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Abstract

In this work, we propose an hN adaptive algorithm for optimal control prob-
lems whose space discretization is based on the spectral element method.
We focus on a special class of problems described by quadratic cost func-
tional and linear advection-diffusion state equation. This model has been
employed to forecast and suitably reduce, by an optimization process, the
pollutant concentration in air on a specific area of interest. Moreover, a
local adaptive algorithm is employed to achieve a desired accuracy on the
cost functional by reducing the computational cost of the problem.

Introduction

In environmental science different pollution models have been developed for
analysing air pollution problem in towns or in specific areas of relevant interest,
see e.g. [6]. These models are used to examine emissions from pollution sources,
to forecast current and future air quality with respect to the air standard values.
This analysis can drive the choice of the location of new industrial plants as well
as the daily management of the emission sources. In this work we deal with
optimal control problems for an advection-diffusion air pollution model, see e.g.
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[5]. If the forecasted pollution is larger than a maximum level allowed, by opti-
mization we aim at determining the reduction rates of some reducible emission
sources, such that the pollution is held within the limits while keeping the re-
ductions to a minimum. Such environmental applications often demand the use
of different scales in the model description, in particular higher grid resolution is
necessary in the vicinity of the area of observation. For these problems a uniform
mesh could be unappropriate, especially when high order methods are used. To
increase the grid resolution near the area of interest a local a posteriori error
estimate on the cost functional is provided and employed in a local hN adaptive
algorithm, by which an automatic distribution of the elements and polynomial
degrees is designed, see e.g. [2, 11, 13].
This paper is organized as follows. In Section 1 the optimal control problem for
air pollution control, the spectral element discretization and the optimization
process are presented. In Section 2 a local a posteriori error estimate on the
cost functional is provided and an hN adaptive algorithm is proposed to identify
those areas where more resolution is needed. In Section 3 numerical tests are
presented to show the efficiency of the proposed algorithm.

1 The optimal control problem for air pollution

The concentration of pollutants in air depends on the source activity, the type
of fuel, and the atmospheric stability class that characterizes the specific me-
teorological situation under which the pollutant is emitted. In the following
formulation we will observe the pollutant Sulphure Oxides (SO2) in a plane par-
allel to soil at height H of emission. For urban-scale and short-time forecasting
we assume negligible chemical reactions and stationary frame (that means source
term and meteorological variables are time independent). Under these hypothe-
ses the pollutant concentration can be described by a linear advection-diffusion
equation. This simple model, although lacking several complex features of the
real life situation, can provide a good deal of qualitative information. We de-
scribe it as follows.
Let Ω ⊂ Rd(d = 2, 3) be a given domain, the pollutant concentration y satisfies
the state equation:

Ay ≡ −div(µ∇y) + b · ∇y = χΩcu+ f in Ω,
y = 0 on ΓD,
∂y

∂n
= 0 on ΓN .

(1)

Here µ is the molecular viscosity, b the advection term that describes the wind
field, Ωc ⊂ Ω a given control domain, χΩc the characteristic function of Ωc, u is
the control function defined on Ωc, f is a given source term (possibly zero), ΓD
and ΓN provide a partition of ∂Ω such that ΓD = {x ∈ ∂Ω : b ·n < 0} , n being
the outward unit normal with respect to Ω, ΓN = ∂Ω\ΓD.
Let V be the Hilbert space defined on Ω where we search the solution y of
problem (1). In our situation, V = H1

Γd
(Ω) = {v ∈ H1(Ω) : v|ΓD = 0} (see

[15]) then the optimization process consists of determining the function u ∈
U , a Hilbert space of the control functions defined on Ωc (in our case U =

2



L2(Ωc)) such that the couple (y, u) ∈ V × U (y = y(u) being the state function
corresponding to the control u) minimizes a given functional J : V × U → R
that represents the goal of the process. Different goals characterize different
optimal control problems for air pollution. Our interest is to reduce the pollution
concentration under a given desired threshold function zd (connected to quality
value for environment ecosystem and public health) by keeping however the
control function near a desired emission-rate function, say ud (related to the
industrial productivity level). For these reasons we choose the following control
functional J :

