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Abstract

We provide a space-time adaptation procedure for the approximation
of the Shallow Water Equations (SWE). This approach relies on a recovery
based estimator for the global discretization error, where space and time
contributions are kept separate. In particular we propose an ad hoc proce-
dure for the recovery of the time derivative of the numerical solution and
then employ this reconstruction to define the error estimator in time. Con-
cerning the space adaptation, we move from an anisotropic error estimator,
i.e., able to automatically identify the density, the shape and the orientation
of the elements of the computational mesh. The proposed global error esti-
mator turns out to share the good properties of each recovery based error
estimator. The whole adaptive procedure is then combined with a suitable
stabilized finite element SW solver. Finally the reliability of the coupled
solution-adaptation procedure is successfully assessed on two unsteady test
cases of interest for hydraulics applications.
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1 Introduction

The main goal pursued by an adaptive computational method is to improve the
quality of the numerical discretization of a physical phenomenon via a suitable
redistribution of the computational effort on the space-time domain. In gen-
eral an adaptive method relies on a robust indicator of the computational error,
which suggests the criteria driving the adaptation procedure. Both heuristic
and theoretically sound indicators are used in practice. Among the heuristic
indicators we recall the widely employed recovery based error estimators (see
[38, 1]), while the goal oriented error estimators (see, e.g., [2]) excel among the
theoretical indicators.
Aim of this paper is to apply a space-time adaptation scheme, driven by a re-
covery based error estimator, to the numerical discretization of the 2D Shallow
Water Equations (SWE). SWE coincide with a system of hyperbolic PDEs, ob-
tained by integrating the Navier Stokes equations over the water depth (see, e.g.,
[36]). They provide a reference model for physical configurations characterized
by large spatial scales in the horizontal plane and considerably smaller scales
along the vertical direction: in these cases a two dimensional modeling turns
out to be often adequate for a reliable description of the phenomenon at hand.
The numerical approximation of the SWE is a recurrent topic in the literature,
essentially due to the several relevant applications associated with this model
(flood wave propagation, analysis of flux distribution in large rivers, propagation
of tidal waves in coastal areas, estuarine dynamics, lake circulation, dam-break
modeling etc.). Adaptive techniques are successfully applied to the discretiza-
tion of SWE in a certain number of works (see, e.g., [26, 17, 29, 15, 6, 19, 27]).
Most of these papers focus essentially on the adaptation of the computational
mesh only. Isotropic adapted grids are generally employed ([26, 17, 15, 6, 19]),
whereas few papers deal with an anisotropic mesh adaptation ([29, 27]). This
can be probably ascribed to the more complex setting involved by an anisotropic
mesh adaptation, even though the computational advantages yielded by the em-
ployment of anisotropic grids are already well established in the literature.
On the contrary a combined space-time adaptation is more rarely used (see, e.g.,
[26, 17, 15]). Concerning the most recurrent time adaptation strategies, we can
distinguish between two approaches: when the solution is approximated via dis-
continuous methods (for instance, by a discontinuous Galerkin or a finite volume
scheme), it is possible to assign elementwise a different time step by resorting
to a local time stepping technique (see, e.g., [15, 17]); on the other hand, when
the discrete solution is continuous in space (e.g., the problem is discretized via
a standard Galerkin approximation) a single time step is assigned on the whole
mesh (e.g., [26]). In more detail, in [15, 17] the time step is chosen elementwise
to guarantee a certain fixed Courant number on each element, even of different
size. In [26] a space-time adaptation is applied to the computation of the flow
field in the Venice Lagoon. The authors move from a modified Shallow Water
system, where the nonlinear advective term is erased from the momentum equa-
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tion. This system is then solved through a suitable operator splitting, which
induces the time discretization error estimator itself.
The adaptation procedure proposed in this paper relies on an a posteriori es-
timator for the space-time error, where the space and time contributions are
kept distinct. The splitting of these two contributions is a crucial point of the
proposed approach and it is in accordance with other works in the literature
(see, e.g., [3, 22, 32, 26]). Essentially it allows us to manage separately the space
and the time adaptation. In more detail the mesh is adapted on the basis of the
recovery based error estimator proposed in [25, 27]: here the standard recovery
based framework, originally defined in [38], is suitably modified with the aim
of defining an anisotropic error estimator. This yields a computationally cheap
problem-independent anisotropic error estimator, successfully validated on dif-
ferent problems, 2D as well as 3D ([7, 8, 25, 27]). We employ the recovery based
framework also to propose an a posteriori error estimator for the discretization
error in time. Since we discretize the SWE system via a suitable stabilized (con-
tinuous) finite element method, a single adapted time step is predicted at each
time for the whole set of elements. However we are confident that the proposed
approach can be extended in a straightforward way to a local time stepping
framework as well as to different problem settings, due to the intrinsic problem-
independence of the recovery based error estimators. As far as we know this
work represents a first attempt in the literature to combine anisotropic mesh
adaptation with time adaptation in the numerical approximation of the SW sys-
tem.
The paper is organized as follows. In Section 2 we introduce the SWE system
and the adopted discretization scheme. Section 3 is devoted to the definition
of the space-time recovery based error estimator. The whole space-time adap-
tive procedure is then detailed in Section 4. The reliability and efficiency of
the solution-adaptation coupling is checked in Section 5 on a benchmark test
case and real scale hydraulic setting. Concluding remarks are drawn in the last
section.

2 The Shallow Water Equations

The SWE system is obtained by integrating the 3D Navier-Stokes equations over
the water depth ([36]). This integration is performed after assuming a negligible
vertical velocity and acceleration. As a consequence an hydrostatic pressure dis-
tribution is understood. SWE are consequently used to model phenomena where
the mass and the momentum exchanges are dominant in the planar directions.
In this work we consider the so-called velocity-celerity formulation of the SWE
(see, e.g., [27, 30]) given by

∂U
∂t

+A1
∂U
∂x

+A2
∂U
∂y

= S in Ω, (1)
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Figure 1: Definition sketch: vertical section.

where Ω is a polygonal domain in R2. The unknown vector U = (u, v, c)T

is composed by the x- and y-component of the depth-averaged velocity vector
u = (u, v)T , and by the variable c = 2

√
gh, with g the gravity acceleration and h

the total water depth measured with respect to the bottom profile Z (see Figure
1). Quantity c is proportional to the celerity of small perturbations, which, in
turn, depends on the water depth. The matrices A1 and A2 are defined as

A1 =

 u 0 c
2

0 u 0
c
2 0 u

 , A2 =

 v 0 0
0 v c

2
0 c

2 v

 ,
while vector S includes all the possible sources and sinks of the momentum, which
depend on the problem at hand (e.g., friction loss, gravity force, wind stress on
free surface, Coriolis force). Typically, in a flood modeling, S = S0 − Sf , where
S0 = −∇Z is the bottom slope (see Figure 1) and Sf is the friction loss.
From a differential viewpoint, SWE coincide with a system of first order hy-
perbolic partial differential equations. In particular system (1) is written in a
nonconservative form. The three equations constituting the system are dimen-
sionally homogeneous. Moreover matrices A1 and A2 are both symmetric: this
property makes the velocity-celerity formulation particularly suited to a numer-
ical approximation based on stabilized finite elements, as shown in next section.

