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Abstract

Studies of variations in health care utilization and outcome involve the
analysis of multilevel clustered data, considering in particular the estima-
tion of a cluster-specific adjusted response, covariates effect and compo-
nents of variance. Besides reporting on the extent of observed variations,
those studies quantify the role of contributing factors including patients
and providers characteristics. In addition, they may assess the relation-
ship between health-care process and outcomes. In this article we present
a case-study, considering a Bayesian hierarchical generalized linear model,
to analyze MOMI? (MOnth MOnitoring Myocardial Infarction in MIlan)
data on patients admitted with ST-Elevation Myocardial Infarction diagno-
sis, in order to predict survival probabilities. We obtain posterior estimates
of the regression parameters, as well as of the random-effects parameters
(the grouping factor is the hospital the patients were admitted to), through
an MCMC algorithm. The choice of covariates is achieved in a Bayesian
fashion as a preliminary step. Some issues about model fitting are discussed
through the use of predictive tail probabilities and Bayesian residuals.
Keywords: Bayesian hierarchical models, Multilevel data analysis, Bayesian
generalized linear mixed models, Logistic regression, Health services re-
search.
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1 Introduction

Over recent years there has been a growing interest in the use of perfor-
mance indicators in health care research, since they may measure some
aspects of the health care process, clinical outcomes or disease incidence.
The purpose of the present work is to show how advanced statistical meth-
ods can be employed in the analysis of complex data coming from clinical
registers. Several examples, available in clinical literature (see, for instance,
Hasday et al., 2002, and Saia et al., 2009), make use of clinical registers
to evaluate performances of medical institutions, because they enable peo-
ple concerned with the health care governance to plan activities on real
epidemiological evidence and needs and evaluate performance of structures
they manage, providing knowledge about the number of cases, incidence,
prevalence and survival concerning a specific disease.

The disease we are interested in is the Acute Myocardial Infarction with
ST-segment Elevation (STEMI): it consists of a stenotic plaque detachment,
which causes a coronary thrombosis and a sudden critical reduction of blood
flow in coronary vessels. This process causes a widespread necrosis of my-
ocardial tissues and leads to an inadequate feeding of myocardial muscle
itself. STEMI is characterized by a great incidence (650 - 700 events per
month have been estimated only in Lombardia Region) and serious mortal-
ity (Italy 8%), and in fact it is one of the main causes of death all over the
world. A case of STEMI can be diagnosed through the electrocardiogram
(ECG), observing the elevation of ST segment, and treated by Throm-
bolytic teraphy and/or Percutaneous Transluminal Coronary Angioplasty
(PTCA), which up to now are the most common procedures. The former
one consists of a pharmacological treatment which causes a breakdown of
the blood clots, while in the latter one an empty and collapsed balloon on
a guide wire, known as balloon catheter, is passed into the narrowed or
obstructed vessels and then inflated to a fixed size. The balloon crushes
the fatty deposit, so opening up the blood vessel to improved flow, and is
then collapsed and withdrawn. The patients in our dataset always undergo
directly to a PTCA procedure avoiding the Thrombolysis, even if the two
treatments are not mutually exclusive. Anyway, good results for any of the
two treatments can be evaluated by observing first the in-hospital survival
of inpatients, and then quantifying the reduction of ST segment elevation
one hour later the intervention (if the reduction is more than 70%, the pro-
cedure is considered effective). Concerning hearth attacks, both survival
and quantity of myocardial tissues saved from damage strongly depend on
time saved during the process. In this work, we will focus on the sur-
vival outcome. However, time has indeed a fundamental role in the overall
STEMI health care process. By Symptom Onset to Door time we mean
the time since symptoms onset up to the arrival at Emergency Room (ER),
and Door to Balloon time (DB time) is the time since the arrival at ER up
to the surgical practice of PTCA. Clinical literature strongly stresses the
connection between in-hospital survival and procedures time (see Cannon
et al., 2000, Jneid et al., 2008 and MacNamara et al., 2006): 90 minutes
for DB time in case of primary PTCA (i.e. PTCA without any previous
pharmacological treatment) is the actual gold standard limit suggested by



the American Hearth Association (AHA)/American College of Cardiology
(ACCQC) guidelines; see Antman et al., 2008.