J(y, u) =
∫

Ωo

(y − zd)2 dΩ +
α

2

∫
Ωc

(u− ud)2 dΩ, (2)

where α ≥ 0 is a penalization coefficient, Ωo the observation domain, i.e. a
sub-domain of Ω where we aim at keeping the pollutant concentration under the
threshold.
To summarize, the optimal control problem associated to (1-2) reads as follows:
look for (y, u) ∈ V × U , state and control variable, respectively, such that:

min
u∈U

J(y, u)

where y = y(u) satisfies problem (1).
(3)

A classical way to solve the problem (3) is to introduce the Lagrangian functional
L by which we transform the optimal control problem as the search for the
saddle-point of L. More precisely, let us define L : V × V × U → R as

L(y, p, u) = J(y, u) + a(y, p)− b(u, p)− < f, p >V ′×V , (4)

where p ∈ V is the Lagrange multiplier, a(·, ·) : V × V → R is the bilinear form
associated with the linear elliptic operator A in (1), b(·, ·) : U × V → R is given
by b(u, p) =< χΩcu, p >V ′×V , < ·, · >V ′×V being the duality among V and its
dual space V ′.
If x = (y, p, u) is a regular point and it is a local optimal solution of the problem
(3), then

∇L(x)[φ, ϕ, ψ] = 0, ∀(φ, ϕ, ψ) ∈ V × V × U, (5)

where the operator ∇ is the Fréchet gradient, see e.g. [14]. Upon taking the
derivatives with respect to each variable, this yields the Karush-Kuhn-Tucker
(KKT) optimality system:
∇pL(x)[φ] ≡ a(y, φ)− b(u, φ)− < f, φ >V ′×V = 0 ∀φ ∈ V, (state equation)

∇yL(x)[ϕ] ≡ a(ϕ, p)− < y − zd, ϕ >V ′×V = 0 ∀ϕ ∈ V, (adjoint equation)

∇uL(x)[ψ] ≡< αu+ χΩcp, ψ >U ′×U= 0 ∀ψ ∈ U, (optimality conditions).
(6)
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Various gradient-based optimization algorithms can be used to minimize L based
on its gradient information, see e.g. [12, 14]. In this paper we have employed
line search methods with BFGS updating with respect to the control function
u. Namely, given an initial control u the corresponding state y is given by the
solution of the state equation in (6). To apply the stopping criterium ‖∇uL‖ ≤
toliter (toliter being a prescribed tolerance) we need information on the Lagrange
multiplier p. To obtain p we need to solve the adjoint problem ∇yL(x)[ϕ] =
0 ∀ϕ ∈ V , for given u, y. If the stopping criterium is satisfied we stop, otherwise
we update the control variable u by line search method and start a new iteration.
The optimization process can be summarized in the following Algorithm 1.

Algorithm 1 Optimization algorithm

Let toliter be a prescribed tolerance, we choose an initial control u0

1. solve the state problem to obtain the state variable y and the corre-
sponding functional evaluation J(y, u);

2. solve the adjoint problem to obtain the adjoint variable p;

3. evaluate J ′(u) = ∇uL(x) according to the optimality condition in the
KKT system;

4. if ‖∇uL(x)‖ ≥ toliter then

update the control variable u through the line search and start again
from point 1

5. else
the current x = (y, p, u) is the optimal solution.

6. end if

Remark 1.1 Let (y, u) be the exact solution of problem (3) and (yj , uj) the
solution of the j − th iterative step of Algorithm 1. The iteration error ε(j)iter =
J(y, u)− J(yj , uj) has the following expression:

ε
(j)
iter =

1
2

(∇uL(xj), u− uj). (7)

moreover, if a steepest-descent iterative method with constant relaxation param-
eter τ is used, |ε(j)iter| can be estimated as:

|ε(j)iter| '
1
2
τ
∥∥∇uL(xj)

∥∥2
. (8)

(For the proof, see [5]). This motivates the choice of the stopping criterium in
Algorithm 1.
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1.1 Numerical discretization