2.1 The finite element solver

Following [27], we resort to a streamline-diffusion shock-capturing finite element
method (SDSCFEM) to approximate system (1). The streamline-diffusion finite
element method was originally proposed in [13] for an advection-diffusion sys-
tem. In particular this scheme is able to damp the spurious oscillations arising
when the standard Galerkin finite element method is employed in an advection-
dominated case. A generalization of this method to hyperbolic systems is pro-
vided, for instance, in [14, 33]. In a hyperbolic framework it turns out to be
crucial to suitably treat also possible shocks and discontinuities of the solution,
which may arise even in the presence of smooth boundary and initial data. For
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this reason ad hoc shock-capturing terms are usually further added to a stabi-
lized finite element formulation (e.g., [14]).
To provide the SDSCFE approximation of SWE, we move from the weak form
of system (1): for any t ∈ (0, T ], find U = U(t) ∈ [W ]3, such that∫

Ω
w ·
(
∂U
∂t

+A1
∂U
∂x

+A2
∂U
∂y

)
dΩ =

∫
Ω

w · S dΩ ∀w ∈ [W ]3, (2)

with w the test function. The functional space W is chosen according to the
boundary conditions demanded by the physical configuration at hand. At this
level we do not make any specific choice for the boundary conditions, so that we
can only state that W is a suitable subspace of the Sobolev space H1(Ω) (for
the definition of all the functional spaces defined herein see, e.g., [20]).
Let now Th = {K} be a conformal triangulation of the domain Ω, with hK the
diameter of the generic triangle K, and let VTh

= {V }, the set of all the vertices
V of Th ([4]). Then let Wh =

{
wh ∈ C0(Ω) : wh|K ∈ P1(K),∀K ∈ Th

}
∩ W

define the space of the affine finite elements associated with partition Th, where
P1 is the space of the polynomials of (global) degree less than or equal to one
([28]).
Thus, following [14], the considered semi-discrete formulation of (2) reads: for
any t ∈ (0, T ], find Uh = Uh(t) = (uh, vh, ch)T ∈ [Wh]3, such that

∑
K∈Th

∫
K

wh ·
(
∂Uh

∂t
+A1

∂Uh

∂x
+A2

∂Uh

∂y

)
dK

+
∑

K∈Th

∫
K

ΘK

(
A1
∂wh

∂x
+A2

∂wh

∂y

)
·
(
∂Uh

∂t
+A1

∂Uh

∂x
+A2

∂Uh

∂y

)
dK+

∑
K∈Th

∫
K
δK

‖RK‖2
ε+ ‖∇Uh‖2

∇Uh · ∇wh dK =
∑

K∈Th

∫
K

wh · S dK

+
∑

K∈Th

∫
K

ΘK

(
A1
∂wh

∂x
+A2

∂wh

∂y

)
· S dK ∀wh ∈ [Wh]3 , (3)

where RK is the elemental residual vector, ΘK is the stabilization matrix, ε and
δK are suitable tuning parameters of the shock-capturing correction and ‖·‖2
denotes the standard Euclidean norm. The second terms on the left- and on the
right-hand side of system (3) represent the streamline-diffusion stabilization,
weighted by the matrix

ΘK =

[
4
µ2

K

2∑
i=1

A2
i

]− 1
2

, (4)

where µK is a representative dimension of the element K. In the case of uniform
meshes the standard choice is µK = hK ([13]). On the other hand the third term
on the right hand side represents the shock capturing correction, expressed as a
function of the elemental residual. The tuning parameter δK is usually chosen
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such that δK = O (µK), while coefficient ε simply prevents a division by zero (it
is set to 2.2e-16 in the numerical results in section 5).
Notice that formulation (3) is strongly consistent, since both the streamline-
diffusion and the shock-capturing terms vanish when U replaces Uh.
Finally the semi-discrete formulation (3) is discretized in time through the stan-
dard finite difference θ-method (see, e.g., [28]). For this purpose, we introduce
a partition of the time window [0, T ] by introducing the time levels

{
t0, . . . , tn

}
,

which identify the set {Ik} of the time intervals Ik of amplitude ∆tk = tk+1− tk,
for k = 0, . . . , n−1. At the initial time t0 a suitable initial condition U0

h ∈ [Wh]3,
is imposed. Moreover we choose θ = 2/3 to guarantee the unconditional stabil-
ity of the θ-scheme, and to prevent the arising of spurious oscillations near the
discontinuities of the solution.

3 A recovery based space-time error estimator

The recovery based error estimators were originally proposed in [38] in the frame-
work of linear elasticity. They found on a simple remark: in a finite element
modeling, the stresses are usually obtained by differentiating the displacement
field; it is consequently a poorer approximation compared with the displacement
field itself. To get rid of this limitation, the idea is to improve the accuracy of
the numerical gradient by means of suitable re-interpolations and average pro-
cedures, known as recovery procedures. These essentially consist of suitable
projections of the numerical gradient onto richer spaces. Several recipes have
been proposed in the literature for this purpose (see, e.g., [38, 39, 31]). Moreover
the L2-norm of the difference between the recovered and the numerical gradi-
ent provides us with a robust a posteriori error estimator for the H1-seminorm
of the discretization error: this estimator can be consequently used to drive a
corresponding mesh adaptation procedure (see, e.g., [40]). To summarize two
targets are pursued at a time via a recovery based approach: the proposal of a
better approximation for the discrete gradient as well as of an a posteriori error
estimator for the H1-seminorm of the error.
Many works in the literature investigate recovery based error estimators, al-
though their theoretical properties are not yet clearly understood (see, e.g.,
[1, 16, 23, 37]). On the other hand, these estimators have been applied to a wide
range of different physical problems, showing a remarkable numerical robustness
(see, e.g., [11, 34, 21, 7, 8]). Many good properties are shared by these estima-
tors: for instance, they depend only on the chosen finite element space, being, on
the contrary, completely independent of the considered problem, of the govern-
ing equations and of the other details characterizing the adopted finite element
formulation (e.g., stabilization terms). From a computational point of view they
are really cheap and easy to implement, since their definition involves only the
numerical solution and its gradient. All these properties make recovery based
error estimators very appealing tools with a view to an adaptive procedure.
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In particular in this work we resort to this class of estimators to adapt both
the space and the time step. We propose an a posteriori recovery based error
estimator ηS−T to control the global discretization error (i.e., the error due to
both the space and time discretization): in more detail, we define

ηS−T = ηS,A + ηT , (5)

i.e., as the sum of an anisotropic estimator (ηS,A) for the discretization error in
space and an estimator (ηT ) for the discretization error in time. Definition (5)
turns out to be ideal with a view to an adaptive procedure able to select, in an
automatic way, the time step as well as the computational grid: indeed the key
point is to split the space and time contributions, as confirmed by other works
in the literature (see. e.g., [35, 3, 22, 32, 24]).
In the sequel we describe separately the space and time contribution to estimator
(5). They both understand a recovery based procedure. Notice that, as far as
we know, this is the first time that a recovery based error estimator is used for
time adaptation in the shallow water framework.