The presence of differences in the outcomes of health care has been
documented extensively in recent years. In order to design regulatory in-
terventions by institutions for instance, it is interesting to study the effects
of variations in health care utilization on patients outcomes, in particu-
lar examining the relationship between process indicators, which define
regional or hospital practice patterns, and outcomes measures, such as pa-
tients survival or treatment’s efficacy. If the analysis of variations concerns
in particular the comparison of the performance of health care providers,
it is commonly referred to as provider profiling (see Normand et al., 1997,
Racz and Sedransk, 2010). The major aim of this work is to measure the
magnitude of the variations of health care providers and to assess the role
of contributing factors, including patients and providers characteristics, on
survival outcome. Data on health care utilization have a “natural” mul-
tilevel structure, usually with patients at first level and hospitals forming
the upper-level clusters. In this formulation, there are two main goals: one
is to provide cluster-specific estimates of a particular response, adjusted
for patient’s characteristics, while the other one is to derive estimates of
covariates effects, such as differences between patients of different gender
or between hospitals. Hierarchical regression modelling from a Bayesian
perspective provides a framework that can accomplish both these goals. In
particular, this article considers a Bayesian generalized linear mixed model
(Zeger and Karim, 1991) to predict the binary survival outcome by means
of relevant covariates, taking into account overdispersion induced by the
grouping factor. We illustrate the analysis on a subset of data collected
in the MOMI? survey on patients admitted with ST-Elevation Myocar-
dial Infarction (STEMI) diagnosis in one of the structures belonging to the
Milano Cardiological Network, using a logit model for the survival proba-
bility. For this analysis, patients are grouped by the hospital which they
were admitted to for their infarction. Assuming a Bayesian hierarchical
approach for the hospital factors yields modelling dependence among the
random-effects parameters, but also using the dataset to make inferences
on hospitals which do not have patients in the study, borrowing strength
across patients, as well as clustering the hospitals. A Markov chain Monte
Carlo (MCMC) algorithm is necessary to compute the posterior distribu-
tions of parameters and predictive distributions of outcomes, as well as to
use other diagnostic tools, such as Bayesian residuals, for goodness-of-fit
analysis. The choice of covariates and link functions was suggested first
in Teva and Paganoni (2009), according to frequentist selection procedures
and clinical know-how; however, it was confirmed here using Bayesian tools.
We found out that Killip first, and then age, have a sharp negative effect
on the survival probability, while the Symptom Onset to Balloon time has
a lighter influence on it. The resulting variability among hospitals seems
not too large, even if we underlined that 4 hospitals have a more extreme
effect (one has a positive effect, while the remaining three have a negative
effect) on the survival then the others.

To the best of our knowledge, this study is the first example of a
Bayesian analysis of data arising from linkage between Italian administra-



tive databanks and clinical registers. This paper shares the same framework
of hierarchical generalized linear mixed models as in Daniels and Gatsonis
(1999), who examined differences in the utilization of coronary artery by-
pass graft surgery for elderly heart attack patients treated in hospitals.

The paper is organized as follows. Section 2 illustrates the dataset about
STEMI in Milano Cardiological Network, while Section 3 describes the main
features of the proposed model, with a short discussion on covariate selec-
tion. In Section 4 and 5 we discuss prior elicitation and Bayesian inferences,
respectively. Finally, Section 6 describes results of the inference on quanti-
ties of interest with a discussion. All the analyses have been performed with
WinBUGS (Lunn et al., 2000; see also http://www.mrc-bsu.cam.ac.uk/bugs/)
and R (version 2.10.1, R Development Core Team 2009) programs.

2 The STEMI dataset

A net connecting the territory to hospitals, by a centralized coordination of
the emergency resources, has been activated in the Milano urban area since
2001. The aim of a monitoring project on it is the activation of a register on
ST-Elevation Myocardial Infarction (STEMI) to collect process indicators
(Symptom Onset to Door time, first ECG time, Door to Balloon time
and so on), in order to identify and develop new diagnostic, therapeutic
and organizational strategies to be applied to patients with STEMI by
Lombardia Region, hospitals and 118 organization (the national toll-free
number for medical emergencies). To reach this goal, it is necessary to
understand which organizational aspects can be considered as predictive
of time to treatment reduction. In fact, organizational policies in STEMI
health care process concern both 118 organization and hospitals, since a
subject affected by an infarction can reach the hospital by himself or can
be taken to the hospital by 118 rescue units.

