

0 400 800

[adults m   ] 
-2 

Figure 7: Sensitivity analysis: the role of larval density on the spatiotemporal
patterns of population abundance. Top panels: as in Figure 4, with ρL = 1.001ρ.
The abundance of adult individuals is displayed 10 (a) and 20 years (b) after
the beginning of the spread. Bottom panels: as in top panels, with ρL = 1.01ρ.
The abundance of adult individuals is displayed 5 (c), and 10 years (d) after
the beginning of the spread. The starting point of the diffusion of the species
ismarked by the black arrows (Peschiera sul Garda).
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Figure 8: Sensitivity analysis: the role of temperature on the spatiotemporal
patterns of population density. Top panels: as in Figure 4, with Tmin = 10 C.
The abundance of adult individuals is displayed 15 (a) and 20 years (b) after
the beginning of the spread. Bottom panels: as in top panels, with mean and
maximum temperatures used in thermal forcing terms increased by 2 C. The
abundance of adult individuals is displayed 15 (c) and 20 years (d) after the
beginning of the spread. The starting point of the diffusion of the species is
marked by the black arrows (Peschiera sul Garda).

32



1 50 100
0

0.5

1

1.5

Component

S
in

g
u
la

r 
V

a
lu

e
 D

e
c
o
m

p
o

s
it
io

n

Figure 9: First 150 singular values of the connectivity matrices computed in
the cases of Figure 4 (solid line), Figure 7(a-b) (dashed line), Figure 8(a-b)
(dash-dotted line) and Figure 8(c-d) (dotted line), respectively.
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