3.1 The anisotropic setting

In this section we provide the minimal background required to found the anisotropic
estimator ηS,A. In particular we refer to the anisotropic framework introduced
in [9]. To identify the geometric properties of each triangle K in Th, we move
from the geometric transformation of the reference triangle K̂ into the generic
triangle K, i.e., from the standard invertible affine map TK : K̂ → K, given by

x = TK (x̂) = MK x̂ + tK ∀x ∈ K, (6)

with x̂ ∈ K̂, and where MK ∈ R2×2 and tK ∈ R2. We exploit the spectral prop-
erties of the Jacobian MK , via two successive factorizations: we first introduce
the polar decomposition MK = BKZK of MK , where BK ∈ R2×2 is a symmetric
positive definite matrix and ZK is an orthogonal matrix. Then we consider the
spectral decomposition BK = RT

KΛKRK of BK , where RT
K = [r1,K , r2,K ] is the

matrix of the right eigenvectors of BK and ΛK = diag(λ1,K , λ2,K) is the diagonal
matrix of the corresponding eigenvalues. We identify here K̂ with the equilateral
triangle inscribed in the unit circle centered at the origin. For this choice the
shape and the orientation of each triangle are fully described by the quantities
ri,K and λi,K , for i = 1, 2. In more detail, the unit circle circumscribing K̂ is
mapped into an ellipse circumscribing K (see Figure 2). Then r1,K and r2,K

identify the principal directions of orientation of the two semi-axes, the major
and the minor, respectively while λ1,K and λ2,K measure the length of these
semi-axes.
We introduce the so-called stretching factor sK = λ1,K/λ2,K as synthetic indi-
cator of the anisotropy of the triangle K. Without loosing generality, we assume
λ1,K ≥ λ2,K , so that sK ≥ 1 for each K in Th. In particular sK = 1 in the case of
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Figure 2: Geometrical interpretation of the map TK .

an equilateral K. We define also a further geometric scaling factor, which is used
to replace parameter µK in the stabilization matrix (4). This factor is chosen
as the element size along the direction orthogonal to the local flow field. As in
an anisotropic mesh the elements may be highly stretched along the directions
ri,K , we replace µK in the (4) with

λv,K =
[
λ−2

1,K (r1,K · uK)2 + λ−2
2,K (r2,K · uK)2

]−1/2
, (7)

where uK denotes the average of the velocity field u on the triangle K. The
directions ri,K are thus projected along the local streamline direction, while the
weights λ−2

i,K provide a sort of geometric average.

3.2 The spatial error estimator

To define the a posteriori error estimator ηS,A for the discretization error in
space, we resort to the anisotropic estimator, proposed in [25]. To introduce it,
we refer to a general scalar variable z and to its finite element approximation
zh: in our specific case z will coincide with a component of the unknown vector
U(t) = (u, v, c)T or with a suitable scalar quantity related to its components
(e.g., the water depth).
Our goal is to provide, for each time t > 0, a fully computable estimation for
the H1-seminorm of the discretization error ezh(t) = z(t)− zh(t), given by

|ezh(t)|2H1(Ω) =
∫

Ω
|∇z(t)−∇zh(t)|2 dΩ. (8)

In the spirit of a recovery based approach, we aim at replacing the unknown gra-
dient ∇z with a corresponding recovered gradient and using the right hand side
of (8) as the desired error estimator. In particular we look for an anisotropic er-
ror estimator, that is defined in terms of the geometric properties of the triangles
K. To balance the additional computational effort demanded by an anisotropic
analysis, we move from a recovery procedure really simple, different with respect
to the standard ones (see, e.g., the procedures proposed in [38, 39, 31]). Let us
consider the triangle K and the associated patch ∆K of elements sharing with
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Figure 3: Gradient of the discrete solution (black) and recovered gradient (9)
(grey).

K at least a vertex. The recovered gradient PR(zh)(t) is thus defined, for each
t > 0, as

PR(zh)(x, t) =

∑
K∈∆K

∇zh(t)|K · |K|
|∆K |

∀x ∈ K, (9)

i.e., it coincides with the area-weighted average of the gradient of the solution,
computed on the triangles belonging to the patch ∆K . With a view to the whole
solving-adaptive procedure, time t will coincide with the discrete times tk of the
partition {Ik}. Formula (9) yields a piecewise constant recovered gradient, i.e., a
quantity which is in general poorer compared with the standard piecewise linear
recovered gradients in [38, 39, 31]. However, notice that, as discussed in [25],
procedure (9) can be enhanced to higher polynomial degree. Here we adopt the
simplest choice.
The local estimator is then defined, for each t > 0, as the L2-norm on the
patch ∆K of the discard between the gradient of the numerical solution and the
recovered gradient, extended to the whole patch ∆K (see Figure 3), i.e., as

[
ηI

K(t)
]2

=
∫

∆K

|PR(zh)K→∆K
(t)−∇zh(t)|2 d∆K , ∀K ∈ Th. (10)

At this level no geometric quantity related to the element K appears in the
estimator (10) as well as in the recovery procedure (9). The superscript I stands
for isotropic indeed. Moreover notation PR(zh)K→∆K

refers to the extension of
value (9) from K to the whole patch ∆K . Notice that in (10) both PR(zh)(t)
and ∇zh(t) are constant, global and piecewise, respectively. In this respect we
state that the proposed recovery procedure is poorer than the standard ones
([38, 39, 31]). On the other hand it is simpler to implement and the source of
information involved in (9) is wider: estimator ηI

K is indeed computed on set
of elements larger compared with the patch usually employed, i.e., the patch
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associated with a vertex of Th. Estimator (10) quantifies the variance of the
gradient on ∆K , with respect to the area-weighted average. The corresponding
global error estimator thus coincides with[

ηI(t)
]2

=
∑

K∈Th

[
ηI

K(t)
]2 ∀t > 0. (11)

We follow now [25] to derive an anisotropic counterpart of estimator ηI
K(t).