As described in Algorithm 1, for each step of the iterative method we solve
both the state and the adjoint equations. For their numerical discretization,
a Galerkin spectral element method has been employed. More precisely, we
proceed as follows.
We assume that Ω is a two dimensional domain and that T be a shape regular,
not-necessarily matching partition of Ω into K spectral elements such that Ω =
∪Kk=1Ωk. Let

−→
δ = {δk}Kk=1 be the vector of discretization parameters, δk =

(hk, Nk), hk being the diameter of Ωk and Nk the degree of the polynomial
approximation in Ωk. Moreover, let Vδ, Uδ be the spectral discretization spaces
of V , U , respectively, see e.g. [3]. The corresponding discrete KKT system is
then given by:
we search xδ = (yδ, pδ, uδ) ∈ Vδ × Vδ × Uδ such that:

∇pL(xδ)[φ] ≡ a(yδ, φ)− b(uδ, φ)− < f, φ >V ′
δ×Vδ= 0 ∀φ ∈ Vδ,

∇yL(xδ)[ϕ] ≡ a(ϕ, pδ)− < yδ − zd, ϕ >V ′
δ×Vδ= 0 ∀ϕ ∈ Vδ,

∇uL(xδ)[ψ] ≡< αuδ + χΩcpδ, ψ >U ′
δ×Uδ= 0 ∀ψ ∈ Uδ.

(9)

Then we apply Algorithm 1 to (9) to obtain the numerical approximation of
problem (3).
In what follows, we will provide an estimate of the discretization error associ-
ated with the spectral discretization method. The focus of the local a posteriori
discretization error is to have an appropriate error measure of the error associ-
ated with the discretization method. This error will guide a suitable adaptive
algorithm according to which the discretization parameters, that is either the
mesh size or the polynomial degree, will be modified.

2 A posteriori error estimate on the cost functional

A classical error measure is represented by the energy norm error estimates asso-
ciated with the optimal control problem, that means the sum of errors on state,
adjoint and control variables. However, in many applications, this indicator is
not suitable to provide useful information on the error of the quantity of physi-
cal interest, represented in our case by the cost functional. A different approach
is based on the Dual Weighted Residual (DWR) method, that allows to bound
the error on the cost functional by a suitable combination of the state, adjoint
and control errors. Such a technique, proposed in [2, 10] in the context of finite
element approximation for partial differential equations, has been extensively
used for h-adaptive finite element strategies, see e.g. [1, 5, 11]. In this work we
apply the DWR approach in the context of spectral element methods. Moreover,
an hN -adaptive strategy is provided to select which parameters of the spectral
discretization, either the diameter size hk or the polynomial degree Nk, must be
refined when an element Ωk is marked for refinement, see e.g. [4, 7, 8, 9].
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We start by introducing the following notation:

Ry(xδ) = χΩcuδ + f −Ayδ on Ω, ry(xδ) =



1
2
Jµ

∂yδ
∂−→n k

K on ∂Ωk\∂Ω,

µ
∂yδ
∂n

on ΓN ,

0 on Ωk ∪ ΓD,
Ru(xδ) = αuδ + χΩcpδ on Ωc,

Rp(xδ) = yδ − zd −A∗pδ on Ω, rp(xδ) =



1
2
J
µ∂pδ
∂−→n k

K on ∂Ωk\∂Ω,

µ
∂pδ
∂n

on ΓN ,

0 on Ωk ∪ ΓD,
(10)

for k = 1, . . . ,K, n being the outward unit normal with respect to Ω and −→n k

that with respect to Ωk. Namely, Ry, Rp (ry, rp, respectively) are the interior
(edge, respectively) residual associated with the strong form of the state and
adjoint problems. A (A∗, respectively) is the discrete operator associated with
the continuous operator A (A∗, respectively). The symbol J·K indicates jump.
From now, we will suppose that the partition T and the polynomial approxima-
tion orders satisfy the following local bounded variation property.

Assumption 2.1 (local bounded variation) There exist %1, %2 > 0 such that for
each couple of neighboring elements Ωk1, Ωk2 :

• the element sizes hk1, hk2 satisfy
1
%1
hk1 ≤ hk2 ≤ %1 hk2 ,

• the polynomial degrees Nk1, Nk2 satisfy
1
%2

(Nk1 + 1) ≤ Nk2 + 1 ≤ %2 (Nk2 + 1).