So, in order to monitor Milano Cardiological Network activity, times to
treatment and clinical outcomes, the data collection MOMI? was planned
and made on STEMI patients, during six periods corresponding to monthly/
bimonthly collections. For these units, information concerning mode of ad-
mission (by ambulance or on his/her own), demographic features (sex, age),
clinical appearance (presenting symptoms and Killip class at admittance),
received therapy (Thrombolysis, PTCA), Symptom Ounset to Door time,
in-hospital times (first ECG time, DB time), hospital organization (for ex-
ample, admission during on/off hours) and clinical outcome (in-hospital
survival) have been listed and studied. The Killip classification is a system
used in individuals with an Acute Myocardial Infarction, in order to risk
stratify them in four severity classes. Individuals with a low Killip class
are less likely to die within the first 30 days after their myocardial infarc-
tion than individuals with a high Killip class. The whole MOMI? survey
consists of 840 statistical units, but in this work we only focus on patients
undergone primary PTCA and belonging to the third (Jun 1st - Jul 31th
2007, 154 patients) and fourth (Nov 15st - Dec 15th 2007, 93 patients)
collections only. Among the resulting PTCA-patients, we selected those
who had their own hospital admission registered also in the Public Health
Database of Lombardia Region, in order to confirm the reliability of infor-



mation collected in the MOMI? register. Finally, the dataset considered
consists of 240 patients.

Previous frequentist analyses on MOMI? survey (for further details see
Grieco et al., 2008, Ieva, 2008, and Ieva and Paganoni, 2010) pointed out
that age, total ischemic time (Symptom Onset to Balloon time, denoted
by OB) in the logarithmic scale and killip of the patient, categorized as
binary variable, corresponding to 0 for less severe (Killip class equal to 1
or 2) and 1 for more severe (Killip class equal to 3 or 4) infarction, are
the most significant factors in order to explain survival probability from
a statistical and clinical point of view. This choice was confirmed using
Bayesian variable selection procedure; see the next section for more details.

The main goal of our study is to explain and predict, by means of a
Bayesian random-effects model, the in-hospital survival (i.e. the propor-
tion of patients discharged alive from the hospital). We have a dataset of
n = 240 patients who were admitted to J = 17 hospitals after a STEMI
event. The number of STEMI patients per hospital ranges from 1 to 32,
with a mean of 14.12. Each observation y; records if a patient survived after
STEMI, i.e. y; = 1if the i-th patient survived, y; = 0 otherwise. In the rest
of the paper, y denotes the vector of all responses (y1, ..., yn). The dataset
is strongly unbalanced, since 95% of the patients survived. The observed
hospital-survival rates ranges from 75% to 100% with a mean of 93%. These
high values are explained because they are in-hospital survival probabili-
ties, a follow-up data being not available yet. The dataset contained some
missing covariates, with proportions of 7%, 24% and 2% for age, OB and
killip respectively. The missing data for age and logOB were imputed as the
empirical means (64 years for age, 553 minutes for OB), while we sampled
the missing 0-1 killip class covariates from the Bernoulli distribution with
probability of success estimated from the non-missing data. After having
imputed all the covariates, the mean value of age and OB did not change,
while the proportion of patients with less severe infarction (killip=0) was
94%. Finally, we had no missing data concerning hospital of admission and
outcome.

3 A Bayesian generalized mixed-effects model

We considered a generalized mixed-effects model for binary data from a
Bayesian viewpoint. For a recent review on this topic, see Chapters 1-3
in Dey et al. (2000). For each patient i = 1,...,n, let ¥; be a Bernoulli
random variable with mean p;, which represents the probability that the
i-th patient survived after STEMI. The p;’s are modelled through a logit
regression with covariates x := {x;}, ®; := (1, 241, Ti2, x;3) which represent
the age, the Symptom Onset to Ballon time in the log scale (logOB) and
the Kkillip, respectively, of the i-th patient in the dataset. Moreover, age
and logOB have been centered. Since the patients come from J different
hospitals, we assume the following multilevel model, with the hospital as a
random effect:

Yilpi % Be(py), i=1,...,n, (1)



and

logit(p;) = log 1 flp. = fo + B1wi1 + Bawiz + B3wiz + by, (2)

