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Abstract

We present the mathematical modelling and the numerical simulation of the poly-
mer extrusion process of hollow and non-hollow yarns. In particular, the polymeric
material flow has been modelled as non-Newtonian, incompressible, isothermal and
steady. We attempt to develop a possible strategy for effective die design in profile
extrusion and we numerically asses the validity of the model on both academic and
real industrial test cases.
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1 Introduction.

Many problems in mechanical engineering and physics are mathematically modelled by
partial differential equations defined on domains which are not known a priori. The
boundaries of these domains are called free boundaries and must be determined as part
of the solution. This means that the problem, apart from the usual unknown quantities
(e.g., velocity, pressure), contains additional geometrical unknowns. A technologically
and industrially important category of such free boundary problems is formed by the
viscous free boundary flow problems, which occurs, for example, in polymer extrusion.

In polymer extrusion of synthetic yarns, the solid polymer is heated beyond the
melting point to be enough malleable. Then, the material is forced by one or more screws
through a special die to produce a continuous manufactured item (see Figure 1). With
such a manufacturing process, it is possible to obtain, for example, sheets, films, pipes,
sections, layers and slabs. The aim of this paper is to model and simulate the extrusion
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Figure 1: Extrusion process outline.

of hollow and non-hollow yarns. It is known that the cavity affects the fiber insulation
property and it improves the fiber permeability, volume and pleating, while reducing the
fiber pilling (cf. [3]). We focus on Nylon Polyamide 6 (PA6) yarns because it is the most
employed synthetic polymer within the textile industry. The main problem linked to
polymer extrusion is the die-swell phenomenon which is the increase of polymer section
when the polymer leaves the die (see Figure 2). Die swell is common among polymeric
materials and it is linked to their visco-plastic behaviour (cf. [4]). Because polymers have
high molecular weight and high degree of polymerization, they can be considered between
an ideal elastic material and an ideal plastic material. Below the principal characteristics
of elastic and plastic materials are summarized:

ideal elastic material: under stress it gets deformed, but it recovers to the initial con-
figuration when the stress ends;

ideal plastic material: under stress it gets deformed, and it cannot recover the initial
configuration when the stress ends.

Polymers do not behave like these two ideal cases and their behaviour is called visco-
elastic. At the microscopic level the visco-elasticity is linked to macromolecule properties
of the polymer itself. At the macroscopic level a melted polymer reacts as an elastic solid,
after being forced through a capillary, and it starts to expand when it leaves the capillary.
In a circular pipe, it is formally possible to quantify the entity of the die swell using
the ratio between the diameter of polymer flux leaving the pipe and the pipe diameter
(cf. [5, 6]).

The outline of the paper is the following: in Section 2, we introduce the mathematical
model describing the extrusion process; in Section 3 we present the results of a number
of numerical experiments, which aim at validating the model on both academic and real
industrial test cases.

2 Mathematical model

Let Ω ⊂ Rd, d = 2, 3 be the computational domain. Let us consider Ω1,Ω2 ⊂ Ω such
that Ω2 = Ω \ Ω̄1. The region Ω1 includes the extrusion die, while Ω2 includes the free
surface (see Figure 3). The Polyamide 6 (PA6) flow has been modelled as non-Newtonian,
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Figure 2: Die swell phenomenon.
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Figure 3: 2D sketch of the boundary conditions.

incompressible, staedy and isothermal. The stationary extrusion process is described by
the following free boundary problem (cf. [2, 1, 7, 8]): find the free surface Γfree, the
velocity u and the pressure p such that

∇ · τ −∇p = 0 in Ω, (2.1)
τ = 2η(γ̇)ε(u) in Ω, (2.2)
∇ · u = 0 in Ω, (2.3)
u = g on Γinlet ∪ Γwall, (2.4)
u · n = 0 on Γfree, (2.5)
(−pI + τ) · n = 0 on Γout ∪ Γfree, (2.6)

where n is the outer normal vector, τ is the stress tensor, ε(u) = (∇u +∇uT )/2 is the
strain tensor, γ̇ =

√
2ε(u) : ε(u) is the shear rate, η is the viscosity and g is defined as

follows

g =

{
uinlet on Γinlet

0 on Γwall.
(2.7)
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As a consequence of the non-Newtonian nature of the Polyamide 6, the viscosity η(·)
depends on the shear rate γ̇. The most common models in literature are the following:

η(γ̇) = costant (Newtonian model); (2.8)

η(γ̇) = η∞ +
η0 − η∞

(1 + λ2γ̇2)(1−n)/2
(Bird− Carreau model); (2.9)

η(γ̇) = η∞ +
η0 − η∞

1 + (λγ̇)n
(Cross model), (2.10)

where λ is the characteristic time, n the pseudo-plastic index, η0 and η∞ are the viscosities
of the two Newtonian plateau. The momentum equation is then highly coupled with the
viscosity constitutive equation. In the rest of this work we will make use of the Cross
model (2.10) (see Table 2 for the numerical values of the parameters).

3 Numerical experiments

The numerical experiments have been performed by using commercial softwares. The
mesh has been generated by using the software Gambit [11]. To handle the finite ele-
ment approximation to the free surface problem (2.1)-(2.6), we have employed the CFD
solver POLYFLOW [12] which is well suited to handle problems involving complex non-
Newtonian rheologies, and where advanced numerical techniques to deal with free sur-
faces are available to accurately simulate the extrusion process. Because the border of
the extrudate changes its shape during the simulation, in addition to the solution of the
(unknown) position of the free surface, the nodes of the mesh need to be relocated. We
have employed OptiMesh [10], an anisotropic automatic mesh adaptation module avail-
able in POLYFLOW, which is well suited to take into account the very large deformations
encountered in the extrusion process besides drastically reducing mesh generation efforts.

The numerical experiments are divided into two categories: academic and industrial
test cases.

3.1 Academic Test Case

We test the mathematical model introduced in Section 2 on an academic test case.
The 3D geometry considered in this set of experiments is reported in Figure 4 (left),
while the data employed are reported in Table 1. Proper setting of the quality of the

Table 1: Academic test case: rheological parameters.
Parameter Value
η0 1 Pascal
η∞ 0 Pascal
λ 0.2 s
n 0.3
volumetric flow rate at the inlet 1.0 ∗ 10−5m3/s
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Figure 4: Academic test case. Geometry (left) and sample of the mesh (right).

finite element mesh is of crucial importance to get successful extrusion simulation, since
insufficient mesh density can indeed deteriorate the quality of the results. The mesh is
built using wedge or hexahedral elements and, in order to properly handle the free surface
modelling with the moving mesh algorithm in the deformation surface zone (i.e., where
the polymer leaves the die), it is mandatory to have a sufficiently refined grid near the
die exit. In particular, an improper mesh density where the most intensive deformation
takes place might cause a non-convergence of the algorithm. A sample of the mesh used
in the 3D simulation is shown in Figure 4 (right), where the mesh size of the elements
increases along the z-axis (i.e., far from the die exit).

The computed pressure is reported in Figure 5 (left). Notice that, the die swell occurs
(as expected) just after the polymer leaves the die. The computed velocity vectors are
show in Figure 5 (right). Notice that, after the die exit, a rearrangement of the velocity
field takes place, and according to the kinematic condition u · n = 0, the velocity field is
tangential to the free surface.
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Figure 5: Academic test case. Computed pressure (left) and velocity (right).

3.2 First Industrial Case: Non-hollow Yarn

We consider the simulation of the extrusion of a standard industrial non-hollow yarn. The
geometry of the single hole in the extrusion die is reported in Figure 6. In this second set

Γinlet

Γwall

Γfree

Γout

ℓ

Figure 6: Non-hollow yarn. Geometry of the single hole in the extrusion die.

of experiments we have considered the PA6 rheological parameters [9] and we take the
mass flow rate at the inlet equal to 2.2 ∗ 10−3Kg/s. The data for this set of experiments
are summarized in Table 2. We have considered several values of the height ` of the free
surface region (see Figure 6): ` = 3.0 ∗ 10−2, 1.0 ∗ 10−2, 5.0 ∗ 10−3, 1.0 ∗ 10−3 m. In all
the cases, we observed that the die-swell happen immediately after the polymer reaches
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Table 2: Non-hollow yarn: PA6 rheological parameters.
Parameter Value
η0 162.18 Pascal
η∞ 0 Pascal
λ 0.0003244 s
n 0.9493
Mass flow rate at the inlet 2.2 ∗ 10−3Kg/s

the air. Then, it is possible to consider reasonably little values of ` without altering the
quality of the numerical results. In Figure 7 we show the computed extrudate section and
profile for ` = 5.0∗10−3 m; whereas the extruded profiles obtained with ` = 1.0∗10−3 m
and ` = 3.0∗10−2 m are shown in Figure 8. The legends refer to the distance (in meters)
from the symmetry center. In Table 3, for different values of `, we report the computed