Moving from the anisotropic framework introduced in section 3.1, the local
anisotropic estimator can be defined, for any K ∈ Th and for any t > 0, as[

ηA
K(t)

]2
=

1
λ1,Kλ2,K

∫
∆K

{
λ2

1,K [r1,K · (PR(zh)K→∆K
(t)−∇zh(t))]2 +

+λ2
2,K [r2,K · (PR(zh)K→∆K

(t)−∇zh(t))]2
}
d∆K . (12)

The idea is essentially to project the isotropic estimator (10) onto the anisotropic
directions r1,K and r2,K . Notice that estimators ηI

K and ηA
K are equivalent when

λ1,K = λ2,K . The scaling factor (λ1,Kλ2,K)−1 is introduced to make estimator
ηA

K independent of the element size. The anisotropic global error estimator is
then given by [

ηA(t)
]2

=
∑

K∈Th

[
ηA

K(t)
]2 ∀t > 0. (13)

Estimator (13) is essentially heuristic. As showed in [25], the idea behind ηA is
to mimic, in a recovery based spirit, the anisotropic interpolation error estimate
derived in [9] for a Clément-like interpolant of degree one ([5]). Some further
rationale behind estimator (13) can be found in [25]. Robustness of estimator
ηA is numerically investigated on two dimensional elliptic problems in [25, 27]
as well as on the SWE system in [27]. Moreover an extension of ηA to the
three-dimensional framework is provided and numerically assessed in [7, 8].

3.3 The time error estimator

We propose a recovery based error estimator also to control the discretization
error in time. The idea is similar to the one followed in the previous section,
even though we now deal with a 1D setting. In particular the goal pursued is to
predict, at each time level, the time step to be used in the next time advance-
ment. This remark immediately relieves us from defining necessarily a global
estimator of the time discretization error.
As in previous section we refer to a generic scalar variable z and to its corre-
sponding discretization zh: at the generic time level tk, we know zh at each time
level tj , with j ∈ {0, . . . , k}. Then, for each x ∈ Ω, we look for an estimator of
the discretization error

|ezh(x)|2H1(∆tk−1) =
∫

Ik−1

∣∣∣∣∂z(x)
∂t

− ∂zh(x)
∂t

∣∣∣∣2 dt, (14)
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Figure 4: Time derivative recovery procedure: recovered solution z∗ (dotted and
dashed lines) versus linear interpolant of values zj

h (continuous line) on the left;
comparison between the time derivatives ∂z∗/∂t (dotted and dashed lines) and
∂zh/∂t (continuous lines) on the right.

to predict the next time step ∆tk, with ezh = z − zh, defined as in (8). Notice
that this seminorm is not dimensionless as the H1-seminorm in (8).
To compute the derivative ∂zh(x)/∂t in (14), we move form the pointwise values
zj
h = zh(x, tj), with j ∈ {0, . . . , k}. In particular we replace function zh on the

interval Ik−1, for k = 1, . . . , n, with the straight line interpolating at tk−1 and
tk the values zk−1

h ) and zk
h, respectively. We compute

∂zh(x)
∂t

∣∣∣∣
Ik−1

=
zk
h − z

k−1
h

∆tk−1
.

Then the idea is to substitute the time derivative ∂z/∂t of the exact solu-
tion on Ik−1 with the time derivative ∂z∗/∂t of a suitable recovered solution
z∗. In particular we build the parabola z∗ interpolating the couples of values
(tk−2, zk−2

h ),(tk−1, zk−1
h ),(tk, zk

h) (see Figure 4, left) and then we assume

∂z(x)
∂t

∣∣∣∣
Ik−1

≡ ∂z∗(x)
∂t

∣∣∣∣
Ik−1

∀ k = 1 . . . n. (15)

In this way we obtain a piecewise linear recovered time derivative (see Figure 4,
right). According to a standard recovery based approach, the recovered deriva-
tive is now a polynomial of higher degree with respect to the discrete derivative
∂zh/∂t.
The local recovery based time estimator is thus defined as

[
ηT

Ik−1
(x)
]2

= T̃

∫
Ik−1

∣∣∣∣∣ ∂z∗(x)
∂t

∣∣∣∣
Ik−1

−
zk
h − z

k−1
h

∆tk−1

∣∣∣∣∣
2

dt, (16)

where T̃ is a suitable time scale factor characteristic of the problem at hand.
Factor T̃ essentially makes estimator ηT

Ik−1
(x) dimensionless, i.e., suited to be

added to the space estimator ηS,A, according to the space-time splitting in (5).
A possible choice for T̃ is the ratio L/c̃ where L is a characteristic length of the
domain and c̃ is a representative value for the celerity. As an alternative T̃ could
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coincide with the time step ∆tk−1 itself.
From a computational viewpoint estimator (16) is computed on each vertex V
of the current grid Th. Of course we aim at providing a unique estimate of
the time discretization error at time tk, by merging all the spatially distributed
information in a single indicator. For this reason, we first compute an average
value of the estimator on each triangle K as

[
ηT

Ik−1,K

]2
=

∑
V ∈K

[
ηT

Ik−1
(V )
]2

3
.

Then the time error estimator associated with the interval Ik−1 is computed as

ηT
Ik−1

=

√√√√ ∑
K∈T k

h

[
ηT

Ik−1,K

]2
. (17)

As explained in section 4.2, estimator (17) will be used in a predictive fashion
to identify the successive time step ∆tk.

4 The solving-adaptive procedure

In this section we detail the proposed space-time adaptive procedure, which
combines the information provided by the spatial and temporal a posteriori
error estimators in (13) and (17) to drive an automatic choice of the spatial and
temporal steps. For this purpose we refer to (5) and we introduce the global
error estimator ηS−T , with ηS,A ≡ ηA, and

ηT =
n∑

k=1

ηT
Ik−1

(18)

the global a posteriori error estimator in time induced by (17). Since the θ-
scheme employed for the time discretization assumes a progressive time advance-
ment, estimator ηT becomes meaningful only at the end of the numerical simu-
lation, i.e., when the discrete solution is known at each time level. This is the
reason why, during the adaptive procedure, we resort to the local counterpart
(17).
Our purpose is now to control ηS−T by assigning a global tolerance τ which we
split as τ = τS + τT , where τS and τT are the tolerances demanded on ηS,A and
ηT , respectively. The two adaptation procedures are described separately. The
algorithm merging the two adaptive schemes with the discrete solver is tackled
in section 4.3.

4.1 The mesh adaptation scheme

We use here the mesh adaptation procedure proposed in [10] and then success-
fully employed in several works (see, e.g., [23, 24, 27]).
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The crucial point is to derive a so-called metric identifying the new adapted
mesh moving from the proposed estimator ηA. In particular we aim at minimiz-
ing the number of mesh elements while guaranteeing a prescribed tolerance on
ηA, i.e., on the spatial discretization error.
We recall that a metric is represented by a symmetric positive definite tensor
field M̃ : Ω → R2×2. This tensor can be diagonalized as M̃ = R̃T Λ̃−2R̃ , with
Λ̃ = diag(λ̃1, λ̃2) a positive diagonal matrix, and R̃T = [r̃1, r̃2] an orthonormal
tensor. Given a background triangulation Th, we can always approximate the
pointwise matrices Λ̃ and R̃ with suitable piecewise constant quantities on Th,
i.e., such that λ̃i|K = λ̃i,K , r̃i|K = r̃i,K , for any K ∈ Th and with i = 1, 2.
Now our first step consists of deriving a piecewise constant optimal metric on
a background mesh, by exploiting the information provided by estimator ηA

evaluated on Th itself. For this purpose we suitably rewrite the local estimator
(12). To simplify the notation we omit hereafter the dependence on time. We
introduce the so called recovered gradient matrix given by,