K3

where by[;) represents the hospital effect of the i-the patient in hospital k[4].
We will denote by 3 the vector of regression parameters (5o, 01, 32, 03). It
is well-known that (1)-(2) have a latent variable representation (see Albert
and Chib (1995)), which can be very useful in performing Bayesian infer-
ence, as well as in providing medical significance: conditioning on the latent

variables Z1,...,Z,, the Y1,... Y, are independent, and, for i =1,...,n,

1 if Z; >0
Y, = s (3)
0 if Z; <0
where id
Z; = :c;frﬁ + bk[i] +&i, & “ fes (4)

being f-(t) = e *(1 +e~*)~2 the standard logistic density function. The
same class of models, however without considering random effects, was
applied in Sousa and Migon (2004) to a similar dataset of patients after
acute myocardial infarction.

As mentioned in the previous section, the choice of covariates was first
suggested in Teva and Paganoni (2009), using frequentist model choice tools.
However, we have considered it also in a Bayesian framework, using the
Gibbs variable selection method by Dellaportas et al. (2002). But first,
as a default analysis, we considered covariates selection via the R package
BMA (Raftery et al. (2009)). A subgroup of 197 patients with 11 non-
missing covariates was processed by the function bic.glm, and 7 covariates
were selected (age, OB time, killip, sex, admission during on/off hours,
ECG time, number of previous hospitalizations). For this choice of covari-
ates, the non-missing data extracted from the 240-patients dataset consists
of 217 units, which were again analyzed via bic.glm. The posterior proba-
bility that each variable is non-zero was very high (about 40%) for age and
killip, while they were smaller than 7% for the others. Moreover, the highest
BICs resulted for models including age, killip and sex. Since sex is strongly
correlated with age in our dataset (only old women are in), at the end, we
agreed with the choice of covariates in Ieva and Paganoni (2009), consider-
ing only age and killip, while the OB time was strongly recommended by
clinical and health care utilization know-how.

As a second analysis, we considered only covariates which have non-
missing values for all patients (age, OB time, killip, sex, admission during
on/off hours, number of previous hospitalizations), to be analyzed using
the Gibbs variable selection method. The linear predictor assumed in the
right hand-side of (2) to select covariates can be represented as

6
n=0+ > viBiTij, (5)
1

where (71,...,76) is a vector of parameters in {0, 1}. Of course, a prior for
both the regression parameter 3 and the model inder parameter v must
be elicited, so that the marginal posterior probability of ~ suggests which



variables must be included in the model. We assumed different “noninfor-
mative” priors for the logit model with the linear predictor (5), as suggested
in Ntzoufras (2002), implementing a simple BUGS code to compute the
marginal posterior distributions for each v;, 7 =1,...,6, and posterior in-
clusion probabilities. However the analysis confirmed the previous selected
model.

4 The prior distribution

As mentioned in the previous sections, one of the aim of this paper is to
make a comparison among the patients survival probabilities treated in
different hospitals of the Milano Cardiological network. Such an aim can
be accomplished if, for instance, we assume the hospital each patient was
admitted to as a random factor. We make the usual (from a Bayesian view-
point) random-effects assumption for the hospitals, that is, the hospital ef-
fect parameters b;’s are drawn from a common distribution; moreover, since
no information is available at the moment to distinguish among the hospi-
tals, we assume symmetry among the hospital parameters, i.e. by,...,bs
can be considered as (the first part of an infinite sequence of) exchange-
able random variables. Via Bayesian hierarchical models, not only we will
model dependence among the random-effects parameters b := (by,...,by),
but it will also be possible to use the dataset to make inferences on hospitals
which do not have patients in the study, borrowing strength across patients.
As usual in the hierarchical Bayesian approach, the regression parameter
B and the hospital parameter b are assumed a priori independent, 3 is
given a (multivariate) Gaussian distribution and b is given a scale-mixture
of (multivariate) Gaussian distributions; more specifically:

B Lb, ﬁNMN(p,ﬁ,V[})

iid (6)

bi,...,bslo & N(up, %), o~ U(0,00).
Observe that the prior assumption on b is that, conditionally on the pa-
rameter o, each hospital effect parameter has a Gaussian distribution with
variance ¢2; here the uniform prior on o is set as an assumption of ig-
norance/symmetry on the standard deviation of each hospital effect. The
Gaussian prior for 3 is standard, but its hyperparameters, as well as the
hyperparameter of the prior distribution for o, will be given informatively,
using available information from other MOMI? collections (see Section 6.2
for more details). On the other hand, a more standard prior for b; would
be a scale-mixture of normals, mixed by an inverse-gamma distribution for
o2, with parameter (1,7) for small . However, this prior has been criti-
cized (for instance, see Gelman, 2006), mainly because the inferences will
not result robust with respect to the choice of 7, and the prior density (for
all small ), as well as the resulting posterior, are too peculiar. In what
follows, the parameter vector (3, b, o) will be denoted by 6.