Then, the following estimate for the discretization error holds.

Theorem 2.2 Assume the mesh T , with elements Ωk k = 1, . . . ,K and poly-
nomial distribution that satisfy the Assumption 2.1. Let (y, u) be the exact so-
lution of the optimal control problem (3) and (yδ, uδ) the corresponding spec-
tral element approximation, that is the solution of (9). The discretization error
εdis = J(y, u)− J(yδ, uδ) can be bounded as follows:

|εdis| ≤ η = C

K∑
k=1

ηk, (11)
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where

ηk = ρyk
hk
Nk
‖∇pδ‖L2(ωk) + ρpk

hk
Nk
‖∇yδ‖L2(ωk) + ρuk

hk
Nk
‖∇uδ‖L2(ωk), (12)

ωk is the patch associated with Ωk, and ρyk, ρpk, ρuk are the residuals on Ωk of
state, adjoint and optimal conditions, respectively, defined as:

ρyk = ‖Ry(xδ)‖Ωk +
( hk
Nk

)− 1
2 ‖ry(yδ)‖∂Ωk ,

ρpk = ‖Rp(xδ)‖Ωk +
( hk
Nk

)− 1
2 ‖rp(pδ)‖∂Ωk ,

ρuk = ‖Ru(xδ)‖Ωk .

(13)

R(·, ·), r(·, ·) are the interior and edges residuals, respectively, defined in (10).

To obtain this results we have employed a dual weighted residual approach.
Namely, for linear control problems (that is the state equation is linear and the
functional is quadratic in the state variable) the error on the cost functional is
given by:

J(y)− J(yδ) =
1
2

[
ρ(yδ, p− pδ) + ρ(pδ, y − yδ) + ρ(uδ, u− uδ)

]
, (14)

where ρ(yδ, ϕ), ρ(pδ, ϕ), ρ(uδ, φ) are the residual of the state, adjoint and control
functions, associated with the weak formulation, given by:

ρ(yδ, ϕ) =< χΩcuδ + f, ϕ >V ′
δ×Vδ −a(yδ, ϕ),

ρ(pδ, ϕ) =< yδ − zd, ϕ >V ′
δ×Vδ −a(ϕ, pδ),

ρ(uδ, φ) =< αuδ + χΩcpδ, φ >U ′
δ×Uδ ,

(15)

respectively. Integrating by parts, employing Hölder inequality and hN Clément
interpolation estimates (see e.g. [15]), the estimate (11) can be proven. We refer
to [7] for the complete proof and more details about the provided estimate.
By this estimate we can select which spectral elements need to be refined accord-
ing to the error on the cost functional. After this marking phase, to complete
the description of the adaptive algorithm we need to characterize how to choose
the local discretization parameters hk and Nk.

Suppose that after having computed a discrete solution of problem (3), the
corresponding error is estimated according to (11). Now we update the mesh
and solve the optimal control problem on the new mesh until the tolerance on
the discretization error will be satisfied. At the step j of the iterative algorithm
associated with the adaptive process we compute, for each element Ωk, the energy
norm ηj,Ek associated with the optimal control problem and moreover we compute
ηj,predk , a prediction of the energy error at the (j + 1) − th step of the iterative
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algorithm. The latter will be employed, for comparison, in the next step of
the algorithm. More precisely, we compute the local estimator ηj,Ek (ηj,predk ,
respectively) associated with the optimal control problem as the sum of the three
local contributions ηj,Ek;y , ηj,Ek;p and ηj,Ek;u (ηj,predk;y , ηj,predk;p and ηj,predk;u , respectively).