Figure 7: Non-hollow yarn. Extrudate section and profile, ` = 5.0∗10−3 m. The legends
refer to the distance (in meters) from the symmetry center.

radius rext of the extrudated polymer at the outlet. We also report the quantity rext/rdie,
being rdie = 1.45 ∗ 10−5 m the radius of the die, which represents the amount of die-
swell in percentage. It can be seen that the radius of the extrudate polymer is greater
than that of the die, and, taking the average of the computed data, the die-swell ratio is
approximately 21%. In order to validate our numerical computations, we have compared
the numerical results with the experimental data (reported in the last row of Table 3). For
the acquisition of the experimental data, since we want to measure the amount of die-swell
as the polymer reaches the air and before it turns to the solid state, we have proceeded
as follows. The picture shown in Figure 9, reporting a detail of the industrial extrusion
of non-hollow yarn, has been taken so that the image resolution is 1.3∗10−5 m per pixel,
with a tolerance of approximately one pixel. Next, by using an image processing software,
the experimental extruded radius has been estimated to be 1.82 ∗ 10−4 m± 1.3 ∗ 10−5 m.
All the numerical results are in agreement with the experimental data up to a percentage
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Figure 8: Non-hollow yarn. Extruded profiles ` = 3 ∗ 10−2 m (left) and ` = 1 ∗
10−3 m (right). The legend refers to the distance (in meters) from the symmetry center.

Table 3: Non-hollow yarn: Extruded radius rext and extrudate swell ratio rext/rdie for
different values of `.

rext rext/rdie
` = 1.0 ∗ 10−3 m 1.68 ∗ 10−4 m 1.16
` = 5.0 ∗ 10−3 m 1.80 ∗ 10−4 m 1.24
` = 1.0 ∗ 10−2 m 1.84 ∗ 10−4 m 1.27
` = 3.0 ∗ 10−2 m 1.71 ∗ 10−4 m 1.18
Experimental data 1.82 ∗ 10−4 m± 1.3 ∗ 10−5 m 1.26±0.09

Figure 9: Non-hollow yarn. Zoom of industrial extrusion of PA6 yarn. (Courtesy of
RadiciYarn S.p.A.).
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tolerance of 10%, and confirm the accuracy of our model. More precisely, the results
obtained with ` = 5.0 ∗ 10−3 m and ` = 1.0 ∗ 10−2 m match very well the experimental
data, whereas the results obtained with ` = 1.0 ∗ 10−3 m and ` = 3.0 ∗ 10−2 m slightly
underestimates the extrudate swell ratio. The latter behavior could be explained as
follows: the choice ` = 1.0 ∗ 10−3 m is too restrictive since the die-swell phenomenon
is probably still active; whereas for ` = 3.0 ∗ 10−2 m, the computational mesh has to
be chosen coarse enough to face the computational costs, and this probably affects the
quality of the numerical results.

3.3 Second Industrial Case: Hollow Yarn

The second industrial test case concerns the numerical simulation of the extrusion process
driven by the trilobe die depicted in Figure 10 (left). The computed extruded polymer

Figure 10: Trilobe die. Die Geometry (left) and extruded polymer profiles (right). (Cour-
tesy of RadiciYarn S.p.A.).

profile is shown in Figure 11 (right); a comparison between the die profile (colored accord-
ing to the distance form the symmetry center) and the profile of the extruded polymer
(in red) is shown in Figure 11 (left). For completeness, we also report the experimental
results (Figure 10 (right)) that show the section of the trilobe yarn obtained by industrial
extrusion. Moreover, we address the study of the pressure and velocity distribution in

Figure 11: Trilobe die. Computed extruded polymer profiles. The legends refer to the
distance (in meters) from the symmetry center.