5 Bayesian inference

Based on given priors and likelihood, the posterior distribution of 8 is given
by

™ (6ly,x) o< 7 (0) L(y0,2,x) f(2)

= 1(B)m(blo)m (o) [ [ Lo, 400) ()" (L—coi0 (z) ¥ [ [ £z — 2] B = brga).-
=1 i=1
(7)

We are interested in predictions, too. This implies (i) considering the pos-
terior predictive survival probability of a new patient coming from an hos-
pital already included in the study, or (i) the posterior predictive survival
probability of a new patient coming from a new (J + 1)-th hospital. We
have

P(Yn+1 = 1|y,$7bj) = /R5 P(Yn+1 = 1|ﬂ,bj,:c)7r(,6,bj|y) d,@db], j = ].,. . .,J,
(8)

for a new patient with covariate vector  coming from the j-th hospital in
the study, and

P(Yn1 =1y, x) :/ P(Yoi1 = 1B,bs41,2)m(B,by+1]y) dBdbyi1, (9)
R5

where

w(B.brialy) = [ wsialo)r(B.oly)do

and w(byy1|o) is the prior population conditional distribution in (6).

As far as model checking is concerned, we will consider predictive distri-
butions for patients already enrolled in the study in the spirit of replicated
data in Gelman et al. (2004); more specifically, we will compute

P(Y;" = 1|y, x4, byy)  foralli=1,...,n. (10)

Here Y;"*" denotes the i-th “replicated data that could have been observed,
or, to think predictively, as the data that we would see tomorrow if the
experiment that produced y; today were replicated with the same model and
the same value of parameters that produced the observed data” (Gelman et
al., 2004, Sect. 6.3). Since we have a very unbalanced dataset, the following
Bayesian rule is adopted: a patient is classified as alive if E(Y;"*"|y, ®;, by[;))
is greater than the empirical mean %,. Then the coherence between the
Bayesian rule and the dataset is checked.

Finally we computed the latent Bayesian residuals for binary data as
suggested in Albert and Chib (1995). Thanks to the latent variable repre-
sentation (3)-(4) of the model, we can consider the realized errors

obtained solving (4) w.r.t. &;. Each e; is a function of the unknown parame-
ters, so that its posterior distribution can be computed through the MCMC



simulated values, and later examined for indications of possible departures
from the assumed model and the presence of outliers (see also Chaloner
and Brant, 1988). Therefore, it is sensible to plot credibility intervals for
the marginal posterior of each e;, comparing them to the marginal prior
credibility intervals (of the same level).

6 Data Analysis

In this section we illustrate the Bayesian analysis of the dataset described
in Section 2, but first we give some details on computations and prior
elicitation.

6.1 Bayesian computations

All estimates were computed via a Gibbs sampler algorithm; in fact in this
case full conditional distributions were straightforward. The first 100,000
iterations were discarded, retaining parameter values each 80 iterations
to decrease autocorrelations, with a final sample size equal to 5,000; we
run the chains much longer (for a final sample size of 10,000 iterations),
but the gain in the MC errors was relatively small. Some convergence
diagnostics (Geweke and the two Heidelberger-Welch ones) were checked,
together with traceplots, autocorrelations and MC error/posterior standard
deviation ratios for all the parameters, indicating the MCMC algorithm
converged. Code is available from the authors upon request.

6.2 Informative prior hyperparameters

Concerning information about hyperprior parameters, we fixed pu, = 0 re-
gardless of any information, since, by the exchangeability assumption, the
different hospital have the same prior mean (fixed equal to 0 to avoid con-
founding with 5y). As far as B is concerned, we have enough past data
to be relatively informative in eliciting prior hyperparameters; they were
fixed after having fitted model (1)-(2), under non-informative priors for
0, to “similar” data, i.e. 359 patients undergone primary PTCA whose
data were collected during the other four MOMI? collections (MOMIZ.1,
MOMIZ.2, MOMI2.5, MOMIZ.6).