[G∆K
]i,j =

∫
∆K

{PR(zh)K→∆K
−∇zh}i {PR(zh)K→∆K

−∇zh}j d∆K (19)

for i, j = 1, 2. Moreover, we define a scaled recovered gradient matrix Ĝ∆K
=

G∆K
/|∆K |, with |∆K | = λ1,Kλ2,K |∆̂K | and where ∆̂K = T−1

K (∆K) is the pull-
back of the patch ∆K via map TK . Estimator ηA

K can thus be written as

[ηA
K ]2 = |∆̂K |λ1,Kλ2,K

{
sK

(
rT

1,KĜ∆K
r1,K

)
+ s−1

K

(
rT

2,KĜ∆K
r2,K

)}
. (20)

Notice that in this last expression the information concerning the size of the
element K is essentially lumped into the multiplicative constant |∆̂K |λ1,Kλ2,K ,
at least asymptotically (i.e., when the mesh is sufficiently fine). Thus maximize
the area of K (which is equivalent to minimize the number of elements of Th)
leads to minimize the term in brackets. We solve consequently the following
local constrained minimization problem: find (sK , r1,K) such that

I(sK , r1,K) = sK

(
rT

1,KĜ∆K
r1,K

)
+ s−1

K

(
rT

2,KĜ∆K
r2,K

)
is minimum, (21)

with sK ≥ 1, ‖r1,K‖2 = ‖r2,K‖2 = 1, r1,K · r2,K = 0. In [23] a proof of
the existence and the uniqueness of the solution to problem (21) is provided.
In particular the optimal stretching factor s̃K and direction r̃1,K are given by
s̃K = [σ1,K/σ2,K ]1/2 and r̃1,K ≡ p2,K , where σ1,K and σ2,K are the eigenvalues
of Ĝ∆K

, with σ1,K ≥ σ2,K and p2,K is the eigenvector associated with σ2,K . To
fully identify the optimal metric, we still need to compute the two optimal values
λ̃1,K and λ̃2,K , separately. These are obtained through an error equidistribution
principle: given the global tolerance τS , we impose that ηA

K = τK = τS/Nel, for
any K ∈ Th, where Nel is the cardinality of mesh Th. This yields λ̃1,K =

√
s̃Kq,
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λ̃2,K =
√
q/s̃K , with

q = λ̃1,K λ̃2,K =
τ2
K

|∆̂K |
(
s̃Kσ2,K + s̃−1

K σ1,K

) . (22)

Next step is to build the new adapted mesh moving from the just computed
optimal metric and the background grid Th. This goal is achieved via the so
called matching criterion introduced, for instance, in [23].
Two corrections are imposed during the metric generation process. A minimum
value is imposed on the quantity q, to avoid an excessive clustering of mesh
elements in correspondence with the solution discontinuities. In more detail, the
value q is computed first via (22); then we set q = max(qmin, q), where qmin

coincides, for instance, with the mean area of the elements of a reference grid.
A second troublesome occurrence which calls for a suitable metric correction is
the generation of too coarse meshes. In this case we implement an automatic
metric correction procedure. Starting from the optimal metric M̃ identified by
the quantities λ̃i,K , r̃i,K defined above, we predict the number of elements of the
adapted mesh T NEW

h matching M̃ ; if this number is less than a chosen threshold
Nel,min, then a new metric M̃ (1) is proposed on the basis of M̃ itself. Essentially
metric M̃ (1) is obtained by means of a global and uniform scaling of the tensor
M̃ .
The constraints on the minimal element area and number of elements lead to
control, from below and from above, the lengths λi,K . Anyway both these bounds
are such that the local anisotropy, predicted by the optimal metric M̃ for the
mesh elements, is preserved.
To summarize the mesh adaptation is performed through the following iterative
procedure. At each iteration k, i.e., at each time level tk, we solve the differential
problem at hand on the mesh T k

h and evaluate the a posteriori error estimator
ηA on this mesh. Then the optimal metric M̃k+1 is computed by solving the
local constrained optimization problems (21) and via the error equidistribution
criterion. We apply the two controls on the area and on the predicted number of
mesh elements. Finally the new adapted mesh T k+1

h matching M̃k+1 is generated
via the matching criterion, i.e., in practice by resorting to the two dimensional
metric-based mesh generator BAMG ([12]). In particular at each adaptation
step a complete remesh is performed, even though BAMG, as far as possible,
preserves the previous position of mesh nodes during the adaptation procedure.

4.2 The time adaptation scheme

The time adaptation procedure is driven through the imposition of a local tol-
erance instead of the global tolerance τT . Indeed the global error estimator (18)
cannot be directly used, since it is computable only at the final time tn = T .
The time step is thus adapted independently for any time interval, i.e., at each
time tk we aim at predicting the time step ∆tk which identifies the new time
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tk+1. This means that the partition of the time window [0, T ] as well as the com-
putational mesh at each tk are among the unknowns of the problem at hand.
We fix consequently a tolerance τT

∆t for the time local discretization error in
time, i.e., (17). We rewrite ηT

Ik−1
as[

ηT
Ik−1

]2
=
∑

K∈T k
h

[
ηT

Ik−1,K

]2
= T̃

[
∆tk−1ρ̃T

Ik−1

]2
, (23)

where

[
ρ̃T

Ik−1

]2
=

1

[∆tk−1]2
∑

K∈T k
h

1
3

∑
V ∈K


∫

Ik−1

∣∣∣∣∣ ∂z∗(V )
∂t

∣∣∣∣
Ik−1

−
zk
h − z

k−1
h

∆tk−1

∣∣∣∣∣
2

dt

 .

Since the computational grid changes at each time step, we denote with T k
h

the mesh corresponding to time level tk following the notation of the previous
section.
We use now the estimator ηT

Ik−1
in (23) to predict the new time step ∆tk. We

impose ηT
Ik−1

= τT
∆t to we get as new time step the value

∆tk =
√

1

T̃

τT
∆t

ρ̃T
Ik−1

. (24)

Value (24) is finally compared with two limit values, ∆tmin and ∆tmax, chosen
a priori as functions of the time scales characterizing the problem at hand, with
the aim of improving the stability and the reliability of the adaptive simulation
process. Since estimator ηT

Ik−1
can be computed only when the solution is known

at three times tk, tk−1, tk−2, we adapt the time step according to (24) only for
tk ≥ t2. As a consequence the size of the first two time steps has to be assigned
a priori: in particular we set here ∆t0 = ∆t1 = ∆tmin.