Here ηj,Ek;y (ηj,Ek;p , ηj,Ek;u , respectively) are the state (the adjoint and the control,

respectively) local a posteriori residual error indicator and ηj,predk;y (ηj,predk;p , ηj,predk;u ,
respectively) are the corresponding predicted error indicators. We refer to [13]
for more details about the construction of both the energy and predictable error
estimates.
As mentioned before, at the step j + 1 we can compare ηj+1,E

k with ηj,predk to
yield information about the exactness of our prediction. If the prediction will
be right, we will implicitly have information on the regularity rk of the solution
on Ωk. Indeed, since the prediction estimate is constructed by using a priori
error estimate, implicitly a suitable assumption on the regularity of the solution
is made.
As usual in hN adaptive algorithms, where the polynomial approximation order
Nk is less than or equal to rk, a N -refinement is performed, otherwise an h-
refinement is performed. We refer to [7] for more details about this algorithm.
The adaptive process can be summarized in Algorithm 2.

Algorithm 2 Adaptive algorithm

Let toldis be a prescribed tolerance, xδ a discrete solution of problem (3)

while ηk > toldis do

if
(
ηj,Ek

)2
>
(
ηj,predk

)2 then

h refinement, the element Ωk is split into four sub-elements obtained by
joining the mid-points of each edge

else

N refinement, Nk = Nk + 1
end if

a discrete solution xδ of the problem (3) is computed on the new mesh

end while

The complete process for the solution of the optimal control problem and the
hN adaptive strategy can be summarized in the following steps:

1. we solve the optimization process, following Algorithm 1,

2. we estimate the discretization error on the cost functional according to
(11),

3. if the discretization error estimates are not satisfied, then
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• mark elements for refinement and choose between h or N refinement,
according to Algorithm 2,

• return to the optimization process at point 1 ,

otherwise STOP.

3 Numerical results

In this section we present some numerical tests in which the proposed complete
optimization-adaptive algorithm is employed.

3.1 Distributed control and observation with Ωc ⊂ Ω and Ωo ⊂ Ω

According to the problem (1), we set Ω =] − 1, 1[2, the observation and the
control domains Ωo = Ωc =]0.5, 1[2. We start with the conforming mesh re-
ported in Figure 1 (left), with K = 9 spectral elements, and Nk = N = 2∀k.
In this first test case according to the notation in (1), for the state equation
we set µ = 2, b = [1, 0], f = −12(x1 + x2), ΓD = ∂Ω, ΓN = ∅, the desired
function zd = (x1 + x2)3. Figure 2 shows the final state function (left) and the
desired function zd in the full domain (right). Moreover, in Table 1 we report the
history of the complete algorithm (optimization plus adaptivity). We separate
the number of iterations associated with the optimization algorithm, ititer, from
that of the iterations associated with the adaptive process, itdis. In particular,
we allow at most itmaxdis = 2 iterations. Indeed, by changing the approximation
of the functional J , the optimal control computed on the old mesh could be very
different from the one on the new mesh. For each step of the complete process,
according to the notations introduced in Section 1 and Section 2, we report the
iteration error estimate εiter and the discretization error estimate εdis. Moreover,
in the same table for each iteration of the adaptive process the number of ele-
ments refined in h (]h-ref) or N (]N-ref) are displayed . In Figure 1 (right) we
report the final mesh. We can observe that the adaptive process driven by the
dual weighted indicator fits elements in those zones which are more relevant for
the control problem. Whereas, an adaptive process driven by the energy error
indicator would fit the elements in a quite uniform way in all the domain. We
highlight that, in the approach based on the energy error indicator, the mesh
is refined according to the residual error in the state and adjoint process sepa-
rately, while the dual weighted residual approach weighs the residual of the state
equation with that of the adjoint problem (and vice versa).

3.2 Air pollution control

Our second numerical test is inspired by the previously discussed environmental
application. An example of computational domain could be a territory with a
city. In this case, the city represents a subarea, in which we want to control the
emissions from industrial chimneys in order to keep the pollutant concentration
over the critical subarea below a prescribed threshold. Particularly, we refer to
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Figure 1: Initial (left) and final (right) mesh and corresponding degrees of free-
dom.