Therefore, for the present analysis, we fixed ug = (3,0,0.1,—0.7)T,

which are the posterior means of the regression parameters under the pre-
liminary analysis. The matrix V3 was assumed diagonal,
Vs = diag(2,0.04,0.5882, 3.3333), which, except for the second value, are
about 10 times the posterior variances of the regression parameters under
the preliminary analysis (0.04 is 100 times the posterior variance, in order
to consider a vaguer prior for 31). The prior hyperparameter o was fixed
equal to 10, a value compatible with the support of the posterior distri-
bution for ¢ in the preliminary analysis. Posterior estimates of 3, b and
o proved to be robust with respect to pug and V, even when we fixed a
non-diagonal matrix for V', assuming prior dependence through the regres-
sion parameters (the non-diagonal V' elicited via the preliminary analysis
as well).



Table 1: Posterior means and standard deviations of the regression parameters and o.

6.3 Results

Summary inferences about regression parameters and ¢ can be found in
Table 1, while the marginal posterior distributions are depicted in Fig-
ures 1-2. From Table 1 and Figure 1 it is clear that the marginal posteriors

Informative prior
mean ‘ sd
intercept Bo 3.8160 | 0.5704
age Bi || -0.0792 | 0.0324
log(OB) B2 || -0.1527 | 0.3326
killip Bs || -1.5090 | 0.8159
random effect std. dev. | o 1.1770 0.7417

of 81 and (3 are concentrated on the negative numbers, confirming the naive
interpretation that an increase in age or killip class decreases the survival
probability. The negative effect of the log(OB) is questionable, given its
high variability, even if the posterior median of 5 is —0.16. Anyway, it was
indeed included because of its clinical relevance; moreover, it is the main
process indicator in health care monitoring of STEMI procedures. Observe
that the posterior mean of 8y + b;, which is the logit of the survival proba-
bility for a patient with “average” covariates from any hospital, is between
2.90 and 4.78, yielding a high posterior estimates of the survival probability
from any hospital, as expected. By inspecting Figure 2 a shrinkage of a
posterior density of o with respect to the uniform prior can be observed,
and this fact supports the conjecture of a low variability within medical
institutions. As far as the marginal posterior distribution of the random
effect parameters are concerned, Figure 3 displays the posterior median
and mean (with 95% credibility intervals) of each hospital parameter b;,
7=1,...,J. In Table 2 we report

pj = min{P(b; > 0ly),P(b; <Oly)}, j=1,....J, (12)

together with the signum of the posterior median of the b;’s. Low values
of p; denote the posterior distribution of b; is far from 0, so that the j-
th hospital significantly contributes to the (estimated) regression intercept
Bo+0b;. In Figure 3 the credible intervals corresponding to p; less than 0.18
are depicted in yellow; it is clear that hospital 9 has a positive effect, while
hospital 10, 11 and 15 have a negative effect on the survival probability.
Figure 4 displays medians and 95% credibility intervals for the posterior
predictive survival probabilities (8) of four benchmark patients:

by bo b3 b bs be b7 bs by bio bi1 bio bis big bis bie biv
0.27 0.40 0.32 0.25 0.44 0.41 0.49 0.49 0.18 0.17 0.12 0.28 0.28 0.44 0.17 0.26 0.29
+ + + + - + + + + - - + - + - - +

Table 2: Values of p; and the signum of the posterior median of each hospital param-

eters.

10
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Figure 1: Marginal posterior density of the regression coefficients under the informative
prior.
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Figure 2: Marginal posterior density of o under the informative prior.

(a) : x1 =0, 22 =0, 3 = 0, i.e. a patient with average age (64 years),
average OB (553 min.) and less severe infarction (Killip class 1 or 2);
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Figure 3: Posterior median (bullet), mean (green square) and 95% credibility intervals
of all random effect parameters. The CI intervals for hospitals such that min(P(b; >
0ly),P(b; < 0]y)) < 0.18 are in yellow.