4.3 The solution-adaptation coupling

We provide in Figure 5 a sketch of the algorithm used to combine the discrete
solver in section 2.1 with the space and time adaptation steps detailed in section
4.1 and 4.2, respectively.
The simulation starts from an initial condition U0

h defined on a sufficiently fine
background grid T 0

h . Let us first assume to be at time tk−1, i.e., to know the
approximate solution Uk−1

h , the mesh T k−1
h and the time step ∆tk−1 predicted

at the previous iteration. As first concern, we have to suitably linearize the
variational formulation (3). For this purpose we solve problem (3) on the grid
T k−1

h , with a time step equal to ∆tk−1 and using Uk−1
h for the linearization. This

first step yields a first approximate solution U∗kh at t = tk. One component of
U∗kh (or a suitable function of its components) can now be used to build estimator
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Figure 5: Sketch of the solution-adaptation algorithm.

ηA in (13) for t = tk and consequently to compute the new metric M̃k, via the
procedure detailed in section 4.1. This metric is then furnished to BAMG to
build the new adapted mesh T k

h , matching M̃k. Now, before proceeding, all the
variables evaluated on T k−1

h have to be projected on the new mesh T k
h . This

operation is accomplished exactly as in [27], i.e., by solving the following problem∑
K∈T k

h

∫
K

(zk
h − zk−1

h ) · wk
hdK = 0, (25)

where zi
h stands for the generic discrete variable zh of Uh evaluated at time ti,

with i = k− 1, k, while wk
h denotes the generic finite element test function asso-

ciated with the adapted mesh T k
h . Problem (25) is implemented via a dedicated

algorithm in FreeFEM++. As numerically shown in [27], procedure (25) ensures
the conservation of the mass and the momentum up to a satisfying tolerance.
The SW system is then solved for the second time but now on the mesh T k

h ,
and by using this time U∗kh for the linearization. This second resolution step
yields the final vector of unknowns Uk

h at t = tk. At this point the new time
step ∆tk is predicted via recipe (24) and the successive time slab (tk, tk+1) is
thus identified.

5 Numerical results

5.1 Radial dam-break

We consider a radial dam break problem. This test case is a standard benchmark
in the SWE literature (see, e.g., [18, 29]). The initial condition is represented
by a circular dam, placed in the center of a squared domain and surrounded by
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wall boundaries. In our case the domain Ω coincides with a square of side 5m,
centered at the origin. We set, at t = 0s,{

h = 2m for r ≤ 0.5m
h = 1m for r > 0.5m,

(26)

with r =
√

(x2 + y2), and u = v = 0 in the whole domain. The bottom is flat
and smooth, so that no source term is considered. Boundary conditions impose
u · n = 0 on the whole boundary. We consider g = 1, following [18, 29]. Such a
choice affects the celerity of the waves, but does not modify the main features
of the whole process. We consider the time window t ∈ [0, 1.5]s.
In Figure 6 we show for three different times the water depth h computed on
the grids yielded by adaptive procedure detailed in section 4.3. We make the
following choices for the parameters tuning the mesh adaptation: τS = 1m,
qmin = 2 × 10−4m2, Nel,min = 1000. Concerning the time step adaptation we
set ∆t0 = 0.003s and ∆tmax = 0.04s. We show only the top-right quarter of
the domain, due to the radial symmetry of the problem. In the first part of the
phenomenon the solution is characterized by a shock-wave traveling outwards,
and by a rarefaction wave traveling inwards. The dynamics of this first phase
is very similar to that characterizing a one dimensional dam-break; however,
in the radial case, the water depth is variable in the region comprised between
the rarefaction and the shock position. This is due to the fact that the fluid
is spreading out. Once the rarefaction wave reaches the origin, all the water
has been accelerated outwards and the water depth consequently falls below the
value h = 1m (see Figure 6, left). This induces negative velocities along the
radius, for t > 0.75s. The radial symmetry of the problem imposes U = 0 at
r = 0, so that the fluid moving inwards is suddenly stopped at the origin. For
t > 1s this gives rise to a second shock-wave traveling outwards (see Figure 6,
center), while the first shock-wave travels undisturbed outwards for the whole
considered time window. The two shock waves reduce their amplitude as they
propagate, due to the radial spreading of the mass and of the momentum (see
Figure 6, right).

In the following we analyze in more detail the performance of the solution-
adaptation procedure proposed in section 4.3. We perform first a sensitivity
analysis with respect to the value chosen for the local tolerance τT

∆t. In partic-
ular Figure 7 shows the time evolution of the time step (left) and of the car-
dinality of the adapted meshes (right) associated with the choices τT

∆t = 0.25m
and τT

∆t = 0.5m, all the remaining parameters being fixed to the values listed
above. The trend of the time step is clearly different: as expected, a smaller
tolerance induces reduced time steps. For τT

∆t = 0.25m the time step remains
about constant around ∆t = 0.005s for t < 1s; then it grows, up to ∆t = 0.012s.
On the other hand, for τT

∆t = 0.5m, the time step grows continuously, up to
the maximal allowed value ∆tmax = 0.04s, reached at about t ≈ 1.1s. In both
the cases the time step grows as time advances, even though the variation rate
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Figure 6: Radial Dam Break: snapshots of the numerical solution at t = 0.5s
(left), t = 1s (center), t = 1.5s (right).

Figure 7: Radial dam break: temporal evolution of the adapted time step (left)
and of the cardinality of the adapted grid (right) for two different choices of τT

∆t.

is definitely higher for τT
∆t = 0.5m. This progressive increase is coherent with

the evolution of the phenomenon features. During the considered time window,
the flow is dominated by the presence of the shock waves, but their amplitude
decreases with time, due to the spreading of the fluid. As a consequence, the
value of the time error estimator decreases across the discontinuities.
Since the spatial tolerance τS is the same for the two simulations, the cardinality
of the meshes is of the same order of magnitude in the two cases, i.e., Nel varies
between a minimum value equal to 3000 and a maximum value equal about to
8000. However, notice that the two trends in Figure 7, right, are different: for
t ≤ 0.9s, a larger number of elements is associated with τT

∆t = 0.5m, while the
situation is exactly reversed for t > 0.9s. Moreover, the number of elements
continuously grows for τT

∆t = 0.25m, while it exhibits a drastic reduction (ap-
proximately the 40% for t ∈ (0.75, 1.5)s) for τT

∆t = 0.5m. This is due to the
interplay between space and time adaptation and, in part, to the recovery based
procedure used to build the estimator.

To clarify this issue we compare the two adapted solutions with a reference
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Figure 8: Radial dam break, t = 0.5s: adapted computational mesh for τT
∆t =

0.5m (top-left) and τT
∆t = 0.25m (bottom-left) and comparison of the adapted

solutions with the reference solution (right).

solution, along a radial section. In particular we adopt as reference solution the
one in [18], obtained by solving the problem at hand via a 1D radial SWE sys-
tem, discretized by a finite volume scheme. Figures 8-10 (right) show the results
of such a comparison in terms of water depth for the three times t = 0.5s, t = 1s
and t = 1.5s. Moreover we show the adapted meshes associated with the two
choices τT

∆t = 0.5m (top-left) and τT
∆t = 0.25m (bottom-left).