Figure 2: Final state function (left) and desired function (right).

pollution control problems, in which the observation domain Ωo ⊂ Ω, and the
control domain is given by Ωc = Ωc1 ∪ Ωc2 , Ωc1 , Ωc2 being two sub-domains
each one representing a chimney of the industrial plant. We want to define the
daily management of such chimneys according to a given desired value zd =
100µg/m3 and a desired emission rate ud = 800m/s. As discussed in Section 1,
the goal consists in minimizing the pollutant concentration over a certain area
by regulating the emissions rate. The data that we have employed are:

• effective height H = 100 m;

• desired function zd = 100µg/m3;

10



ititer itdis εiter εdis ]h-ref. ]N-ref.
1 0 2.88946e-006 0.0688201 0 0
1 1 0.001516330 0.00515035 2 0
1 2 0.000735936 0.00131672 3 1
2 0 7.78693e-006 0.0117715 0 0
2 1 0.000375459 0.00266594 3 1
2 2 0.000357549 0.00172755 4 3
3 0 2.58373e-006 0.00157696 0 0

Table 1: The error estimates at each optimization and adaptive step and the
number of elements refined in h, N at each adaptive step with respect to the
hN -refinement Algorithm 2.

• penalization coefficient α = 0.1;

• desired emission rate for each chimney ud = 800g/s;

• the computational domain Ω =]0, 15[2 (units are in Km);

• ΓD = Γ4 and ΓN = Γ1 ∪ Γ2 ∪ Γ3 (according to the numbering side as in
Figure 3, left) ;

• the control domain Ωc = Ωc1 ∪ Ωc2 , with Ωc1 =]2.5, 3[×]2.5, 3[, Ωc2 =
]2.5, 3[×]7, 7.5[;

• observation domain Ωo =]8, 12[×]2.5, 7[;

• diffusion coefficient µ = σ2
x

2r ‖b‖, being r the radial coordinate, and σx
suitable diffusivity coefficient according to the neutral stability class (see
e.g. [7]);

• transport field b = (2.5, 0) m/s ;

• source term f = 0 g/s.

We have employed the initial mesh reported in Figure 3 (left), with K = 30
spectral elements, and Nk = N = 2 ∀k. In the same Figure 3 (right) we plot the
corresponding state function. We can observe that the pollutant concentration
in the observation area is higher than the desired threshold. To reduce such
a concentration, we apply the optimization-adaptive algorithm as before, with
toliter = toldis = 1e − 3. After two iterations of the complete algorithm, we
obtain the final distribution of the state function reported in Figure 4 (right),
which terms out to be reduced below the desired value. In Figure 4 (left) we
report the final mesh. The refinement has been made according to the functional
definition, that means with special attention to the elements near the observa-
tion and control areas. h refinement is predominant, some N refinements have
been done in the area between observation and control domains.

To conclude we repeat this numerical test, but we change the position of the
observation area Ωo =]8, 12[×]7.5, 10[, see Figure 5 (left). We use the same
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Figure 3: Neutral class: Initial mesh (left) and corresponding state function
(right).

Figure 4: Neutral class: Final mesh (left) and corresponding state function
(right).

initial state function because it just depends on the control domain, see Figure
5 (right). The final pollution distribution is reported in Figure 6 (right). Also
in this case the refinement, see Figure 6 (left), is observed near the observation
and control areas, with special attention to the control domain nearest to the
observation area, as this can greatly influence the pollutant concentration on the
city.
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Figure 5: Neutral class: Initial mesh (left) and corresponding state function
(right).

Figure 6: Neutral class: Final mesh (left) and corresponding state function
(right).

Conclusion

In this work we have proposed a general algorithm for the solution of an optimal
control problem. Motivated by the high accuracy that high order methods offer,
we have presented a spectral element discretization of a quadratic optimal control
problem. We have derived a posteriori error estimates on the cost functional, by
using the approach of dual weighted residual methods. Such an estimate has been
employed in an hN adaptive algorithm. The main advantage of the proposed
algorithm is the automatic design of the discretization space associated with the
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problem at hand. The method proposed in this work, applied to air pollution
control, can be easily extended to different problems. Numerical results have
been carried out, and even if h refinement is predominant for the environmental
problems, the refined areas reflect the definition of the cost functional, namely
more degrees of freedom have been located near the observation and control
areas to better capture and describe the physical phenomena.
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