() : 21 =0, 292 =0, z3 = 1, i.e. a patient with same age and OB as (a),
but with severe infarction (Killip class 3 or 4);

(¢) : &1 =16, 22 = 0, z3 = 0, i.e. an elder patient (80 years), with
average OB (553 min.) and less severe infarction;

(d) : 1 =16, xz0 =0, z3 = 1, i.e. an elder patient with average OB and
severe infarction

coming from an hospital already in the study. The last credibility interval
(in red in each panel) corresponds to the posterior predictive survival prob-
ability (9) of a benchmark patient coming from a new random (J + 1)-th
hospital. Moreover, from the figure it is clear that killip has a stronger
(on average) influence on survival than age since, moving from left to right
panels (same age, killip increased) the credibility intervals get much longer
than moving from the top to the bottom panels (same killip, age increased).

Finally, as far as predictive model checking is concerned, we computed
predictive values (10); the classification rule described in Section 5 gives
an error rate equal to 27% (64 patients were erroneously classified as dead
and only 1 patient was erroneously classified as alive). This rule can be
generalized as follows: a patient is classified as alive if E(Y;"*"|y, @4, by[;))
is greater than a fixed threshold ¢; the choice t = 3, gives the 27% error
rate. In this way, we were able to plot the ROC curve in Figure 5, i.e. the
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Figure 4: Posterior median (bullet), mean (green square) and 95% credibility intervals
of the posterior predictive survival probabilities for 4 benchmark patients from each
hospital in the study and from a new random hospital (the 18-th red CI).

True Positive Rate versus False Positive Rate, for a grid of values of the
threshold ¢ ranging from 0.5 to 1. As measure of goodness of fit we also
computed the Brier score, the average squared deviation between predicted
probabilities and outcomes, which is equal to 0.04. The Brier score, as well
as the ROC curve in Figure 5, shows a fairly good predictive fit of our
model.

Figure 6 displays the posterior distributions of the Bayesian residuals,
see (11), for each observations, where the red line in the plot denotes the
prior marginal distribution (logistic). The picture shows that there are no
outlier among the patients who survived, since their densities cluster close
to the prior density. More variability appears among the dead patients as
far as posterior location and dispersion are concerned.

7 Conclusions
In this work we have considered a Bayesian hierarchical generalized linear
model with random effects for the analysis of clinical and administrative

data with a multilevel structure. These data arise from MOMI? clinical reg-
ister, based on a survey on patients admitted with ST-Elevation Myocar-
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Figure 5: ROC Curve: True Positive Rate versus False Positive Rate, for binary clas-
sifiers with different thresholds. Red solid bullet corresponds to threshold equal to
empirical estimation of survival probability.

dial Infarction diagnosis, integrated with administrative databanks. The
analyses carried out on them could provide a decisional support to peo-
ple concerned with cardiovascular health care governance. We adopted a
Bayesian point of view to tackle the problem of modelling survival out-
comes by means of relevant covariates, taking into account overdispersion
induced by the grouping factor, i.e. the hospital where each patient has
been admitted to. To the best of our knowledge, this study is the first
example of a Bayesian analysis of data arising from linkage between Ital-
ian administrative databanks and clinical registers. The main aim of this
paper was to study the effects of variations in health care utilization on pa-
tient outcomes, since the adopted model points out relationships between
process and outcome measures. We also provided cluster-specific estimates
of survival probabilities, adjusted for patients characteristics, and derived
estimates of covariates effects, using Markov chain Monte Carlo simulation
of posterior distributions of parameters; moreover we discussed model se-
lection and goodness of fit. We found out that Killip first, and age, have
a sharp negative effect on the survival probability, while the OB time has
a lighter influence on it. The resulting variability among hospitals seems
not too large, even if we underlined that 4 hospitals have a more extreme
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Figure 6: Posterior distributions of the latent Bayesian residuals against the fitted
probabilities. The blue and black lines correspond to observations y; = 0 and y; = 1,
respectively. The red line is the marginal prior distribution (logistic).

effect on the survival: in particular hospital 9 has a positive effect, while
hospitals 10, 11 and 15 have a negative effect.

As far as negative features of the MCMC outputs are concerned, we
found that the marginal posterior distributions of (5o, b;), for each j, are
concentrated on lines of the whole parameter space, due to the “confound-
ing” between the intercept parameter and the random-effects parameters.
However the mixing and the convergence of the chain, under a suitable
thinning, were completely satisfactory.

Finally, as further step of analysis, we are considering Bayesian non-
parametrics to model the hospital effects, in order to find out a “better”
hospital classification.
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