Figure 8 refers to time t = 0.5s. The two adapted meshes are rather similar
(see Figure 8, left): a first refinement appears in correspondence with the front
of the shock-wave propagating outwards (r ≈ 1.1m), while a second less evident
refined area is identified at r ≈ 0.2m. This latter refinement tracks the drop of
the water depth due to the rarefaction wave propagation. In this same area both
the adapted solutions exhibit a phase difference with respect to the reference so-
lution (see Figure 8, right). Such difference is about 0.05m for τT

∆t = 0.25m and
0.1m for τT

∆t = 0.5m. Since the two adapted meshes are very similar in this zone,
we ascribe the phase-difference to the chosen time step only. The shock wave is
identified at the same position by both the adaptive simulations. For τT

∆t = 0.5m
a slight overdiffusion is present, while the shock wave front is sharply detected
for the choice τT

∆t = 0.25m. This remark justifies the difference in terms of mesh
cardinality between the two adapted solutions (see Figure 7, right).

Time t = 1s is considered in Figure 9. For both the adapted meshes the re-
fined area near the origin reduces to a very small circle. Indeed, at this time,
the second shock wave is just starting from this location. In this area the dy-
namics is not very well captured by both the adaptive solutions; however when
the tolerance τT

∆t reduces, the accuracy of the approximate solution remarkably
improves. As for t = 0.5s, the position of the shock wave front coincides in the
two cases; however the solution associated with τT

∆t = 0.5m exhibits an overdif-
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Figure 9: Radial dam break, t = 1s: adapted computational mesh for τT
∆t =

0.5m (top-left) and τT
∆t = 0.25m (bottom-left) and comparison of the adapted

solutions with the reference solution (right)..

fusion, more evident with respect to the one in Figure 8. On the contrary the
steep front is well captured for τT

∆t = 0.25m. This different behaviour finds a
counterpart in the thickness of the mesh refinement detected around r ≈ 1.7m.
The global number of elements of the two meshes is really similar for this time
(see Figure 7, right). However, it is evident from Figure 9, left, that a lot of
elements are clustered in the thin refined area for the choice τT

∆t = 0.25m, while
they are more spread for τT

∆t = 0.5m.
At t = 1.5s (Figure 10) the difference between the two adapted solutions is more

striking: a strong overdiffusion characterizes the shock waves front associated
with the choice τT

∆t = 0.5m. On the contrary steep fronts are detected by the
choice τT

∆t = 0.25m. Indeed although the spatial tolerance τS is the same, the
number of elements of the adapted mesh halves by doubling τT

∆t.
This behaviour is linked to the interplay existing between the recovery based
space and time adaptation. In particular the overdiffusion seems to be directly
proportional to the space and to the time discretization step size. This means
that once some features of the solution are lost, the recovery based estimator
is no longer able to capture them. As a consequence, as ∆t grows, ηA tends to
decrease and a mesh coarsening is induced. Since we resort to a recovery based
approach also for time step adaptation, the solution-adaptation procedure enters
into a coarsening loop, which may yield an endless increase of both the space
and time discretization steps. In this concern our results confirm the conclu-
sions drawn in [26] on a rather different problem setting. A practical remedy
to avoid such a problem is to set carefully the tuning parameters involved into
the space-time adaptation procedure, in particular the maximum time step and
the minimum element number allowed during the computation. In the current
test case, for instance, the value ∆tmax = 0.04s turns out to be too big, so that

20



Figure 10: Radial dam break, t = 1.5s: adapted computational mesh for τT
∆t =

0.5m (top-left) and τT
∆t = 0.25m (bottom-left) and comparison of the adapted

solutions with the reference solution (right).

when the tolerance τT
∆t is increased, ∆tmax has to be reduced in order to avoid

the progressive deterioration of the numerical solution.

5.2 Sudden wave propagation

We consider the propagation of a wave inside a closed basin. The basin is com-
posed by a straight rectangular channel [0, 30] × [0, 10]m and a squared basin
of side 30m, joined by an asymmetric trapezoidal lateral expansion (see Figure
11). At t = 0s water is still inside the basin and the water depth is equal to
2m. A time-varying discharge Q is imposed on the left side of the basin. The
inflow hydrograph is characterized by a linear increase of Q from 0 to 100m3/s
for t ∈ (0, 10)s, then the discharge remains fixed to 100m3/s until the final sim-
ulation time, T = 20s. The effects of friction are neglected and the bottom of
the basin is assumed flat. In Figure 11 we present some snapshots of a reference
solution to describe the physical evolution of the phenomenon at hand. The ref-
erence solution is computed on a high-resolution grid of 53126 elements and by
employing a fixed time step ∆tR = 0.002s. We can distinguish essentially three
different phases during the evolution of the wave propagation process. During
the first phase, as the wave propagates in the straight rectangular channel, the
flow is essentially one dimensional (Figure 11, top left). Then for t ∈ (6, 11.5)s,
the wave approaches the lateral expansion and the flow becomes really two di-
mensional (Figure 11, top right). In particular the solution is locally influenced
by the presence of the sharp corner P. Finally, during the third phase, i.e., for
t ∈ (11.5, 20)s, the wave undergoes multiple reflections inside the squared basin
(Figure 11, bottom). This last phase turns out to be the most complex from a
physical point of view, since the solution exhibits strong local features near the
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Figure 11: Sudden wave propagation: snapshots of the reference solution.

geometrical irregularities of the domain, i.e., the corners P and Q, and in corre-
spondence with the three reflected waves. The same test case is run in [27] to
assess the performances of the mesh adaptation procedure only, when combined
with a fixed choice of the time step. We have chosen such a configuration as it
is an archetypal of a real scale flow configuration and it exhibits different levels
of complexity.
We consider now the results achieved by merging the adaptation of both the
computational mesh and the time step. In particular we select the water depth
h as the driving variable for the space-time adaptation. We set τS = 1 and
τT

∆t = 0.05; moreover we impose the following limits to the parameters tuning
the space-time adaptive procedure: ∆tmin = ∆t0 = ∆t1 = 0.02s, ∆tmax = 0.3s,
qmin = 0.02m2, Nel,min = 400.
Figure 12, left, shows the time evolution of the time step ∆t and the correspond-
ing progressive mean. The two trends allow us to follow the local value of the
time step as well as to compare it with the mean of the previous values. The pro-
gressive mean provides the exact number k of adaptive time steps predicted to
reach a certain simulation time. The trend of the time step is substantially char-
acterized by three successive stages. In the first stage, for t ∈ [0, 6.5)s, the time
step grows from the starting value ∆t0 = 0.02s, up to 0.3s. For t ∈ [6.5, 11.5)s,
the time step progressively reduces to ∆t ≈ 0.2s. Finally, for t ≥ 11.5s, the
value of ∆t is essentially set to the minimum allowed value, i.e., 0.02s. The final
simulation time is reached after 462 time steps, so that the corresponding aver-
age time step is given by ∆t = 0.043s. The time evolution of the cardinality of
the adapted mesh is shown in Figure 12, right. The trend exhibits two distinct
phases: for t < 11.5s the number of elements preserves around 400, i.e., the
minimum imposed via the metric correction Nel,min. Then, for t ∈ [11.5, 20]s,
the number of elements grows, up to Nel = 5500.
We observe that the time evolution of both the adapted time step and the car-