the die and in the extruded yarn. The computed pressure is reported in Figure 12 (left).
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We clearly observe that, as expected, the pressure decreases almost linearly within the
die, and it is equal to the external pressure as the polymer reaches the free boundary. We
also notice that the numerical pressure obtained at the die entrance is in agreement with
the typical values (107 − 108 Pascal) measured during industrial extrusion. Concerning
velocity distribution, Figure 12 (right) showns the radial component of velocity which can
be used to identify the region where the die swell takes place. Indeed, it is well known
that the die-swell phenomenon is associated with the changes in the velocity profiles of
the flowing melt occurring at the die exit. As the results reported in Figure 12 (right)
show, the maximum value of radial component of the velocity is located in the die-swell
region, where the polymer expansion occurs, while the zero value is attained when mov-
ing away from such region. Finally, we also investigated how the internal and external

Figure 12: Trilobe die. Computed pressure and radial velocity magnitude.

radii of the yarn vary along the distance from the die. More precisely, we have denoted
by ri,m and Re,m the internal and external radii of the yarn, respectively, measured (with
respect to the symmetry center) at the middle of the lobe; analogously, ri,s and Re,s
denote the same quantities measured at the right side of the lobe (cf. Figure 13 (left)).
Figure 13 (right) shows the computed internal and external radii as a function of the dis-
tance from the die. On one hand, we can observe that, while the die-swell phenomenon
takes place, the internal and external radii ri,m and Re,m, measured at the midpoint of
the lobe, increase monotonically, and then they remain constant. On the other hand, the
internal and external radii ri,s and Re,s, measured at the right side of the lobe, have a
more complex behaviour: they initially increase, then decrease up to a plateau value, and
the lobe turns into the (non-regular) shape depicted in Figure 11 (left). Such a behaviour
could be explained in terms of the rearrangement of the velocities which take place on
both the internal and the external profile, as well as on the straight face. This numerical
results, together with the extruded polymer profile reported in Figure 11, confirm the
experimental data (cf. Figure 10) and show how the trilobate die geometry does not allow
to obtain hollow yarns with outer circular profiles, but rather a “triangular” shape. Thus,
the “naive” trilobate geometry is not suitable for industrial hollow yarn production on
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Figure 13: Trilobe die. Left: internal and external radii of the yarn. Right: computed
internal and external radii of the yarn versus the distance from the die.

large scale, since a regular circular shape with the fewest possible variations is mandatory
in real industrial applications.

As a consequence, from the industrial point of view, it becomes crucial to possess
a numerical tool enabling to design “optimal” dies, which guarantee hollow yarns with
prescribed circular sections. This topic is named inverse die design and refers to the
issue of automatically adjust the die lip to extrude a certain goal profile despite the
deformations encountered inside the free jet. The efficient solution of such an inverse
problem is crucial for industrial applications as it reduces trial-and-error testing, thus
resulting in a considerable saving of time and economic resources. We addressed the
(inverse) problem of predicting the optimum die profile-shape and dimensions, to obtain
a circular hollow yarn. To achieve this goal, we used the method of Inverse Extrusion
available in the CFD code POLYFLOW [12], which is capable to optimize the die design
and ultimately to achieve the desired profile and dimensions of the extrudate. Firstly,
we investigated a bilobe geometry (the topology of the die is a priori fixed). However,
in order to consistently manufacture a high-quality product, the bilobe die seems not to
be the most effective choice. Indeed, due to the small size of the die (notice that the
characteristic length is of order 10−4 meters) and to the high pressure reached by the
polymer before the die exit, it might not have enough tensile strength since it is made
only by two (micro) pieces. We therefore tested a different topology, i.e., a quadrilobe
geometry, which seems to be more suited for industrial applications. This topic will be
extensively addressed in a future work.

4 Conclusion

We undertook the mathematical modelling and the numerical simulation of the poly-
meric extrusion of hollow and non-hollow yarns. The polymeric material flow has been
modelled as non-Newtonian, incompressible, isothermal and steady, and the Cross rhe-
ological law has been employed as constitutive model for the viscosity. The accuracy of
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the adopted method to approximate the solution to the polymeric extrusion problem has
been numerically addressed.
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