22



Figure 12: Sudden wave propagation: temporal evolution of the adapted time
step (left) and of the number of elements of the adapted grids (right).

dinality of the adapted mesh is consistent with the evolution of the physical
phenomenon. The three stages recognized in Figure 12, left, exactly reflect the
three phases of the phenomenon itemized above. On the other hand the reso-
lution of the adapted mesh is the minimum possible for the first two phases of
the phenomenon, while it progressively increases during the third phase, i.e., in
correspondence with the increasing complexity of the phenomenon at hand.
In Figures 13-15 we analyze the results associated with three different times
which are representative for the three phases of the phenomenon; in particular
we choose t = 6.35s, t = 11.46s and t = 18s. For each selected time, we show
the spatial distribution of the water depth h and the corresponding adapted
anisotropic grid used to compute it. Moreover, to assess the robustness of the
solution-adaptation coupling, we compare the solution obtained via space-time
adaptation with the reference solution in Figure 11. In more detail such a com-
parison is performed in correspondence with the longitudinal section highlighted
in Figures 13-15, top left. The mean element area associated with the reference
grid is 0.028m2, i.e., of the same order of magnitude of the imposed qmin. On
the other hand the fixed time step ∆tR = 0.02s corresponds to the minimum
value ∆tmin used in the adaptive simulation.
At t = 6.35s the wave propagation reaches the transition area between the
straight and the divergent part of the channel (Figure 13, top left). At this time
the predicted time step is ∆t1 = 0.271s while the mean time step computed on
previous time intervals is ∆t = 0.227s (see Figure 12, left). Both these values are
one order of magnitude larger than ∆tmin. Concerning the adapted mesh (Figure
13, bottom-left), the elements in the straight channel are essentially stretched
perpendicularly with respect to the one dimensional flow direction. Since the
solution is constant along direction y, the limit of the element size along this
direction coincides with the channel width itself. Moreover, the elements are
mostly gathered in correspondence with the wave front. The solution computed
via the space-time adaptive procedure shows a localized overdiffusion around the
wave front position; anyway it coincides with the reference solution along most
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Figure 13: Sudden wave propagation, t = 6.35s: contour plot of the water depth
h (top left), adapted computational mesh (bottom left) and comparison between
the adapted solution and the reference solution (right).

of the considered section (Figure 13, right).
Similar conclusions can be drawn at time t = 11.46s, when the wave is approach-

ing the squared basin (Figure 14). The time step is now ∆t = 0.178s while the
mean time step of the previous intervals is ∆t = 0.212s (see Figure 12). The
elements cluster near corner P and around the front position, located about at
x ≈ 55m. Although the cardinality of the reference and adaptive meshes differ
by two order of magnitude, the two solutions are very similar along the con-
sidered section (Figure 14, right). A localized overdiffusion characterizes the
adaptive solution in correspondence with the wave front. On the basis of the
considerations in section 5.1 a different tuning of the parameter involved would
likely reduce the overdiffusion.

Let us focus now on t = 18s. The time step is ∆t = 0.02s while the mean
referred to the previous times is ∆t = 0.05s. The complex features of the phe-
nomenon demand for a high resolution grid in many regions of the computational
domain, in particular near the corners P and Q, and in correspondence with the
reflected fronts. The reference and fully-adaptive solution are in really good
agreement. However, the cardinality of the adapted mesh is one order of magni-
tude less than the one of the reference grid, while the ∆t = 2.5∆tR. Despite the
reduced number of elements, the wave fronts are sharply detected by the adapted
solution (notice that the considered section crosses a reflected wave front about
at x ≈ 72m). We observe here a really slight phase difference between the refer-
ence solution and the fully adaptive one, which could be likely ascribed to the
overdiffusion cumulated during the previous times.
To summarize, both the time step and the mesh adaptation procedure proved

to be able to cope with the dynamics of the considered real-scale phenomenon.
In particular the different phases characterizing the phenomenon find a full cor-
respondence with the number of elements of the adapted mesh and with the
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[m]

Figure 14: Sudden wave propagation, t = 11.46s: contour plot of the water
depth h (top left), adapted computational mesh (bottom left) and comparison
between the adapted solution and the reference solution (right)

[m]

Figure 15: Sudden wave propagation, t = 18s: contour plot of the water depth h
(top left), adapted computational mesh (bottom left) and comparison between
the adapted solution and the reference solution (right).
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chosen time step (a larger number of elements combined with a small time step
are predicted for the most critical phases and vice versa). Some local inaccu-
racies given by a contained overdiffusion characterize the solution obtained via
the space-time adaptation, in particular in correspondence with the wave fronts.
However the global quality of the solution is preserved and the propagation of
the local inaccuracies is limited in time.

6 Conclusions

We present in this work a space-time adaptation procedure for the approxima-
tion of the Shallow Water Equations. It is driven by a heuristic a posteriori
estimator for the global error, which keeps separate the space from the time
contribution. Both the space and time error estimators found on a recovered
gradient approach. In particular we propose a new recovery procedure suited to
the adopted time advancing scheme. On the other hand we rely on an anisotropic
error estimator to drive mesh adaptation. A suitable adaptive procedure com-
bining the information of the two error estimators with the chosen space-time
discretization is finally set up.
We assess the coupled solution-adaptation scheme on two test cases. In partic-
ular we focus on the robustness of the proposed procedure. Results attest the
general reliability of the whole procedure, even in the presence of rapidly varying
flows and real scale phenomena.
The first test case helps us in understanding the crucial role played by the param-
eters of the adaptation procedure in terms of reliability. Indeed we highlight the
possibility that an endless coarsening of both the space and time steps occurs,
due to the interplay between the space and the time recovery based adaptations.
To get rid of this matter, a suitable tuning of the control parameters which drive
the space-time adaptation procedure turns out to be crucial.
Results of the real scale test case assess the capability of the proposed method-
ology to provide an accurate solution, by allocating the computational resources
coherently with the evolution of the phenomenon at hand.
Future developments of the present work concern the application of the pro-
posed adaptive procedure to different test settings, characterized, for instance,
by larger evolutionary scales. In particular, we aim at investigating flooding
phenomena influenced by complex geometries, typical, for example, of urban
flooding simulations. Moreover, we are interested in the mathematical modeling
of the propagation of wetting and drying fronts: this certainly represents an
interesting issue where the potentiality of a space-time adaptation could provide
considerable improvements both in terms of modeling accuracy and computa-
tional saving.
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